coredump: make mm->core_state visible to ->core_dump()
[linux-2.6/mini2440.git] / drivers / input / input.c
blobc13ced3e0d3dfe7d0db777776c1b51a2cf4f59e5
1 /*
2 * The input core
4 * Copyright (c) 1999-2002 Vojtech Pavlik
5 */
7 /*
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License version 2 as published by
10 * the Free Software Foundation.
13 #include <linux/init.h>
14 #include <linux/input.h>
15 #include <linux/module.h>
16 #include <linux/random.h>
17 #include <linux/major.h>
18 #include <linux/proc_fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/poll.h>
21 #include <linux/device.h>
22 #include <linux/mutex.h>
23 #include <linux/rcupdate.h>
24 #include <linux/smp_lock.h>
26 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
27 MODULE_DESCRIPTION("Input core");
28 MODULE_LICENSE("GPL");
30 #define INPUT_DEVICES 256
32 static LIST_HEAD(input_dev_list);
33 static LIST_HEAD(input_handler_list);
36 * input_mutex protects access to both input_dev_list and input_handler_list.
37 * This also causes input_[un]register_device and input_[un]register_handler
38 * be mutually exclusive which simplifies locking in drivers implementing
39 * input handlers.
41 static DEFINE_MUTEX(input_mutex);
43 static struct input_handler *input_table[8];
45 static inline int is_event_supported(unsigned int code,
46 unsigned long *bm, unsigned int max)
48 return code <= max && test_bit(code, bm);
51 static int input_defuzz_abs_event(int value, int old_val, int fuzz)
53 if (fuzz) {
54 if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
55 return old_val;
57 if (value > old_val - fuzz && value < old_val + fuzz)
58 return (old_val * 3 + value) / 4;
60 if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
61 return (old_val + value) / 2;
64 return value;
68 * Pass event through all open handles. This function is called with
69 * dev->event_lock held and interrupts disabled.
71 static void input_pass_event(struct input_dev *dev,
72 unsigned int type, unsigned int code, int value)
74 struct input_handle *handle;
76 rcu_read_lock();
78 handle = rcu_dereference(dev->grab);
79 if (handle)
80 handle->handler->event(handle, type, code, value);
81 else
82 list_for_each_entry_rcu(handle, &dev->h_list, d_node)
83 if (handle->open)
84 handle->handler->event(handle,
85 type, code, value);
86 rcu_read_unlock();
90 * Generate software autorepeat event. Note that we take
91 * dev->event_lock here to avoid racing with input_event
92 * which may cause keys get "stuck".
94 static void input_repeat_key(unsigned long data)
96 struct input_dev *dev = (void *) data;
97 unsigned long flags;
99 spin_lock_irqsave(&dev->event_lock, flags);
101 if (test_bit(dev->repeat_key, dev->key) &&
102 is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
104 input_pass_event(dev, EV_KEY, dev->repeat_key, 2);
106 if (dev->sync) {
108 * Only send SYN_REPORT if we are not in a middle
109 * of driver parsing a new hardware packet.
110 * Otherwise assume that the driver will send
111 * SYN_REPORT once it's done.
113 input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
116 if (dev->rep[REP_PERIOD])
117 mod_timer(&dev->timer, jiffies +
118 msecs_to_jiffies(dev->rep[REP_PERIOD]));
121 spin_unlock_irqrestore(&dev->event_lock, flags);
124 static void input_start_autorepeat(struct input_dev *dev, int code)
126 if (test_bit(EV_REP, dev->evbit) &&
127 dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
128 dev->timer.data) {
129 dev->repeat_key = code;
130 mod_timer(&dev->timer,
131 jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
135 #define INPUT_IGNORE_EVENT 0
136 #define INPUT_PASS_TO_HANDLERS 1
137 #define INPUT_PASS_TO_DEVICE 2
138 #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
140 static void input_handle_event(struct input_dev *dev,
141 unsigned int type, unsigned int code, int value)
143 int disposition = INPUT_IGNORE_EVENT;
145 switch (type) {
147 case EV_SYN:
148 switch (code) {
149 case SYN_CONFIG:
150 disposition = INPUT_PASS_TO_ALL;
151 break;
153 case SYN_REPORT:
154 if (!dev->sync) {
155 dev->sync = 1;
156 disposition = INPUT_PASS_TO_HANDLERS;
158 break;
160 break;
162 case EV_KEY:
163 if (is_event_supported(code, dev->keybit, KEY_MAX) &&
164 !!test_bit(code, dev->key) != value) {
166 if (value != 2) {
167 __change_bit(code, dev->key);
168 if (value)
169 input_start_autorepeat(dev, code);
172 disposition = INPUT_PASS_TO_HANDLERS;
174 break;
176 case EV_SW:
177 if (is_event_supported(code, dev->swbit, SW_MAX) &&
178 !!test_bit(code, dev->sw) != value) {
180 __change_bit(code, dev->sw);
181 disposition = INPUT_PASS_TO_HANDLERS;
183 break;
185 case EV_ABS:
186 if (is_event_supported(code, dev->absbit, ABS_MAX)) {
188 value = input_defuzz_abs_event(value,
189 dev->abs[code], dev->absfuzz[code]);
191 if (dev->abs[code] != value) {
192 dev->abs[code] = value;
193 disposition = INPUT_PASS_TO_HANDLERS;
196 break;
198 case EV_REL:
199 if (is_event_supported(code, dev->relbit, REL_MAX) && value)
200 disposition = INPUT_PASS_TO_HANDLERS;
202 break;
204 case EV_MSC:
205 if (is_event_supported(code, dev->mscbit, MSC_MAX))
206 disposition = INPUT_PASS_TO_ALL;
208 break;
210 case EV_LED:
211 if (is_event_supported(code, dev->ledbit, LED_MAX) &&
212 !!test_bit(code, dev->led) != value) {
214 __change_bit(code, dev->led);
215 disposition = INPUT_PASS_TO_ALL;
217 break;
219 case EV_SND:
220 if (is_event_supported(code, dev->sndbit, SND_MAX)) {
222 if (!!test_bit(code, dev->snd) != !!value)
223 __change_bit(code, dev->snd);
224 disposition = INPUT_PASS_TO_ALL;
226 break;
228 case EV_REP:
229 if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
230 dev->rep[code] = value;
231 disposition = INPUT_PASS_TO_ALL;
233 break;
235 case EV_FF:
236 if (value >= 0)
237 disposition = INPUT_PASS_TO_ALL;
238 break;
240 case EV_PWR:
241 disposition = INPUT_PASS_TO_ALL;
242 break;
245 if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN)
246 dev->sync = 0;
248 if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
249 dev->event(dev, type, code, value);
251 if (disposition & INPUT_PASS_TO_HANDLERS)
252 input_pass_event(dev, type, code, value);
256 * input_event() - report new input event
257 * @dev: device that generated the event
258 * @type: type of the event
259 * @code: event code
260 * @value: value of the event
262 * This function should be used by drivers implementing various input
263 * devices. See also input_inject_event().
266 void input_event(struct input_dev *dev,
267 unsigned int type, unsigned int code, int value)
269 unsigned long flags;
271 if (is_event_supported(type, dev->evbit, EV_MAX)) {
273 spin_lock_irqsave(&dev->event_lock, flags);
274 add_input_randomness(type, code, value);
275 input_handle_event(dev, type, code, value);
276 spin_unlock_irqrestore(&dev->event_lock, flags);
279 EXPORT_SYMBOL(input_event);
282 * input_inject_event() - send input event from input handler
283 * @handle: input handle to send event through
284 * @type: type of the event
285 * @code: event code
286 * @value: value of the event
288 * Similar to input_event() but will ignore event if device is
289 * "grabbed" and handle injecting event is not the one that owns
290 * the device.
292 void input_inject_event(struct input_handle *handle,
293 unsigned int type, unsigned int code, int value)
295 struct input_dev *dev = handle->dev;
296 struct input_handle *grab;
297 unsigned long flags;
299 if (is_event_supported(type, dev->evbit, EV_MAX)) {
300 spin_lock_irqsave(&dev->event_lock, flags);
302 rcu_read_lock();
303 grab = rcu_dereference(dev->grab);
304 if (!grab || grab == handle)
305 input_handle_event(dev, type, code, value);
306 rcu_read_unlock();
308 spin_unlock_irqrestore(&dev->event_lock, flags);
311 EXPORT_SYMBOL(input_inject_event);
314 * input_grab_device - grabs device for exclusive use
315 * @handle: input handle that wants to own the device
317 * When a device is grabbed by an input handle all events generated by
318 * the device are delivered only to this handle. Also events injected
319 * by other input handles are ignored while device is grabbed.
321 int input_grab_device(struct input_handle *handle)
323 struct input_dev *dev = handle->dev;
324 int retval;
326 retval = mutex_lock_interruptible(&dev->mutex);
327 if (retval)
328 return retval;
330 if (dev->grab) {
331 retval = -EBUSY;
332 goto out;
335 rcu_assign_pointer(dev->grab, handle);
336 synchronize_rcu();
338 out:
339 mutex_unlock(&dev->mutex);
340 return retval;
342 EXPORT_SYMBOL(input_grab_device);
344 static void __input_release_device(struct input_handle *handle)
346 struct input_dev *dev = handle->dev;
348 if (dev->grab == handle) {
349 rcu_assign_pointer(dev->grab, NULL);
350 /* Make sure input_pass_event() notices that grab is gone */
351 synchronize_rcu();
353 list_for_each_entry(handle, &dev->h_list, d_node)
354 if (handle->open && handle->handler->start)
355 handle->handler->start(handle);
360 * input_release_device - release previously grabbed device
361 * @handle: input handle that owns the device
363 * Releases previously grabbed device so that other input handles can
364 * start receiving input events. Upon release all handlers attached
365 * to the device have their start() method called so they have a change
366 * to synchronize device state with the rest of the system.
368 void input_release_device(struct input_handle *handle)
370 struct input_dev *dev = handle->dev;
372 mutex_lock(&dev->mutex);
373 __input_release_device(handle);
374 mutex_unlock(&dev->mutex);
376 EXPORT_SYMBOL(input_release_device);
379 * input_open_device - open input device
380 * @handle: handle through which device is being accessed
382 * This function should be called by input handlers when they
383 * want to start receive events from given input device.
385 int input_open_device(struct input_handle *handle)
387 struct input_dev *dev = handle->dev;
388 int retval;
390 retval = mutex_lock_interruptible(&dev->mutex);
391 if (retval)
392 return retval;
394 if (dev->going_away) {
395 retval = -ENODEV;
396 goto out;
399 handle->open++;
401 if (!dev->users++ && dev->open)
402 retval = dev->open(dev);
404 if (retval) {
405 dev->users--;
406 if (!--handle->open) {
408 * Make sure we are not delivering any more events
409 * through this handle
411 synchronize_rcu();
415 out:
416 mutex_unlock(&dev->mutex);
417 return retval;
419 EXPORT_SYMBOL(input_open_device);
421 int input_flush_device(struct input_handle *handle, struct file *file)
423 struct input_dev *dev = handle->dev;
424 int retval;
426 retval = mutex_lock_interruptible(&dev->mutex);
427 if (retval)
428 return retval;
430 if (dev->flush)
431 retval = dev->flush(dev, file);
433 mutex_unlock(&dev->mutex);
434 return retval;
436 EXPORT_SYMBOL(input_flush_device);
439 * input_close_device - close input device
440 * @handle: handle through which device is being accessed
442 * This function should be called by input handlers when they
443 * want to stop receive events from given input device.
445 void input_close_device(struct input_handle *handle)
447 struct input_dev *dev = handle->dev;
449 mutex_lock(&dev->mutex);
451 __input_release_device(handle);
453 if (!--dev->users && dev->close)
454 dev->close(dev);
456 if (!--handle->open) {
458 * synchronize_rcu() makes sure that input_pass_event()
459 * completed and that no more input events are delivered
460 * through this handle
462 synchronize_rcu();
465 mutex_unlock(&dev->mutex);
467 EXPORT_SYMBOL(input_close_device);
470 * Prepare device for unregistering
472 static void input_disconnect_device(struct input_dev *dev)
474 struct input_handle *handle;
475 int code;
478 * Mark device as going away. Note that we take dev->mutex here
479 * not to protect access to dev->going_away but rather to ensure
480 * that there are no threads in the middle of input_open_device()
482 mutex_lock(&dev->mutex);
483 dev->going_away = 1;
484 mutex_unlock(&dev->mutex);
486 spin_lock_irq(&dev->event_lock);
489 * Simulate keyup events for all pressed keys so that handlers
490 * are not left with "stuck" keys. The driver may continue
491 * generate events even after we done here but they will not
492 * reach any handlers.
494 if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
495 for (code = 0; code <= KEY_MAX; code++) {
496 if (is_event_supported(code, dev->keybit, KEY_MAX) &&
497 __test_and_clear_bit(code, dev->key)) {
498 input_pass_event(dev, EV_KEY, code, 0);
501 input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
504 list_for_each_entry(handle, &dev->h_list, d_node)
505 handle->open = 0;
507 spin_unlock_irq(&dev->event_lock);
510 static int input_fetch_keycode(struct input_dev *dev, int scancode)
512 switch (dev->keycodesize) {
513 case 1:
514 return ((u8 *)dev->keycode)[scancode];
516 case 2:
517 return ((u16 *)dev->keycode)[scancode];
519 default:
520 return ((u32 *)dev->keycode)[scancode];
524 static int input_default_getkeycode(struct input_dev *dev,
525 int scancode, int *keycode)
527 if (!dev->keycodesize)
528 return -EINVAL;
530 if (scancode >= dev->keycodemax)
531 return -EINVAL;
533 *keycode = input_fetch_keycode(dev, scancode);
535 return 0;
538 static int input_default_setkeycode(struct input_dev *dev,
539 int scancode, int keycode)
541 int old_keycode;
542 int i;
544 if (scancode >= dev->keycodemax)
545 return -EINVAL;
547 if (!dev->keycodesize)
548 return -EINVAL;
550 if (dev->keycodesize < sizeof(keycode) && (keycode >> (dev->keycodesize * 8)))
551 return -EINVAL;
553 switch (dev->keycodesize) {
554 case 1: {
555 u8 *k = (u8 *)dev->keycode;
556 old_keycode = k[scancode];
557 k[scancode] = keycode;
558 break;
560 case 2: {
561 u16 *k = (u16 *)dev->keycode;
562 old_keycode = k[scancode];
563 k[scancode] = keycode;
564 break;
566 default: {
567 u32 *k = (u32 *)dev->keycode;
568 old_keycode = k[scancode];
569 k[scancode] = keycode;
570 break;
574 clear_bit(old_keycode, dev->keybit);
575 set_bit(keycode, dev->keybit);
577 for (i = 0; i < dev->keycodemax; i++) {
578 if (input_fetch_keycode(dev, i) == old_keycode) {
579 set_bit(old_keycode, dev->keybit);
580 break; /* Setting the bit twice is useless, so break */
584 return 0;
588 * input_get_keycode - retrieve keycode currently mapped to a given scancode
589 * @dev: input device which keymap is being queried
590 * @scancode: scancode (or its equivalent for device in question) for which
591 * keycode is needed
592 * @keycode: result
594 * This function should be called by anyone interested in retrieving current
595 * keymap. Presently keyboard and evdev handlers use it.
597 int input_get_keycode(struct input_dev *dev, int scancode, int *keycode)
599 if (scancode < 0)
600 return -EINVAL;
602 return dev->getkeycode(dev, scancode, keycode);
604 EXPORT_SYMBOL(input_get_keycode);
607 * input_get_keycode - assign new keycode to a given scancode
608 * @dev: input device which keymap is being updated
609 * @scancode: scancode (or its equivalent for device in question)
610 * @keycode: new keycode to be assigned to the scancode
612 * This function should be called by anyone needing to update current
613 * keymap. Presently keyboard and evdev handlers use it.
615 int input_set_keycode(struct input_dev *dev, int scancode, int keycode)
617 unsigned long flags;
618 int old_keycode;
619 int retval;
621 if (scancode < 0)
622 return -EINVAL;
624 if (keycode < 0 || keycode > KEY_MAX)
625 return -EINVAL;
627 spin_lock_irqsave(&dev->event_lock, flags);
629 retval = dev->getkeycode(dev, scancode, &old_keycode);
630 if (retval)
631 goto out;
633 retval = dev->setkeycode(dev, scancode, keycode);
634 if (retval)
635 goto out;
638 * Simulate keyup event if keycode is not present
639 * in the keymap anymore
641 if (test_bit(EV_KEY, dev->evbit) &&
642 !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
643 __test_and_clear_bit(old_keycode, dev->key)) {
645 input_pass_event(dev, EV_KEY, old_keycode, 0);
646 if (dev->sync)
647 input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
650 out:
651 spin_unlock_irqrestore(&dev->event_lock, flags);
653 return retval;
655 EXPORT_SYMBOL(input_set_keycode);
657 #define MATCH_BIT(bit, max) \
658 for (i = 0; i < BITS_TO_LONGS(max); i++) \
659 if ((id->bit[i] & dev->bit[i]) != id->bit[i]) \
660 break; \
661 if (i != BITS_TO_LONGS(max)) \
662 continue;
664 static const struct input_device_id *input_match_device(const struct input_device_id *id,
665 struct input_dev *dev)
667 int i;
669 for (; id->flags || id->driver_info; id++) {
671 if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
672 if (id->bustype != dev->id.bustype)
673 continue;
675 if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
676 if (id->vendor != dev->id.vendor)
677 continue;
679 if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
680 if (id->product != dev->id.product)
681 continue;
683 if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
684 if (id->version != dev->id.version)
685 continue;
687 MATCH_BIT(evbit, EV_MAX);
688 MATCH_BIT(keybit, KEY_MAX);
689 MATCH_BIT(relbit, REL_MAX);
690 MATCH_BIT(absbit, ABS_MAX);
691 MATCH_BIT(mscbit, MSC_MAX);
692 MATCH_BIT(ledbit, LED_MAX);
693 MATCH_BIT(sndbit, SND_MAX);
694 MATCH_BIT(ffbit, FF_MAX);
695 MATCH_BIT(swbit, SW_MAX);
697 return id;
700 return NULL;
703 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
705 const struct input_device_id *id;
706 int error;
708 if (handler->blacklist && input_match_device(handler->blacklist, dev))
709 return -ENODEV;
711 id = input_match_device(handler->id_table, dev);
712 if (!id)
713 return -ENODEV;
715 error = handler->connect(handler, dev, id);
716 if (error && error != -ENODEV)
717 printk(KERN_ERR
718 "input: failed to attach handler %s to device %s, "
719 "error: %d\n",
720 handler->name, kobject_name(&dev->dev.kobj), error);
722 return error;
726 #ifdef CONFIG_PROC_FS
728 static struct proc_dir_entry *proc_bus_input_dir;
729 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
730 static int input_devices_state;
732 static inline void input_wakeup_procfs_readers(void)
734 input_devices_state++;
735 wake_up(&input_devices_poll_wait);
738 static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait)
740 int state = input_devices_state;
742 poll_wait(file, &input_devices_poll_wait, wait);
743 if (state != input_devices_state)
744 return POLLIN | POLLRDNORM;
746 return 0;
749 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
751 if (mutex_lock_interruptible(&input_mutex))
752 return NULL;
754 return seq_list_start(&input_dev_list, *pos);
757 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
759 return seq_list_next(v, &input_dev_list, pos);
762 static void input_devices_seq_stop(struct seq_file *seq, void *v)
764 mutex_unlock(&input_mutex);
767 static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
768 unsigned long *bitmap, int max)
770 int i;
772 for (i = BITS_TO_LONGS(max) - 1; i > 0; i--)
773 if (bitmap[i])
774 break;
776 seq_printf(seq, "B: %s=", name);
777 for (; i >= 0; i--)
778 seq_printf(seq, "%lx%s", bitmap[i], i > 0 ? " " : "");
779 seq_putc(seq, '\n');
782 static int input_devices_seq_show(struct seq_file *seq, void *v)
784 struct input_dev *dev = container_of(v, struct input_dev, node);
785 const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
786 struct input_handle *handle;
788 seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
789 dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
791 seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
792 seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
793 seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
794 seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
795 seq_printf(seq, "H: Handlers=");
797 list_for_each_entry(handle, &dev->h_list, d_node)
798 seq_printf(seq, "%s ", handle->name);
799 seq_putc(seq, '\n');
801 input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
802 if (test_bit(EV_KEY, dev->evbit))
803 input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
804 if (test_bit(EV_REL, dev->evbit))
805 input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
806 if (test_bit(EV_ABS, dev->evbit))
807 input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
808 if (test_bit(EV_MSC, dev->evbit))
809 input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
810 if (test_bit(EV_LED, dev->evbit))
811 input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
812 if (test_bit(EV_SND, dev->evbit))
813 input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
814 if (test_bit(EV_FF, dev->evbit))
815 input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
816 if (test_bit(EV_SW, dev->evbit))
817 input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
819 seq_putc(seq, '\n');
821 kfree(path);
822 return 0;
825 static const struct seq_operations input_devices_seq_ops = {
826 .start = input_devices_seq_start,
827 .next = input_devices_seq_next,
828 .stop = input_devices_seq_stop,
829 .show = input_devices_seq_show,
832 static int input_proc_devices_open(struct inode *inode, struct file *file)
834 return seq_open(file, &input_devices_seq_ops);
837 static const struct file_operations input_devices_fileops = {
838 .owner = THIS_MODULE,
839 .open = input_proc_devices_open,
840 .poll = input_proc_devices_poll,
841 .read = seq_read,
842 .llseek = seq_lseek,
843 .release = seq_release,
846 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
848 if (mutex_lock_interruptible(&input_mutex))
849 return NULL;
851 seq->private = (void *)(unsigned long)*pos;
852 return seq_list_start(&input_handler_list, *pos);
855 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
857 seq->private = (void *)(unsigned long)(*pos + 1);
858 return seq_list_next(v, &input_handler_list, pos);
861 static void input_handlers_seq_stop(struct seq_file *seq, void *v)
863 mutex_unlock(&input_mutex);
866 static int input_handlers_seq_show(struct seq_file *seq, void *v)
868 struct input_handler *handler = container_of(v, struct input_handler, node);
870 seq_printf(seq, "N: Number=%ld Name=%s",
871 (unsigned long)seq->private, handler->name);
872 if (handler->fops)
873 seq_printf(seq, " Minor=%d", handler->minor);
874 seq_putc(seq, '\n');
876 return 0;
878 static const struct seq_operations input_handlers_seq_ops = {
879 .start = input_handlers_seq_start,
880 .next = input_handlers_seq_next,
881 .stop = input_handlers_seq_stop,
882 .show = input_handlers_seq_show,
885 static int input_proc_handlers_open(struct inode *inode, struct file *file)
887 return seq_open(file, &input_handlers_seq_ops);
890 static const struct file_operations input_handlers_fileops = {
891 .owner = THIS_MODULE,
892 .open = input_proc_handlers_open,
893 .read = seq_read,
894 .llseek = seq_lseek,
895 .release = seq_release,
898 static int __init input_proc_init(void)
900 struct proc_dir_entry *entry;
902 proc_bus_input_dir = proc_mkdir("bus/input", NULL);
903 if (!proc_bus_input_dir)
904 return -ENOMEM;
906 proc_bus_input_dir->owner = THIS_MODULE;
908 entry = proc_create("devices", 0, proc_bus_input_dir,
909 &input_devices_fileops);
910 if (!entry)
911 goto fail1;
913 entry = proc_create("handlers", 0, proc_bus_input_dir,
914 &input_handlers_fileops);
915 if (!entry)
916 goto fail2;
918 return 0;
920 fail2: remove_proc_entry("devices", proc_bus_input_dir);
921 fail1: remove_proc_entry("bus/input", NULL);
922 return -ENOMEM;
925 static void input_proc_exit(void)
927 remove_proc_entry("devices", proc_bus_input_dir);
928 remove_proc_entry("handlers", proc_bus_input_dir);
929 remove_proc_entry("bus/input", NULL);
932 #else /* !CONFIG_PROC_FS */
933 static inline void input_wakeup_procfs_readers(void) { }
934 static inline int input_proc_init(void) { return 0; }
935 static inline void input_proc_exit(void) { }
936 #endif
938 #define INPUT_DEV_STRING_ATTR_SHOW(name) \
939 static ssize_t input_dev_show_##name(struct device *dev, \
940 struct device_attribute *attr, \
941 char *buf) \
943 struct input_dev *input_dev = to_input_dev(dev); \
945 return scnprintf(buf, PAGE_SIZE, "%s\n", \
946 input_dev->name ? input_dev->name : ""); \
948 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
950 INPUT_DEV_STRING_ATTR_SHOW(name);
951 INPUT_DEV_STRING_ATTR_SHOW(phys);
952 INPUT_DEV_STRING_ATTR_SHOW(uniq);
954 static int input_print_modalias_bits(char *buf, int size,
955 char name, unsigned long *bm,
956 unsigned int min_bit, unsigned int max_bit)
958 int len = 0, i;
960 len += snprintf(buf, max(size, 0), "%c", name);
961 for (i = min_bit; i < max_bit; i++)
962 if (bm[BIT_WORD(i)] & BIT_MASK(i))
963 len += snprintf(buf + len, max(size - len, 0), "%X,", i);
964 return len;
967 static int input_print_modalias(char *buf, int size, struct input_dev *id,
968 int add_cr)
970 int len;
972 len = snprintf(buf, max(size, 0),
973 "input:b%04Xv%04Xp%04Xe%04X-",
974 id->id.bustype, id->id.vendor,
975 id->id.product, id->id.version);
977 len += input_print_modalias_bits(buf + len, size - len,
978 'e', id->evbit, 0, EV_MAX);
979 len += input_print_modalias_bits(buf + len, size - len,
980 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
981 len += input_print_modalias_bits(buf + len, size - len,
982 'r', id->relbit, 0, REL_MAX);
983 len += input_print_modalias_bits(buf + len, size - len,
984 'a', id->absbit, 0, ABS_MAX);
985 len += input_print_modalias_bits(buf + len, size - len,
986 'm', id->mscbit, 0, MSC_MAX);
987 len += input_print_modalias_bits(buf + len, size - len,
988 'l', id->ledbit, 0, LED_MAX);
989 len += input_print_modalias_bits(buf + len, size - len,
990 's', id->sndbit, 0, SND_MAX);
991 len += input_print_modalias_bits(buf + len, size - len,
992 'f', id->ffbit, 0, FF_MAX);
993 len += input_print_modalias_bits(buf + len, size - len,
994 'w', id->swbit, 0, SW_MAX);
996 if (add_cr)
997 len += snprintf(buf + len, max(size - len, 0), "\n");
999 return len;
1002 static ssize_t input_dev_show_modalias(struct device *dev,
1003 struct device_attribute *attr,
1004 char *buf)
1006 struct input_dev *id = to_input_dev(dev);
1007 ssize_t len;
1009 len = input_print_modalias(buf, PAGE_SIZE, id, 1);
1011 return min_t(int, len, PAGE_SIZE);
1013 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1015 static struct attribute *input_dev_attrs[] = {
1016 &dev_attr_name.attr,
1017 &dev_attr_phys.attr,
1018 &dev_attr_uniq.attr,
1019 &dev_attr_modalias.attr,
1020 NULL
1023 static struct attribute_group input_dev_attr_group = {
1024 .attrs = input_dev_attrs,
1027 #define INPUT_DEV_ID_ATTR(name) \
1028 static ssize_t input_dev_show_id_##name(struct device *dev, \
1029 struct device_attribute *attr, \
1030 char *buf) \
1032 struct input_dev *input_dev = to_input_dev(dev); \
1033 return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
1035 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1037 INPUT_DEV_ID_ATTR(bustype);
1038 INPUT_DEV_ID_ATTR(vendor);
1039 INPUT_DEV_ID_ATTR(product);
1040 INPUT_DEV_ID_ATTR(version);
1042 static struct attribute *input_dev_id_attrs[] = {
1043 &dev_attr_bustype.attr,
1044 &dev_attr_vendor.attr,
1045 &dev_attr_product.attr,
1046 &dev_attr_version.attr,
1047 NULL
1050 static struct attribute_group input_dev_id_attr_group = {
1051 .name = "id",
1052 .attrs = input_dev_id_attrs,
1055 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1056 int max, int add_cr)
1058 int i;
1059 int len = 0;
1061 for (i = BITS_TO_LONGS(max) - 1; i > 0; i--)
1062 if (bitmap[i])
1063 break;
1065 for (; i >= 0; i--)
1066 len += snprintf(buf + len, max(buf_size - len, 0),
1067 "%lx%s", bitmap[i], i > 0 ? " " : "");
1069 if (add_cr)
1070 len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1072 return len;
1075 #define INPUT_DEV_CAP_ATTR(ev, bm) \
1076 static ssize_t input_dev_show_cap_##bm(struct device *dev, \
1077 struct device_attribute *attr, \
1078 char *buf) \
1080 struct input_dev *input_dev = to_input_dev(dev); \
1081 int len = input_print_bitmap(buf, PAGE_SIZE, \
1082 input_dev->bm##bit, ev##_MAX, 1); \
1083 return min_t(int, len, PAGE_SIZE); \
1085 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1087 INPUT_DEV_CAP_ATTR(EV, ev);
1088 INPUT_DEV_CAP_ATTR(KEY, key);
1089 INPUT_DEV_CAP_ATTR(REL, rel);
1090 INPUT_DEV_CAP_ATTR(ABS, abs);
1091 INPUT_DEV_CAP_ATTR(MSC, msc);
1092 INPUT_DEV_CAP_ATTR(LED, led);
1093 INPUT_DEV_CAP_ATTR(SND, snd);
1094 INPUT_DEV_CAP_ATTR(FF, ff);
1095 INPUT_DEV_CAP_ATTR(SW, sw);
1097 static struct attribute *input_dev_caps_attrs[] = {
1098 &dev_attr_ev.attr,
1099 &dev_attr_key.attr,
1100 &dev_attr_rel.attr,
1101 &dev_attr_abs.attr,
1102 &dev_attr_msc.attr,
1103 &dev_attr_led.attr,
1104 &dev_attr_snd.attr,
1105 &dev_attr_ff.attr,
1106 &dev_attr_sw.attr,
1107 NULL
1110 static struct attribute_group input_dev_caps_attr_group = {
1111 .name = "capabilities",
1112 .attrs = input_dev_caps_attrs,
1115 static struct attribute_group *input_dev_attr_groups[] = {
1116 &input_dev_attr_group,
1117 &input_dev_id_attr_group,
1118 &input_dev_caps_attr_group,
1119 NULL
1122 static void input_dev_release(struct device *device)
1124 struct input_dev *dev = to_input_dev(device);
1126 input_ff_destroy(dev);
1127 kfree(dev);
1129 module_put(THIS_MODULE);
1133 * Input uevent interface - loading event handlers based on
1134 * device bitfields.
1136 static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1137 const char *name, unsigned long *bitmap, int max)
1139 int len;
1141 if (add_uevent_var(env, "%s=", name))
1142 return -ENOMEM;
1144 len = input_print_bitmap(&env->buf[env->buflen - 1],
1145 sizeof(env->buf) - env->buflen,
1146 bitmap, max, 0);
1147 if (len >= (sizeof(env->buf) - env->buflen))
1148 return -ENOMEM;
1150 env->buflen += len;
1151 return 0;
1154 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1155 struct input_dev *dev)
1157 int len;
1159 if (add_uevent_var(env, "MODALIAS="))
1160 return -ENOMEM;
1162 len = input_print_modalias(&env->buf[env->buflen - 1],
1163 sizeof(env->buf) - env->buflen,
1164 dev, 0);
1165 if (len >= (sizeof(env->buf) - env->buflen))
1166 return -ENOMEM;
1168 env->buflen += len;
1169 return 0;
1172 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \
1173 do { \
1174 int err = add_uevent_var(env, fmt, val); \
1175 if (err) \
1176 return err; \
1177 } while (0)
1179 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \
1180 do { \
1181 int err = input_add_uevent_bm_var(env, name, bm, max); \
1182 if (err) \
1183 return err; \
1184 } while (0)
1186 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \
1187 do { \
1188 int err = input_add_uevent_modalias_var(env, dev); \
1189 if (err) \
1190 return err; \
1191 } while (0)
1193 static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1195 struct input_dev *dev = to_input_dev(device);
1197 INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1198 dev->id.bustype, dev->id.vendor,
1199 dev->id.product, dev->id.version);
1200 if (dev->name)
1201 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1202 if (dev->phys)
1203 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1204 if (dev->uniq)
1205 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1207 INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1208 if (test_bit(EV_KEY, dev->evbit))
1209 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1210 if (test_bit(EV_REL, dev->evbit))
1211 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1212 if (test_bit(EV_ABS, dev->evbit))
1213 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1214 if (test_bit(EV_MSC, dev->evbit))
1215 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1216 if (test_bit(EV_LED, dev->evbit))
1217 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1218 if (test_bit(EV_SND, dev->evbit))
1219 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1220 if (test_bit(EV_FF, dev->evbit))
1221 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1222 if (test_bit(EV_SW, dev->evbit))
1223 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1225 INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1227 return 0;
1230 static struct device_type input_dev_type = {
1231 .groups = input_dev_attr_groups,
1232 .release = input_dev_release,
1233 .uevent = input_dev_uevent,
1236 struct class input_class = {
1237 .name = "input",
1239 EXPORT_SYMBOL_GPL(input_class);
1242 * input_allocate_device - allocate memory for new input device
1244 * Returns prepared struct input_dev or NULL.
1246 * NOTE: Use input_free_device() to free devices that have not been
1247 * registered; input_unregister_device() should be used for already
1248 * registered devices.
1250 struct input_dev *input_allocate_device(void)
1252 struct input_dev *dev;
1254 dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL);
1255 if (dev) {
1256 dev->dev.type = &input_dev_type;
1257 dev->dev.class = &input_class;
1258 device_initialize(&dev->dev);
1259 mutex_init(&dev->mutex);
1260 spin_lock_init(&dev->event_lock);
1261 INIT_LIST_HEAD(&dev->h_list);
1262 INIT_LIST_HEAD(&dev->node);
1264 __module_get(THIS_MODULE);
1267 return dev;
1269 EXPORT_SYMBOL(input_allocate_device);
1272 * input_free_device - free memory occupied by input_dev structure
1273 * @dev: input device to free
1275 * This function should only be used if input_register_device()
1276 * was not called yet or if it failed. Once device was registered
1277 * use input_unregister_device() and memory will be freed once last
1278 * reference to the device is dropped.
1280 * Device should be allocated by input_allocate_device().
1282 * NOTE: If there are references to the input device then memory
1283 * will not be freed until last reference is dropped.
1285 void input_free_device(struct input_dev *dev)
1287 if (dev)
1288 input_put_device(dev);
1290 EXPORT_SYMBOL(input_free_device);
1293 * input_set_capability - mark device as capable of a certain event
1294 * @dev: device that is capable of emitting or accepting event
1295 * @type: type of the event (EV_KEY, EV_REL, etc...)
1296 * @code: event code
1298 * In addition to setting up corresponding bit in appropriate capability
1299 * bitmap the function also adjusts dev->evbit.
1301 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
1303 switch (type) {
1304 case EV_KEY:
1305 __set_bit(code, dev->keybit);
1306 break;
1308 case EV_REL:
1309 __set_bit(code, dev->relbit);
1310 break;
1312 case EV_ABS:
1313 __set_bit(code, dev->absbit);
1314 break;
1316 case EV_MSC:
1317 __set_bit(code, dev->mscbit);
1318 break;
1320 case EV_SW:
1321 __set_bit(code, dev->swbit);
1322 break;
1324 case EV_LED:
1325 __set_bit(code, dev->ledbit);
1326 break;
1328 case EV_SND:
1329 __set_bit(code, dev->sndbit);
1330 break;
1332 case EV_FF:
1333 __set_bit(code, dev->ffbit);
1334 break;
1336 case EV_PWR:
1337 /* do nothing */
1338 break;
1340 default:
1341 printk(KERN_ERR
1342 "input_set_capability: unknown type %u (code %u)\n",
1343 type, code);
1344 dump_stack();
1345 return;
1348 __set_bit(type, dev->evbit);
1350 EXPORT_SYMBOL(input_set_capability);
1353 * input_register_device - register device with input core
1354 * @dev: device to be registered
1356 * This function registers device with input core. The device must be
1357 * allocated with input_allocate_device() and all it's capabilities
1358 * set up before registering.
1359 * If function fails the device must be freed with input_free_device().
1360 * Once device has been successfully registered it can be unregistered
1361 * with input_unregister_device(); input_free_device() should not be
1362 * called in this case.
1364 int input_register_device(struct input_dev *dev)
1366 static atomic_t input_no = ATOMIC_INIT(0);
1367 struct input_handler *handler;
1368 const char *path;
1369 int error;
1371 __set_bit(EV_SYN, dev->evbit);
1374 * If delay and period are pre-set by the driver, then autorepeating
1375 * is handled by the driver itself and we don't do it in input.c.
1378 init_timer(&dev->timer);
1379 if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) {
1380 dev->timer.data = (long) dev;
1381 dev->timer.function = input_repeat_key;
1382 dev->rep[REP_DELAY] = 250;
1383 dev->rep[REP_PERIOD] = 33;
1386 if (!dev->getkeycode)
1387 dev->getkeycode = input_default_getkeycode;
1389 if (!dev->setkeycode)
1390 dev->setkeycode = input_default_setkeycode;
1392 snprintf(dev->dev.bus_id, sizeof(dev->dev.bus_id),
1393 "input%ld", (unsigned long) atomic_inc_return(&input_no) - 1);
1395 error = device_add(&dev->dev);
1396 if (error)
1397 return error;
1399 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1400 printk(KERN_INFO "input: %s as %s\n",
1401 dev->name ? dev->name : "Unspecified device", path ? path : "N/A");
1402 kfree(path);
1404 error = mutex_lock_interruptible(&input_mutex);
1405 if (error) {
1406 device_del(&dev->dev);
1407 return error;
1410 list_add_tail(&dev->node, &input_dev_list);
1412 list_for_each_entry(handler, &input_handler_list, node)
1413 input_attach_handler(dev, handler);
1415 input_wakeup_procfs_readers();
1417 mutex_unlock(&input_mutex);
1419 return 0;
1421 EXPORT_SYMBOL(input_register_device);
1424 * input_unregister_device - unregister previously registered device
1425 * @dev: device to be unregistered
1427 * This function unregisters an input device. Once device is unregistered
1428 * the caller should not try to access it as it may get freed at any moment.
1430 void input_unregister_device(struct input_dev *dev)
1432 struct input_handle *handle, *next;
1434 input_disconnect_device(dev);
1436 mutex_lock(&input_mutex);
1438 list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
1439 handle->handler->disconnect(handle);
1440 WARN_ON(!list_empty(&dev->h_list));
1442 del_timer_sync(&dev->timer);
1443 list_del_init(&dev->node);
1445 input_wakeup_procfs_readers();
1447 mutex_unlock(&input_mutex);
1449 device_unregister(&dev->dev);
1451 EXPORT_SYMBOL(input_unregister_device);
1454 * input_register_handler - register a new input handler
1455 * @handler: handler to be registered
1457 * This function registers a new input handler (interface) for input
1458 * devices in the system and attaches it to all input devices that
1459 * are compatible with the handler.
1461 int input_register_handler(struct input_handler *handler)
1463 struct input_dev *dev;
1464 int retval;
1466 retval = mutex_lock_interruptible(&input_mutex);
1467 if (retval)
1468 return retval;
1470 INIT_LIST_HEAD(&handler->h_list);
1472 if (handler->fops != NULL) {
1473 if (input_table[handler->minor >> 5]) {
1474 retval = -EBUSY;
1475 goto out;
1477 input_table[handler->minor >> 5] = handler;
1480 list_add_tail(&handler->node, &input_handler_list);
1482 list_for_each_entry(dev, &input_dev_list, node)
1483 input_attach_handler(dev, handler);
1485 input_wakeup_procfs_readers();
1487 out:
1488 mutex_unlock(&input_mutex);
1489 return retval;
1491 EXPORT_SYMBOL(input_register_handler);
1494 * input_unregister_handler - unregisters an input handler
1495 * @handler: handler to be unregistered
1497 * This function disconnects a handler from its input devices and
1498 * removes it from lists of known handlers.
1500 void input_unregister_handler(struct input_handler *handler)
1502 struct input_handle *handle, *next;
1504 mutex_lock(&input_mutex);
1506 list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
1507 handler->disconnect(handle);
1508 WARN_ON(!list_empty(&handler->h_list));
1510 list_del_init(&handler->node);
1512 if (handler->fops != NULL)
1513 input_table[handler->minor >> 5] = NULL;
1515 input_wakeup_procfs_readers();
1517 mutex_unlock(&input_mutex);
1519 EXPORT_SYMBOL(input_unregister_handler);
1522 * input_register_handle - register a new input handle
1523 * @handle: handle to register
1525 * This function puts a new input handle onto device's
1526 * and handler's lists so that events can flow through
1527 * it once it is opened using input_open_device().
1529 * This function is supposed to be called from handler's
1530 * connect() method.
1532 int input_register_handle(struct input_handle *handle)
1534 struct input_handler *handler = handle->handler;
1535 struct input_dev *dev = handle->dev;
1536 int error;
1539 * We take dev->mutex here to prevent race with
1540 * input_release_device().
1542 error = mutex_lock_interruptible(&dev->mutex);
1543 if (error)
1544 return error;
1545 list_add_tail_rcu(&handle->d_node, &dev->h_list);
1546 mutex_unlock(&dev->mutex);
1547 synchronize_rcu();
1550 * Since we are supposed to be called from ->connect()
1551 * which is mutually exclusive with ->disconnect()
1552 * we can't be racing with input_unregister_handle()
1553 * and so separate lock is not needed here.
1555 list_add_tail(&handle->h_node, &handler->h_list);
1557 if (handler->start)
1558 handler->start(handle);
1560 return 0;
1562 EXPORT_SYMBOL(input_register_handle);
1565 * input_unregister_handle - unregister an input handle
1566 * @handle: handle to unregister
1568 * This function removes input handle from device's
1569 * and handler's lists.
1571 * This function is supposed to be called from handler's
1572 * disconnect() method.
1574 void input_unregister_handle(struct input_handle *handle)
1576 struct input_dev *dev = handle->dev;
1578 list_del_init(&handle->h_node);
1581 * Take dev->mutex to prevent race with input_release_device().
1583 mutex_lock(&dev->mutex);
1584 list_del_rcu(&handle->d_node);
1585 mutex_unlock(&dev->mutex);
1586 synchronize_rcu();
1588 EXPORT_SYMBOL(input_unregister_handle);
1590 static int input_open_file(struct inode *inode, struct file *file)
1592 struct input_handler *handler;
1593 const struct file_operations *old_fops, *new_fops = NULL;
1594 int err;
1596 lock_kernel();
1597 /* No load-on-demand here? */
1598 handler = input_table[iminor(inode) >> 5];
1599 if (!handler || !(new_fops = fops_get(handler->fops))) {
1600 err = -ENODEV;
1601 goto out;
1605 * That's _really_ odd. Usually NULL ->open means "nothing special",
1606 * not "no device". Oh, well...
1608 if (!new_fops->open) {
1609 fops_put(new_fops);
1610 err = -ENODEV;
1611 goto out;
1613 old_fops = file->f_op;
1614 file->f_op = new_fops;
1616 err = new_fops->open(inode, file);
1618 if (err) {
1619 fops_put(file->f_op);
1620 file->f_op = fops_get(old_fops);
1622 fops_put(old_fops);
1623 out:
1624 unlock_kernel();
1625 return err;
1628 static const struct file_operations input_fops = {
1629 .owner = THIS_MODULE,
1630 .open = input_open_file,
1633 static int __init input_init(void)
1635 int err;
1637 err = class_register(&input_class);
1638 if (err) {
1639 printk(KERN_ERR "input: unable to register input_dev class\n");
1640 return err;
1643 err = input_proc_init();
1644 if (err)
1645 goto fail1;
1647 err = register_chrdev(INPUT_MAJOR, "input", &input_fops);
1648 if (err) {
1649 printk(KERN_ERR "input: unable to register char major %d", INPUT_MAJOR);
1650 goto fail2;
1653 return 0;
1655 fail2: input_proc_exit();
1656 fail1: class_unregister(&input_class);
1657 return err;
1660 static void __exit input_exit(void)
1662 input_proc_exit();
1663 unregister_chrdev(INPUT_MAJOR, "input");
1664 class_unregister(&input_class);
1667 subsys_initcall(input_init);
1668 module_exit(input_exit);