4 * Replacement code for mm functions to support CPU's that don't
5 * have any form of memory management unit (thus no virtual memory).
7 * See Documentation/nommu-mmap.txt
9 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com>
13 * Copyright (c) 2007-2008 Paul Mundt <lethal@linux-sh.org>
16 #include <linux/module.h>
18 #include <linux/mman.h>
19 #include <linux/swap.h>
20 #include <linux/file.h>
21 #include <linux/highmem.h>
22 #include <linux/pagemap.h>
23 #include <linux/slab.h>
24 #include <linux/vmalloc.h>
25 #include <linux/tracehook.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mount.h>
29 #include <linux/personality.h>
30 #include <linux/security.h>
31 #include <linux/syscalls.h>
33 #include <asm/uaccess.h>
35 #include <asm/tlbflush.h>
38 static inline __attribute__((format(printf
, 1, 2)))
39 void no_printk(const char *fmt
, ...)
44 #define kenter(FMT, ...) \
45 printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
46 #define kleave(FMT, ...) \
47 printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
48 #define kdebug(FMT, ...) \
49 printk(KERN_DEBUG "xxx" FMT"yyy\n", ##__VA_ARGS__)
51 #define kenter(FMT, ...) \
52 no_printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
53 #define kleave(FMT, ...) \
54 no_printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
55 #define kdebug(FMT, ...) \
56 no_printk(KERN_DEBUG FMT"\n", ##__VA_ARGS__)
63 unsigned long max_mapnr
;
64 unsigned long num_physpages
;
65 atomic_long_t vm_committed_space
= ATOMIC_LONG_INIT(0);
66 int sysctl_overcommit_memory
= OVERCOMMIT_GUESS
; /* heuristic overcommit */
67 int sysctl_overcommit_ratio
= 50; /* default is 50% */
68 int sysctl_max_map_count
= DEFAULT_MAX_MAP_COUNT
;
69 int sysctl_nr_trim_pages
= 1; /* page trimming behaviour */
70 int heap_stack_gap
= 0;
72 atomic_t mmap_pages_allocated
;
74 EXPORT_SYMBOL(mem_map
);
75 EXPORT_SYMBOL(num_physpages
);
77 /* list of mapped, potentially shareable regions */
78 static struct kmem_cache
*vm_region_jar
;
79 struct rb_root nommu_region_tree
= RB_ROOT
;
80 DECLARE_RWSEM(nommu_region_sem
);
82 struct vm_operations_struct generic_file_vm_ops
= {
86 * Handle all mappings that got truncated by a "truncate()"
89 * NOTE! We have to be ready to update the memory sharing
90 * between the file and the memory map for a potential last
91 * incomplete page. Ugly, but necessary.
93 int vmtruncate(struct inode
*inode
, loff_t offset
)
95 struct address_space
*mapping
= inode
->i_mapping
;
98 if (inode
->i_size
< offset
)
100 i_size_write(inode
, offset
);
102 truncate_inode_pages(mapping
, offset
);
106 limit
= current
->signal
->rlim
[RLIMIT_FSIZE
].rlim_cur
;
107 if (limit
!= RLIM_INFINITY
&& offset
> limit
)
109 if (offset
> inode
->i_sb
->s_maxbytes
)
111 i_size_write(inode
, offset
);
114 if (inode
->i_op
->truncate
)
115 inode
->i_op
->truncate(inode
);
118 send_sig(SIGXFSZ
, current
, 0);
123 EXPORT_SYMBOL(vmtruncate
);
126 * Return the total memory allocated for this pointer, not
127 * just what the caller asked for.
129 * Doesn't have to be accurate, i.e. may have races.
131 unsigned int kobjsize(const void *objp
)
136 * If the object we have should not have ksize performed on it,
139 if (!objp
|| !virt_addr_valid(objp
))
142 page
= virt_to_head_page(objp
);
145 * If the allocator sets PageSlab, we know the pointer came from
152 * If it's not a compound page, see if we have a matching VMA
153 * region. This test is intentionally done in reverse order,
154 * so if there's no VMA, we still fall through and hand back
155 * PAGE_SIZE for 0-order pages.
157 if (!PageCompound(page
)) {
158 struct vm_area_struct
*vma
;
160 vma
= find_vma(current
->mm
, (unsigned long)objp
);
162 return vma
->vm_end
- vma
->vm_start
;
166 * The ksize() function is only guaranteed to work for pointers
167 * returned by kmalloc(). So handle arbitrary pointers here.
169 return PAGE_SIZE
<< compound_order(page
);
172 int __get_user_pages(struct task_struct
*tsk
, struct mm_struct
*mm
,
173 unsigned long start
, int len
, int flags
,
174 struct page
**pages
, struct vm_area_struct
**vmas
)
176 struct vm_area_struct
*vma
;
177 unsigned long vm_flags
;
179 int write
= !!(flags
& GUP_FLAGS_WRITE
);
180 int force
= !!(flags
& GUP_FLAGS_FORCE
);
181 int ignore
= !!(flags
& GUP_FLAGS_IGNORE_VMA_PERMISSIONS
);
183 /* calculate required read or write permissions.
184 * - if 'force' is set, we only require the "MAY" flags.
186 vm_flags
= write
? (VM_WRITE
| VM_MAYWRITE
) : (VM_READ
| VM_MAYREAD
);
187 vm_flags
&= force
? (VM_MAYREAD
| VM_MAYWRITE
) : (VM_READ
| VM_WRITE
);
189 for (i
= 0; i
< len
; i
++) {
190 vma
= find_vma(mm
, start
);
192 goto finish_or_fault
;
194 /* protect what we can, including chardevs */
195 if (vma
->vm_flags
& (VM_IO
| VM_PFNMAP
) ||
196 (!ignore
&& !(vm_flags
& vma
->vm_flags
)))
197 goto finish_or_fault
;
200 pages
[i
] = virt_to_page(start
);
202 page_cache_get(pages
[i
]);
212 return i
? : -EFAULT
;
217 * get a list of pages in an address range belonging to the specified process
218 * and indicate the VMA that covers each page
219 * - this is potentially dodgy as we may end incrementing the page count of a
220 * slab page or a secondary page from a compound page
221 * - don't permit access to VMAs that don't support it, such as I/O mappings
223 int get_user_pages(struct task_struct
*tsk
, struct mm_struct
*mm
,
224 unsigned long start
, int len
, int write
, int force
,
225 struct page
**pages
, struct vm_area_struct
**vmas
)
230 flags
|= GUP_FLAGS_WRITE
;
232 flags
|= GUP_FLAGS_FORCE
;
234 return __get_user_pages(tsk
, mm
,
238 EXPORT_SYMBOL(get_user_pages
);
240 DEFINE_RWLOCK(vmlist_lock
);
241 struct vm_struct
*vmlist
;
243 void vfree(const void *addr
)
247 EXPORT_SYMBOL(vfree
);
249 void *__vmalloc(unsigned long size
, gfp_t gfp_mask
, pgprot_t prot
)
252 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
253 * returns only a logical address.
255 return kmalloc(size
, (gfp_mask
| __GFP_COMP
) & ~__GFP_HIGHMEM
);
257 EXPORT_SYMBOL(__vmalloc
);
259 void *vmalloc_user(unsigned long size
)
263 ret
= __vmalloc(size
, GFP_KERNEL
| __GFP_HIGHMEM
| __GFP_ZERO
,
266 struct vm_area_struct
*vma
;
268 down_write(¤t
->mm
->mmap_sem
);
269 vma
= find_vma(current
->mm
, (unsigned long)ret
);
271 vma
->vm_flags
|= VM_USERMAP
;
272 up_write(¤t
->mm
->mmap_sem
);
277 EXPORT_SYMBOL(vmalloc_user
);
279 struct page
*vmalloc_to_page(const void *addr
)
281 return virt_to_page(addr
);
283 EXPORT_SYMBOL(vmalloc_to_page
);
285 unsigned long vmalloc_to_pfn(const void *addr
)
287 return page_to_pfn(virt_to_page(addr
));
289 EXPORT_SYMBOL(vmalloc_to_pfn
);
291 long vread(char *buf
, char *addr
, unsigned long count
)
293 memcpy(buf
, addr
, count
);
297 long vwrite(char *buf
, char *addr
, unsigned long count
)
299 /* Don't allow overflow */
300 if ((unsigned long) addr
+ count
< count
)
301 count
= -(unsigned long) addr
;
303 memcpy(addr
, buf
, count
);
308 * vmalloc - allocate virtually continguos memory
310 * @size: allocation size
312 * Allocate enough pages to cover @size from the page level
313 * allocator and map them into continguos kernel virtual space.
315 * For tight control over page level allocator and protection flags
316 * use __vmalloc() instead.
318 void *vmalloc(unsigned long size
)
320 return __vmalloc(size
, GFP_KERNEL
| __GFP_HIGHMEM
, PAGE_KERNEL
);
322 EXPORT_SYMBOL(vmalloc
);
324 void *vmalloc_node(unsigned long size
, int node
)
326 return vmalloc(size
);
328 EXPORT_SYMBOL(vmalloc_node
);
330 #ifndef PAGE_KERNEL_EXEC
331 # define PAGE_KERNEL_EXEC PAGE_KERNEL
335 * vmalloc_exec - allocate virtually contiguous, executable memory
336 * @size: allocation size
338 * Kernel-internal function to allocate enough pages to cover @size
339 * the page level allocator and map them into contiguous and
340 * executable kernel virtual space.
342 * For tight control over page level allocator and protection flags
343 * use __vmalloc() instead.
346 void *vmalloc_exec(unsigned long size
)
348 return __vmalloc(size
, GFP_KERNEL
| __GFP_HIGHMEM
, PAGE_KERNEL_EXEC
);
352 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
353 * @size: allocation size
355 * Allocate enough 32bit PA addressable pages to cover @size from the
356 * page level allocator and map them into continguos kernel virtual space.
358 void *vmalloc_32(unsigned long size
)
360 return __vmalloc(size
, GFP_KERNEL
, PAGE_KERNEL
);
362 EXPORT_SYMBOL(vmalloc_32
);
365 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
366 * @size: allocation size
368 * The resulting memory area is 32bit addressable and zeroed so it can be
369 * mapped to userspace without leaking data.
371 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
372 * remap_vmalloc_range() are permissible.
374 void *vmalloc_32_user(unsigned long size
)
377 * We'll have to sort out the ZONE_DMA bits for 64-bit,
378 * but for now this can simply use vmalloc_user() directly.
380 return vmalloc_user(size
);
382 EXPORT_SYMBOL(vmalloc_32_user
);
384 void *vmap(struct page
**pages
, unsigned int count
, unsigned long flags
, pgprot_t prot
)
391 void vunmap(const void *addr
)
395 EXPORT_SYMBOL(vunmap
);
398 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
401 void __attribute__((weak
)) vmalloc_sync_all(void)
405 int vm_insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
410 EXPORT_SYMBOL(vm_insert_page
);
413 * sys_brk() for the most part doesn't need the global kernel
414 * lock, except when an application is doing something nasty
415 * like trying to un-brk an area that has already been mapped
416 * to a regular file. in this case, the unmapping will need
417 * to invoke file system routines that need the global lock.
419 asmlinkage
unsigned long sys_brk(unsigned long brk
)
421 struct mm_struct
*mm
= current
->mm
;
423 if (brk
< mm
->start_brk
|| brk
> mm
->context
.end_brk
)
430 * Always allow shrinking brk
432 if (brk
<= mm
->brk
) {
438 * Ok, looks good - let it rip.
440 return mm
->brk
= brk
;
444 * initialise the VMA and region record slabs
446 void __init
mmap_init(void)
448 vm_region_jar
= kmem_cache_create("vm_region_jar",
449 sizeof(struct vm_region
), 0,
451 vm_area_cachep
= kmem_cache_create("vm_area_struct",
452 sizeof(struct vm_area_struct
), 0,
457 * validate the region tree
458 * - the caller must hold the region lock
460 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
461 static noinline
void validate_nommu_regions(void)
463 struct vm_region
*region
, *last
;
464 struct rb_node
*p
, *lastp
;
466 lastp
= rb_first(&nommu_region_tree
);
470 last
= rb_entry(lastp
, struct vm_region
, vm_rb
);
471 if (unlikely(last
->vm_end
<= last
->vm_start
))
473 if (unlikely(last
->vm_top
< last
->vm_end
))
476 while ((p
= rb_next(lastp
))) {
477 region
= rb_entry(p
, struct vm_region
, vm_rb
);
478 last
= rb_entry(lastp
, struct vm_region
, vm_rb
);
480 if (unlikely(region
->vm_end
<= region
->vm_start
))
482 if (unlikely(region
->vm_top
< region
->vm_end
))
484 if (unlikely(region
->vm_start
< last
->vm_top
))
491 #define validate_nommu_regions() do {} while(0)
495 * add a region into the global tree
497 static void add_nommu_region(struct vm_region
*region
)
499 struct vm_region
*pregion
;
500 struct rb_node
**p
, *parent
;
502 validate_nommu_regions();
504 BUG_ON(region
->vm_start
& ~PAGE_MASK
);
507 p
= &nommu_region_tree
.rb_node
;
510 pregion
= rb_entry(parent
, struct vm_region
, vm_rb
);
511 if (region
->vm_start
< pregion
->vm_start
)
513 else if (region
->vm_start
> pregion
->vm_start
)
515 else if (pregion
== region
)
521 rb_link_node(®ion
->vm_rb
, parent
, p
);
522 rb_insert_color(®ion
->vm_rb
, &nommu_region_tree
);
524 validate_nommu_regions();
528 * delete a region from the global tree
530 static void delete_nommu_region(struct vm_region
*region
)
532 BUG_ON(!nommu_region_tree
.rb_node
);
534 validate_nommu_regions();
535 rb_erase(®ion
->vm_rb
, &nommu_region_tree
);
536 validate_nommu_regions();
540 * free a contiguous series of pages
542 static void free_page_series(unsigned long from
, unsigned long to
)
544 for (; from
< to
; from
+= PAGE_SIZE
) {
545 struct page
*page
= virt_to_page(from
);
547 kdebug("- free %lx", from
);
548 atomic_dec(&mmap_pages_allocated
);
549 if (page_count(page
) != 1)
550 kdebug("free page %p [%d]", page
, page_count(page
));
556 * release a reference to a region
557 * - the caller must hold the region semaphore, which this releases
558 * - the region may not have been added to the tree yet, in which case vm_top
559 * will equal vm_start
561 static void __put_nommu_region(struct vm_region
*region
)
562 __releases(nommu_region_sem
)
564 kenter("%p{%d}", region
, atomic_read(®ion
->vm_usage
));
566 BUG_ON(!nommu_region_tree
.rb_node
);
568 if (atomic_dec_and_test(®ion
->vm_usage
)) {
569 if (region
->vm_top
> region
->vm_start
)
570 delete_nommu_region(region
);
571 up_write(&nommu_region_sem
);
574 fput(region
->vm_file
);
576 /* IO memory and memory shared directly out of the pagecache
577 * from ramfs/tmpfs mustn't be released here */
578 if (region
->vm_flags
& VM_MAPPED_COPY
) {
579 kdebug("free series");
580 free_page_series(region
->vm_start
, region
->vm_top
);
582 kmem_cache_free(vm_region_jar
, region
);
584 up_write(&nommu_region_sem
);
589 * release a reference to a region
591 static void put_nommu_region(struct vm_region
*region
)
593 down_write(&nommu_region_sem
);
594 __put_nommu_region(region
);
598 * add a VMA into a process's mm_struct in the appropriate place in the list
599 * and tree and add to the address space's page tree also if not an anonymous
601 * - should be called with mm->mmap_sem held writelocked
603 static void add_vma_to_mm(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
605 struct vm_area_struct
*pvma
, **pp
;
606 struct address_space
*mapping
;
607 struct rb_node
**p
, *parent
;
611 BUG_ON(!vma
->vm_region
);
616 /* add the VMA to the mapping */
618 mapping
= vma
->vm_file
->f_mapping
;
620 flush_dcache_mmap_lock(mapping
);
621 vma_prio_tree_insert(vma
, &mapping
->i_mmap
);
622 flush_dcache_mmap_unlock(mapping
);
625 /* add the VMA to the tree */
627 p
= &mm
->mm_rb
.rb_node
;
630 pvma
= rb_entry(parent
, struct vm_area_struct
, vm_rb
);
632 /* sort by: start addr, end addr, VMA struct addr in that order
633 * (the latter is necessary as we may get identical VMAs) */
634 if (vma
->vm_start
< pvma
->vm_start
)
636 else if (vma
->vm_start
> pvma
->vm_start
)
638 else if (vma
->vm_end
< pvma
->vm_end
)
640 else if (vma
->vm_end
> pvma
->vm_end
)
650 rb_link_node(&vma
->vm_rb
, parent
, p
);
651 rb_insert_color(&vma
->vm_rb
, &mm
->mm_rb
);
653 /* add VMA to the VMA list also */
654 for (pp
= &mm
->mmap
; (pvma
= *pp
); pp
= &(*pp
)->vm_next
) {
655 if (pvma
->vm_start
> vma
->vm_start
)
657 if (pvma
->vm_start
< vma
->vm_start
)
659 if (pvma
->vm_end
< vma
->vm_end
)
668 * delete a VMA from its owning mm_struct and address space
670 static void delete_vma_from_mm(struct vm_area_struct
*vma
)
672 struct vm_area_struct
**pp
;
673 struct address_space
*mapping
;
674 struct mm_struct
*mm
= vma
->vm_mm
;
679 if (mm
->mmap_cache
== vma
)
680 mm
->mmap_cache
= NULL
;
682 /* remove the VMA from the mapping */
684 mapping
= vma
->vm_file
->f_mapping
;
686 flush_dcache_mmap_lock(mapping
);
687 vma_prio_tree_remove(vma
, &mapping
->i_mmap
);
688 flush_dcache_mmap_unlock(mapping
);
691 /* remove from the MM's tree and list */
692 rb_erase(&vma
->vm_rb
, &mm
->mm_rb
);
693 for (pp
= &mm
->mmap
; *pp
; pp
= &(*pp
)->vm_next
) {
704 * destroy a VMA record
706 static void delete_vma(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
709 if (vma
->vm_ops
&& vma
->vm_ops
->close
)
710 vma
->vm_ops
->close(vma
);
713 if (vma
->vm_flags
& VM_EXECUTABLE
)
714 removed_exe_file_vma(mm
);
716 put_nommu_region(vma
->vm_region
);
717 kmem_cache_free(vm_area_cachep
, vma
);
721 * look up the first VMA in which addr resides, NULL if none
722 * - should be called with mm->mmap_sem at least held readlocked
724 struct vm_area_struct
*find_vma(struct mm_struct
*mm
, unsigned long addr
)
726 struct vm_area_struct
*vma
;
727 struct rb_node
*n
= mm
->mm_rb
.rb_node
;
729 /* check the cache first */
730 vma
= mm
->mmap_cache
;
731 if (vma
&& vma
->vm_start
<= addr
&& vma
->vm_end
> addr
)
734 /* trawl the tree (there may be multiple mappings in which addr
736 for (n
= rb_first(&mm
->mm_rb
); n
; n
= rb_next(n
)) {
737 vma
= rb_entry(n
, struct vm_area_struct
, vm_rb
);
738 if (vma
->vm_start
> addr
)
740 if (vma
->vm_end
> addr
) {
741 mm
->mmap_cache
= vma
;
748 EXPORT_SYMBOL(find_vma
);
752 * - we don't extend stack VMAs under NOMMU conditions
754 struct vm_area_struct
*find_extend_vma(struct mm_struct
*mm
, unsigned long addr
)
756 return find_vma(mm
, addr
);
760 * expand a stack to a given address
761 * - not supported under NOMMU conditions
763 int expand_stack(struct vm_area_struct
*vma
, unsigned long address
)
769 * look up the first VMA exactly that exactly matches addr
770 * - should be called with mm->mmap_sem at least held readlocked
772 static struct vm_area_struct
*find_vma_exact(struct mm_struct
*mm
,
776 struct vm_area_struct
*vma
;
777 struct rb_node
*n
= mm
->mm_rb
.rb_node
;
778 unsigned long end
= addr
+ len
;
780 /* check the cache first */
781 vma
= mm
->mmap_cache
;
782 if (vma
&& vma
->vm_start
== addr
&& vma
->vm_end
== end
)
785 /* trawl the tree (there may be multiple mappings in which addr
787 for (n
= rb_first(&mm
->mm_rb
); n
; n
= rb_next(n
)) {
788 vma
= rb_entry(n
, struct vm_area_struct
, vm_rb
);
789 if (vma
->vm_start
< addr
)
791 if (vma
->vm_start
> addr
)
793 if (vma
->vm_end
== end
) {
794 mm
->mmap_cache
= vma
;
803 * determine whether a mapping should be permitted and, if so, what sort of
804 * mapping we're capable of supporting
806 static int validate_mmap_request(struct file
*file
,
812 unsigned long *_capabilities
)
814 unsigned long capabilities
, rlen
;
815 unsigned long reqprot
= prot
;
818 /* do the simple checks first */
819 if (flags
& MAP_FIXED
|| addr
) {
821 "%d: Can't do fixed-address/overlay mmap of RAM\n",
826 if ((flags
& MAP_TYPE
) != MAP_PRIVATE
&&
827 (flags
& MAP_TYPE
) != MAP_SHARED
)
833 /* Careful about overflows.. */
834 rlen
= PAGE_ALIGN(len
);
835 if (!rlen
|| rlen
> TASK_SIZE
)
838 /* offset overflow? */
839 if ((pgoff
+ (rlen
>> PAGE_SHIFT
)) < pgoff
)
843 /* validate file mapping requests */
844 struct address_space
*mapping
;
846 /* files must support mmap */
847 if (!file
->f_op
|| !file
->f_op
->mmap
)
850 /* work out if what we've got could possibly be shared
851 * - we support chardevs that provide their own "memory"
852 * - we support files/blockdevs that are memory backed
854 mapping
= file
->f_mapping
;
856 mapping
= file
->f_path
.dentry
->d_inode
->i_mapping
;
859 if (mapping
&& mapping
->backing_dev_info
)
860 capabilities
= mapping
->backing_dev_info
->capabilities
;
863 /* no explicit capabilities set, so assume some
865 switch (file
->f_path
.dentry
->d_inode
->i_mode
& S_IFMT
) {
868 capabilities
= BDI_CAP_MAP_COPY
;
883 /* eliminate any capabilities that we can't support on this
885 if (!file
->f_op
->get_unmapped_area
)
886 capabilities
&= ~BDI_CAP_MAP_DIRECT
;
887 if (!file
->f_op
->read
)
888 capabilities
&= ~BDI_CAP_MAP_COPY
;
890 if (flags
& MAP_SHARED
) {
891 /* do checks for writing, appending and locking */
892 if ((prot
& PROT_WRITE
) &&
893 !(file
->f_mode
& FMODE_WRITE
))
896 if (IS_APPEND(file
->f_path
.dentry
->d_inode
) &&
897 (file
->f_mode
& FMODE_WRITE
))
900 if (locks_verify_locked(file
->f_path
.dentry
->d_inode
))
903 if (!(capabilities
& BDI_CAP_MAP_DIRECT
))
906 if (((prot
& PROT_READ
) && !(capabilities
& BDI_CAP_READ_MAP
)) ||
907 ((prot
& PROT_WRITE
) && !(capabilities
& BDI_CAP_WRITE_MAP
)) ||
908 ((prot
& PROT_EXEC
) && !(capabilities
& BDI_CAP_EXEC_MAP
))
910 printk("MAP_SHARED not completely supported on !MMU\n");
914 /* we mustn't privatise shared mappings */
915 capabilities
&= ~BDI_CAP_MAP_COPY
;
918 /* we're going to read the file into private memory we
920 if (!(capabilities
& BDI_CAP_MAP_COPY
))
923 /* we don't permit a private writable mapping to be
924 * shared with the backing device */
925 if (prot
& PROT_WRITE
)
926 capabilities
&= ~BDI_CAP_MAP_DIRECT
;
929 /* handle executable mappings and implied executable
931 if (file
->f_path
.mnt
->mnt_flags
& MNT_NOEXEC
) {
932 if (prot
& PROT_EXEC
)
935 else if ((prot
& PROT_READ
) && !(prot
& PROT_EXEC
)) {
936 /* handle implication of PROT_EXEC by PROT_READ */
937 if (current
->personality
& READ_IMPLIES_EXEC
) {
938 if (capabilities
& BDI_CAP_EXEC_MAP
)
942 else if ((prot
& PROT_READ
) &&
943 (prot
& PROT_EXEC
) &&
944 !(capabilities
& BDI_CAP_EXEC_MAP
)
946 /* backing file is not executable, try to copy */
947 capabilities
&= ~BDI_CAP_MAP_DIRECT
;
951 /* anonymous mappings are always memory backed and can be
954 capabilities
= BDI_CAP_MAP_COPY
;
956 /* handle PROT_EXEC implication by PROT_READ */
957 if ((prot
& PROT_READ
) &&
958 (current
->personality
& READ_IMPLIES_EXEC
))
962 /* allow the security API to have its say */
963 ret
= security_file_mmap(file
, reqprot
, prot
, flags
, addr
, 0);
968 *_capabilities
= capabilities
;
973 * we've determined that we can make the mapping, now translate what we
974 * now know into VMA flags
976 static unsigned long determine_vm_flags(struct file
*file
,
979 unsigned long capabilities
)
981 unsigned long vm_flags
;
983 vm_flags
= calc_vm_prot_bits(prot
) | calc_vm_flag_bits(flags
);
984 vm_flags
|= VM_MAYREAD
| VM_MAYWRITE
| VM_MAYEXEC
;
985 /* vm_flags |= mm->def_flags; */
987 if (!(capabilities
& BDI_CAP_MAP_DIRECT
)) {
988 /* attempt to share read-only copies of mapped file chunks */
989 if (file
&& !(prot
& PROT_WRITE
))
990 vm_flags
|= VM_MAYSHARE
;
993 /* overlay a shareable mapping on the backing device or inode
994 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
996 if (flags
& MAP_SHARED
)
997 vm_flags
|= VM_MAYSHARE
| VM_SHARED
;
998 else if ((((vm_flags
& capabilities
) ^ vm_flags
) & BDI_CAP_VMFLAGS
) == 0)
999 vm_flags
|= VM_MAYSHARE
;
1002 /* refuse to let anyone share private mappings with this process if
1003 * it's being traced - otherwise breakpoints set in it may interfere
1004 * with another untraced process
1006 if ((flags
& MAP_PRIVATE
) && tracehook_expect_breakpoints(current
))
1007 vm_flags
&= ~VM_MAYSHARE
;
1013 * set up a shared mapping on a file (the driver or filesystem provides and
1016 static int do_mmap_shared_file(struct vm_area_struct
*vma
)
1020 ret
= vma
->vm_file
->f_op
->mmap(vma
->vm_file
, vma
);
1022 vma
->vm_region
->vm_top
= vma
->vm_region
->vm_end
;
1028 /* getting an ENOSYS error indicates that direct mmap isn't
1029 * possible (as opposed to tried but failed) so we'll fall
1030 * through to making a private copy of the data and mapping
1036 * set up a private mapping or an anonymous shared mapping
1038 static int do_mmap_private(struct vm_area_struct
*vma
,
1039 struct vm_region
*region
,
1043 unsigned long total
, point
, n
, rlen
;
1047 /* invoke the file's mapping function so that it can keep track of
1048 * shared mappings on devices or memory
1049 * - VM_MAYSHARE will be set if it may attempt to share
1052 ret
= vma
->vm_file
->f_op
->mmap(vma
->vm_file
, vma
);
1054 /* shouldn't return success if we're not sharing */
1055 BUG_ON(!(vma
->vm_flags
& VM_MAYSHARE
));
1056 vma
->vm_region
->vm_top
= vma
->vm_region
->vm_end
;
1062 /* getting an ENOSYS error indicates that direct mmap isn't
1063 * possible (as opposed to tried but failed) so we'll try to
1064 * make a private copy of the data and map that instead */
1067 rlen
= PAGE_ALIGN(len
);
1069 /* allocate some memory to hold the mapping
1070 * - note that this may not return a page-aligned address if the object
1071 * we're allocating is smaller than a page
1073 order
= get_order(rlen
);
1074 kdebug("alloc order %d for %lx", order
, len
);
1076 pages
= alloc_pages(GFP_KERNEL
, order
);
1081 atomic_add(total
, &mmap_pages_allocated
);
1083 point
= rlen
>> PAGE_SHIFT
;
1085 /* we allocated a power-of-2 sized page set, so we may want to trim off
1087 if (sysctl_nr_trim_pages
&& total
- point
>= sysctl_nr_trim_pages
) {
1088 while (total
> point
) {
1089 order
= ilog2(total
- point
);
1091 kdebug("shave %lu/%lu @%lu", n
, total
- point
, total
);
1092 atomic_sub(n
, &mmap_pages_allocated
);
1094 set_page_refcounted(pages
+ total
);
1095 __free_pages(pages
+ total
, order
);
1099 for (point
= 1; point
< total
; point
++)
1100 set_page_refcounted(&pages
[point
]);
1102 base
= page_address(pages
);
1103 region
->vm_flags
= vma
->vm_flags
|= VM_MAPPED_COPY
;
1104 region
->vm_start
= (unsigned long) base
;
1105 region
->vm_end
= region
->vm_start
+ rlen
;
1106 region
->vm_top
= region
->vm_start
+ (total
<< PAGE_SHIFT
);
1108 vma
->vm_start
= region
->vm_start
;
1109 vma
->vm_end
= region
->vm_start
+ len
;
1112 /* read the contents of a file into the copy */
1113 mm_segment_t old_fs
;
1116 fpos
= vma
->vm_pgoff
;
1117 fpos
<<= PAGE_SHIFT
;
1121 ret
= vma
->vm_file
->f_op
->read(vma
->vm_file
, base
, rlen
, &fpos
);
1127 /* clear the last little bit */
1129 memset(base
+ ret
, 0, rlen
- ret
);
1132 /* if it's an anonymous mapping, then just clear it */
1133 memset(base
, 0, rlen
);
1139 free_page_series(region
->vm_start
, region
->vm_end
);
1140 region
->vm_start
= vma
->vm_start
= 0;
1141 region
->vm_end
= vma
->vm_end
= 0;
1146 printk("Allocation of length %lu from process %d failed\n",
1153 * handle mapping creation for uClinux
1155 unsigned long do_mmap_pgoff(struct file
*file
,
1159 unsigned long flags
,
1160 unsigned long pgoff
)
1162 struct vm_area_struct
*vma
;
1163 struct vm_region
*region
;
1165 unsigned long capabilities
, vm_flags
, result
;
1168 kenter(",%lx,%lx,%lx,%lx,%lx", addr
, len
, prot
, flags
, pgoff
);
1170 if (!(flags
& MAP_FIXED
))
1171 addr
= round_hint_to_min(addr
);
1173 /* decide whether we should attempt the mapping, and if so what sort of
1175 ret
= validate_mmap_request(file
, addr
, len
, prot
, flags
, pgoff
,
1178 kleave(" = %d [val]", ret
);
1182 /* we've determined that we can make the mapping, now translate what we
1183 * now know into VMA flags */
1184 vm_flags
= determine_vm_flags(file
, prot
, flags
, capabilities
);
1186 /* we're going to need to record the mapping */
1187 region
= kmem_cache_zalloc(vm_region_jar
, GFP_KERNEL
);
1189 goto error_getting_region
;
1191 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
1193 goto error_getting_vma
;
1195 atomic_set(®ion
->vm_usage
, 1);
1196 region
->vm_flags
= vm_flags
;
1197 region
->vm_pgoff
= pgoff
;
1199 INIT_LIST_HEAD(&vma
->anon_vma_node
);
1200 vma
->vm_flags
= vm_flags
;
1201 vma
->vm_pgoff
= pgoff
;
1204 region
->vm_file
= file
;
1206 vma
->vm_file
= file
;
1208 if (vm_flags
& VM_EXECUTABLE
) {
1209 added_exe_file_vma(current
->mm
);
1210 vma
->vm_mm
= current
->mm
;
1214 down_write(&nommu_region_sem
);
1216 /* if we want to share, we need to check for regions created by other
1217 * mmap() calls that overlap with our proposed mapping
1218 * - we can only share with a superset match on most regular files
1219 * - shared mappings on character devices and memory backed files are
1220 * permitted to overlap inexactly as far as we are concerned for in
1221 * these cases, sharing is handled in the driver or filesystem rather
1224 if (vm_flags
& VM_MAYSHARE
) {
1225 struct vm_region
*pregion
;
1226 unsigned long pglen
, rpglen
, pgend
, rpgend
, start
;
1228 pglen
= (len
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
1229 pgend
= pgoff
+ pglen
;
1231 for (rb
= rb_first(&nommu_region_tree
); rb
; rb
= rb_next(rb
)) {
1232 pregion
= rb_entry(rb
, struct vm_region
, vm_rb
);
1234 if (!(pregion
->vm_flags
& VM_MAYSHARE
))
1237 /* search for overlapping mappings on the same file */
1238 if (pregion
->vm_file
->f_path
.dentry
->d_inode
!=
1239 file
->f_path
.dentry
->d_inode
)
1242 if (pregion
->vm_pgoff
>= pgend
)
1245 rpglen
= pregion
->vm_end
- pregion
->vm_start
;
1246 rpglen
= (rpglen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
1247 rpgend
= pregion
->vm_pgoff
+ rpglen
;
1248 if (pgoff
>= rpgend
)
1251 /* handle inexactly overlapping matches between
1253 if ((pregion
->vm_pgoff
!= pgoff
|| rpglen
!= pglen
) &&
1254 !(pgoff
>= pregion
->vm_pgoff
&& pgend
<= rpgend
)) {
1255 /* new mapping is not a subset of the region */
1256 if (!(capabilities
& BDI_CAP_MAP_DIRECT
))
1257 goto sharing_violation
;
1261 /* we've found a region we can share */
1262 atomic_inc(&pregion
->vm_usage
);
1263 vma
->vm_region
= pregion
;
1264 start
= pregion
->vm_start
;
1265 start
+= (pgoff
- pregion
->vm_pgoff
) << PAGE_SHIFT
;
1266 vma
->vm_start
= start
;
1267 vma
->vm_end
= start
+ len
;
1269 if (pregion
->vm_flags
& VM_MAPPED_COPY
) {
1270 kdebug("share copy");
1271 vma
->vm_flags
|= VM_MAPPED_COPY
;
1273 kdebug("share mmap");
1274 ret
= do_mmap_shared_file(vma
);
1276 vma
->vm_region
= NULL
;
1279 atomic_dec(&pregion
->vm_usage
);
1281 goto error_just_free
;
1284 fput(region
->vm_file
);
1285 kmem_cache_free(vm_region_jar
, region
);
1291 /* obtain the address at which to make a shared mapping
1292 * - this is the hook for quasi-memory character devices to
1293 * tell us the location of a shared mapping
1295 if (file
&& file
->f_op
->get_unmapped_area
) {
1296 addr
= file
->f_op
->get_unmapped_area(file
, addr
, len
,
1298 if (IS_ERR((void *) addr
)) {
1300 if (ret
!= (unsigned long) -ENOSYS
)
1301 goto error_just_free
;
1303 /* the driver refused to tell us where to site
1304 * the mapping so we'll have to attempt to copy
1306 ret
= (unsigned long) -ENODEV
;
1307 if (!(capabilities
& BDI_CAP_MAP_COPY
))
1308 goto error_just_free
;
1310 capabilities
&= ~BDI_CAP_MAP_DIRECT
;
1312 vma
->vm_start
= region
->vm_start
= addr
;
1313 vma
->vm_end
= region
->vm_end
= addr
+ len
;
1318 vma
->vm_region
= region
;
1320 /* set up the mapping */
1321 if (file
&& vma
->vm_flags
& VM_SHARED
)
1322 ret
= do_mmap_shared_file(vma
);
1324 ret
= do_mmap_private(vma
, region
, len
);
1326 goto error_put_region
;
1328 add_nommu_region(region
);
1330 /* okay... we have a mapping; now we have to register it */
1331 result
= vma
->vm_start
;
1333 current
->mm
->total_vm
+= len
>> PAGE_SHIFT
;
1336 add_vma_to_mm(current
->mm
, vma
);
1338 up_write(&nommu_region_sem
);
1340 if (prot
& PROT_EXEC
)
1341 flush_icache_range(result
, result
+ len
);
1343 kleave(" = %lx", result
);
1347 __put_nommu_region(region
);
1351 if (vma
->vm_flags
& VM_EXECUTABLE
)
1352 removed_exe_file_vma(vma
->vm_mm
);
1354 kmem_cache_free(vm_area_cachep
, vma
);
1356 kleave(" = %d [pr]", ret
);
1360 up_write(&nommu_region_sem
);
1362 fput(region
->vm_file
);
1363 kmem_cache_free(vm_region_jar
, region
);
1365 if (vma
->vm_flags
& VM_EXECUTABLE
)
1366 removed_exe_file_vma(vma
->vm_mm
);
1367 kmem_cache_free(vm_area_cachep
, vma
);
1368 kleave(" = %d", ret
);
1372 up_write(&nommu_region_sem
);
1373 printk(KERN_WARNING
"Attempt to share mismatched mappings\n");
1378 kmem_cache_free(vm_region_jar
, region
);
1379 printk(KERN_WARNING
"Allocation of vma for %lu byte allocation"
1380 " from process %d failed\n",
1385 error_getting_region
:
1386 printk(KERN_WARNING
"Allocation of vm region for %lu byte allocation"
1387 " from process %d failed\n",
1392 EXPORT_SYMBOL(do_mmap_pgoff
);
1395 * split a vma into two pieces at address 'addr', a new vma is allocated either
1396 * for the first part or the tail.
1398 int split_vma(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
1399 unsigned long addr
, int new_below
)
1401 struct vm_area_struct
*new;
1402 struct vm_region
*region
;
1403 unsigned long npages
;
1407 /* we're only permitted to split anonymous regions that have a single
1410 atomic_read(&vma
->vm_region
->vm_usage
) != 1)
1413 if (mm
->map_count
>= sysctl_max_map_count
)
1416 region
= kmem_cache_alloc(vm_region_jar
, GFP_KERNEL
);
1420 new = kmem_cache_alloc(vm_area_cachep
, GFP_KERNEL
);
1422 kmem_cache_free(vm_region_jar
, region
);
1426 /* most fields are the same, copy all, and then fixup */
1428 *region
= *vma
->vm_region
;
1429 new->vm_region
= region
;
1431 npages
= (addr
- vma
->vm_start
) >> PAGE_SHIFT
;
1434 region
->vm_top
= region
->vm_end
= new->vm_end
= addr
;
1436 region
->vm_start
= new->vm_start
= addr
;
1437 region
->vm_pgoff
= new->vm_pgoff
+= npages
;
1440 if (new->vm_ops
&& new->vm_ops
->open
)
1441 new->vm_ops
->open(new);
1443 delete_vma_from_mm(vma
);
1444 down_write(&nommu_region_sem
);
1445 delete_nommu_region(vma
->vm_region
);
1447 vma
->vm_region
->vm_start
= vma
->vm_start
= addr
;
1448 vma
->vm_region
->vm_pgoff
= vma
->vm_pgoff
+= npages
;
1450 vma
->vm_region
->vm_end
= vma
->vm_end
= addr
;
1451 vma
->vm_region
->vm_top
= addr
;
1453 add_nommu_region(vma
->vm_region
);
1454 add_nommu_region(new->vm_region
);
1455 up_write(&nommu_region_sem
);
1456 add_vma_to_mm(mm
, vma
);
1457 add_vma_to_mm(mm
, new);
1462 * shrink a VMA by removing the specified chunk from either the beginning or
1465 static int shrink_vma(struct mm_struct
*mm
,
1466 struct vm_area_struct
*vma
,
1467 unsigned long from
, unsigned long to
)
1469 struct vm_region
*region
;
1473 /* adjust the VMA's pointers, which may reposition it in the MM's tree
1475 delete_vma_from_mm(vma
);
1476 if (from
> vma
->vm_start
)
1480 add_vma_to_mm(mm
, vma
);
1482 /* cut the backing region down to size */
1483 region
= vma
->vm_region
;
1484 BUG_ON(atomic_read(®ion
->vm_usage
) != 1);
1486 down_write(&nommu_region_sem
);
1487 delete_nommu_region(region
);
1488 if (from
> region
->vm_start
) {
1489 to
= region
->vm_top
;
1490 region
->vm_top
= region
->vm_end
= from
;
1492 region
->vm_start
= to
;
1494 add_nommu_region(region
);
1495 up_write(&nommu_region_sem
);
1497 free_page_series(from
, to
);
1503 * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1504 * VMA, though it need not cover the whole VMA
1506 int do_munmap(struct mm_struct
*mm
, unsigned long start
, size_t len
)
1508 struct vm_area_struct
*vma
;
1510 unsigned long end
= start
+ len
;
1513 kenter(",%lx,%zx", start
, len
);
1518 /* find the first potentially overlapping VMA */
1519 vma
= find_vma(mm
, start
);
1522 "munmap of memory not mmapped by process %d (%s):"
1524 current
->pid
, current
->comm
, start
, start
+ len
- 1);
1528 /* we're allowed to split an anonymous VMA but not a file-backed one */
1531 if (start
> vma
->vm_start
) {
1532 kleave(" = -EINVAL [miss]");
1535 if (end
== vma
->vm_end
)
1536 goto erase_whole_vma
;
1537 rb
= rb_next(&vma
->vm_rb
);
1538 vma
= rb_entry(rb
, struct vm_area_struct
, vm_rb
);
1540 kleave(" = -EINVAL [split file]");
1543 /* the chunk must be a subset of the VMA found */
1544 if (start
== vma
->vm_start
&& end
== vma
->vm_end
)
1545 goto erase_whole_vma
;
1546 if (start
< vma
->vm_start
|| end
> vma
->vm_end
) {
1547 kleave(" = -EINVAL [superset]");
1550 if (start
& ~PAGE_MASK
) {
1551 kleave(" = -EINVAL [unaligned start]");
1554 if (end
!= vma
->vm_end
&& end
& ~PAGE_MASK
) {
1555 kleave(" = -EINVAL [unaligned split]");
1558 if (start
!= vma
->vm_start
&& end
!= vma
->vm_end
) {
1559 ret
= split_vma(mm
, vma
, start
, 1);
1561 kleave(" = %d [split]", ret
);
1565 return shrink_vma(mm
, vma
, start
, end
);
1569 delete_vma_from_mm(vma
);
1570 delete_vma(mm
, vma
);
1574 EXPORT_SYMBOL(do_munmap
);
1576 asmlinkage
long sys_munmap(unsigned long addr
, size_t len
)
1579 struct mm_struct
*mm
= current
->mm
;
1581 down_write(&mm
->mmap_sem
);
1582 ret
= do_munmap(mm
, addr
, len
);
1583 up_write(&mm
->mmap_sem
);
1588 * release all the mappings made in a process's VM space
1590 void exit_mmap(struct mm_struct
*mm
)
1592 struct vm_area_struct
*vma
;
1601 while ((vma
= mm
->mmap
)) {
1602 mm
->mmap
= vma
->vm_next
;
1603 delete_vma_from_mm(vma
);
1604 delete_vma(mm
, vma
);
1610 unsigned long do_brk(unsigned long addr
, unsigned long len
)
1616 * expand (or shrink) an existing mapping, potentially moving it at the same
1617 * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1619 * under NOMMU conditions, we only permit changing a mapping's size, and only
1620 * as long as it stays within the region allocated by do_mmap_private() and the
1621 * block is not shareable
1623 * MREMAP_FIXED is not supported under NOMMU conditions
1625 unsigned long do_mremap(unsigned long addr
,
1626 unsigned long old_len
, unsigned long new_len
,
1627 unsigned long flags
, unsigned long new_addr
)
1629 struct vm_area_struct
*vma
;
1631 /* insanity checks first */
1632 if (old_len
== 0 || new_len
== 0)
1633 return (unsigned long) -EINVAL
;
1635 if (addr
& ~PAGE_MASK
)
1638 if (flags
& MREMAP_FIXED
&& new_addr
!= addr
)
1639 return (unsigned long) -EINVAL
;
1641 vma
= find_vma_exact(current
->mm
, addr
, old_len
);
1643 return (unsigned long) -EINVAL
;
1645 if (vma
->vm_end
!= vma
->vm_start
+ old_len
)
1646 return (unsigned long) -EFAULT
;
1648 if (vma
->vm_flags
& VM_MAYSHARE
)
1649 return (unsigned long) -EPERM
;
1651 if (new_len
> vma
->vm_region
->vm_end
- vma
->vm_region
->vm_start
)
1652 return (unsigned long) -ENOMEM
;
1654 /* all checks complete - do it */
1655 vma
->vm_end
= vma
->vm_start
+ new_len
;
1656 return vma
->vm_start
;
1658 EXPORT_SYMBOL(do_mremap
);
1661 unsigned long sys_mremap(unsigned long addr
,
1662 unsigned long old_len
, unsigned long new_len
,
1663 unsigned long flags
, unsigned long new_addr
)
1667 down_write(¤t
->mm
->mmap_sem
);
1668 ret
= do_mremap(addr
, old_len
, new_len
, flags
, new_addr
);
1669 up_write(¤t
->mm
->mmap_sem
);
1673 struct page
*follow_page(struct vm_area_struct
*vma
, unsigned long address
,
1674 unsigned int foll_flags
)
1679 int remap_pfn_range(struct vm_area_struct
*vma
, unsigned long from
,
1680 unsigned long to
, unsigned long size
, pgprot_t prot
)
1682 vma
->vm_start
= vma
->vm_pgoff
<< PAGE_SHIFT
;
1685 EXPORT_SYMBOL(remap_pfn_range
);
1687 int remap_vmalloc_range(struct vm_area_struct
*vma
, void *addr
,
1688 unsigned long pgoff
)
1690 unsigned int size
= vma
->vm_end
- vma
->vm_start
;
1692 if (!(vma
->vm_flags
& VM_USERMAP
))
1695 vma
->vm_start
= (unsigned long)(addr
+ (pgoff
<< PAGE_SHIFT
));
1696 vma
->vm_end
= vma
->vm_start
+ size
;
1700 EXPORT_SYMBOL(remap_vmalloc_range
);
1702 void swap_unplug_io_fn(struct backing_dev_info
*bdi
, struct page
*page
)
1706 unsigned long arch_get_unmapped_area(struct file
*file
, unsigned long addr
,
1707 unsigned long len
, unsigned long pgoff
, unsigned long flags
)
1712 void arch_unmap_area(struct mm_struct
*mm
, unsigned long addr
)
1716 void unmap_mapping_range(struct address_space
*mapping
,
1717 loff_t
const holebegin
, loff_t
const holelen
,
1721 EXPORT_SYMBOL(unmap_mapping_range
);
1724 * ask for an unmapped area at which to create a mapping on a file
1726 unsigned long get_unmapped_area(struct file
*file
, unsigned long addr
,
1727 unsigned long len
, unsigned long pgoff
,
1728 unsigned long flags
)
1730 unsigned long (*get_area
)(struct file
*, unsigned long, unsigned long,
1731 unsigned long, unsigned long);
1733 get_area
= current
->mm
->get_unmapped_area
;
1734 if (file
&& file
->f_op
&& file
->f_op
->get_unmapped_area
)
1735 get_area
= file
->f_op
->get_unmapped_area
;
1740 return get_area(file
, addr
, len
, pgoff
, flags
);
1742 EXPORT_SYMBOL(get_unmapped_area
);
1745 * Check that a process has enough memory to allocate a new virtual
1746 * mapping. 0 means there is enough memory for the allocation to
1747 * succeed and -ENOMEM implies there is not.
1749 * We currently support three overcommit policies, which are set via the
1750 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
1752 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
1753 * Additional code 2002 Jul 20 by Robert Love.
1755 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
1757 * Note this is a helper function intended to be used by LSMs which
1758 * wish to use this logic.
1760 int __vm_enough_memory(struct mm_struct
*mm
, long pages
, int cap_sys_admin
)
1762 unsigned long free
, allowed
;
1764 vm_acct_memory(pages
);
1767 * Sometimes we want to use more memory than we have
1769 if (sysctl_overcommit_memory
== OVERCOMMIT_ALWAYS
)
1772 if (sysctl_overcommit_memory
== OVERCOMMIT_GUESS
) {
1775 free
= global_page_state(NR_FILE_PAGES
);
1776 free
+= nr_swap_pages
;
1779 * Any slabs which are created with the
1780 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
1781 * which are reclaimable, under pressure. The dentry
1782 * cache and most inode caches should fall into this
1784 free
+= global_page_state(NR_SLAB_RECLAIMABLE
);
1787 * Leave the last 3% for root
1796 * nr_free_pages() is very expensive on large systems,
1797 * only call if we're about to fail.
1799 n
= nr_free_pages();
1802 * Leave reserved pages. The pages are not for anonymous pages.
1804 if (n
<= totalreserve_pages
)
1807 n
-= totalreserve_pages
;
1810 * Leave the last 3% for root
1822 allowed
= totalram_pages
* sysctl_overcommit_ratio
/ 100;
1824 * Leave the last 3% for root
1827 allowed
-= allowed
/ 32;
1828 allowed
+= total_swap_pages
;
1830 /* Don't let a single process grow too big:
1831 leave 3% of the size of this process for other processes */
1833 allowed
-= mm
->total_vm
/ 32;
1836 * cast `allowed' as a signed long because vm_committed_space
1837 * sometimes has a negative value
1839 if (atomic_long_read(&vm_committed_space
) < (long)allowed
)
1842 vm_unacct_memory(pages
);
1847 int in_gate_area_no_task(unsigned long addr
)
1852 int filemap_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1857 EXPORT_SYMBOL(filemap_fault
);
1860 * Access another process' address space.
1861 * - source/target buffer must be kernel space
1863 int access_process_vm(struct task_struct
*tsk
, unsigned long addr
, void *buf
, int len
, int write
)
1865 struct vm_area_struct
*vma
;
1866 struct mm_struct
*mm
;
1868 if (addr
+ len
< addr
)
1871 mm
= get_task_mm(tsk
);
1875 down_read(&mm
->mmap_sem
);
1877 /* the access must start within one of the target process's mappings */
1878 vma
= find_vma(mm
, addr
);
1880 /* don't overrun this mapping */
1881 if (addr
+ len
>= vma
->vm_end
)
1882 len
= vma
->vm_end
- addr
;
1884 /* only read or write mappings where it is permitted */
1885 if (write
&& vma
->vm_flags
& VM_MAYWRITE
)
1886 len
-= copy_to_user((void *) addr
, buf
, len
);
1887 else if (!write
&& vma
->vm_flags
& VM_MAYREAD
)
1888 len
-= copy_from_user(buf
, (void *) addr
, len
);
1895 up_read(&mm
->mmap_sem
);