[SCTP]: Fix sctp to not return erroneous POLLOUT events.
[linux-2.6/mini2440.git] / net / sctp / socket.c
blob9df888e932c57097cd803629d08a8e9f70e8cafa
1 /* SCTP kernel reference Implementation
2 * (C) Copyright IBM Corp. 2001, 2004
3 * Copyright (c) 1999-2000 Cisco, Inc.
4 * Copyright (c) 1999-2001 Motorola, Inc.
5 * Copyright (c) 2001-2003 Intel Corp.
6 * Copyright (c) 2001-2002 Nokia, Inc.
7 * Copyright (c) 2001 La Monte H.P. Yarroll
9 * This file is part of the SCTP kernel reference Implementation
11 * These functions interface with the sockets layer to implement the
12 * SCTP Extensions for the Sockets API.
14 * Note that the descriptions from the specification are USER level
15 * functions--this file is the functions which populate the struct proto
16 * for SCTP which is the BOTTOM of the sockets interface.
18 * The SCTP reference implementation is free software;
19 * you can redistribute it and/or modify it under the terms of
20 * the GNU General Public License as published by
21 * the Free Software Foundation; either version 2, or (at your option)
22 * any later version.
24 * The SCTP reference implementation is distributed in the hope that it
25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
26 * ************************
27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
28 * See the GNU General Public License for more details.
30 * You should have received a copy of the GNU General Public License
31 * along with GNU CC; see the file COPYING. If not, write to
32 * the Free Software Foundation, 59 Temple Place - Suite 330,
33 * Boston, MA 02111-1307, USA.
35 * Please send any bug reports or fixes you make to the
36 * email address(es):
37 * lksctp developers <lksctp-developers@lists.sourceforge.net>
39 * Or submit a bug report through the following website:
40 * http://www.sf.net/projects/lksctp
42 * Written or modified by:
43 * La Monte H.P. Yarroll <piggy@acm.org>
44 * Narasimha Budihal <narsi@refcode.org>
45 * Karl Knutson <karl@athena.chicago.il.us>
46 * Jon Grimm <jgrimm@us.ibm.com>
47 * Xingang Guo <xingang.guo@intel.com>
48 * Daisy Chang <daisyc@us.ibm.com>
49 * Sridhar Samudrala <samudrala@us.ibm.com>
50 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com>
51 * Ardelle Fan <ardelle.fan@intel.com>
52 * Ryan Layer <rmlayer@us.ibm.com>
53 * Anup Pemmaiah <pemmaiah@cc.usu.edu>
54 * Kevin Gao <kevin.gao@intel.com>
56 * Any bugs reported given to us we will try to fix... any fixes shared will
57 * be incorporated into the next SCTP release.
60 #include <linux/config.h>
61 #include <linux/types.h>
62 #include <linux/kernel.h>
63 #include <linux/wait.h>
64 #include <linux/time.h>
65 #include <linux/ip.h>
66 #include <linux/fcntl.h>
67 #include <linux/poll.h>
68 #include <linux/init.h>
69 #include <linux/crypto.h>
71 #include <net/ip.h>
72 #include <net/icmp.h>
73 #include <net/route.h>
74 #include <net/ipv6.h>
75 #include <net/inet_common.h>
77 #include <linux/socket.h> /* for sa_family_t */
78 #include <net/sock.h>
79 #include <net/sctp/sctp.h>
80 #include <net/sctp/sm.h>
82 /* WARNING: Please do not remove the SCTP_STATIC attribute to
83 * any of the functions below as they are used to export functions
84 * used by a project regression testsuite.
87 /* Forward declarations for internal helper functions. */
88 static int sctp_writeable(struct sock *sk);
89 static void sctp_wfree(struct sk_buff *skb);
90 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p,
91 size_t msg_len);
92 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p);
93 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
94 static int sctp_wait_for_accept(struct sock *sk, long timeo);
95 static void sctp_wait_for_close(struct sock *sk, long timeo);
96 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
97 union sctp_addr *addr, int len);
98 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
99 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
100 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
101 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
102 static int sctp_send_asconf(struct sctp_association *asoc,
103 struct sctp_chunk *chunk);
104 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
105 static int sctp_autobind(struct sock *sk);
106 static void sctp_sock_migrate(struct sock *, struct sock *,
107 struct sctp_association *, sctp_socket_type_t);
108 static char *sctp_hmac_alg = SCTP_COOKIE_HMAC_ALG;
110 extern kmem_cache_t *sctp_bucket_cachep;
112 /* Get the sndbuf space available at the time on the association. */
113 static inline int sctp_wspace(struct sctp_association *asoc)
115 struct sock *sk = asoc->base.sk;
116 int amt = 0;
118 if (asoc->ep->sndbuf_policy) {
119 /* make sure that no association uses more than sk_sndbuf */
120 amt = sk->sk_sndbuf - asoc->sndbuf_used;
121 } else {
122 /* do socket level accounting */
123 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
126 if (amt < 0)
127 amt = 0;
129 return amt;
132 /* Increment the used sndbuf space count of the corresponding association by
133 * the size of the outgoing data chunk.
134 * Also, set the skb destructor for sndbuf accounting later.
136 * Since it is always 1-1 between chunk and skb, and also a new skb is always
137 * allocated for chunk bundling in sctp_packet_transmit(), we can use the
138 * destructor in the data chunk skb for the purpose of the sndbuf space
139 * tracking.
141 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
143 struct sctp_association *asoc = chunk->asoc;
144 struct sock *sk = asoc->base.sk;
146 /* The sndbuf space is tracked per association. */
147 sctp_association_hold(asoc);
149 skb_set_owner_w(chunk->skb, sk);
151 chunk->skb->destructor = sctp_wfree;
152 /* Save the chunk pointer in skb for sctp_wfree to use later. */
153 *((struct sctp_chunk **)(chunk->skb->cb)) = chunk;
155 asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) +
156 sizeof(struct sk_buff) +
157 sizeof(struct sctp_chunk);
159 atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
162 /* Verify that this is a valid address. */
163 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
164 int len)
166 struct sctp_af *af;
168 /* Verify basic sockaddr. */
169 af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
170 if (!af)
171 return -EINVAL;
173 /* Is this a valid SCTP address? */
174 if (!af->addr_valid(addr, sctp_sk(sk)))
175 return -EINVAL;
177 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
178 return -EINVAL;
180 return 0;
183 /* Look up the association by its id. If this is not a UDP-style
184 * socket, the ID field is always ignored.
186 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
188 struct sctp_association *asoc = NULL;
190 /* If this is not a UDP-style socket, assoc id should be ignored. */
191 if (!sctp_style(sk, UDP)) {
192 /* Return NULL if the socket state is not ESTABLISHED. It
193 * could be a TCP-style listening socket or a socket which
194 * hasn't yet called connect() to establish an association.
196 if (!sctp_sstate(sk, ESTABLISHED))
197 return NULL;
199 /* Get the first and the only association from the list. */
200 if (!list_empty(&sctp_sk(sk)->ep->asocs))
201 asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
202 struct sctp_association, asocs);
203 return asoc;
206 /* Otherwise this is a UDP-style socket. */
207 if (!id || (id == (sctp_assoc_t)-1))
208 return NULL;
210 spin_lock_bh(&sctp_assocs_id_lock);
211 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
212 spin_unlock_bh(&sctp_assocs_id_lock);
214 if (!asoc || (asoc->base.sk != sk) || asoc->base.dead)
215 return NULL;
217 return asoc;
220 /* Look up the transport from an address and an assoc id. If both address and
221 * id are specified, the associations matching the address and the id should be
222 * the same.
224 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
225 struct sockaddr_storage *addr,
226 sctp_assoc_t id)
228 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
229 struct sctp_transport *transport;
230 union sctp_addr *laddr = (union sctp_addr *)addr;
232 laddr->v4.sin_port = ntohs(laddr->v4.sin_port);
233 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
234 (union sctp_addr *)addr,
235 &transport);
236 laddr->v4.sin_port = htons(laddr->v4.sin_port);
238 if (!addr_asoc)
239 return NULL;
241 id_asoc = sctp_id2assoc(sk, id);
242 if (id_asoc && (id_asoc != addr_asoc))
243 return NULL;
245 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
246 (union sctp_addr *)addr);
248 return transport;
251 /* API 3.1.2 bind() - UDP Style Syntax
252 * The syntax of bind() is,
254 * ret = bind(int sd, struct sockaddr *addr, int addrlen);
256 * sd - the socket descriptor returned by socket().
257 * addr - the address structure (struct sockaddr_in or struct
258 * sockaddr_in6 [RFC 2553]),
259 * addr_len - the size of the address structure.
261 SCTP_STATIC int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
263 int retval = 0;
265 sctp_lock_sock(sk);
267 SCTP_DEBUG_PRINTK("sctp_bind(sk: %p, addr: %p, addr_len: %d)\n",
268 sk, addr, addr_len);
270 /* Disallow binding twice. */
271 if (!sctp_sk(sk)->ep->base.bind_addr.port)
272 retval = sctp_do_bind(sk, (union sctp_addr *)addr,
273 addr_len);
274 else
275 retval = -EINVAL;
277 sctp_release_sock(sk);
279 return retval;
282 static long sctp_get_port_local(struct sock *, union sctp_addr *);
284 /* Verify this is a valid sockaddr. */
285 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
286 union sctp_addr *addr, int len)
288 struct sctp_af *af;
290 /* Check minimum size. */
291 if (len < sizeof (struct sockaddr))
292 return NULL;
294 /* Does this PF support this AF? */
295 if (!opt->pf->af_supported(addr->sa.sa_family, opt))
296 return NULL;
298 /* If we get this far, af is valid. */
299 af = sctp_get_af_specific(addr->sa.sa_family);
301 if (len < af->sockaddr_len)
302 return NULL;
304 return af;
307 /* Bind a local address either to an endpoint or to an association. */
308 SCTP_STATIC int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
310 struct sctp_sock *sp = sctp_sk(sk);
311 struct sctp_endpoint *ep = sp->ep;
312 struct sctp_bind_addr *bp = &ep->base.bind_addr;
313 struct sctp_af *af;
314 unsigned short snum;
315 int ret = 0;
317 /* Common sockaddr verification. */
318 af = sctp_sockaddr_af(sp, addr, len);
319 if (!af) {
320 SCTP_DEBUG_PRINTK("sctp_do_bind(sk: %p, newaddr: %p, len: %d) EINVAL\n",
321 sk, addr, len);
322 return -EINVAL;
325 snum = ntohs(addr->v4.sin_port);
327 SCTP_DEBUG_PRINTK_IPADDR("sctp_do_bind(sk: %p, new addr: ",
328 ", port: %d, new port: %d, len: %d)\n",
330 addr,
331 bp->port, snum,
332 len);
334 /* PF specific bind() address verification. */
335 if (!sp->pf->bind_verify(sp, addr))
336 return -EADDRNOTAVAIL;
338 /* We must either be unbound, or bind to the same port. */
339 if (bp->port && (snum != bp->port)) {
340 SCTP_DEBUG_PRINTK("sctp_do_bind:"
341 " New port %d does not match existing port "
342 "%d.\n", snum, bp->port);
343 return -EINVAL;
346 if (snum && snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE))
347 return -EACCES;
349 /* Make sure we are allowed to bind here.
350 * The function sctp_get_port_local() does duplicate address
351 * detection.
353 if ((ret = sctp_get_port_local(sk, addr))) {
354 if (ret == (long) sk) {
355 /* This endpoint has a conflicting address. */
356 return -EINVAL;
357 } else {
358 return -EADDRINUSE;
362 /* Refresh ephemeral port. */
363 if (!bp->port)
364 bp->port = inet_sk(sk)->num;
366 /* Add the address to the bind address list. */
367 sctp_local_bh_disable();
368 sctp_write_lock(&ep->base.addr_lock);
370 /* Use GFP_ATOMIC since BHs are disabled. */
371 addr->v4.sin_port = ntohs(addr->v4.sin_port);
372 ret = sctp_add_bind_addr(bp, addr, GFP_ATOMIC);
373 addr->v4.sin_port = htons(addr->v4.sin_port);
374 sctp_write_unlock(&ep->base.addr_lock);
375 sctp_local_bh_enable();
377 /* Copy back into socket for getsockname() use. */
378 if (!ret) {
379 inet_sk(sk)->sport = htons(inet_sk(sk)->num);
380 af->to_sk_saddr(addr, sk);
383 return ret;
386 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
388 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
389 * at any one time. If a sender, after sending an ASCONF chunk, decides
390 * it needs to transfer another ASCONF Chunk, it MUST wait until the
391 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
392 * subsequent ASCONF. Note this restriction binds each side, so at any
393 * time two ASCONF may be in-transit on any given association (one sent
394 * from each endpoint).
396 static int sctp_send_asconf(struct sctp_association *asoc,
397 struct sctp_chunk *chunk)
399 int retval = 0;
401 /* If there is an outstanding ASCONF chunk, queue it for later
402 * transmission.
404 if (asoc->addip_last_asconf) {
405 list_add_tail(&chunk->list, &asoc->addip_chunk_list);
406 goto out;
409 /* Hold the chunk until an ASCONF_ACK is received. */
410 sctp_chunk_hold(chunk);
411 retval = sctp_primitive_ASCONF(asoc, chunk);
412 if (retval)
413 sctp_chunk_free(chunk);
414 else
415 asoc->addip_last_asconf = chunk;
417 out:
418 return retval;
421 /* Add a list of addresses as bind addresses to local endpoint or
422 * association.
424 * Basically run through each address specified in the addrs/addrcnt
425 * array/length pair, determine if it is IPv6 or IPv4 and call
426 * sctp_do_bind() on it.
428 * If any of them fails, then the operation will be reversed and the
429 * ones that were added will be removed.
431 * Only sctp_setsockopt_bindx() is supposed to call this function.
433 int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
435 int cnt;
436 int retval = 0;
437 void *addr_buf;
438 struct sockaddr *sa_addr;
439 struct sctp_af *af;
441 SCTP_DEBUG_PRINTK("sctp_bindx_add (sk: %p, addrs: %p, addrcnt: %d)\n",
442 sk, addrs, addrcnt);
444 addr_buf = addrs;
445 for (cnt = 0; cnt < addrcnt; cnt++) {
446 /* The list may contain either IPv4 or IPv6 address;
447 * determine the address length for walking thru the list.
449 sa_addr = (struct sockaddr *)addr_buf;
450 af = sctp_get_af_specific(sa_addr->sa_family);
451 if (!af) {
452 retval = -EINVAL;
453 goto err_bindx_add;
456 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
457 af->sockaddr_len);
459 addr_buf += af->sockaddr_len;
461 err_bindx_add:
462 if (retval < 0) {
463 /* Failed. Cleanup the ones that have been added */
464 if (cnt > 0)
465 sctp_bindx_rem(sk, addrs, cnt);
466 return retval;
470 return retval;
473 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
474 * associations that are part of the endpoint indicating that a list of local
475 * addresses are added to the endpoint.
477 * If any of the addresses is already in the bind address list of the
478 * association, we do not send the chunk for that association. But it will not
479 * affect other associations.
481 * Only sctp_setsockopt_bindx() is supposed to call this function.
483 static int sctp_send_asconf_add_ip(struct sock *sk,
484 struct sockaddr *addrs,
485 int addrcnt)
487 struct sctp_sock *sp;
488 struct sctp_endpoint *ep;
489 struct sctp_association *asoc;
490 struct sctp_bind_addr *bp;
491 struct sctp_chunk *chunk;
492 struct sctp_sockaddr_entry *laddr;
493 union sctp_addr *addr;
494 void *addr_buf;
495 struct sctp_af *af;
496 struct list_head *pos;
497 struct list_head *p;
498 int i;
499 int retval = 0;
501 if (!sctp_addip_enable)
502 return retval;
504 sp = sctp_sk(sk);
505 ep = sp->ep;
507 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
508 __FUNCTION__, sk, addrs, addrcnt);
510 list_for_each(pos, &ep->asocs) {
511 asoc = list_entry(pos, struct sctp_association, asocs);
513 if (!asoc->peer.asconf_capable)
514 continue;
516 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
517 continue;
519 if (!sctp_state(asoc, ESTABLISHED))
520 continue;
522 /* Check if any address in the packed array of addresses is
523 * in the bind address list of the association. If so,
524 * do not send the asconf chunk to its peer, but continue with
525 * other associations.
527 addr_buf = addrs;
528 for (i = 0; i < addrcnt; i++) {
529 addr = (union sctp_addr *)addr_buf;
530 af = sctp_get_af_specific(addr->v4.sin_family);
531 if (!af) {
532 retval = -EINVAL;
533 goto out;
536 if (sctp_assoc_lookup_laddr(asoc, addr))
537 break;
539 addr_buf += af->sockaddr_len;
541 if (i < addrcnt)
542 continue;
544 /* Use the first address in bind addr list of association as
545 * Address Parameter of ASCONF CHUNK.
547 sctp_read_lock(&asoc->base.addr_lock);
548 bp = &asoc->base.bind_addr;
549 p = bp->address_list.next;
550 laddr = list_entry(p, struct sctp_sockaddr_entry, list);
551 sctp_read_unlock(&asoc->base.addr_lock);
553 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
554 addrcnt, SCTP_PARAM_ADD_IP);
555 if (!chunk) {
556 retval = -ENOMEM;
557 goto out;
560 retval = sctp_send_asconf(asoc, chunk);
562 /* FIXME: After sending the add address ASCONF chunk, we
563 * cannot append the address to the association's binding
564 * address list, because the new address may be used as the
565 * source of a message sent to the peer before the ASCONF
566 * chunk is received by the peer. So we should wait until
567 * ASCONF_ACK is received.
571 out:
572 return retval;
575 /* Remove a list of addresses from bind addresses list. Do not remove the
576 * last address.
578 * Basically run through each address specified in the addrs/addrcnt
579 * array/length pair, determine if it is IPv6 or IPv4 and call
580 * sctp_del_bind() on it.
582 * If any of them fails, then the operation will be reversed and the
583 * ones that were removed will be added back.
585 * At least one address has to be left; if only one address is
586 * available, the operation will return -EBUSY.
588 * Only sctp_setsockopt_bindx() is supposed to call this function.
590 int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
592 struct sctp_sock *sp = sctp_sk(sk);
593 struct sctp_endpoint *ep = sp->ep;
594 int cnt;
595 struct sctp_bind_addr *bp = &ep->base.bind_addr;
596 int retval = 0;
597 union sctp_addr saveaddr;
598 void *addr_buf;
599 struct sockaddr *sa_addr;
600 struct sctp_af *af;
602 SCTP_DEBUG_PRINTK("sctp_bindx_rem (sk: %p, addrs: %p, addrcnt: %d)\n",
603 sk, addrs, addrcnt);
605 addr_buf = addrs;
606 for (cnt = 0; cnt < addrcnt; cnt++) {
607 /* If the bind address list is empty or if there is only one
608 * bind address, there is nothing more to be removed (we need
609 * at least one address here).
611 if (list_empty(&bp->address_list) ||
612 (sctp_list_single_entry(&bp->address_list))) {
613 retval = -EBUSY;
614 goto err_bindx_rem;
617 /* The list may contain either IPv4 or IPv6 address;
618 * determine the address length to copy the address to
619 * saveaddr.
621 sa_addr = (struct sockaddr *)addr_buf;
622 af = sctp_get_af_specific(sa_addr->sa_family);
623 if (!af) {
624 retval = -EINVAL;
625 goto err_bindx_rem;
627 memcpy(&saveaddr, sa_addr, af->sockaddr_len);
628 saveaddr.v4.sin_port = ntohs(saveaddr.v4.sin_port);
629 if (saveaddr.v4.sin_port != bp->port) {
630 retval = -EINVAL;
631 goto err_bindx_rem;
634 /* FIXME - There is probably a need to check if sk->sk_saddr and
635 * sk->sk_rcv_addr are currently set to one of the addresses to
636 * be removed. This is something which needs to be looked into
637 * when we are fixing the outstanding issues with multi-homing
638 * socket routing and failover schemes. Refer to comments in
639 * sctp_do_bind(). -daisy
641 sctp_local_bh_disable();
642 sctp_write_lock(&ep->base.addr_lock);
644 retval = sctp_del_bind_addr(bp, &saveaddr);
646 sctp_write_unlock(&ep->base.addr_lock);
647 sctp_local_bh_enable();
649 addr_buf += af->sockaddr_len;
650 err_bindx_rem:
651 if (retval < 0) {
652 /* Failed. Add the ones that has been removed back */
653 if (cnt > 0)
654 sctp_bindx_add(sk, addrs, cnt);
655 return retval;
659 return retval;
662 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
663 * the associations that are part of the endpoint indicating that a list of
664 * local addresses are removed from the endpoint.
666 * If any of the addresses is already in the bind address list of the
667 * association, we do not send the chunk for that association. But it will not
668 * affect other associations.
670 * Only sctp_setsockopt_bindx() is supposed to call this function.
672 static int sctp_send_asconf_del_ip(struct sock *sk,
673 struct sockaddr *addrs,
674 int addrcnt)
676 struct sctp_sock *sp;
677 struct sctp_endpoint *ep;
678 struct sctp_association *asoc;
679 struct sctp_bind_addr *bp;
680 struct sctp_chunk *chunk;
681 union sctp_addr *laddr;
682 void *addr_buf;
683 struct sctp_af *af;
684 struct list_head *pos;
685 int i;
686 int retval = 0;
688 if (!sctp_addip_enable)
689 return retval;
691 sp = sctp_sk(sk);
692 ep = sp->ep;
694 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
695 __FUNCTION__, sk, addrs, addrcnt);
697 list_for_each(pos, &ep->asocs) {
698 asoc = list_entry(pos, struct sctp_association, asocs);
700 if (!asoc->peer.asconf_capable)
701 continue;
703 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
704 continue;
706 if (!sctp_state(asoc, ESTABLISHED))
707 continue;
709 /* Check if any address in the packed array of addresses is
710 * not present in the bind address list of the association.
711 * If so, do not send the asconf chunk to its peer, but
712 * continue with other associations.
714 addr_buf = addrs;
715 for (i = 0; i < addrcnt; i++) {
716 laddr = (union sctp_addr *)addr_buf;
717 af = sctp_get_af_specific(laddr->v4.sin_family);
718 if (!af) {
719 retval = -EINVAL;
720 goto out;
723 if (!sctp_assoc_lookup_laddr(asoc, laddr))
724 break;
726 addr_buf += af->sockaddr_len;
728 if (i < addrcnt)
729 continue;
731 /* Find one address in the association's bind address list
732 * that is not in the packed array of addresses. This is to
733 * make sure that we do not delete all the addresses in the
734 * association.
736 sctp_read_lock(&asoc->base.addr_lock);
737 bp = &asoc->base.bind_addr;
738 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
739 addrcnt, sp);
740 sctp_read_unlock(&asoc->base.addr_lock);
741 if (!laddr)
742 continue;
744 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
745 SCTP_PARAM_DEL_IP);
746 if (!chunk) {
747 retval = -ENOMEM;
748 goto out;
751 retval = sctp_send_asconf(asoc, chunk);
753 /* FIXME: After sending the delete address ASCONF chunk, we
754 * cannot remove the addresses from the association's bind
755 * address list, because there maybe some packet send to
756 * the delete addresses, so we should wait until ASCONF_ACK
757 * packet is received.
760 out:
761 return retval;
764 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
766 * API 8.1
767 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
768 * int flags);
770 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
771 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
772 * or IPv6 addresses.
774 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
775 * Section 3.1.2 for this usage.
777 * addrs is a pointer to an array of one or more socket addresses. Each
778 * address is contained in its appropriate structure (i.e. struct
779 * sockaddr_in or struct sockaddr_in6) the family of the address type
780 * must be used to distengish the address length (note that this
781 * representation is termed a "packed array" of addresses). The caller
782 * specifies the number of addresses in the array with addrcnt.
784 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
785 * -1, and sets errno to the appropriate error code.
787 * For SCTP, the port given in each socket address must be the same, or
788 * sctp_bindx() will fail, setting errno to EINVAL.
790 * The flags parameter is formed from the bitwise OR of zero or more of
791 * the following currently defined flags:
793 * SCTP_BINDX_ADD_ADDR
795 * SCTP_BINDX_REM_ADDR
797 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
798 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
799 * addresses from the association. The two flags are mutually exclusive;
800 * if both are given, sctp_bindx() will fail with EINVAL. A caller may
801 * not remove all addresses from an association; sctp_bindx() will
802 * reject such an attempt with EINVAL.
804 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
805 * additional addresses with an endpoint after calling bind(). Or use
806 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
807 * socket is associated with so that no new association accepted will be
808 * associated with those addresses. If the endpoint supports dynamic
809 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
810 * endpoint to send the appropriate message to the peer to change the
811 * peers address lists.
813 * Adding and removing addresses from a connected association is
814 * optional functionality. Implementations that do not support this
815 * functionality should return EOPNOTSUPP.
817 * Basically do nothing but copying the addresses from user to kernel
818 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
819 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
820 * from userspace.
822 * We don't use copy_from_user() for optimization: we first do the
823 * sanity checks (buffer size -fast- and access check-healthy
824 * pointer); if all of those succeed, then we can alloc the memory
825 * (expensive operation) needed to copy the data to kernel. Then we do
826 * the copying without checking the user space area
827 * (__copy_from_user()).
829 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
830 * it.
832 * sk The sk of the socket
833 * addrs The pointer to the addresses in user land
834 * addrssize Size of the addrs buffer
835 * op Operation to perform (add or remove, see the flags of
836 * sctp_bindx)
838 * Returns 0 if ok, <0 errno code on error.
840 SCTP_STATIC int sctp_setsockopt_bindx(struct sock* sk,
841 struct sockaddr __user *addrs,
842 int addrs_size, int op)
844 struct sockaddr *kaddrs;
845 int err;
846 int addrcnt = 0;
847 int walk_size = 0;
848 struct sockaddr *sa_addr;
849 void *addr_buf;
850 struct sctp_af *af;
852 SCTP_DEBUG_PRINTK("sctp_setsocktopt_bindx: sk %p addrs %p"
853 " addrs_size %d opt %d\n", sk, addrs, addrs_size, op);
855 if (unlikely(addrs_size <= 0))
856 return -EINVAL;
858 /* Check the user passed a healthy pointer. */
859 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
860 return -EFAULT;
862 /* Alloc space for the address array in kernel memory. */
863 kaddrs = (struct sockaddr *)kmalloc(addrs_size, GFP_KERNEL);
864 if (unlikely(!kaddrs))
865 return -ENOMEM;
867 if (__copy_from_user(kaddrs, addrs, addrs_size)) {
868 kfree(kaddrs);
869 return -EFAULT;
872 /* Walk through the addrs buffer and count the number of addresses. */
873 addr_buf = kaddrs;
874 while (walk_size < addrs_size) {
875 sa_addr = (struct sockaddr *)addr_buf;
876 af = sctp_get_af_specific(sa_addr->sa_family);
878 /* If the address family is not supported or if this address
879 * causes the address buffer to overflow return EINVAL.
881 if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
882 kfree(kaddrs);
883 return -EINVAL;
885 addrcnt++;
886 addr_buf += af->sockaddr_len;
887 walk_size += af->sockaddr_len;
890 /* Do the work. */
891 switch (op) {
892 case SCTP_BINDX_ADD_ADDR:
893 err = sctp_bindx_add(sk, kaddrs, addrcnt);
894 if (err)
895 goto out;
896 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
897 break;
899 case SCTP_BINDX_REM_ADDR:
900 err = sctp_bindx_rem(sk, kaddrs, addrcnt);
901 if (err)
902 goto out;
903 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
904 break;
906 default:
907 err = -EINVAL;
908 break;
911 out:
912 kfree(kaddrs);
914 return err;
917 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
919 * Common routine for handling connect() and sctp_connectx().
920 * Connect will come in with just a single address.
922 static int __sctp_connect(struct sock* sk,
923 struct sockaddr *kaddrs,
924 int addrs_size)
926 struct sctp_sock *sp;
927 struct sctp_endpoint *ep;
928 struct sctp_association *asoc = NULL;
929 struct sctp_association *asoc2;
930 struct sctp_transport *transport;
931 union sctp_addr to;
932 struct sctp_af *af;
933 sctp_scope_t scope;
934 long timeo;
935 int err = 0;
936 int addrcnt = 0;
937 int walk_size = 0;
938 struct sockaddr *sa_addr;
939 void *addr_buf;
941 sp = sctp_sk(sk);
942 ep = sp->ep;
944 /* connect() cannot be done on a socket that is already in ESTABLISHED
945 * state - UDP-style peeled off socket or a TCP-style socket that
946 * is already connected.
947 * It cannot be done even on a TCP-style listening socket.
949 if (sctp_sstate(sk, ESTABLISHED) ||
950 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
951 err = -EISCONN;
952 goto out_free;
955 /* Walk through the addrs buffer and count the number of addresses. */
956 addr_buf = kaddrs;
957 while (walk_size < addrs_size) {
958 sa_addr = (struct sockaddr *)addr_buf;
959 af = sctp_get_af_specific(sa_addr->sa_family);
961 /* If the address family is not supported or if this address
962 * causes the address buffer to overflow return EINVAL.
964 if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
965 err = -EINVAL;
966 goto out_free;
969 err = sctp_verify_addr(sk, (union sctp_addr *)sa_addr,
970 af->sockaddr_len);
971 if (err)
972 goto out_free;
974 memcpy(&to, sa_addr, af->sockaddr_len);
975 to.v4.sin_port = ntohs(to.v4.sin_port);
977 /* Check if there already is a matching association on the
978 * endpoint (other than the one created here).
980 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport);
981 if (asoc2 && asoc2 != asoc) {
982 if (asoc2->state >= SCTP_STATE_ESTABLISHED)
983 err = -EISCONN;
984 else
985 err = -EALREADY;
986 goto out_free;
989 /* If we could not find a matching association on the endpoint,
990 * make sure that there is no peeled-off association matching
991 * the peer address even on another socket.
993 if (sctp_endpoint_is_peeled_off(ep, &to)) {
994 err = -EADDRNOTAVAIL;
995 goto out_free;
998 if (!asoc) {
999 /* If a bind() or sctp_bindx() is not called prior to
1000 * an sctp_connectx() call, the system picks an
1001 * ephemeral port and will choose an address set
1002 * equivalent to binding with a wildcard address.
1004 if (!ep->base.bind_addr.port) {
1005 if (sctp_autobind(sk)) {
1006 err = -EAGAIN;
1007 goto out_free;
1009 } else {
1011 * If an unprivileged user inherits a 1-many
1012 * style socket with open associations on a
1013 * privileged port, it MAY be permitted to
1014 * accept new associations, but it SHOULD NOT
1015 * be permitted to open new associations.
1017 if (ep->base.bind_addr.port < PROT_SOCK &&
1018 !capable(CAP_NET_BIND_SERVICE)) {
1019 err = -EACCES;
1020 goto out_free;
1024 scope = sctp_scope(&to);
1025 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1026 if (!asoc) {
1027 err = -ENOMEM;
1028 goto out_free;
1032 /* Prime the peer's transport structures. */
1033 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL,
1034 SCTP_UNKNOWN);
1035 if (!transport) {
1036 err = -ENOMEM;
1037 goto out_free;
1040 addrcnt++;
1041 addr_buf += af->sockaddr_len;
1042 walk_size += af->sockaddr_len;
1045 err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL);
1046 if (err < 0) {
1047 goto out_free;
1050 err = sctp_primitive_ASSOCIATE(asoc, NULL);
1051 if (err < 0) {
1052 goto out_free;
1055 /* Initialize sk's dport and daddr for getpeername() */
1056 inet_sk(sk)->dport = htons(asoc->peer.port);
1057 af = sctp_get_af_specific(to.sa.sa_family);
1058 af->to_sk_daddr(&to, sk);
1060 timeo = sock_sndtimeo(sk, sk->sk_socket->file->f_flags & O_NONBLOCK);
1061 err = sctp_wait_for_connect(asoc, &timeo);
1063 /* Don't free association on exit. */
1064 asoc = NULL;
1066 out_free:
1068 SCTP_DEBUG_PRINTK("About to exit __sctp_connect() free asoc: %p"
1069 " kaddrs: %p err: %d\n",
1070 asoc, kaddrs, err);
1071 if (asoc)
1072 sctp_association_free(asoc);
1073 return err;
1076 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1078 * API 8.9
1079 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt);
1081 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1082 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1083 * or IPv6 addresses.
1085 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1086 * Section 3.1.2 for this usage.
1088 * addrs is a pointer to an array of one or more socket addresses. Each
1089 * address is contained in its appropriate structure (i.e. struct
1090 * sockaddr_in or struct sockaddr_in6) the family of the address type
1091 * must be used to distengish the address length (note that this
1092 * representation is termed a "packed array" of addresses). The caller
1093 * specifies the number of addresses in the array with addrcnt.
1095 * On success, sctp_connectx() returns 0. On failure, sctp_connectx() returns
1096 * -1, and sets errno to the appropriate error code.
1098 * For SCTP, the port given in each socket address must be the same, or
1099 * sctp_connectx() will fail, setting errno to EINVAL.
1101 * An application can use sctp_connectx to initiate an association with
1102 * an endpoint that is multi-homed. Much like sctp_bindx() this call
1103 * allows a caller to specify multiple addresses at which a peer can be
1104 * reached. The way the SCTP stack uses the list of addresses to set up
1105 * the association is implementation dependant. This function only
1106 * specifies that the stack will try to make use of all the addresses in
1107 * the list when needed.
1109 * Note that the list of addresses passed in is only used for setting up
1110 * the association. It does not necessarily equal the set of addresses
1111 * the peer uses for the resulting association. If the caller wants to
1112 * find out the set of peer addresses, it must use sctp_getpaddrs() to
1113 * retrieve them after the association has been set up.
1115 * Basically do nothing but copying the addresses from user to kernel
1116 * land and invoking either sctp_connectx(). This is used for tunneling
1117 * the sctp_connectx() request through sctp_setsockopt() from userspace.
1119 * We don't use copy_from_user() for optimization: we first do the
1120 * sanity checks (buffer size -fast- and access check-healthy
1121 * pointer); if all of those succeed, then we can alloc the memory
1122 * (expensive operation) needed to copy the data to kernel. Then we do
1123 * the copying without checking the user space area
1124 * (__copy_from_user()).
1126 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1127 * it.
1129 * sk The sk of the socket
1130 * addrs The pointer to the addresses in user land
1131 * addrssize Size of the addrs buffer
1133 * Returns 0 if ok, <0 errno code on error.
1135 SCTP_STATIC int sctp_setsockopt_connectx(struct sock* sk,
1136 struct sockaddr __user *addrs,
1137 int addrs_size)
1139 int err = 0;
1140 struct sockaddr *kaddrs;
1142 SCTP_DEBUG_PRINTK("%s - sk %p addrs %p addrs_size %d\n",
1143 __FUNCTION__, sk, addrs, addrs_size);
1145 if (unlikely(addrs_size <= 0))
1146 return -EINVAL;
1148 /* Check the user passed a healthy pointer. */
1149 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
1150 return -EFAULT;
1152 /* Alloc space for the address array in kernel memory. */
1153 kaddrs = (struct sockaddr *)kmalloc(addrs_size, GFP_KERNEL);
1154 if (unlikely(!kaddrs))
1155 return -ENOMEM;
1157 if (__copy_from_user(kaddrs, addrs, addrs_size)) {
1158 err = -EFAULT;
1159 } else {
1160 err = __sctp_connect(sk, kaddrs, addrs_size);
1163 kfree(kaddrs);
1164 return err;
1167 /* API 3.1.4 close() - UDP Style Syntax
1168 * Applications use close() to perform graceful shutdown (as described in
1169 * Section 10.1 of [SCTP]) on ALL the associations currently represented
1170 * by a UDP-style socket.
1172 * The syntax is
1174 * ret = close(int sd);
1176 * sd - the socket descriptor of the associations to be closed.
1178 * To gracefully shutdown a specific association represented by the
1179 * UDP-style socket, an application should use the sendmsg() call,
1180 * passing no user data, but including the appropriate flag in the
1181 * ancillary data (see Section xxxx).
1183 * If sd in the close() call is a branched-off socket representing only
1184 * one association, the shutdown is performed on that association only.
1186 * 4.1.6 close() - TCP Style Syntax
1188 * Applications use close() to gracefully close down an association.
1190 * The syntax is:
1192 * int close(int sd);
1194 * sd - the socket descriptor of the association to be closed.
1196 * After an application calls close() on a socket descriptor, no further
1197 * socket operations will succeed on that descriptor.
1199 * API 7.1.4 SO_LINGER
1201 * An application using the TCP-style socket can use this option to
1202 * perform the SCTP ABORT primitive. The linger option structure is:
1204 * struct linger {
1205 * int l_onoff; // option on/off
1206 * int l_linger; // linger time
1207 * };
1209 * To enable the option, set l_onoff to 1. If the l_linger value is set
1210 * to 0, calling close() is the same as the ABORT primitive. If the
1211 * value is set to a negative value, the setsockopt() call will return
1212 * an error. If the value is set to a positive value linger_time, the
1213 * close() can be blocked for at most linger_time ms. If the graceful
1214 * shutdown phase does not finish during this period, close() will
1215 * return but the graceful shutdown phase continues in the system.
1217 SCTP_STATIC void sctp_close(struct sock *sk, long timeout)
1219 struct sctp_endpoint *ep;
1220 struct sctp_association *asoc;
1221 struct list_head *pos, *temp;
1223 SCTP_DEBUG_PRINTK("sctp_close(sk: 0x%p, timeout:%ld)\n", sk, timeout);
1225 sctp_lock_sock(sk);
1226 sk->sk_shutdown = SHUTDOWN_MASK;
1228 ep = sctp_sk(sk)->ep;
1230 /* Walk all associations on a socket, not on an endpoint. */
1231 list_for_each_safe(pos, temp, &ep->asocs) {
1232 asoc = list_entry(pos, struct sctp_association, asocs);
1234 if (sctp_style(sk, TCP)) {
1235 /* A closed association can still be in the list if
1236 * it belongs to a TCP-style listening socket that is
1237 * not yet accepted. If so, free it. If not, send an
1238 * ABORT or SHUTDOWN based on the linger options.
1240 if (sctp_state(asoc, CLOSED)) {
1241 sctp_unhash_established(asoc);
1242 sctp_association_free(asoc);
1244 } else if (sock_flag(sk, SOCK_LINGER) &&
1245 !sk->sk_lingertime)
1246 sctp_primitive_ABORT(asoc, NULL);
1247 else
1248 sctp_primitive_SHUTDOWN(asoc, NULL);
1249 } else
1250 sctp_primitive_SHUTDOWN(asoc, NULL);
1253 /* Clean up any skbs sitting on the receive queue. */
1254 sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1255 sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1257 /* On a TCP-style socket, block for at most linger_time if set. */
1258 if (sctp_style(sk, TCP) && timeout)
1259 sctp_wait_for_close(sk, timeout);
1261 /* This will run the backlog queue. */
1262 sctp_release_sock(sk);
1264 /* Supposedly, no process has access to the socket, but
1265 * the net layers still may.
1267 sctp_local_bh_disable();
1268 sctp_bh_lock_sock(sk);
1270 /* Hold the sock, since sk_common_release() will put sock_put()
1271 * and we have just a little more cleanup.
1273 sock_hold(sk);
1274 sk_common_release(sk);
1276 sctp_bh_unlock_sock(sk);
1277 sctp_local_bh_enable();
1279 sock_put(sk);
1281 SCTP_DBG_OBJCNT_DEC(sock);
1284 /* Handle EPIPE error. */
1285 static int sctp_error(struct sock *sk, int flags, int err)
1287 if (err == -EPIPE)
1288 err = sock_error(sk) ? : -EPIPE;
1289 if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1290 send_sig(SIGPIPE, current, 0);
1291 return err;
1294 /* API 3.1.3 sendmsg() - UDP Style Syntax
1296 * An application uses sendmsg() and recvmsg() calls to transmit data to
1297 * and receive data from its peer.
1299 * ssize_t sendmsg(int socket, const struct msghdr *message,
1300 * int flags);
1302 * socket - the socket descriptor of the endpoint.
1303 * message - pointer to the msghdr structure which contains a single
1304 * user message and possibly some ancillary data.
1306 * See Section 5 for complete description of the data
1307 * structures.
1309 * flags - flags sent or received with the user message, see Section
1310 * 5 for complete description of the flags.
1312 * Note: This function could use a rewrite especially when explicit
1313 * connect support comes in.
1315 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */
1317 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *);
1319 SCTP_STATIC int sctp_sendmsg(struct kiocb *iocb, struct sock *sk,
1320 struct msghdr *msg, size_t msg_len)
1322 struct sctp_sock *sp;
1323 struct sctp_endpoint *ep;
1324 struct sctp_association *new_asoc=NULL, *asoc=NULL;
1325 struct sctp_transport *transport, *chunk_tp;
1326 struct sctp_chunk *chunk;
1327 union sctp_addr to;
1328 struct sockaddr *msg_name = NULL;
1329 struct sctp_sndrcvinfo default_sinfo = { 0 };
1330 struct sctp_sndrcvinfo *sinfo;
1331 struct sctp_initmsg *sinit;
1332 sctp_assoc_t associd = 0;
1333 sctp_cmsgs_t cmsgs = { NULL };
1334 int err;
1335 sctp_scope_t scope;
1336 long timeo;
1337 __u16 sinfo_flags = 0;
1338 struct sctp_datamsg *datamsg;
1339 struct list_head *pos;
1340 int msg_flags = msg->msg_flags;
1342 SCTP_DEBUG_PRINTK("sctp_sendmsg(sk: %p, msg: %p, msg_len: %zu)\n",
1343 sk, msg, msg_len);
1345 err = 0;
1346 sp = sctp_sk(sk);
1347 ep = sp->ep;
1349 SCTP_DEBUG_PRINTK("Using endpoint: %p.\n", ep);
1351 /* We cannot send a message over a TCP-style listening socket. */
1352 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) {
1353 err = -EPIPE;
1354 goto out_nounlock;
1357 /* Parse out the SCTP CMSGs. */
1358 err = sctp_msghdr_parse(msg, &cmsgs);
1360 if (err) {
1361 SCTP_DEBUG_PRINTK("msghdr parse err = %x\n", err);
1362 goto out_nounlock;
1365 /* Fetch the destination address for this packet. This
1366 * address only selects the association--it is not necessarily
1367 * the address we will send to.
1368 * For a peeled-off socket, msg_name is ignored.
1370 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1371 int msg_namelen = msg->msg_namelen;
1373 err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name,
1374 msg_namelen);
1375 if (err)
1376 return err;
1378 if (msg_namelen > sizeof(to))
1379 msg_namelen = sizeof(to);
1380 memcpy(&to, msg->msg_name, msg_namelen);
1381 SCTP_DEBUG_PRINTK("Just memcpy'd. msg_name is "
1382 "0x%x:%u.\n",
1383 to.v4.sin_addr.s_addr, to.v4.sin_port);
1385 to.v4.sin_port = ntohs(to.v4.sin_port);
1386 msg_name = msg->msg_name;
1389 sinfo = cmsgs.info;
1390 sinit = cmsgs.init;
1392 /* Did the user specify SNDRCVINFO? */
1393 if (sinfo) {
1394 sinfo_flags = sinfo->sinfo_flags;
1395 associd = sinfo->sinfo_assoc_id;
1398 SCTP_DEBUG_PRINTK("msg_len: %zu, sinfo_flags: 0x%x\n",
1399 msg_len, sinfo_flags);
1401 /* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */
1402 if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) {
1403 err = -EINVAL;
1404 goto out_nounlock;
1407 /* If SCTP_EOF is set, no data can be sent. Disallow sending zero
1408 * length messages when SCTP_EOF|SCTP_ABORT is not set.
1409 * If SCTP_ABORT is set, the message length could be non zero with
1410 * the msg_iov set to the user abort reason.
1412 if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) ||
1413 (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) {
1414 err = -EINVAL;
1415 goto out_nounlock;
1418 /* If SCTP_ADDR_OVER is set, there must be an address
1419 * specified in msg_name.
1421 if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) {
1422 err = -EINVAL;
1423 goto out_nounlock;
1426 transport = NULL;
1428 SCTP_DEBUG_PRINTK("About to look up association.\n");
1430 sctp_lock_sock(sk);
1432 /* If a msg_name has been specified, assume this is to be used. */
1433 if (msg_name) {
1434 /* Look for a matching association on the endpoint. */
1435 asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1436 if (!asoc) {
1437 /* If we could not find a matching association on the
1438 * endpoint, make sure that it is not a TCP-style
1439 * socket that already has an association or there is
1440 * no peeled-off association on another socket.
1442 if ((sctp_style(sk, TCP) &&
1443 sctp_sstate(sk, ESTABLISHED)) ||
1444 sctp_endpoint_is_peeled_off(ep, &to)) {
1445 err = -EADDRNOTAVAIL;
1446 goto out_unlock;
1449 } else {
1450 asoc = sctp_id2assoc(sk, associd);
1451 if (!asoc) {
1452 err = -EPIPE;
1453 goto out_unlock;
1457 if (asoc) {
1458 SCTP_DEBUG_PRINTK("Just looked up association: %p.\n", asoc);
1460 /* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED
1461 * socket that has an association in CLOSED state. This can
1462 * happen when an accepted socket has an association that is
1463 * already CLOSED.
1465 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) {
1466 err = -EPIPE;
1467 goto out_unlock;
1470 if (sinfo_flags & SCTP_EOF) {
1471 SCTP_DEBUG_PRINTK("Shutting down association: %p\n",
1472 asoc);
1473 sctp_primitive_SHUTDOWN(asoc, NULL);
1474 err = 0;
1475 goto out_unlock;
1477 if (sinfo_flags & SCTP_ABORT) {
1478 SCTP_DEBUG_PRINTK("Aborting association: %p\n", asoc);
1479 sctp_primitive_ABORT(asoc, msg);
1480 err = 0;
1481 goto out_unlock;
1485 /* Do we need to create the association? */
1486 if (!asoc) {
1487 SCTP_DEBUG_PRINTK("There is no association yet.\n");
1489 if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) {
1490 err = -EINVAL;
1491 goto out_unlock;
1494 /* Check for invalid stream against the stream counts,
1495 * either the default or the user specified stream counts.
1497 if (sinfo) {
1498 if (!sinit || (sinit && !sinit->sinit_num_ostreams)) {
1499 /* Check against the defaults. */
1500 if (sinfo->sinfo_stream >=
1501 sp->initmsg.sinit_num_ostreams) {
1502 err = -EINVAL;
1503 goto out_unlock;
1505 } else {
1506 /* Check against the requested. */
1507 if (sinfo->sinfo_stream >=
1508 sinit->sinit_num_ostreams) {
1509 err = -EINVAL;
1510 goto out_unlock;
1516 * API 3.1.2 bind() - UDP Style Syntax
1517 * If a bind() or sctp_bindx() is not called prior to a
1518 * sendmsg() call that initiates a new association, the
1519 * system picks an ephemeral port and will choose an address
1520 * set equivalent to binding with a wildcard address.
1522 if (!ep->base.bind_addr.port) {
1523 if (sctp_autobind(sk)) {
1524 err = -EAGAIN;
1525 goto out_unlock;
1527 } else {
1529 * If an unprivileged user inherits a one-to-many
1530 * style socket with open associations on a privileged
1531 * port, it MAY be permitted to accept new associations,
1532 * but it SHOULD NOT be permitted to open new
1533 * associations.
1535 if (ep->base.bind_addr.port < PROT_SOCK &&
1536 !capable(CAP_NET_BIND_SERVICE)) {
1537 err = -EACCES;
1538 goto out_unlock;
1542 scope = sctp_scope(&to);
1543 new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1544 if (!new_asoc) {
1545 err = -ENOMEM;
1546 goto out_unlock;
1548 asoc = new_asoc;
1550 /* If the SCTP_INIT ancillary data is specified, set all
1551 * the association init values accordingly.
1553 if (sinit) {
1554 if (sinit->sinit_num_ostreams) {
1555 asoc->c.sinit_num_ostreams =
1556 sinit->sinit_num_ostreams;
1558 if (sinit->sinit_max_instreams) {
1559 asoc->c.sinit_max_instreams =
1560 sinit->sinit_max_instreams;
1562 if (sinit->sinit_max_attempts) {
1563 asoc->max_init_attempts
1564 = sinit->sinit_max_attempts;
1566 if (sinit->sinit_max_init_timeo) {
1567 asoc->max_init_timeo =
1568 msecs_to_jiffies(sinit->sinit_max_init_timeo);
1572 /* Prime the peer's transport structures. */
1573 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN);
1574 if (!transport) {
1575 err = -ENOMEM;
1576 goto out_free;
1578 err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL);
1579 if (err < 0) {
1580 err = -ENOMEM;
1581 goto out_free;
1585 /* ASSERT: we have a valid association at this point. */
1586 SCTP_DEBUG_PRINTK("We have a valid association.\n");
1588 if (!sinfo) {
1589 /* If the user didn't specify SNDRCVINFO, make up one with
1590 * some defaults.
1592 default_sinfo.sinfo_stream = asoc->default_stream;
1593 default_sinfo.sinfo_flags = asoc->default_flags;
1594 default_sinfo.sinfo_ppid = asoc->default_ppid;
1595 default_sinfo.sinfo_context = asoc->default_context;
1596 default_sinfo.sinfo_timetolive = asoc->default_timetolive;
1597 default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc);
1598 sinfo = &default_sinfo;
1601 /* API 7.1.7, the sndbuf size per association bounds the
1602 * maximum size of data that can be sent in a single send call.
1604 if (msg_len > sk->sk_sndbuf) {
1605 err = -EMSGSIZE;
1606 goto out_free;
1609 /* If fragmentation is disabled and the message length exceeds the
1610 * association fragmentation point, return EMSGSIZE. The I-D
1611 * does not specify what this error is, but this looks like
1612 * a great fit.
1614 if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) {
1615 err = -EMSGSIZE;
1616 goto out_free;
1619 if (sinfo) {
1620 /* Check for invalid stream. */
1621 if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) {
1622 err = -EINVAL;
1623 goto out_free;
1627 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1628 if (!sctp_wspace(asoc)) {
1629 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1630 if (err)
1631 goto out_free;
1634 /* If an address is passed with the sendto/sendmsg call, it is used
1635 * to override the primary destination address in the TCP model, or
1636 * when SCTP_ADDR_OVER flag is set in the UDP model.
1638 if ((sctp_style(sk, TCP) && msg_name) ||
1639 (sinfo_flags & SCTP_ADDR_OVER)) {
1640 chunk_tp = sctp_assoc_lookup_paddr(asoc, &to);
1641 if (!chunk_tp) {
1642 err = -EINVAL;
1643 goto out_free;
1645 } else
1646 chunk_tp = NULL;
1648 /* Auto-connect, if we aren't connected already. */
1649 if (sctp_state(asoc, CLOSED)) {
1650 err = sctp_primitive_ASSOCIATE(asoc, NULL);
1651 if (err < 0)
1652 goto out_free;
1653 SCTP_DEBUG_PRINTK("We associated primitively.\n");
1656 /* Break the message into multiple chunks of maximum size. */
1657 datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len);
1658 if (!datamsg) {
1659 err = -ENOMEM;
1660 goto out_free;
1663 /* Now send the (possibly) fragmented message. */
1664 list_for_each(pos, &datamsg->chunks) {
1665 chunk = list_entry(pos, struct sctp_chunk, frag_list);
1666 sctp_datamsg_track(chunk);
1668 /* Do accounting for the write space. */
1669 sctp_set_owner_w(chunk);
1671 chunk->transport = chunk_tp;
1673 /* Send it to the lower layers. Note: all chunks
1674 * must either fail or succeed. The lower layer
1675 * works that way today. Keep it that way or this
1676 * breaks.
1678 err = sctp_primitive_SEND(asoc, chunk);
1679 /* Did the lower layer accept the chunk? */
1680 if (err)
1681 sctp_chunk_free(chunk);
1682 SCTP_DEBUG_PRINTK("We sent primitively.\n");
1685 sctp_datamsg_free(datamsg);
1686 if (err)
1687 goto out_free;
1688 else
1689 err = msg_len;
1691 /* If we are already past ASSOCIATE, the lower
1692 * layers are responsible for association cleanup.
1694 goto out_unlock;
1696 out_free:
1697 if (new_asoc)
1698 sctp_association_free(asoc);
1699 out_unlock:
1700 sctp_release_sock(sk);
1702 out_nounlock:
1703 return sctp_error(sk, msg_flags, err);
1705 #if 0
1706 do_sock_err:
1707 if (msg_len)
1708 err = msg_len;
1709 else
1710 err = sock_error(sk);
1711 goto out;
1713 do_interrupted:
1714 if (msg_len)
1715 err = msg_len;
1716 goto out;
1717 #endif /* 0 */
1720 /* This is an extended version of skb_pull() that removes the data from the
1721 * start of a skb even when data is spread across the list of skb's in the
1722 * frag_list. len specifies the total amount of data that needs to be removed.
1723 * when 'len' bytes could be removed from the skb, it returns 0.
1724 * If 'len' exceeds the total skb length, it returns the no. of bytes that
1725 * could not be removed.
1727 static int sctp_skb_pull(struct sk_buff *skb, int len)
1729 struct sk_buff *list;
1730 int skb_len = skb_headlen(skb);
1731 int rlen;
1733 if (len <= skb_len) {
1734 __skb_pull(skb, len);
1735 return 0;
1737 len -= skb_len;
1738 __skb_pull(skb, skb_len);
1740 for (list = skb_shinfo(skb)->frag_list; list; list = list->next) {
1741 rlen = sctp_skb_pull(list, len);
1742 skb->len -= (len-rlen);
1743 skb->data_len -= (len-rlen);
1745 if (!rlen)
1746 return 0;
1748 len = rlen;
1751 return len;
1754 /* API 3.1.3 recvmsg() - UDP Style Syntax
1756 * ssize_t recvmsg(int socket, struct msghdr *message,
1757 * int flags);
1759 * socket - the socket descriptor of the endpoint.
1760 * message - pointer to the msghdr structure which contains a single
1761 * user message and possibly some ancillary data.
1763 * See Section 5 for complete description of the data
1764 * structures.
1766 * flags - flags sent or received with the user message, see Section
1767 * 5 for complete description of the flags.
1769 static struct sk_buff *sctp_skb_recv_datagram(struct sock *, int, int, int *);
1771 SCTP_STATIC int sctp_recvmsg(struct kiocb *iocb, struct sock *sk,
1772 struct msghdr *msg, size_t len, int noblock,
1773 int flags, int *addr_len)
1775 struct sctp_ulpevent *event = NULL;
1776 struct sctp_sock *sp = sctp_sk(sk);
1777 struct sk_buff *skb;
1778 int copied;
1779 int err = 0;
1780 int skb_len;
1782 SCTP_DEBUG_PRINTK("sctp_recvmsg(%s: %p, %s: %p, %s: %zd, %s: %d, %s: "
1783 "0x%x, %s: %p)\n", "sk", sk, "msghdr", msg,
1784 "len", len, "knoblauch", noblock,
1785 "flags", flags, "addr_len", addr_len);
1787 sctp_lock_sock(sk);
1789 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) {
1790 err = -ENOTCONN;
1791 goto out;
1794 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
1795 if (!skb)
1796 goto out;
1798 /* Get the total length of the skb including any skb's in the
1799 * frag_list.
1801 skb_len = skb->len;
1803 copied = skb_len;
1804 if (copied > len)
1805 copied = len;
1807 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
1809 event = sctp_skb2event(skb);
1811 if (err)
1812 goto out_free;
1814 sock_recv_timestamp(msg, sk, skb);
1815 if (sctp_ulpevent_is_notification(event)) {
1816 msg->msg_flags |= MSG_NOTIFICATION;
1817 sp->pf->event_msgname(event, msg->msg_name, addr_len);
1818 } else {
1819 sp->pf->skb_msgname(skb, msg->msg_name, addr_len);
1822 /* Check if we allow SCTP_SNDRCVINFO. */
1823 if (sp->subscribe.sctp_data_io_event)
1824 sctp_ulpevent_read_sndrcvinfo(event, msg);
1825 #if 0
1826 /* FIXME: we should be calling IP/IPv6 layers. */
1827 if (sk->sk_protinfo.af_inet.cmsg_flags)
1828 ip_cmsg_recv(msg, skb);
1829 #endif
1831 err = copied;
1833 /* If skb's length exceeds the user's buffer, update the skb and
1834 * push it back to the receive_queue so that the next call to
1835 * recvmsg() will return the remaining data. Don't set MSG_EOR.
1837 if (skb_len > copied) {
1838 msg->msg_flags &= ~MSG_EOR;
1839 if (flags & MSG_PEEK)
1840 goto out_free;
1841 sctp_skb_pull(skb, copied);
1842 skb_queue_head(&sk->sk_receive_queue, skb);
1844 /* When only partial message is copied to the user, increase
1845 * rwnd by that amount. If all the data in the skb is read,
1846 * rwnd is updated when the event is freed.
1848 sctp_assoc_rwnd_increase(event->asoc, copied);
1849 goto out;
1850 } else if ((event->msg_flags & MSG_NOTIFICATION) ||
1851 (event->msg_flags & MSG_EOR))
1852 msg->msg_flags |= MSG_EOR;
1853 else
1854 msg->msg_flags &= ~MSG_EOR;
1856 out_free:
1857 if (flags & MSG_PEEK) {
1858 /* Release the skb reference acquired after peeking the skb in
1859 * sctp_skb_recv_datagram().
1861 kfree_skb(skb);
1862 } else {
1863 /* Free the event which includes releasing the reference to
1864 * the owner of the skb, freeing the skb and updating the
1865 * rwnd.
1867 sctp_ulpevent_free(event);
1869 out:
1870 sctp_release_sock(sk);
1871 return err;
1874 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
1876 * This option is a on/off flag. If enabled no SCTP message
1877 * fragmentation will be performed. Instead if a message being sent
1878 * exceeds the current PMTU size, the message will NOT be sent and
1879 * instead a error will be indicated to the user.
1881 static int sctp_setsockopt_disable_fragments(struct sock *sk,
1882 char __user *optval, int optlen)
1884 int val;
1886 if (optlen < sizeof(int))
1887 return -EINVAL;
1889 if (get_user(val, (int __user *)optval))
1890 return -EFAULT;
1892 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
1894 return 0;
1897 static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
1898 int optlen)
1900 if (optlen != sizeof(struct sctp_event_subscribe))
1901 return -EINVAL;
1902 if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen))
1903 return -EFAULT;
1904 return 0;
1907 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
1909 * This socket option is applicable to the UDP-style socket only. When
1910 * set it will cause associations that are idle for more than the
1911 * specified number of seconds to automatically close. An association
1912 * being idle is defined an association that has NOT sent or received
1913 * user data. The special value of '0' indicates that no automatic
1914 * close of any associations should be performed. The option expects an
1915 * integer defining the number of seconds of idle time before an
1916 * association is closed.
1918 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
1919 int optlen)
1921 struct sctp_sock *sp = sctp_sk(sk);
1923 /* Applicable to UDP-style socket only */
1924 if (sctp_style(sk, TCP))
1925 return -EOPNOTSUPP;
1926 if (optlen != sizeof(int))
1927 return -EINVAL;
1928 if (copy_from_user(&sp->autoclose, optval, optlen))
1929 return -EFAULT;
1931 return 0;
1934 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
1936 * Applications can enable or disable heartbeats for any peer address of
1937 * an association, modify an address's heartbeat interval, force a
1938 * heartbeat to be sent immediately, and adjust the address's maximum
1939 * number of retransmissions sent before an address is considered
1940 * unreachable. The following structure is used to access and modify an
1941 * address's parameters:
1943 * struct sctp_paddrparams {
1944 * sctp_assoc_t spp_assoc_id;
1945 * struct sockaddr_storage spp_address;
1946 * uint32_t spp_hbinterval;
1947 * uint16_t spp_pathmaxrxt;
1948 * };
1950 * spp_assoc_id - (UDP style socket) This is filled in the application,
1951 * and identifies the association for this query.
1952 * spp_address - This specifies which address is of interest.
1953 * spp_hbinterval - This contains the value of the heartbeat interval,
1954 * in milliseconds. A value of 0, when modifying the
1955 * parameter, specifies that the heartbeat on this
1956 * address should be disabled. A value of UINT32_MAX
1957 * (4294967295), when modifying the parameter,
1958 * specifies that a heartbeat should be sent
1959 * immediately to the peer address, and the current
1960 * interval should remain unchanged.
1961 * spp_pathmaxrxt - This contains the maximum number of
1962 * retransmissions before this address shall be
1963 * considered unreachable.
1965 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
1966 char __user *optval, int optlen)
1968 struct sctp_paddrparams params;
1969 struct sctp_transport *trans;
1970 int error;
1972 if (optlen != sizeof(struct sctp_paddrparams))
1973 return -EINVAL;
1974 if (copy_from_user(&params, optval, optlen))
1975 return -EFAULT;
1978 * API 7. Socket Options (setting the default value for the endpoint)
1979 * All options that support specific settings on an association by
1980 * filling in either an association id variable or a sockaddr_storage
1981 * SHOULD also support setting of the same value for the entire endpoint
1982 * (i.e. future associations). To accomplish this the following logic is
1983 * used when setting one of these options:
1985 * c) If neither the sockaddr_storage or association identification is
1986 * set i.e. the sockaddr_storage is set to all 0's (INADDR_ANY) and
1987 * the association identification is 0, the settings are a default
1988 * and to be applied to the endpoint (all future associations).
1991 /* update default value for endpoint (all future associations) */
1992 if (!params.spp_assoc_id &&
1993 sctp_is_any(( union sctp_addr *)&params.spp_address)) {
1994 /* Manual heartbeat on an endpoint is invalid. */
1995 if (0xffffffff == params.spp_hbinterval)
1996 return -EINVAL;
1997 else if (params.spp_hbinterval)
1998 sctp_sk(sk)->paddrparam.spp_hbinterval =
1999 params.spp_hbinterval;
2000 if (params.spp_pathmaxrxt)
2001 sctp_sk(sk)->paddrparam.spp_pathmaxrxt =
2002 params.spp_pathmaxrxt;
2003 return 0;
2006 trans = sctp_addr_id2transport(sk, &params.spp_address,
2007 params.spp_assoc_id);
2008 if (!trans)
2009 return -EINVAL;
2011 /* Applications can enable or disable heartbeats for any peer address
2012 * of an association, modify an address's heartbeat interval, force a
2013 * heartbeat to be sent immediately, and adjust the address's maximum
2014 * number of retransmissions sent before an address is considered
2015 * unreachable.
2017 * The value of the heartbeat interval, in milliseconds. A value of
2018 * UINT32_MAX (4294967295), when modifying the parameter, specifies
2019 * that a heartbeat should be sent immediately to the peer address,
2020 * and the current interval should remain unchanged.
2022 if (0xffffffff == params.spp_hbinterval) {
2023 error = sctp_primitive_REQUESTHEARTBEAT (trans->asoc, trans);
2024 if (error)
2025 return error;
2026 } else {
2027 /* The value of the heartbeat interval, in milliseconds. A value of 0,
2028 * when modifying the parameter, specifies that the heartbeat on this
2029 * address should be disabled.
2031 if (params.spp_hbinterval) {
2032 trans->hb_allowed = 1;
2033 trans->hb_interval =
2034 msecs_to_jiffies(params.spp_hbinterval);
2035 } else
2036 trans->hb_allowed = 0;
2039 /* spp_pathmaxrxt contains the maximum number of retransmissions
2040 * before this address shall be considered unreachable.
2042 if (params.spp_pathmaxrxt)
2043 trans->max_retrans = params.spp_pathmaxrxt;
2045 return 0;
2048 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2050 * Applications can specify protocol parameters for the default association
2051 * initialization. The option name argument to setsockopt() and getsockopt()
2052 * is SCTP_INITMSG.
2054 * Setting initialization parameters is effective only on an unconnected
2055 * socket (for UDP-style sockets only future associations are effected
2056 * by the change). With TCP-style sockets, this option is inherited by
2057 * sockets derived from a listener socket.
2059 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, int optlen)
2061 struct sctp_initmsg sinit;
2062 struct sctp_sock *sp = sctp_sk(sk);
2064 if (optlen != sizeof(struct sctp_initmsg))
2065 return -EINVAL;
2066 if (copy_from_user(&sinit, optval, optlen))
2067 return -EFAULT;
2069 if (sinit.sinit_num_ostreams)
2070 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
2071 if (sinit.sinit_max_instreams)
2072 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
2073 if (sinit.sinit_max_attempts)
2074 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
2075 if (sinit.sinit_max_init_timeo)
2076 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
2078 return 0;
2082 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2084 * Applications that wish to use the sendto() system call may wish to
2085 * specify a default set of parameters that would normally be supplied
2086 * through the inclusion of ancillary data. This socket option allows
2087 * such an application to set the default sctp_sndrcvinfo structure.
2088 * The application that wishes to use this socket option simply passes
2089 * in to this call the sctp_sndrcvinfo structure defined in Section
2090 * 5.2.2) The input parameters accepted by this call include
2091 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2092 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
2093 * to this call if the caller is using the UDP model.
2095 static int sctp_setsockopt_default_send_param(struct sock *sk,
2096 char __user *optval, int optlen)
2098 struct sctp_sndrcvinfo info;
2099 struct sctp_association *asoc;
2100 struct sctp_sock *sp = sctp_sk(sk);
2102 if (optlen != sizeof(struct sctp_sndrcvinfo))
2103 return -EINVAL;
2104 if (copy_from_user(&info, optval, optlen))
2105 return -EFAULT;
2107 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
2108 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
2109 return -EINVAL;
2111 if (asoc) {
2112 asoc->default_stream = info.sinfo_stream;
2113 asoc->default_flags = info.sinfo_flags;
2114 asoc->default_ppid = info.sinfo_ppid;
2115 asoc->default_context = info.sinfo_context;
2116 asoc->default_timetolive = info.sinfo_timetolive;
2117 } else {
2118 sp->default_stream = info.sinfo_stream;
2119 sp->default_flags = info.sinfo_flags;
2120 sp->default_ppid = info.sinfo_ppid;
2121 sp->default_context = info.sinfo_context;
2122 sp->default_timetolive = info.sinfo_timetolive;
2125 return 0;
2128 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
2130 * Requests that the local SCTP stack use the enclosed peer address as
2131 * the association primary. The enclosed address must be one of the
2132 * association peer's addresses.
2134 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
2135 int optlen)
2137 struct sctp_prim prim;
2138 struct sctp_transport *trans;
2140 if (optlen != sizeof(struct sctp_prim))
2141 return -EINVAL;
2143 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
2144 return -EFAULT;
2146 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
2147 if (!trans)
2148 return -EINVAL;
2150 sctp_assoc_set_primary(trans->asoc, trans);
2152 return 0;
2156 * 7.1.5 SCTP_NODELAY
2158 * Turn on/off any Nagle-like algorithm. This means that packets are
2159 * generally sent as soon as possible and no unnecessary delays are
2160 * introduced, at the cost of more packets in the network. Expects an
2161 * integer boolean flag.
2163 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
2164 int optlen)
2166 int val;
2168 if (optlen < sizeof(int))
2169 return -EINVAL;
2170 if (get_user(val, (int __user *)optval))
2171 return -EFAULT;
2173 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
2174 return 0;
2179 * 7.1.1 SCTP_RTOINFO
2181 * The protocol parameters used to initialize and bound retransmission
2182 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
2183 * and modify these parameters.
2184 * All parameters are time values, in milliseconds. A value of 0, when
2185 * modifying the parameters, indicates that the current value should not
2186 * be changed.
2189 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, int optlen) {
2190 struct sctp_rtoinfo rtoinfo;
2191 struct sctp_association *asoc;
2193 if (optlen != sizeof (struct sctp_rtoinfo))
2194 return -EINVAL;
2196 if (copy_from_user(&rtoinfo, optval, optlen))
2197 return -EFAULT;
2199 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
2201 /* Set the values to the specific association */
2202 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
2203 return -EINVAL;
2205 if (asoc) {
2206 if (rtoinfo.srto_initial != 0)
2207 asoc->rto_initial =
2208 msecs_to_jiffies(rtoinfo.srto_initial);
2209 if (rtoinfo.srto_max != 0)
2210 asoc->rto_max = msecs_to_jiffies(rtoinfo.srto_max);
2211 if (rtoinfo.srto_min != 0)
2212 asoc->rto_min = msecs_to_jiffies(rtoinfo.srto_min);
2213 } else {
2214 /* If there is no association or the association-id = 0
2215 * set the values to the endpoint.
2217 struct sctp_sock *sp = sctp_sk(sk);
2219 if (rtoinfo.srto_initial != 0)
2220 sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
2221 if (rtoinfo.srto_max != 0)
2222 sp->rtoinfo.srto_max = rtoinfo.srto_max;
2223 if (rtoinfo.srto_min != 0)
2224 sp->rtoinfo.srto_min = rtoinfo.srto_min;
2227 return 0;
2232 * 7.1.2 SCTP_ASSOCINFO
2234 * This option is used to tune the the maximum retransmission attempts
2235 * of the association.
2236 * Returns an error if the new association retransmission value is
2237 * greater than the sum of the retransmission value of the peer.
2238 * See [SCTP] for more information.
2241 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, int optlen)
2244 struct sctp_assocparams assocparams;
2245 struct sctp_association *asoc;
2247 if (optlen != sizeof(struct sctp_assocparams))
2248 return -EINVAL;
2249 if (copy_from_user(&assocparams, optval, optlen))
2250 return -EFAULT;
2252 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
2254 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
2255 return -EINVAL;
2257 /* Set the values to the specific association */
2258 if (asoc) {
2259 if (assocparams.sasoc_asocmaxrxt != 0)
2260 asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
2261 if (assocparams.sasoc_cookie_life != 0) {
2262 asoc->cookie_life.tv_sec =
2263 assocparams.sasoc_cookie_life / 1000;
2264 asoc->cookie_life.tv_usec =
2265 (assocparams.sasoc_cookie_life % 1000)
2266 * 1000;
2268 } else {
2269 /* Set the values to the endpoint */
2270 struct sctp_sock *sp = sctp_sk(sk);
2272 if (assocparams.sasoc_asocmaxrxt != 0)
2273 sp->assocparams.sasoc_asocmaxrxt =
2274 assocparams.sasoc_asocmaxrxt;
2275 if (assocparams.sasoc_cookie_life != 0)
2276 sp->assocparams.sasoc_cookie_life =
2277 assocparams.sasoc_cookie_life;
2279 return 0;
2283 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
2285 * This socket option is a boolean flag which turns on or off mapped V4
2286 * addresses. If this option is turned on and the socket is type
2287 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
2288 * If this option is turned off, then no mapping will be done of V4
2289 * addresses and a user will receive both PF_INET6 and PF_INET type
2290 * addresses on the socket.
2292 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, int optlen)
2294 int val;
2295 struct sctp_sock *sp = sctp_sk(sk);
2297 if (optlen < sizeof(int))
2298 return -EINVAL;
2299 if (get_user(val, (int __user *)optval))
2300 return -EFAULT;
2301 if (val)
2302 sp->v4mapped = 1;
2303 else
2304 sp->v4mapped = 0;
2306 return 0;
2310 * 7.1.17 Set the maximum fragrmentation size (SCTP_MAXSEG)
2312 * This socket option specifies the maximum size to put in any outgoing
2313 * SCTP chunk. If a message is larger than this size it will be
2314 * fragmented by SCTP into the specified size. Note that the underlying
2315 * SCTP implementation may fragment into smaller sized chunks when the
2316 * PMTU of the underlying association is smaller than the value set by
2317 * the user.
2319 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, int optlen)
2321 struct sctp_association *asoc;
2322 struct list_head *pos;
2323 struct sctp_sock *sp = sctp_sk(sk);
2324 int val;
2326 if (optlen < sizeof(int))
2327 return -EINVAL;
2328 if (get_user(val, (int __user *)optval))
2329 return -EFAULT;
2330 if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN)))
2331 return -EINVAL;
2332 sp->user_frag = val;
2334 /* Update the frag_point of the existing associations. */
2335 list_for_each(pos, &(sp->ep->asocs)) {
2336 asoc = list_entry(pos, struct sctp_association, asocs);
2337 asoc->frag_point = sctp_frag_point(sp, asoc->pmtu);
2340 return 0;
2345 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
2347 * Requests that the peer mark the enclosed address as the association
2348 * primary. The enclosed address must be one of the association's
2349 * locally bound addresses. The following structure is used to make a
2350 * set primary request:
2352 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
2353 int optlen)
2355 struct sctp_sock *sp;
2356 struct sctp_endpoint *ep;
2357 struct sctp_association *asoc = NULL;
2358 struct sctp_setpeerprim prim;
2359 struct sctp_chunk *chunk;
2360 int err;
2362 sp = sctp_sk(sk);
2363 ep = sp->ep;
2365 if (!sctp_addip_enable)
2366 return -EPERM;
2368 if (optlen != sizeof(struct sctp_setpeerprim))
2369 return -EINVAL;
2371 if (copy_from_user(&prim, optval, optlen))
2372 return -EFAULT;
2374 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
2375 if (!asoc)
2376 return -EINVAL;
2378 if (!asoc->peer.asconf_capable)
2379 return -EPERM;
2381 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
2382 return -EPERM;
2384 if (!sctp_state(asoc, ESTABLISHED))
2385 return -ENOTCONN;
2387 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
2388 return -EADDRNOTAVAIL;
2390 /* Create an ASCONF chunk with SET_PRIMARY parameter */
2391 chunk = sctp_make_asconf_set_prim(asoc,
2392 (union sctp_addr *)&prim.sspp_addr);
2393 if (!chunk)
2394 return -ENOMEM;
2396 err = sctp_send_asconf(asoc, chunk);
2398 SCTP_DEBUG_PRINTK("We set peer primary addr primitively.\n");
2400 return err;
2403 static int sctp_setsockopt_adaption_layer(struct sock *sk, char __user *optval,
2404 int optlen)
2406 struct sctp_setadaption adaption;
2408 if (optlen != sizeof(struct sctp_setadaption))
2409 return -EINVAL;
2410 if (copy_from_user(&adaption, optval, optlen))
2411 return -EFAULT;
2413 sctp_sk(sk)->adaption_ind = adaption.ssb_adaption_ind;
2415 return 0;
2418 /* API 6.2 setsockopt(), getsockopt()
2420 * Applications use setsockopt() and getsockopt() to set or retrieve
2421 * socket options. Socket options are used to change the default
2422 * behavior of sockets calls. They are described in Section 7.
2424 * The syntax is:
2426 * ret = getsockopt(int sd, int level, int optname, void __user *optval,
2427 * int __user *optlen);
2428 * ret = setsockopt(int sd, int level, int optname, const void __user *optval,
2429 * int optlen);
2431 * sd - the socket descript.
2432 * level - set to IPPROTO_SCTP for all SCTP options.
2433 * optname - the option name.
2434 * optval - the buffer to store the value of the option.
2435 * optlen - the size of the buffer.
2437 SCTP_STATIC int sctp_setsockopt(struct sock *sk, int level, int optname,
2438 char __user *optval, int optlen)
2440 int retval = 0;
2442 SCTP_DEBUG_PRINTK("sctp_setsockopt(sk: %p... optname: %d)\n",
2443 sk, optname);
2445 /* I can hardly begin to describe how wrong this is. This is
2446 * so broken as to be worse than useless. The API draft
2447 * REALLY is NOT helpful here... I am not convinced that the
2448 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
2449 * are at all well-founded.
2451 if (level != SOL_SCTP) {
2452 struct sctp_af *af = sctp_sk(sk)->pf->af;
2453 retval = af->setsockopt(sk, level, optname, optval, optlen);
2454 goto out_nounlock;
2457 sctp_lock_sock(sk);
2459 switch (optname) {
2460 case SCTP_SOCKOPT_BINDX_ADD:
2461 /* 'optlen' is the size of the addresses buffer. */
2462 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
2463 optlen, SCTP_BINDX_ADD_ADDR);
2464 break;
2466 case SCTP_SOCKOPT_BINDX_REM:
2467 /* 'optlen' is the size of the addresses buffer. */
2468 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
2469 optlen, SCTP_BINDX_REM_ADDR);
2470 break;
2472 case SCTP_SOCKOPT_CONNECTX:
2473 /* 'optlen' is the size of the addresses buffer. */
2474 retval = sctp_setsockopt_connectx(sk, (struct sockaddr __user *)optval,
2475 optlen);
2476 break;
2478 case SCTP_DISABLE_FRAGMENTS:
2479 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
2480 break;
2482 case SCTP_EVENTS:
2483 retval = sctp_setsockopt_events(sk, optval, optlen);
2484 break;
2486 case SCTP_AUTOCLOSE:
2487 retval = sctp_setsockopt_autoclose(sk, optval, optlen);
2488 break;
2490 case SCTP_PEER_ADDR_PARAMS:
2491 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
2492 break;
2494 case SCTP_INITMSG:
2495 retval = sctp_setsockopt_initmsg(sk, optval, optlen);
2496 break;
2497 case SCTP_DEFAULT_SEND_PARAM:
2498 retval = sctp_setsockopt_default_send_param(sk, optval,
2499 optlen);
2500 break;
2501 case SCTP_PRIMARY_ADDR:
2502 retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
2503 break;
2504 case SCTP_SET_PEER_PRIMARY_ADDR:
2505 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
2506 break;
2507 case SCTP_NODELAY:
2508 retval = sctp_setsockopt_nodelay(sk, optval, optlen);
2509 break;
2510 case SCTP_RTOINFO:
2511 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
2512 break;
2513 case SCTP_ASSOCINFO:
2514 retval = sctp_setsockopt_associnfo(sk, optval, optlen);
2515 break;
2516 case SCTP_I_WANT_MAPPED_V4_ADDR:
2517 retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
2518 break;
2519 case SCTP_MAXSEG:
2520 retval = sctp_setsockopt_maxseg(sk, optval, optlen);
2521 break;
2522 case SCTP_ADAPTION_LAYER:
2523 retval = sctp_setsockopt_adaption_layer(sk, optval, optlen);
2524 break;
2526 default:
2527 retval = -ENOPROTOOPT;
2528 break;
2531 sctp_release_sock(sk);
2533 out_nounlock:
2534 return retval;
2537 /* API 3.1.6 connect() - UDP Style Syntax
2539 * An application may use the connect() call in the UDP model to initiate an
2540 * association without sending data.
2542 * The syntax is:
2544 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
2546 * sd: the socket descriptor to have a new association added to.
2548 * nam: the address structure (either struct sockaddr_in or struct
2549 * sockaddr_in6 defined in RFC2553 [7]).
2551 * len: the size of the address.
2553 SCTP_STATIC int sctp_connect(struct sock *sk, struct sockaddr *addr,
2554 int addr_len)
2556 int err = 0;
2557 struct sctp_af *af;
2559 sctp_lock_sock(sk);
2561 SCTP_DEBUG_PRINTK("%s - sk: %p, sockaddr: %p, addr_len: %d\n",
2562 __FUNCTION__, sk, addr, addr_len);
2564 /* Validate addr_len before calling common connect/connectx routine. */
2565 af = sctp_get_af_specific(addr->sa_family);
2566 if (!af || addr_len < af->sockaddr_len) {
2567 err = -EINVAL;
2568 } else {
2569 /* Pass correct addr len to common routine (so it knows there
2570 * is only one address being passed.
2572 err = __sctp_connect(sk, addr, af->sockaddr_len);
2575 sctp_release_sock(sk);
2576 return err;
2579 /* FIXME: Write comments. */
2580 SCTP_STATIC int sctp_disconnect(struct sock *sk, int flags)
2582 return -EOPNOTSUPP; /* STUB */
2585 /* 4.1.4 accept() - TCP Style Syntax
2587 * Applications use accept() call to remove an established SCTP
2588 * association from the accept queue of the endpoint. A new socket
2589 * descriptor will be returned from accept() to represent the newly
2590 * formed association.
2592 SCTP_STATIC struct sock *sctp_accept(struct sock *sk, int flags, int *err)
2594 struct sctp_sock *sp;
2595 struct sctp_endpoint *ep;
2596 struct sock *newsk = NULL;
2597 struct sctp_association *asoc;
2598 long timeo;
2599 int error = 0;
2601 sctp_lock_sock(sk);
2603 sp = sctp_sk(sk);
2604 ep = sp->ep;
2606 if (!sctp_style(sk, TCP)) {
2607 error = -EOPNOTSUPP;
2608 goto out;
2611 if (!sctp_sstate(sk, LISTENING)) {
2612 error = -EINVAL;
2613 goto out;
2616 timeo = sock_rcvtimeo(sk, sk->sk_socket->file->f_flags & O_NONBLOCK);
2618 error = sctp_wait_for_accept(sk, timeo);
2619 if (error)
2620 goto out;
2622 /* We treat the list of associations on the endpoint as the accept
2623 * queue and pick the first association on the list.
2625 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
2627 newsk = sp->pf->create_accept_sk(sk, asoc);
2628 if (!newsk) {
2629 error = -ENOMEM;
2630 goto out;
2633 /* Populate the fields of the newsk from the oldsk and migrate the
2634 * asoc to the newsk.
2636 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
2638 out:
2639 sctp_release_sock(sk);
2640 *err = error;
2641 return newsk;
2644 /* The SCTP ioctl handler. */
2645 SCTP_STATIC int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
2647 return -ENOIOCTLCMD;
2650 /* This is the function which gets called during socket creation to
2651 * initialized the SCTP-specific portion of the sock.
2652 * The sock structure should already be zero-filled memory.
2654 SCTP_STATIC int sctp_init_sock(struct sock *sk)
2656 struct sctp_endpoint *ep;
2657 struct sctp_sock *sp;
2659 SCTP_DEBUG_PRINTK("sctp_init_sock(sk: %p)\n", sk);
2661 sp = sctp_sk(sk);
2663 /* Initialize the SCTP per socket area. */
2664 switch (sk->sk_type) {
2665 case SOCK_SEQPACKET:
2666 sp->type = SCTP_SOCKET_UDP;
2667 break;
2668 case SOCK_STREAM:
2669 sp->type = SCTP_SOCKET_TCP;
2670 break;
2671 default:
2672 return -ESOCKTNOSUPPORT;
2675 /* Initialize default send parameters. These parameters can be
2676 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
2678 sp->default_stream = 0;
2679 sp->default_ppid = 0;
2680 sp->default_flags = 0;
2681 sp->default_context = 0;
2682 sp->default_timetolive = 0;
2684 /* Initialize default setup parameters. These parameters
2685 * can be modified with the SCTP_INITMSG socket option or
2686 * overridden by the SCTP_INIT CMSG.
2688 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams;
2689 sp->initmsg.sinit_max_instreams = sctp_max_instreams;
2690 sp->initmsg.sinit_max_attempts = sctp_max_retrans_init;
2691 sp->initmsg.sinit_max_init_timeo = jiffies_to_msecs(sctp_rto_max);
2693 /* Initialize default RTO related parameters. These parameters can
2694 * be modified for with the SCTP_RTOINFO socket option.
2696 sp->rtoinfo.srto_initial = jiffies_to_msecs(sctp_rto_initial);
2697 sp->rtoinfo.srto_max = jiffies_to_msecs(sctp_rto_max);
2698 sp->rtoinfo.srto_min = jiffies_to_msecs(sctp_rto_min);
2700 /* Initialize default association related parameters. These parameters
2701 * can be modified with the SCTP_ASSOCINFO socket option.
2703 sp->assocparams.sasoc_asocmaxrxt = sctp_max_retrans_association;
2704 sp->assocparams.sasoc_number_peer_destinations = 0;
2705 sp->assocparams.sasoc_peer_rwnd = 0;
2706 sp->assocparams.sasoc_local_rwnd = 0;
2707 sp->assocparams.sasoc_cookie_life =
2708 jiffies_to_msecs(sctp_valid_cookie_life);
2710 /* Initialize default event subscriptions. By default, all the
2711 * options are off.
2713 memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe));
2715 /* Default Peer Address Parameters. These defaults can
2716 * be modified via SCTP_PEER_ADDR_PARAMS
2718 sp->paddrparam.spp_hbinterval = jiffies_to_msecs(sctp_hb_interval);
2719 sp->paddrparam.spp_pathmaxrxt = sctp_max_retrans_path;
2721 /* If enabled no SCTP message fragmentation will be performed.
2722 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
2724 sp->disable_fragments = 0;
2726 /* Turn on/off any Nagle-like algorithm. */
2727 sp->nodelay = 1;
2729 /* Enable by default. */
2730 sp->v4mapped = 1;
2732 /* Auto-close idle associations after the configured
2733 * number of seconds. A value of 0 disables this
2734 * feature. Configure through the SCTP_AUTOCLOSE socket option,
2735 * for UDP-style sockets only.
2737 sp->autoclose = 0;
2739 /* User specified fragmentation limit. */
2740 sp->user_frag = 0;
2742 sp->adaption_ind = 0;
2744 sp->pf = sctp_get_pf_specific(sk->sk_family);
2746 /* Control variables for partial data delivery. */
2747 sp->pd_mode = 0;
2748 skb_queue_head_init(&sp->pd_lobby);
2750 /* Create a per socket endpoint structure. Even if we
2751 * change the data structure relationships, this may still
2752 * be useful for storing pre-connect address information.
2754 ep = sctp_endpoint_new(sk, GFP_KERNEL);
2755 if (!ep)
2756 return -ENOMEM;
2758 sp->ep = ep;
2759 sp->hmac = NULL;
2761 SCTP_DBG_OBJCNT_INC(sock);
2762 return 0;
2765 /* Cleanup any SCTP per socket resources. */
2766 SCTP_STATIC int sctp_destroy_sock(struct sock *sk)
2768 struct sctp_endpoint *ep;
2770 SCTP_DEBUG_PRINTK("sctp_destroy_sock(sk: %p)\n", sk);
2772 /* Release our hold on the endpoint. */
2773 ep = sctp_sk(sk)->ep;
2774 sctp_endpoint_free(ep);
2776 return 0;
2779 /* API 4.1.7 shutdown() - TCP Style Syntax
2780 * int shutdown(int socket, int how);
2782 * sd - the socket descriptor of the association to be closed.
2783 * how - Specifies the type of shutdown. The values are
2784 * as follows:
2785 * SHUT_RD
2786 * Disables further receive operations. No SCTP
2787 * protocol action is taken.
2788 * SHUT_WR
2789 * Disables further send operations, and initiates
2790 * the SCTP shutdown sequence.
2791 * SHUT_RDWR
2792 * Disables further send and receive operations
2793 * and initiates the SCTP shutdown sequence.
2795 SCTP_STATIC void sctp_shutdown(struct sock *sk, int how)
2797 struct sctp_endpoint *ep;
2798 struct sctp_association *asoc;
2800 if (!sctp_style(sk, TCP))
2801 return;
2803 if (how & SEND_SHUTDOWN) {
2804 ep = sctp_sk(sk)->ep;
2805 if (!list_empty(&ep->asocs)) {
2806 asoc = list_entry(ep->asocs.next,
2807 struct sctp_association, asocs);
2808 sctp_primitive_SHUTDOWN(asoc, NULL);
2813 /* 7.2.1 Association Status (SCTP_STATUS)
2815 * Applications can retrieve current status information about an
2816 * association, including association state, peer receiver window size,
2817 * number of unacked data chunks, and number of data chunks pending
2818 * receipt. This information is read-only.
2820 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
2821 char __user *optval,
2822 int __user *optlen)
2824 struct sctp_status status;
2825 struct sctp_association *asoc = NULL;
2826 struct sctp_transport *transport;
2827 sctp_assoc_t associd;
2828 int retval = 0;
2830 if (len != sizeof(status)) {
2831 retval = -EINVAL;
2832 goto out;
2835 if (copy_from_user(&status, optval, sizeof(status))) {
2836 retval = -EFAULT;
2837 goto out;
2840 associd = status.sstat_assoc_id;
2841 asoc = sctp_id2assoc(sk, associd);
2842 if (!asoc) {
2843 retval = -EINVAL;
2844 goto out;
2847 transport = asoc->peer.primary_path;
2849 status.sstat_assoc_id = sctp_assoc2id(asoc);
2850 status.sstat_state = asoc->state;
2851 status.sstat_rwnd = asoc->peer.rwnd;
2852 status.sstat_unackdata = asoc->unack_data;
2854 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
2855 status.sstat_instrms = asoc->c.sinit_max_instreams;
2856 status.sstat_outstrms = asoc->c.sinit_num_ostreams;
2857 status.sstat_fragmentation_point = asoc->frag_point;
2858 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
2859 memcpy(&status.sstat_primary.spinfo_address,
2860 &(transport->ipaddr), sizeof(union sctp_addr));
2861 /* Map ipv4 address into v4-mapped-on-v6 address. */
2862 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
2863 (union sctp_addr *)&status.sstat_primary.spinfo_address);
2864 status.sstat_primary.spinfo_state = transport->state;
2865 status.sstat_primary.spinfo_cwnd = transport->cwnd;
2866 status.sstat_primary.spinfo_srtt = transport->srtt;
2867 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
2868 status.sstat_primary.spinfo_mtu = transport->pmtu;
2870 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
2871 status.sstat_primary.spinfo_state = SCTP_ACTIVE;
2873 if (put_user(len, optlen)) {
2874 retval = -EFAULT;
2875 goto out;
2878 SCTP_DEBUG_PRINTK("sctp_getsockopt_sctp_status(%d): %d %d %d\n",
2879 len, status.sstat_state, status.sstat_rwnd,
2880 status.sstat_assoc_id);
2882 if (copy_to_user(optval, &status, len)) {
2883 retval = -EFAULT;
2884 goto out;
2887 out:
2888 return (retval);
2892 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
2894 * Applications can retrieve information about a specific peer address
2895 * of an association, including its reachability state, congestion
2896 * window, and retransmission timer values. This information is
2897 * read-only.
2899 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
2900 char __user *optval,
2901 int __user *optlen)
2903 struct sctp_paddrinfo pinfo;
2904 struct sctp_transport *transport;
2905 int retval = 0;
2907 if (len != sizeof(pinfo)) {
2908 retval = -EINVAL;
2909 goto out;
2912 if (copy_from_user(&pinfo, optval, sizeof(pinfo))) {
2913 retval = -EFAULT;
2914 goto out;
2917 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
2918 pinfo.spinfo_assoc_id);
2919 if (!transport)
2920 return -EINVAL;
2922 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
2923 pinfo.spinfo_state = transport->state;
2924 pinfo.spinfo_cwnd = transport->cwnd;
2925 pinfo.spinfo_srtt = transport->srtt;
2926 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
2927 pinfo.spinfo_mtu = transport->pmtu;
2929 if (pinfo.spinfo_state == SCTP_UNKNOWN)
2930 pinfo.spinfo_state = SCTP_ACTIVE;
2932 if (put_user(len, optlen)) {
2933 retval = -EFAULT;
2934 goto out;
2937 if (copy_to_user(optval, &pinfo, len)) {
2938 retval = -EFAULT;
2939 goto out;
2942 out:
2943 return (retval);
2946 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
2948 * This option is a on/off flag. If enabled no SCTP message
2949 * fragmentation will be performed. Instead if a message being sent
2950 * exceeds the current PMTU size, the message will NOT be sent and
2951 * instead a error will be indicated to the user.
2953 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
2954 char __user *optval, int __user *optlen)
2956 int val;
2958 if (len < sizeof(int))
2959 return -EINVAL;
2961 len = sizeof(int);
2962 val = (sctp_sk(sk)->disable_fragments == 1);
2963 if (put_user(len, optlen))
2964 return -EFAULT;
2965 if (copy_to_user(optval, &val, len))
2966 return -EFAULT;
2967 return 0;
2970 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
2972 * This socket option is used to specify various notifications and
2973 * ancillary data the user wishes to receive.
2975 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
2976 int __user *optlen)
2978 if (len != sizeof(struct sctp_event_subscribe))
2979 return -EINVAL;
2980 if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len))
2981 return -EFAULT;
2982 return 0;
2985 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2987 * This socket option is applicable to the UDP-style socket only. When
2988 * set it will cause associations that are idle for more than the
2989 * specified number of seconds to automatically close. An association
2990 * being idle is defined an association that has NOT sent or received
2991 * user data. The special value of '0' indicates that no automatic
2992 * close of any associations should be performed. The option expects an
2993 * integer defining the number of seconds of idle time before an
2994 * association is closed.
2996 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
2998 /* Applicable to UDP-style socket only */
2999 if (sctp_style(sk, TCP))
3000 return -EOPNOTSUPP;
3001 if (len != sizeof(int))
3002 return -EINVAL;
3003 if (copy_to_user(optval, &sctp_sk(sk)->autoclose, len))
3004 return -EFAULT;
3005 return 0;
3008 /* Helper routine to branch off an association to a new socket. */
3009 SCTP_STATIC int sctp_do_peeloff(struct sctp_association *asoc,
3010 struct socket **sockp)
3012 struct sock *sk = asoc->base.sk;
3013 struct socket *sock;
3014 int err = 0;
3016 /* An association cannot be branched off from an already peeled-off
3017 * socket, nor is this supported for tcp style sockets.
3019 if (!sctp_style(sk, UDP))
3020 return -EINVAL;
3022 /* Create a new socket. */
3023 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
3024 if (err < 0)
3025 return err;
3027 /* Populate the fields of the newsk from the oldsk and migrate the
3028 * asoc to the newsk.
3030 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
3031 *sockp = sock;
3033 return err;
3036 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
3038 sctp_peeloff_arg_t peeloff;
3039 struct socket *newsock;
3040 int retval = 0;
3041 struct sctp_association *asoc;
3043 if (len != sizeof(sctp_peeloff_arg_t))
3044 return -EINVAL;
3045 if (copy_from_user(&peeloff, optval, len))
3046 return -EFAULT;
3048 asoc = sctp_id2assoc(sk, peeloff.associd);
3049 if (!asoc) {
3050 retval = -EINVAL;
3051 goto out;
3054 SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p\n", __FUNCTION__, sk, asoc);
3056 retval = sctp_do_peeloff(asoc, &newsock);
3057 if (retval < 0)
3058 goto out;
3060 /* Map the socket to an unused fd that can be returned to the user. */
3061 retval = sock_map_fd(newsock);
3062 if (retval < 0) {
3063 sock_release(newsock);
3064 goto out;
3067 SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p newsk: %p sd: %d\n",
3068 __FUNCTION__, sk, asoc, newsock->sk, retval);
3070 /* Return the fd mapped to the new socket. */
3071 peeloff.sd = retval;
3072 if (copy_to_user(optval, &peeloff, len))
3073 retval = -EFAULT;
3075 out:
3076 return retval;
3079 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
3081 * Applications can enable or disable heartbeats for any peer address of
3082 * an association, modify an address's heartbeat interval, force a
3083 * heartbeat to be sent immediately, and adjust the address's maximum
3084 * number of retransmissions sent before an address is considered
3085 * unreachable. The following structure is used to access and modify an
3086 * address's parameters:
3088 * struct sctp_paddrparams {
3089 * sctp_assoc_t spp_assoc_id;
3090 * struct sockaddr_storage spp_address;
3091 * uint32_t spp_hbinterval;
3092 * uint16_t spp_pathmaxrxt;
3093 * };
3095 * spp_assoc_id - (UDP style socket) This is filled in the application,
3096 * and identifies the association for this query.
3097 * spp_address - This specifies which address is of interest.
3098 * spp_hbinterval - This contains the value of the heartbeat interval,
3099 * in milliseconds. A value of 0, when modifying the
3100 * parameter, specifies that the heartbeat on this
3101 * address should be disabled. A value of UINT32_MAX
3102 * (4294967295), when modifying the parameter,
3103 * specifies that a heartbeat should be sent
3104 * immediately to the peer address, and the current
3105 * interval should remain unchanged.
3106 * spp_pathmaxrxt - This contains the maximum number of
3107 * retransmissions before this address shall be
3108 * considered unreachable.
3110 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
3111 char __user *optval, int __user *optlen)
3113 struct sctp_paddrparams params;
3114 struct sctp_transport *trans;
3116 if (len != sizeof(struct sctp_paddrparams))
3117 return -EINVAL;
3118 if (copy_from_user(&params, optval, len))
3119 return -EFAULT;
3121 /* If no association id is specified retrieve the default value
3122 * for the endpoint that will be used for all future associations
3124 if (!params.spp_assoc_id &&
3125 sctp_is_any(( union sctp_addr *)&params.spp_address)) {
3126 params.spp_hbinterval = sctp_sk(sk)->paddrparam.spp_hbinterval;
3127 params.spp_pathmaxrxt = sctp_sk(sk)->paddrparam.spp_pathmaxrxt;
3129 goto done;
3132 trans = sctp_addr_id2transport(sk, &params.spp_address,
3133 params.spp_assoc_id);
3134 if (!trans)
3135 return -EINVAL;
3137 /* The value of the heartbeat interval, in milliseconds. A value of 0,
3138 * when modifying the parameter, specifies that the heartbeat on this
3139 * address should be disabled.
3141 if (!trans->hb_allowed)
3142 params.spp_hbinterval = 0;
3143 else
3144 params.spp_hbinterval = jiffies_to_msecs(trans->hb_interval);
3146 /* spp_pathmaxrxt contains the maximum number of retransmissions
3147 * before this address shall be considered unreachable.
3149 params.spp_pathmaxrxt = trans->max_retrans;
3151 done:
3152 if (copy_to_user(optval, &params, len))
3153 return -EFAULT;
3155 if (put_user(len, optlen))
3156 return -EFAULT;
3158 return 0;
3161 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
3163 * Applications can specify protocol parameters for the default association
3164 * initialization. The option name argument to setsockopt() and getsockopt()
3165 * is SCTP_INITMSG.
3167 * Setting initialization parameters is effective only on an unconnected
3168 * socket (for UDP-style sockets only future associations are effected
3169 * by the change). With TCP-style sockets, this option is inherited by
3170 * sockets derived from a listener socket.
3172 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
3174 if (len != sizeof(struct sctp_initmsg))
3175 return -EINVAL;
3176 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
3177 return -EFAULT;
3178 return 0;
3181 static int sctp_getsockopt_peer_addrs_num_old(struct sock *sk, int len,
3182 char __user *optval,
3183 int __user *optlen)
3185 sctp_assoc_t id;
3186 struct sctp_association *asoc;
3187 struct list_head *pos;
3188 int cnt = 0;
3190 if (len != sizeof(sctp_assoc_t))
3191 return -EINVAL;
3193 if (copy_from_user(&id, optval, sizeof(sctp_assoc_t)))
3194 return -EFAULT;
3196 /* For UDP-style sockets, id specifies the association to query. */
3197 asoc = sctp_id2assoc(sk, id);
3198 if (!asoc)
3199 return -EINVAL;
3201 list_for_each(pos, &asoc->peer.transport_addr_list) {
3202 cnt ++;
3205 return cnt;
3209 * Old API for getting list of peer addresses. Does not work for 32-bit
3210 * programs running on a 64-bit kernel
3212 static int sctp_getsockopt_peer_addrs_old(struct sock *sk, int len,
3213 char __user *optval,
3214 int __user *optlen)
3216 struct sctp_association *asoc;
3217 struct list_head *pos;
3218 int cnt = 0;
3219 struct sctp_getaddrs_old getaddrs;
3220 struct sctp_transport *from;
3221 void __user *to;
3222 union sctp_addr temp;
3223 struct sctp_sock *sp = sctp_sk(sk);
3224 int addrlen;
3226 if (len != sizeof(struct sctp_getaddrs_old))
3227 return -EINVAL;
3229 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs_old)))
3230 return -EFAULT;
3232 if (getaddrs.addr_num <= 0) return -EINVAL;
3234 /* For UDP-style sockets, id specifies the association to query. */
3235 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
3236 if (!asoc)
3237 return -EINVAL;
3239 to = (void __user *)getaddrs.addrs;
3240 list_for_each(pos, &asoc->peer.transport_addr_list) {
3241 from = list_entry(pos, struct sctp_transport, transports);
3242 memcpy(&temp, &from->ipaddr, sizeof(temp));
3243 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
3244 addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len;
3245 temp.v4.sin_port = htons(temp.v4.sin_port);
3246 if (copy_to_user(to, &temp, addrlen))
3247 return -EFAULT;
3248 to += addrlen ;
3249 cnt ++;
3250 if (cnt >= getaddrs.addr_num) break;
3252 getaddrs.addr_num = cnt;
3253 if (copy_to_user(optval, &getaddrs, sizeof(struct sctp_getaddrs_old)))
3254 return -EFAULT;
3256 return 0;
3259 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
3260 char __user *optval, int __user *optlen)
3262 struct sctp_association *asoc;
3263 struct list_head *pos;
3264 int cnt = 0;
3265 struct sctp_getaddrs getaddrs;
3266 struct sctp_transport *from;
3267 void __user *to;
3268 union sctp_addr temp;
3269 struct sctp_sock *sp = sctp_sk(sk);
3270 int addrlen;
3271 size_t space_left;
3272 int bytes_copied;
3274 if (len < sizeof(struct sctp_getaddrs))
3275 return -EINVAL;
3277 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
3278 return -EFAULT;
3280 /* For UDP-style sockets, id specifies the association to query. */
3281 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
3282 if (!asoc)
3283 return -EINVAL;
3285 to = optval + offsetof(struct sctp_getaddrs,addrs);
3286 space_left = len - sizeof(struct sctp_getaddrs) -
3287 offsetof(struct sctp_getaddrs,addrs);
3289 list_for_each(pos, &asoc->peer.transport_addr_list) {
3290 from = list_entry(pos, struct sctp_transport, transports);
3291 memcpy(&temp, &from->ipaddr, sizeof(temp));
3292 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
3293 addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len;
3294 if(space_left < addrlen)
3295 return -ENOMEM;
3296 temp.v4.sin_port = htons(temp.v4.sin_port);
3297 if (copy_to_user(to, &temp, addrlen))
3298 return -EFAULT;
3299 to += addrlen;
3300 cnt++;
3301 space_left -= addrlen;
3304 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
3305 return -EFAULT;
3306 bytes_copied = ((char __user *)to) - optval;
3307 if (put_user(bytes_copied, optlen))
3308 return -EFAULT;
3310 return 0;
3313 static int sctp_getsockopt_local_addrs_num_old(struct sock *sk, int len,
3314 char __user *optval,
3315 int __user *optlen)
3317 sctp_assoc_t id;
3318 struct sctp_bind_addr *bp;
3319 struct sctp_association *asoc;
3320 struct list_head *pos;
3321 struct sctp_sockaddr_entry *addr;
3322 rwlock_t *addr_lock;
3323 unsigned long flags;
3324 int cnt = 0;
3326 if (len != sizeof(sctp_assoc_t))
3327 return -EINVAL;
3329 if (copy_from_user(&id, optval, sizeof(sctp_assoc_t)))
3330 return -EFAULT;
3333 * For UDP-style sockets, id specifies the association to query.
3334 * If the id field is set to the value '0' then the locally bound
3335 * addresses are returned without regard to any particular
3336 * association.
3338 if (0 == id) {
3339 bp = &sctp_sk(sk)->ep->base.bind_addr;
3340 addr_lock = &sctp_sk(sk)->ep->base.addr_lock;
3341 } else {
3342 asoc = sctp_id2assoc(sk, id);
3343 if (!asoc)
3344 return -EINVAL;
3345 bp = &asoc->base.bind_addr;
3346 addr_lock = &asoc->base.addr_lock;
3349 sctp_read_lock(addr_lock);
3351 /* If the endpoint is bound to 0.0.0.0 or ::0, count the valid
3352 * addresses from the global local address list.
3354 if (sctp_list_single_entry(&bp->address_list)) {
3355 addr = list_entry(bp->address_list.next,
3356 struct sctp_sockaddr_entry, list);
3357 if (sctp_is_any(&addr->a)) {
3358 sctp_spin_lock_irqsave(&sctp_local_addr_lock, flags);
3359 list_for_each(pos, &sctp_local_addr_list) {
3360 addr = list_entry(pos,
3361 struct sctp_sockaddr_entry,
3362 list);
3363 if ((PF_INET == sk->sk_family) &&
3364 (AF_INET6 == addr->a.sa.sa_family))
3365 continue;
3366 cnt++;
3368 sctp_spin_unlock_irqrestore(&sctp_local_addr_lock,
3369 flags);
3370 } else {
3371 cnt = 1;
3373 goto done;
3376 list_for_each(pos, &bp->address_list) {
3377 cnt ++;
3380 done:
3381 sctp_read_unlock(addr_lock);
3382 return cnt;
3385 /* Helper function that copies local addresses to user and returns the number
3386 * of addresses copied.
3388 static int sctp_copy_laddrs_to_user_old(struct sock *sk, __u16 port, int max_addrs,
3389 void __user *to)
3391 struct list_head *pos;
3392 struct sctp_sockaddr_entry *addr;
3393 unsigned long flags;
3394 union sctp_addr temp;
3395 int cnt = 0;
3396 int addrlen;
3398 sctp_spin_lock_irqsave(&sctp_local_addr_lock, flags);
3399 list_for_each(pos, &sctp_local_addr_list) {
3400 addr = list_entry(pos, struct sctp_sockaddr_entry, list);
3401 if ((PF_INET == sk->sk_family) &&
3402 (AF_INET6 == addr->a.sa.sa_family))
3403 continue;
3404 memcpy(&temp, &addr->a, sizeof(temp));
3405 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
3406 &temp);
3407 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
3408 temp.v4.sin_port = htons(port);
3409 if (copy_to_user(to, &temp, addrlen)) {
3410 sctp_spin_unlock_irqrestore(&sctp_local_addr_lock,
3411 flags);
3412 return -EFAULT;
3414 to += addrlen;
3415 cnt ++;
3416 if (cnt >= max_addrs) break;
3418 sctp_spin_unlock_irqrestore(&sctp_local_addr_lock, flags);
3420 return cnt;
3423 static int sctp_copy_laddrs_to_user(struct sock *sk, __u16 port,
3424 void __user **to, size_t space_left)
3426 struct list_head *pos;
3427 struct sctp_sockaddr_entry *addr;
3428 unsigned long flags;
3429 union sctp_addr temp;
3430 int cnt = 0;
3431 int addrlen;
3433 sctp_spin_lock_irqsave(&sctp_local_addr_lock, flags);
3434 list_for_each(pos, &sctp_local_addr_list) {
3435 addr = list_entry(pos, struct sctp_sockaddr_entry, list);
3436 if ((PF_INET == sk->sk_family) &&
3437 (AF_INET6 == addr->a.sa.sa_family))
3438 continue;
3439 memcpy(&temp, &addr->a, sizeof(temp));
3440 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
3441 &temp);
3442 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
3443 if(space_left<addrlen)
3444 return -ENOMEM;
3445 temp.v4.sin_port = htons(port);
3446 if (copy_to_user(*to, &temp, addrlen)) {
3447 sctp_spin_unlock_irqrestore(&sctp_local_addr_lock,
3448 flags);
3449 return -EFAULT;
3451 *to += addrlen;
3452 cnt ++;
3453 space_left -= addrlen;
3455 sctp_spin_unlock_irqrestore(&sctp_local_addr_lock, flags);
3457 return cnt;
3460 /* Old API for getting list of local addresses. Does not work for 32-bit
3461 * programs running on a 64-bit kernel
3463 static int sctp_getsockopt_local_addrs_old(struct sock *sk, int len,
3464 char __user *optval, int __user *optlen)
3466 struct sctp_bind_addr *bp;
3467 struct sctp_association *asoc;
3468 struct list_head *pos;
3469 int cnt = 0;
3470 struct sctp_getaddrs_old getaddrs;
3471 struct sctp_sockaddr_entry *addr;
3472 void __user *to;
3473 union sctp_addr temp;
3474 struct sctp_sock *sp = sctp_sk(sk);
3475 int addrlen;
3476 rwlock_t *addr_lock;
3477 int err = 0;
3479 if (len != sizeof(struct sctp_getaddrs_old))
3480 return -EINVAL;
3482 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs_old)))
3483 return -EFAULT;
3485 if (getaddrs.addr_num <= 0) return -EINVAL;
3487 * For UDP-style sockets, id specifies the association to query.
3488 * If the id field is set to the value '0' then the locally bound
3489 * addresses are returned without regard to any particular
3490 * association.
3492 if (0 == getaddrs.assoc_id) {
3493 bp = &sctp_sk(sk)->ep->base.bind_addr;
3494 addr_lock = &sctp_sk(sk)->ep->base.addr_lock;
3495 } else {
3496 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
3497 if (!asoc)
3498 return -EINVAL;
3499 bp = &asoc->base.bind_addr;
3500 addr_lock = &asoc->base.addr_lock;
3503 to = getaddrs.addrs;
3505 sctp_read_lock(addr_lock);
3507 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
3508 * addresses from the global local address list.
3510 if (sctp_list_single_entry(&bp->address_list)) {
3511 addr = list_entry(bp->address_list.next,
3512 struct sctp_sockaddr_entry, list);
3513 if (sctp_is_any(&addr->a)) {
3514 cnt = sctp_copy_laddrs_to_user_old(sk, bp->port,
3515 getaddrs.addr_num,
3516 to);
3517 if (cnt < 0) {
3518 err = cnt;
3519 goto unlock;
3521 goto copy_getaddrs;
3525 list_for_each(pos, &bp->address_list) {
3526 addr = list_entry(pos, struct sctp_sockaddr_entry, list);
3527 memcpy(&temp, &addr->a, sizeof(temp));
3528 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
3529 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
3530 temp.v4.sin_port = htons(temp.v4.sin_port);
3531 if (copy_to_user(to, &temp, addrlen)) {
3532 err = -EFAULT;
3533 goto unlock;
3535 to += addrlen;
3536 cnt ++;
3537 if (cnt >= getaddrs.addr_num) break;
3540 copy_getaddrs:
3541 getaddrs.addr_num = cnt;
3542 if (copy_to_user(optval, &getaddrs, sizeof(struct sctp_getaddrs_old)))
3543 err = -EFAULT;
3545 unlock:
3546 sctp_read_unlock(addr_lock);
3547 return err;
3550 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
3551 char __user *optval, int __user *optlen)
3553 struct sctp_bind_addr *bp;
3554 struct sctp_association *asoc;
3555 struct list_head *pos;
3556 int cnt = 0;
3557 struct sctp_getaddrs getaddrs;
3558 struct sctp_sockaddr_entry *addr;
3559 void __user *to;
3560 union sctp_addr temp;
3561 struct sctp_sock *sp = sctp_sk(sk);
3562 int addrlen;
3563 rwlock_t *addr_lock;
3564 int err = 0;
3565 size_t space_left;
3566 int bytes_copied;
3568 if (len <= sizeof(struct sctp_getaddrs))
3569 return -EINVAL;
3571 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
3572 return -EFAULT;
3575 * For UDP-style sockets, id specifies the association to query.
3576 * If the id field is set to the value '0' then the locally bound
3577 * addresses are returned without regard to any particular
3578 * association.
3580 if (0 == getaddrs.assoc_id) {
3581 bp = &sctp_sk(sk)->ep->base.bind_addr;
3582 addr_lock = &sctp_sk(sk)->ep->base.addr_lock;
3583 } else {
3584 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
3585 if (!asoc)
3586 return -EINVAL;
3587 bp = &asoc->base.bind_addr;
3588 addr_lock = &asoc->base.addr_lock;
3591 to = optval + offsetof(struct sctp_getaddrs,addrs);
3592 space_left = len - sizeof(struct sctp_getaddrs) -
3593 offsetof(struct sctp_getaddrs,addrs);
3595 sctp_read_lock(addr_lock);
3597 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
3598 * addresses from the global local address list.
3600 if (sctp_list_single_entry(&bp->address_list)) {
3601 addr = list_entry(bp->address_list.next,
3602 struct sctp_sockaddr_entry, list);
3603 if (sctp_is_any(&addr->a)) {
3604 cnt = sctp_copy_laddrs_to_user(sk, bp->port,
3605 &to, space_left);
3606 if (cnt < 0) {
3607 err = cnt;
3608 goto unlock;
3610 goto copy_getaddrs;
3614 list_for_each(pos, &bp->address_list) {
3615 addr = list_entry(pos, struct sctp_sockaddr_entry, list);
3616 memcpy(&temp, &addr->a, sizeof(temp));
3617 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
3618 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
3619 if(space_left < addrlen)
3620 return -ENOMEM; /*fixme: right error?*/
3621 temp.v4.sin_port = htons(temp.v4.sin_port);
3622 if (copy_to_user(to, &temp, addrlen)) {
3623 err = -EFAULT;
3624 goto unlock;
3626 to += addrlen;
3627 cnt ++;
3628 space_left -= addrlen;
3631 copy_getaddrs:
3632 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
3633 return -EFAULT;
3634 bytes_copied = ((char __user *)to) - optval;
3635 if (put_user(bytes_copied, optlen))
3636 return -EFAULT;
3638 unlock:
3639 sctp_read_unlock(addr_lock);
3640 return err;
3643 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
3645 * Requests that the local SCTP stack use the enclosed peer address as
3646 * the association primary. The enclosed address must be one of the
3647 * association peer's addresses.
3649 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
3650 char __user *optval, int __user *optlen)
3652 struct sctp_prim prim;
3653 struct sctp_association *asoc;
3654 struct sctp_sock *sp = sctp_sk(sk);
3656 if (len != sizeof(struct sctp_prim))
3657 return -EINVAL;
3659 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
3660 return -EFAULT;
3662 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
3663 if (!asoc)
3664 return -EINVAL;
3666 if (!asoc->peer.primary_path)
3667 return -ENOTCONN;
3669 asoc->peer.primary_path->ipaddr.v4.sin_port =
3670 htons(asoc->peer.primary_path->ipaddr.v4.sin_port);
3671 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
3672 sizeof(union sctp_addr));
3673 asoc->peer.primary_path->ipaddr.v4.sin_port =
3674 ntohs(asoc->peer.primary_path->ipaddr.v4.sin_port);
3676 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp,
3677 (union sctp_addr *)&prim.ssp_addr);
3679 if (copy_to_user(optval, &prim, sizeof(struct sctp_prim)))
3680 return -EFAULT;
3682 return 0;
3686 * 7.1.11 Set Adaption Layer Indicator (SCTP_ADAPTION_LAYER)
3688 * Requests that the local endpoint set the specified Adaption Layer
3689 * Indication parameter for all future INIT and INIT-ACK exchanges.
3691 static int sctp_getsockopt_adaption_layer(struct sock *sk, int len,
3692 char __user *optval, int __user *optlen)
3694 struct sctp_setadaption adaption;
3696 if (len != sizeof(struct sctp_setadaption))
3697 return -EINVAL;
3699 adaption.ssb_adaption_ind = sctp_sk(sk)->adaption_ind;
3700 if (copy_to_user(optval, &adaption, len))
3701 return -EFAULT;
3703 return 0;
3708 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
3710 * Applications that wish to use the sendto() system call may wish to
3711 * specify a default set of parameters that would normally be supplied
3712 * through the inclusion of ancillary data. This socket option allows
3713 * such an application to set the default sctp_sndrcvinfo structure.
3716 * The application that wishes to use this socket option simply passes
3717 * in to this call the sctp_sndrcvinfo structure defined in Section
3718 * 5.2.2) The input parameters accepted by this call include
3719 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
3720 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
3721 * to this call if the caller is using the UDP model.
3723 * For getsockopt, it get the default sctp_sndrcvinfo structure.
3725 static int sctp_getsockopt_default_send_param(struct sock *sk,
3726 int len, char __user *optval,
3727 int __user *optlen)
3729 struct sctp_sndrcvinfo info;
3730 struct sctp_association *asoc;
3731 struct sctp_sock *sp = sctp_sk(sk);
3733 if (len != sizeof(struct sctp_sndrcvinfo))
3734 return -EINVAL;
3735 if (copy_from_user(&info, optval, sizeof(struct sctp_sndrcvinfo)))
3736 return -EFAULT;
3738 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
3739 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
3740 return -EINVAL;
3742 if (asoc) {
3743 info.sinfo_stream = asoc->default_stream;
3744 info.sinfo_flags = asoc->default_flags;
3745 info.sinfo_ppid = asoc->default_ppid;
3746 info.sinfo_context = asoc->default_context;
3747 info.sinfo_timetolive = asoc->default_timetolive;
3748 } else {
3749 info.sinfo_stream = sp->default_stream;
3750 info.sinfo_flags = sp->default_flags;
3751 info.sinfo_ppid = sp->default_ppid;
3752 info.sinfo_context = sp->default_context;
3753 info.sinfo_timetolive = sp->default_timetolive;
3756 if (copy_to_user(optval, &info, sizeof(struct sctp_sndrcvinfo)))
3757 return -EFAULT;
3759 return 0;
3764 * 7.1.5 SCTP_NODELAY
3766 * Turn on/off any Nagle-like algorithm. This means that packets are
3767 * generally sent as soon as possible and no unnecessary delays are
3768 * introduced, at the cost of more packets in the network. Expects an
3769 * integer boolean flag.
3772 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
3773 char __user *optval, int __user *optlen)
3775 int val;
3777 if (len < sizeof(int))
3778 return -EINVAL;
3780 len = sizeof(int);
3781 val = (sctp_sk(sk)->nodelay == 1);
3782 if (put_user(len, optlen))
3783 return -EFAULT;
3784 if (copy_to_user(optval, &val, len))
3785 return -EFAULT;
3786 return 0;
3791 * 7.1.1 SCTP_RTOINFO
3793 * The protocol parameters used to initialize and bound retransmission
3794 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
3795 * and modify these parameters.
3796 * All parameters are time values, in milliseconds. A value of 0, when
3797 * modifying the parameters, indicates that the current value should not
3798 * be changed.
3801 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
3802 char __user *optval,
3803 int __user *optlen) {
3804 struct sctp_rtoinfo rtoinfo;
3805 struct sctp_association *asoc;
3807 if (len != sizeof (struct sctp_rtoinfo))
3808 return -EINVAL;
3810 if (copy_from_user(&rtoinfo, optval, sizeof (struct sctp_rtoinfo)))
3811 return -EFAULT;
3813 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
3815 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
3816 return -EINVAL;
3818 /* Values corresponding to the specific association. */
3819 if (asoc) {
3820 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
3821 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
3822 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
3823 } else {
3824 /* Values corresponding to the endpoint. */
3825 struct sctp_sock *sp = sctp_sk(sk);
3827 rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
3828 rtoinfo.srto_max = sp->rtoinfo.srto_max;
3829 rtoinfo.srto_min = sp->rtoinfo.srto_min;
3832 if (put_user(len, optlen))
3833 return -EFAULT;
3835 if (copy_to_user(optval, &rtoinfo, len))
3836 return -EFAULT;
3838 return 0;
3843 * 7.1.2 SCTP_ASSOCINFO
3845 * This option is used to tune the the maximum retransmission attempts
3846 * of the association.
3847 * Returns an error if the new association retransmission value is
3848 * greater than the sum of the retransmission value of the peer.
3849 * See [SCTP] for more information.
3852 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
3853 char __user *optval,
3854 int __user *optlen)
3857 struct sctp_assocparams assocparams;
3858 struct sctp_association *asoc;
3859 struct list_head *pos;
3860 int cnt = 0;
3862 if (len != sizeof (struct sctp_assocparams))
3863 return -EINVAL;
3865 if (copy_from_user(&assocparams, optval,
3866 sizeof (struct sctp_assocparams)))
3867 return -EFAULT;
3869 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
3871 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
3872 return -EINVAL;
3874 /* Values correspoinding to the specific association */
3875 if (asoc) {
3876 assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
3877 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
3878 assocparams.sasoc_local_rwnd = asoc->a_rwnd;
3879 assocparams.sasoc_cookie_life = (asoc->cookie_life.tv_sec
3880 * 1000) +
3881 (asoc->cookie_life.tv_usec
3882 / 1000);
3884 list_for_each(pos, &asoc->peer.transport_addr_list) {
3885 cnt ++;
3888 assocparams.sasoc_number_peer_destinations = cnt;
3889 } else {
3890 /* Values corresponding to the endpoint */
3891 struct sctp_sock *sp = sctp_sk(sk);
3893 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
3894 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
3895 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
3896 assocparams.sasoc_cookie_life =
3897 sp->assocparams.sasoc_cookie_life;
3898 assocparams.sasoc_number_peer_destinations =
3899 sp->assocparams.
3900 sasoc_number_peer_destinations;
3903 if (put_user(len, optlen))
3904 return -EFAULT;
3906 if (copy_to_user(optval, &assocparams, len))
3907 return -EFAULT;
3909 return 0;
3913 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
3915 * This socket option is a boolean flag which turns on or off mapped V4
3916 * addresses. If this option is turned on and the socket is type
3917 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
3918 * If this option is turned off, then no mapping will be done of V4
3919 * addresses and a user will receive both PF_INET6 and PF_INET type
3920 * addresses on the socket.
3922 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
3923 char __user *optval, int __user *optlen)
3925 int val;
3926 struct sctp_sock *sp = sctp_sk(sk);
3928 if (len < sizeof(int))
3929 return -EINVAL;
3931 len = sizeof(int);
3932 val = sp->v4mapped;
3933 if (put_user(len, optlen))
3934 return -EFAULT;
3935 if (copy_to_user(optval, &val, len))
3936 return -EFAULT;
3938 return 0;
3942 * 7.1.17 Set the maximum fragrmentation size (SCTP_MAXSEG)
3944 * This socket option specifies the maximum size to put in any outgoing
3945 * SCTP chunk. If a message is larger than this size it will be
3946 * fragmented by SCTP into the specified size. Note that the underlying
3947 * SCTP implementation may fragment into smaller sized chunks when the
3948 * PMTU of the underlying association is smaller than the value set by
3949 * the user.
3951 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
3952 char __user *optval, int __user *optlen)
3954 int val;
3956 if (len < sizeof(int))
3957 return -EINVAL;
3959 len = sizeof(int);
3961 val = sctp_sk(sk)->user_frag;
3962 if (put_user(len, optlen))
3963 return -EFAULT;
3964 if (copy_to_user(optval, &val, len))
3965 return -EFAULT;
3967 return 0;
3970 SCTP_STATIC int sctp_getsockopt(struct sock *sk, int level, int optname,
3971 char __user *optval, int __user *optlen)
3973 int retval = 0;
3974 int len;
3976 SCTP_DEBUG_PRINTK("sctp_getsockopt(sk: %p... optname: %d)\n",
3977 sk, optname);
3979 /* I can hardly begin to describe how wrong this is. This is
3980 * so broken as to be worse than useless. The API draft
3981 * REALLY is NOT helpful here... I am not convinced that the
3982 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
3983 * are at all well-founded.
3985 if (level != SOL_SCTP) {
3986 struct sctp_af *af = sctp_sk(sk)->pf->af;
3988 retval = af->getsockopt(sk, level, optname, optval, optlen);
3989 return retval;
3992 if (get_user(len, optlen))
3993 return -EFAULT;
3995 sctp_lock_sock(sk);
3997 switch (optname) {
3998 case SCTP_STATUS:
3999 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
4000 break;
4001 case SCTP_DISABLE_FRAGMENTS:
4002 retval = sctp_getsockopt_disable_fragments(sk, len, optval,
4003 optlen);
4004 break;
4005 case SCTP_EVENTS:
4006 retval = sctp_getsockopt_events(sk, len, optval, optlen);
4007 break;
4008 case SCTP_AUTOCLOSE:
4009 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
4010 break;
4011 case SCTP_SOCKOPT_PEELOFF:
4012 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
4013 break;
4014 case SCTP_PEER_ADDR_PARAMS:
4015 retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
4016 optlen);
4017 break;
4018 case SCTP_INITMSG:
4019 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
4020 break;
4021 case SCTP_GET_PEER_ADDRS_NUM_OLD:
4022 retval = sctp_getsockopt_peer_addrs_num_old(sk, len, optval,
4023 optlen);
4024 break;
4025 case SCTP_GET_LOCAL_ADDRS_NUM_OLD:
4026 retval = sctp_getsockopt_local_addrs_num_old(sk, len, optval,
4027 optlen);
4028 break;
4029 case SCTP_GET_PEER_ADDRS_OLD:
4030 retval = sctp_getsockopt_peer_addrs_old(sk, len, optval,
4031 optlen);
4032 break;
4033 case SCTP_GET_LOCAL_ADDRS_OLD:
4034 retval = sctp_getsockopt_local_addrs_old(sk, len, optval,
4035 optlen);
4036 break;
4037 case SCTP_GET_PEER_ADDRS:
4038 retval = sctp_getsockopt_peer_addrs(sk, len, optval,
4039 optlen);
4040 break;
4041 case SCTP_GET_LOCAL_ADDRS:
4042 retval = sctp_getsockopt_local_addrs(sk, len, optval,
4043 optlen);
4044 break;
4045 case SCTP_DEFAULT_SEND_PARAM:
4046 retval = sctp_getsockopt_default_send_param(sk, len,
4047 optval, optlen);
4048 break;
4049 case SCTP_PRIMARY_ADDR:
4050 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
4051 break;
4052 case SCTP_NODELAY:
4053 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
4054 break;
4055 case SCTP_RTOINFO:
4056 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
4057 break;
4058 case SCTP_ASSOCINFO:
4059 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
4060 break;
4061 case SCTP_I_WANT_MAPPED_V4_ADDR:
4062 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
4063 break;
4064 case SCTP_MAXSEG:
4065 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
4066 break;
4067 case SCTP_GET_PEER_ADDR_INFO:
4068 retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
4069 optlen);
4070 break;
4071 case SCTP_ADAPTION_LAYER:
4072 retval = sctp_getsockopt_adaption_layer(sk, len, optval,
4073 optlen);
4074 break;
4075 default:
4076 retval = -ENOPROTOOPT;
4077 break;
4080 sctp_release_sock(sk);
4081 return retval;
4084 static void sctp_hash(struct sock *sk)
4086 /* STUB */
4089 static void sctp_unhash(struct sock *sk)
4091 /* STUB */
4094 /* Check if port is acceptable. Possibly find first available port.
4096 * The port hash table (contained in the 'global' SCTP protocol storage
4097 * returned by struct sctp_protocol *sctp_get_protocol()). The hash
4098 * table is an array of 4096 lists (sctp_bind_hashbucket). Each
4099 * list (the list number is the port number hashed out, so as you
4100 * would expect from a hash function, all the ports in a given list have
4101 * such a number that hashes out to the same list number; you were
4102 * expecting that, right?); so each list has a set of ports, with a
4103 * link to the socket (struct sock) that uses it, the port number and
4104 * a fastreuse flag (FIXME: NPI ipg).
4106 static struct sctp_bind_bucket *sctp_bucket_create(
4107 struct sctp_bind_hashbucket *head, unsigned short snum);
4109 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
4111 struct sctp_bind_hashbucket *head; /* hash list */
4112 struct sctp_bind_bucket *pp; /* hash list port iterator */
4113 unsigned short snum;
4114 int ret;
4116 /* NOTE: Remember to put this back to net order. */
4117 addr->v4.sin_port = ntohs(addr->v4.sin_port);
4118 snum = addr->v4.sin_port;
4120 SCTP_DEBUG_PRINTK("sctp_get_port() begins, snum=%d\n", snum);
4121 sctp_local_bh_disable();
4123 if (snum == 0) {
4124 /* Search for an available port.
4126 * 'sctp_port_rover' was the last port assigned, so
4127 * we start to search from 'sctp_port_rover +
4128 * 1'. What we do is first check if port 'rover' is
4129 * already in the hash table; if not, we use that; if
4130 * it is, we try next.
4132 int low = sysctl_local_port_range[0];
4133 int high = sysctl_local_port_range[1];
4134 int remaining = (high - low) + 1;
4135 int rover;
4136 int index;
4138 sctp_spin_lock(&sctp_port_alloc_lock);
4139 rover = sctp_port_rover;
4140 do {
4141 rover++;
4142 if ((rover < low) || (rover > high))
4143 rover = low;
4144 index = sctp_phashfn(rover);
4145 head = &sctp_port_hashtable[index];
4146 sctp_spin_lock(&head->lock);
4147 for (pp = head->chain; pp; pp = pp->next)
4148 if (pp->port == rover)
4149 goto next;
4150 break;
4151 next:
4152 sctp_spin_unlock(&head->lock);
4153 } while (--remaining > 0);
4154 sctp_port_rover = rover;
4155 sctp_spin_unlock(&sctp_port_alloc_lock);
4157 /* Exhausted local port range during search? */
4158 ret = 1;
4159 if (remaining <= 0)
4160 goto fail;
4162 /* OK, here is the one we will use. HEAD (the port
4163 * hash table list entry) is non-NULL and we hold it's
4164 * mutex.
4166 snum = rover;
4167 } else {
4168 /* We are given an specific port number; we verify
4169 * that it is not being used. If it is used, we will
4170 * exahust the search in the hash list corresponding
4171 * to the port number (snum) - we detect that with the
4172 * port iterator, pp being NULL.
4174 head = &sctp_port_hashtable[sctp_phashfn(snum)];
4175 sctp_spin_lock(&head->lock);
4176 for (pp = head->chain; pp; pp = pp->next) {
4177 if (pp->port == snum)
4178 goto pp_found;
4181 pp = NULL;
4182 goto pp_not_found;
4183 pp_found:
4184 if (!hlist_empty(&pp->owner)) {
4185 /* We had a port hash table hit - there is an
4186 * available port (pp != NULL) and it is being
4187 * used by other socket (pp->owner not empty); that other
4188 * socket is going to be sk2.
4190 int reuse = sk->sk_reuse;
4191 struct sock *sk2;
4192 struct hlist_node *node;
4194 SCTP_DEBUG_PRINTK("sctp_get_port() found a possible match\n");
4195 if (pp->fastreuse && sk->sk_reuse)
4196 goto success;
4198 /* Run through the list of sockets bound to the port
4199 * (pp->port) [via the pointers bind_next and
4200 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
4201 * we get the endpoint they describe and run through
4202 * the endpoint's list of IP (v4 or v6) addresses,
4203 * comparing each of the addresses with the address of
4204 * the socket sk. If we find a match, then that means
4205 * that this port/socket (sk) combination are already
4206 * in an endpoint.
4208 sk_for_each_bound(sk2, node, &pp->owner) {
4209 struct sctp_endpoint *ep2;
4210 ep2 = sctp_sk(sk2)->ep;
4212 if (reuse && sk2->sk_reuse)
4213 continue;
4215 if (sctp_bind_addr_match(&ep2->base.bind_addr, addr,
4216 sctp_sk(sk))) {
4217 ret = (long)sk2;
4218 goto fail_unlock;
4221 SCTP_DEBUG_PRINTK("sctp_get_port(): Found a match\n");
4223 pp_not_found:
4224 /* If there was a hash table miss, create a new port. */
4225 ret = 1;
4226 if (!pp && !(pp = sctp_bucket_create(head, snum)))
4227 goto fail_unlock;
4229 /* In either case (hit or miss), make sure fastreuse is 1 only
4230 * if sk->sk_reuse is too (that is, if the caller requested
4231 * SO_REUSEADDR on this socket -sk-).
4233 if (hlist_empty(&pp->owner))
4234 pp->fastreuse = sk->sk_reuse ? 1 : 0;
4235 else if (pp->fastreuse && !sk->sk_reuse)
4236 pp->fastreuse = 0;
4238 /* We are set, so fill up all the data in the hash table
4239 * entry, tie the socket list information with the rest of the
4240 * sockets FIXME: Blurry, NPI (ipg).
4242 success:
4243 inet_sk(sk)->num = snum;
4244 if (!sctp_sk(sk)->bind_hash) {
4245 sk_add_bind_node(sk, &pp->owner);
4246 sctp_sk(sk)->bind_hash = pp;
4248 ret = 0;
4250 fail_unlock:
4251 sctp_spin_unlock(&head->lock);
4253 fail:
4254 sctp_local_bh_enable();
4255 addr->v4.sin_port = htons(addr->v4.sin_port);
4256 return ret;
4259 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral
4260 * port is requested.
4262 static int sctp_get_port(struct sock *sk, unsigned short snum)
4264 long ret;
4265 union sctp_addr addr;
4266 struct sctp_af *af = sctp_sk(sk)->pf->af;
4268 /* Set up a dummy address struct from the sk. */
4269 af->from_sk(&addr, sk);
4270 addr.v4.sin_port = htons(snum);
4272 /* Note: sk->sk_num gets filled in if ephemeral port request. */
4273 ret = sctp_get_port_local(sk, &addr);
4275 return (ret ? 1 : 0);
4279 * 3.1.3 listen() - UDP Style Syntax
4281 * By default, new associations are not accepted for UDP style sockets.
4282 * An application uses listen() to mark a socket as being able to
4283 * accept new associations.
4285 SCTP_STATIC int sctp_seqpacket_listen(struct sock *sk, int backlog)
4287 struct sctp_sock *sp = sctp_sk(sk);
4288 struct sctp_endpoint *ep = sp->ep;
4290 /* Only UDP style sockets that are not peeled off are allowed to
4291 * listen().
4293 if (!sctp_style(sk, UDP))
4294 return -EINVAL;
4296 /* If backlog is zero, disable listening. */
4297 if (!backlog) {
4298 if (sctp_sstate(sk, CLOSED))
4299 return 0;
4301 sctp_unhash_endpoint(ep);
4302 sk->sk_state = SCTP_SS_CLOSED;
4305 /* Return if we are already listening. */
4306 if (sctp_sstate(sk, LISTENING))
4307 return 0;
4310 * If a bind() or sctp_bindx() is not called prior to a listen()
4311 * call that allows new associations to be accepted, the system
4312 * picks an ephemeral port and will choose an address set equivalent
4313 * to binding with a wildcard address.
4315 * This is not currently spelled out in the SCTP sockets
4316 * extensions draft, but follows the practice as seen in TCP
4317 * sockets.
4319 if (!ep->base.bind_addr.port) {
4320 if (sctp_autobind(sk))
4321 return -EAGAIN;
4323 sk->sk_state = SCTP_SS_LISTENING;
4324 sctp_hash_endpoint(ep);
4325 return 0;
4329 * 4.1.3 listen() - TCP Style Syntax
4331 * Applications uses listen() to ready the SCTP endpoint for accepting
4332 * inbound associations.
4334 SCTP_STATIC int sctp_stream_listen(struct sock *sk, int backlog)
4336 struct sctp_sock *sp = sctp_sk(sk);
4337 struct sctp_endpoint *ep = sp->ep;
4339 /* If backlog is zero, disable listening. */
4340 if (!backlog) {
4341 if (sctp_sstate(sk, CLOSED))
4342 return 0;
4344 sctp_unhash_endpoint(ep);
4345 sk->sk_state = SCTP_SS_CLOSED;
4348 if (sctp_sstate(sk, LISTENING))
4349 return 0;
4352 * If a bind() or sctp_bindx() is not called prior to a listen()
4353 * call that allows new associations to be accepted, the system
4354 * picks an ephemeral port and will choose an address set equivalent
4355 * to binding with a wildcard address.
4357 * This is not currently spelled out in the SCTP sockets
4358 * extensions draft, but follows the practice as seen in TCP
4359 * sockets.
4361 if (!ep->base.bind_addr.port) {
4362 if (sctp_autobind(sk))
4363 return -EAGAIN;
4365 sk->sk_state = SCTP_SS_LISTENING;
4366 sk->sk_max_ack_backlog = backlog;
4367 sctp_hash_endpoint(ep);
4368 return 0;
4372 * Move a socket to LISTENING state.
4374 int sctp_inet_listen(struct socket *sock, int backlog)
4376 struct sock *sk = sock->sk;
4377 struct crypto_tfm *tfm=NULL;
4378 int err = -EINVAL;
4380 if (unlikely(backlog < 0))
4381 goto out;
4383 sctp_lock_sock(sk);
4385 if (sock->state != SS_UNCONNECTED)
4386 goto out;
4388 /* Allocate HMAC for generating cookie. */
4389 if (sctp_hmac_alg) {
4390 tfm = sctp_crypto_alloc_tfm(sctp_hmac_alg, 0);
4391 if (!tfm) {
4392 err = -ENOSYS;
4393 goto out;
4397 switch (sock->type) {
4398 case SOCK_SEQPACKET:
4399 err = sctp_seqpacket_listen(sk, backlog);
4400 break;
4401 case SOCK_STREAM:
4402 err = sctp_stream_listen(sk, backlog);
4403 break;
4404 default:
4405 break;
4407 if (err)
4408 goto cleanup;
4410 /* Store away the transform reference. */
4411 sctp_sk(sk)->hmac = tfm;
4412 out:
4413 sctp_release_sock(sk);
4414 return err;
4415 cleanup:
4416 sctp_crypto_free_tfm(tfm);
4417 goto out;
4421 * This function is done by modeling the current datagram_poll() and the
4422 * tcp_poll(). Note that, based on these implementations, we don't
4423 * lock the socket in this function, even though it seems that,
4424 * ideally, locking or some other mechanisms can be used to ensure
4425 * the integrity of the counters (sndbuf and wmem_alloc) used
4426 * in this place. We assume that we don't need locks either until proven
4427 * otherwise.
4429 * Another thing to note is that we include the Async I/O support
4430 * here, again, by modeling the current TCP/UDP code. We don't have
4431 * a good way to test with it yet.
4433 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
4435 struct sock *sk = sock->sk;
4436 struct sctp_sock *sp = sctp_sk(sk);
4437 unsigned int mask;
4439 poll_wait(file, sk->sk_sleep, wait);
4441 /* A TCP-style listening socket becomes readable when the accept queue
4442 * is not empty.
4444 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
4445 return (!list_empty(&sp->ep->asocs)) ?
4446 (POLLIN | POLLRDNORM) : 0;
4448 mask = 0;
4450 /* Is there any exceptional events? */
4451 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
4452 mask |= POLLERR;
4453 if (sk->sk_shutdown == SHUTDOWN_MASK)
4454 mask |= POLLHUP;
4456 /* Is it readable? Reconsider this code with TCP-style support. */
4457 if (!skb_queue_empty(&sk->sk_receive_queue) ||
4458 (sk->sk_shutdown & RCV_SHUTDOWN))
4459 mask |= POLLIN | POLLRDNORM;
4461 /* The association is either gone or not ready. */
4462 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
4463 return mask;
4465 /* Is it writable? */
4466 if (sctp_writeable(sk)) {
4467 mask |= POLLOUT | POLLWRNORM;
4468 } else {
4469 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
4471 * Since the socket is not locked, the buffer
4472 * might be made available after the writeable check and
4473 * before the bit is set. This could cause a lost I/O
4474 * signal. tcp_poll() has a race breaker for this race
4475 * condition. Based on their implementation, we put
4476 * in the following code to cover it as well.
4478 if (sctp_writeable(sk))
4479 mask |= POLLOUT | POLLWRNORM;
4481 return mask;
4484 /********************************************************************
4485 * 2nd Level Abstractions
4486 ********************************************************************/
4488 static struct sctp_bind_bucket *sctp_bucket_create(
4489 struct sctp_bind_hashbucket *head, unsigned short snum)
4491 struct sctp_bind_bucket *pp;
4493 pp = kmem_cache_alloc(sctp_bucket_cachep, SLAB_ATOMIC);
4494 SCTP_DBG_OBJCNT_INC(bind_bucket);
4495 if (pp) {
4496 pp->port = snum;
4497 pp->fastreuse = 0;
4498 INIT_HLIST_HEAD(&pp->owner);
4499 if ((pp->next = head->chain) != NULL)
4500 pp->next->pprev = &pp->next;
4501 head->chain = pp;
4502 pp->pprev = &head->chain;
4504 return pp;
4507 /* Caller must hold hashbucket lock for this tb with local BH disabled */
4508 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
4510 if (hlist_empty(&pp->owner)) {
4511 if (pp->next)
4512 pp->next->pprev = pp->pprev;
4513 *(pp->pprev) = pp->next;
4514 kmem_cache_free(sctp_bucket_cachep, pp);
4515 SCTP_DBG_OBJCNT_DEC(bind_bucket);
4519 /* Release this socket's reference to a local port. */
4520 static inline void __sctp_put_port(struct sock *sk)
4522 struct sctp_bind_hashbucket *head =
4523 &sctp_port_hashtable[sctp_phashfn(inet_sk(sk)->num)];
4524 struct sctp_bind_bucket *pp;
4526 sctp_spin_lock(&head->lock);
4527 pp = sctp_sk(sk)->bind_hash;
4528 __sk_del_bind_node(sk);
4529 sctp_sk(sk)->bind_hash = NULL;
4530 inet_sk(sk)->num = 0;
4531 sctp_bucket_destroy(pp);
4532 sctp_spin_unlock(&head->lock);
4535 void sctp_put_port(struct sock *sk)
4537 sctp_local_bh_disable();
4538 __sctp_put_port(sk);
4539 sctp_local_bh_enable();
4543 * The system picks an ephemeral port and choose an address set equivalent
4544 * to binding with a wildcard address.
4545 * One of those addresses will be the primary address for the association.
4546 * This automatically enables the multihoming capability of SCTP.
4548 static int sctp_autobind(struct sock *sk)
4550 union sctp_addr autoaddr;
4551 struct sctp_af *af;
4552 unsigned short port;
4554 /* Initialize a local sockaddr structure to INADDR_ANY. */
4555 af = sctp_sk(sk)->pf->af;
4557 port = htons(inet_sk(sk)->num);
4558 af->inaddr_any(&autoaddr, port);
4560 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
4563 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation.
4565 * From RFC 2292
4566 * 4.2 The cmsghdr Structure *
4568 * When ancillary data is sent or received, any number of ancillary data
4569 * objects can be specified by the msg_control and msg_controllen members of
4570 * the msghdr structure, because each object is preceded by
4571 * a cmsghdr structure defining the object's length (the cmsg_len member).
4572 * Historically Berkeley-derived implementations have passed only one object
4573 * at a time, but this API allows multiple objects to be
4574 * passed in a single call to sendmsg() or recvmsg(). The following example
4575 * shows two ancillary data objects in a control buffer.
4577 * |<--------------------------- msg_controllen -------------------------->|
4578 * | |
4580 * |<----- ancillary data object ----->|<----- ancillary data object ----->|
4582 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
4583 * | | |
4585 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| |
4587 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| |
4588 * | | | | |
4590 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
4591 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX|
4593 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX|
4595 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
4599 * msg_control
4600 * points here
4602 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *msg,
4603 sctp_cmsgs_t *cmsgs)
4605 struct cmsghdr *cmsg;
4607 for (cmsg = CMSG_FIRSTHDR(msg);
4608 cmsg != NULL;
4609 cmsg = CMSG_NXTHDR((struct msghdr*)msg, cmsg)) {
4610 if (!CMSG_OK(msg, cmsg))
4611 return -EINVAL;
4613 /* Should we parse this header or ignore? */
4614 if (cmsg->cmsg_level != IPPROTO_SCTP)
4615 continue;
4617 /* Strictly check lengths following example in SCM code. */
4618 switch (cmsg->cmsg_type) {
4619 case SCTP_INIT:
4620 /* SCTP Socket API Extension
4621 * 5.2.1 SCTP Initiation Structure (SCTP_INIT)
4623 * This cmsghdr structure provides information for
4624 * initializing new SCTP associations with sendmsg().
4625 * The SCTP_INITMSG socket option uses this same data
4626 * structure. This structure is not used for
4627 * recvmsg().
4629 * cmsg_level cmsg_type cmsg_data[]
4630 * ------------ ------------ ----------------------
4631 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg
4633 if (cmsg->cmsg_len !=
4634 CMSG_LEN(sizeof(struct sctp_initmsg)))
4635 return -EINVAL;
4636 cmsgs->init = (struct sctp_initmsg *)CMSG_DATA(cmsg);
4637 break;
4639 case SCTP_SNDRCV:
4640 /* SCTP Socket API Extension
4641 * 5.2.2 SCTP Header Information Structure(SCTP_SNDRCV)
4643 * This cmsghdr structure specifies SCTP options for
4644 * sendmsg() and describes SCTP header information
4645 * about a received message through recvmsg().
4647 * cmsg_level cmsg_type cmsg_data[]
4648 * ------------ ------------ ----------------------
4649 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo
4651 if (cmsg->cmsg_len !=
4652 CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
4653 return -EINVAL;
4655 cmsgs->info =
4656 (struct sctp_sndrcvinfo *)CMSG_DATA(cmsg);
4658 /* Minimally, validate the sinfo_flags. */
4659 if (cmsgs->info->sinfo_flags &
4660 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
4661 SCTP_ABORT | SCTP_EOF))
4662 return -EINVAL;
4663 break;
4665 default:
4666 return -EINVAL;
4669 return 0;
4673 * Wait for a packet..
4674 * Note: This function is the same function as in core/datagram.c
4675 * with a few modifications to make lksctp work.
4677 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p)
4679 int error;
4680 DEFINE_WAIT(wait);
4682 prepare_to_wait_exclusive(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
4684 /* Socket errors? */
4685 error = sock_error(sk);
4686 if (error)
4687 goto out;
4689 if (!skb_queue_empty(&sk->sk_receive_queue))
4690 goto ready;
4692 /* Socket shut down? */
4693 if (sk->sk_shutdown & RCV_SHUTDOWN)
4694 goto out;
4696 /* Sequenced packets can come disconnected. If so we report the
4697 * problem.
4699 error = -ENOTCONN;
4701 /* Is there a good reason to think that we may receive some data? */
4702 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
4703 goto out;
4705 /* Handle signals. */
4706 if (signal_pending(current))
4707 goto interrupted;
4709 /* Let another process have a go. Since we are going to sleep
4710 * anyway. Note: This may cause odd behaviors if the message
4711 * does not fit in the user's buffer, but this seems to be the
4712 * only way to honor MSG_DONTWAIT realistically.
4714 sctp_release_sock(sk);
4715 *timeo_p = schedule_timeout(*timeo_p);
4716 sctp_lock_sock(sk);
4718 ready:
4719 finish_wait(sk->sk_sleep, &wait);
4720 return 0;
4722 interrupted:
4723 error = sock_intr_errno(*timeo_p);
4725 out:
4726 finish_wait(sk->sk_sleep, &wait);
4727 *err = error;
4728 return error;
4731 /* Receive a datagram.
4732 * Note: This is pretty much the same routine as in core/datagram.c
4733 * with a few changes to make lksctp work.
4735 static struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
4736 int noblock, int *err)
4738 int error;
4739 struct sk_buff *skb;
4740 long timeo;
4742 timeo = sock_rcvtimeo(sk, noblock);
4744 SCTP_DEBUG_PRINTK("Timeout: timeo: %ld, MAX: %ld.\n",
4745 timeo, MAX_SCHEDULE_TIMEOUT);
4747 do {
4748 /* Again only user level code calls this function,
4749 * so nothing interrupt level
4750 * will suddenly eat the receive_queue.
4752 * Look at current nfs client by the way...
4753 * However, this function was corrent in any case. 8)
4755 if (flags & MSG_PEEK) {
4756 spin_lock_bh(&sk->sk_receive_queue.lock);
4757 skb = skb_peek(&sk->sk_receive_queue);
4758 if (skb)
4759 atomic_inc(&skb->users);
4760 spin_unlock_bh(&sk->sk_receive_queue.lock);
4761 } else {
4762 skb = skb_dequeue(&sk->sk_receive_queue);
4765 if (skb)
4766 return skb;
4768 /* Caller is allowed not to check sk->sk_err before calling. */
4769 error = sock_error(sk);
4770 if (error)
4771 goto no_packet;
4773 if (sk->sk_shutdown & RCV_SHUTDOWN)
4774 break;
4776 /* User doesn't want to wait. */
4777 error = -EAGAIN;
4778 if (!timeo)
4779 goto no_packet;
4780 } while (sctp_wait_for_packet(sk, err, &timeo) == 0);
4782 return NULL;
4784 no_packet:
4785 *err = error;
4786 return NULL;
4789 /* If sndbuf has changed, wake up per association sndbuf waiters. */
4790 static void __sctp_write_space(struct sctp_association *asoc)
4792 struct sock *sk = asoc->base.sk;
4793 struct socket *sock = sk->sk_socket;
4795 if ((sctp_wspace(asoc) > 0) && sock) {
4796 if (waitqueue_active(&asoc->wait))
4797 wake_up_interruptible(&asoc->wait);
4799 if (sctp_writeable(sk)) {
4800 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
4801 wake_up_interruptible(sk->sk_sleep);
4803 /* Note that we try to include the Async I/O support
4804 * here by modeling from the current TCP/UDP code.
4805 * We have not tested with it yet.
4807 if (sock->fasync_list &&
4808 !(sk->sk_shutdown & SEND_SHUTDOWN))
4809 sock_wake_async(sock, 2, POLL_OUT);
4814 /* Do accounting for the sndbuf space.
4815 * Decrement the used sndbuf space of the corresponding association by the
4816 * data size which was just transmitted(freed).
4818 static void sctp_wfree(struct sk_buff *skb)
4820 struct sctp_association *asoc;
4821 struct sctp_chunk *chunk;
4822 struct sock *sk;
4824 /* Get the saved chunk pointer. */
4825 chunk = *((struct sctp_chunk **)(skb->cb));
4826 asoc = chunk->asoc;
4827 sk = asoc->base.sk;
4828 asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) +
4829 sizeof(struct sk_buff) +
4830 sizeof(struct sctp_chunk);
4832 atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
4834 sock_wfree(skb);
4835 __sctp_write_space(asoc);
4837 sctp_association_put(asoc);
4840 /* Helper function to wait for space in the sndbuf. */
4841 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
4842 size_t msg_len)
4844 struct sock *sk = asoc->base.sk;
4845 int err = 0;
4846 long current_timeo = *timeo_p;
4847 DEFINE_WAIT(wait);
4849 SCTP_DEBUG_PRINTK("wait_for_sndbuf: asoc=%p, timeo=%ld, msg_len=%zu\n",
4850 asoc, (long)(*timeo_p), msg_len);
4852 /* Increment the association's refcnt. */
4853 sctp_association_hold(asoc);
4855 /* Wait on the association specific sndbuf space. */
4856 for (;;) {
4857 prepare_to_wait_exclusive(&asoc->wait, &wait,
4858 TASK_INTERRUPTIBLE);
4859 if (!*timeo_p)
4860 goto do_nonblock;
4861 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
4862 asoc->base.dead)
4863 goto do_error;
4864 if (signal_pending(current))
4865 goto do_interrupted;
4866 if (msg_len <= sctp_wspace(asoc))
4867 break;
4869 /* Let another process have a go. Since we are going
4870 * to sleep anyway.
4872 sctp_release_sock(sk);
4873 current_timeo = schedule_timeout(current_timeo);
4874 sctp_lock_sock(sk);
4876 *timeo_p = current_timeo;
4879 out:
4880 finish_wait(&asoc->wait, &wait);
4882 /* Release the association's refcnt. */
4883 sctp_association_put(asoc);
4885 return err;
4887 do_error:
4888 err = -EPIPE;
4889 goto out;
4891 do_interrupted:
4892 err = sock_intr_errno(*timeo_p);
4893 goto out;
4895 do_nonblock:
4896 err = -EAGAIN;
4897 goto out;
4900 /* If socket sndbuf has changed, wake up all per association waiters. */
4901 void sctp_write_space(struct sock *sk)
4903 struct sctp_association *asoc;
4904 struct list_head *pos;
4906 /* Wake up the tasks in each wait queue. */
4907 list_for_each(pos, &((sctp_sk(sk))->ep->asocs)) {
4908 asoc = list_entry(pos, struct sctp_association, asocs);
4909 __sctp_write_space(asoc);
4913 /* Is there any sndbuf space available on the socket?
4915 * Note that sk_wmem_alloc is the sum of the send buffers on all of the
4916 * associations on the same socket. For a UDP-style socket with
4917 * multiple associations, it is possible for it to be "unwriteable"
4918 * prematurely. I assume that this is acceptable because
4919 * a premature "unwriteable" is better than an accidental "writeable" which
4920 * would cause an unwanted block under certain circumstances. For the 1-1
4921 * UDP-style sockets or TCP-style sockets, this code should work.
4922 * - Daisy
4924 static int sctp_writeable(struct sock *sk)
4926 int amt = 0;
4928 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
4929 if (amt < 0)
4930 amt = 0;
4931 return amt;
4934 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
4935 * returns immediately with EINPROGRESS.
4937 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
4939 struct sock *sk = asoc->base.sk;
4940 int err = 0;
4941 long current_timeo = *timeo_p;
4942 DEFINE_WAIT(wait);
4944 SCTP_DEBUG_PRINTK("%s: asoc=%p, timeo=%ld\n", __FUNCTION__, asoc,
4945 (long)(*timeo_p));
4947 /* Increment the association's refcnt. */
4948 sctp_association_hold(asoc);
4950 for (;;) {
4951 prepare_to_wait_exclusive(&asoc->wait, &wait,
4952 TASK_INTERRUPTIBLE);
4953 if (!*timeo_p)
4954 goto do_nonblock;
4955 if (sk->sk_shutdown & RCV_SHUTDOWN)
4956 break;
4957 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
4958 asoc->base.dead)
4959 goto do_error;
4960 if (signal_pending(current))
4961 goto do_interrupted;
4963 if (sctp_state(asoc, ESTABLISHED))
4964 break;
4966 /* Let another process have a go. Since we are going
4967 * to sleep anyway.
4969 sctp_release_sock(sk);
4970 current_timeo = schedule_timeout(current_timeo);
4971 sctp_lock_sock(sk);
4973 *timeo_p = current_timeo;
4976 out:
4977 finish_wait(&asoc->wait, &wait);
4979 /* Release the association's refcnt. */
4980 sctp_association_put(asoc);
4982 return err;
4984 do_error:
4985 if (asoc->init_err_counter + 1 >= asoc->max_init_attempts)
4986 err = -ETIMEDOUT;
4987 else
4988 err = -ECONNREFUSED;
4989 goto out;
4991 do_interrupted:
4992 err = sock_intr_errno(*timeo_p);
4993 goto out;
4995 do_nonblock:
4996 err = -EINPROGRESS;
4997 goto out;
5000 static int sctp_wait_for_accept(struct sock *sk, long timeo)
5002 struct sctp_endpoint *ep;
5003 int err = 0;
5004 DEFINE_WAIT(wait);
5006 ep = sctp_sk(sk)->ep;
5009 for (;;) {
5010 prepare_to_wait_exclusive(sk->sk_sleep, &wait,
5011 TASK_INTERRUPTIBLE);
5013 if (list_empty(&ep->asocs)) {
5014 sctp_release_sock(sk);
5015 timeo = schedule_timeout(timeo);
5016 sctp_lock_sock(sk);
5019 err = -EINVAL;
5020 if (!sctp_sstate(sk, LISTENING))
5021 break;
5023 err = 0;
5024 if (!list_empty(&ep->asocs))
5025 break;
5027 err = sock_intr_errno(timeo);
5028 if (signal_pending(current))
5029 break;
5031 err = -EAGAIN;
5032 if (!timeo)
5033 break;
5036 finish_wait(sk->sk_sleep, &wait);
5038 return err;
5041 void sctp_wait_for_close(struct sock *sk, long timeout)
5043 DEFINE_WAIT(wait);
5045 do {
5046 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
5047 if (list_empty(&sctp_sk(sk)->ep->asocs))
5048 break;
5049 sctp_release_sock(sk);
5050 timeout = schedule_timeout(timeout);
5051 sctp_lock_sock(sk);
5052 } while (!signal_pending(current) && timeout);
5054 finish_wait(sk->sk_sleep, &wait);
5057 /* Populate the fields of the newsk from the oldsk and migrate the assoc
5058 * and its messages to the newsk.
5060 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
5061 struct sctp_association *assoc,
5062 sctp_socket_type_t type)
5064 struct sctp_sock *oldsp = sctp_sk(oldsk);
5065 struct sctp_sock *newsp = sctp_sk(newsk);
5066 struct sctp_bind_bucket *pp; /* hash list port iterator */
5067 struct sctp_endpoint *newep = newsp->ep;
5068 struct sk_buff *skb, *tmp;
5069 struct sctp_ulpevent *event;
5070 int flags = 0;
5072 /* Migrate socket buffer sizes and all the socket level options to the
5073 * new socket.
5075 newsk->sk_sndbuf = oldsk->sk_sndbuf;
5076 newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
5077 /* Brute force copy old sctp opt. */
5078 inet_sk_copy_descendant(newsk, oldsk);
5080 /* Restore the ep value that was overwritten with the above structure
5081 * copy.
5083 newsp->ep = newep;
5084 newsp->hmac = NULL;
5086 /* Hook this new socket in to the bind_hash list. */
5087 pp = sctp_sk(oldsk)->bind_hash;
5088 sk_add_bind_node(newsk, &pp->owner);
5089 sctp_sk(newsk)->bind_hash = pp;
5090 inet_sk(newsk)->num = inet_sk(oldsk)->num;
5092 /* Copy the bind_addr list from the original endpoint to the new
5093 * endpoint so that we can handle restarts properly
5095 if (assoc->peer.ipv4_address)
5096 flags |= SCTP_ADDR4_PEERSUPP;
5097 if (assoc->peer.ipv6_address)
5098 flags |= SCTP_ADDR6_PEERSUPP;
5099 sctp_bind_addr_copy(&newsp->ep->base.bind_addr,
5100 &oldsp->ep->base.bind_addr,
5101 SCTP_SCOPE_GLOBAL, GFP_KERNEL, flags);
5103 /* Move any messages in the old socket's receive queue that are for the
5104 * peeled off association to the new socket's receive queue.
5106 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
5107 event = sctp_skb2event(skb);
5108 if (event->asoc == assoc) {
5109 sock_rfree(skb);
5110 __skb_unlink(skb, &oldsk->sk_receive_queue);
5111 __skb_queue_tail(&newsk->sk_receive_queue, skb);
5112 skb_set_owner_r(skb, newsk);
5116 /* Clean up any messages pending delivery due to partial
5117 * delivery. Three cases:
5118 * 1) No partial deliver; no work.
5119 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
5120 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
5122 skb_queue_head_init(&newsp->pd_lobby);
5123 sctp_sk(newsk)->pd_mode = assoc->ulpq.pd_mode;
5125 if (sctp_sk(oldsk)->pd_mode) {
5126 struct sk_buff_head *queue;
5128 /* Decide which queue to move pd_lobby skbs to. */
5129 if (assoc->ulpq.pd_mode) {
5130 queue = &newsp->pd_lobby;
5131 } else
5132 queue = &newsk->sk_receive_queue;
5134 /* Walk through the pd_lobby, looking for skbs that
5135 * need moved to the new socket.
5137 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
5138 event = sctp_skb2event(skb);
5139 if (event->asoc == assoc) {
5140 sock_rfree(skb);
5141 __skb_unlink(skb, &oldsp->pd_lobby);
5142 __skb_queue_tail(queue, skb);
5143 skb_set_owner_r(skb, newsk);
5147 /* Clear up any skbs waiting for the partial
5148 * delivery to finish.
5150 if (assoc->ulpq.pd_mode)
5151 sctp_clear_pd(oldsk);
5155 /* Set the type of socket to indicate that it is peeled off from the
5156 * original UDP-style socket or created with the accept() call on a
5157 * TCP-style socket..
5159 newsp->type = type;
5161 /* Migrate the association to the new socket. */
5162 sctp_assoc_migrate(assoc, newsk);
5164 /* If the association on the newsk is already closed before accept()
5165 * is called, set RCV_SHUTDOWN flag.
5167 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP))
5168 newsk->sk_shutdown |= RCV_SHUTDOWN;
5170 newsk->sk_state = SCTP_SS_ESTABLISHED;
5173 /* This proto struct describes the ULP interface for SCTP. */
5174 struct proto sctp_prot = {
5175 .name = "SCTP",
5176 .owner = THIS_MODULE,
5177 .close = sctp_close,
5178 .connect = sctp_connect,
5179 .disconnect = sctp_disconnect,
5180 .accept = sctp_accept,
5181 .ioctl = sctp_ioctl,
5182 .init = sctp_init_sock,
5183 .destroy = sctp_destroy_sock,
5184 .shutdown = sctp_shutdown,
5185 .setsockopt = sctp_setsockopt,
5186 .getsockopt = sctp_getsockopt,
5187 .sendmsg = sctp_sendmsg,
5188 .recvmsg = sctp_recvmsg,
5189 .bind = sctp_bind,
5190 .backlog_rcv = sctp_backlog_rcv,
5191 .hash = sctp_hash,
5192 .unhash = sctp_unhash,
5193 .get_port = sctp_get_port,
5194 .obj_size = sizeof(struct sctp_sock),
5197 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5198 struct proto sctpv6_prot = {
5199 .name = "SCTPv6",
5200 .owner = THIS_MODULE,
5201 .close = sctp_close,
5202 .connect = sctp_connect,
5203 .disconnect = sctp_disconnect,
5204 .accept = sctp_accept,
5205 .ioctl = sctp_ioctl,
5206 .init = sctp_init_sock,
5207 .destroy = sctp_destroy_sock,
5208 .shutdown = sctp_shutdown,
5209 .setsockopt = sctp_setsockopt,
5210 .getsockopt = sctp_getsockopt,
5211 .sendmsg = sctp_sendmsg,
5212 .recvmsg = sctp_recvmsg,
5213 .bind = sctp_bind,
5214 .backlog_rcv = sctp_backlog_rcv,
5215 .hash = sctp_hash,
5216 .unhash = sctp_unhash,
5217 .get_port = sctp_get_port,
5218 .obj_size = sizeof(struct sctp6_sock),
5220 #endif /* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */