2 * CFQ, or complete fairness queueing, disk scheduler.
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/rbtree.h>
13 #include <linux/ioprio.h>
14 #include <linux/blktrace_api.h>
19 /* max queue in one round of service */
20 static const int cfq_quantum
= 4;
21 static const int cfq_fifo_expire
[2] = { HZ
/ 4, HZ
/ 8 };
22 /* maximum backwards seek, in KiB */
23 static const int cfq_back_max
= 16 * 1024;
24 /* penalty of a backwards seek */
25 static const int cfq_back_penalty
= 2;
26 static const int cfq_slice_sync
= HZ
/ 10;
27 static int cfq_slice_async
= HZ
/ 25;
28 static const int cfq_slice_async_rq
= 2;
29 static int cfq_slice_idle
= HZ
/ 125;
32 * offset from end of service tree
34 #define CFQ_IDLE_DELAY (HZ / 5)
37 * below this threshold, we consider thinktime immediate
39 #define CFQ_MIN_TT (2)
41 #define CFQ_SLICE_SCALE (5)
42 #define CFQ_HW_QUEUE_MIN (5)
45 ((struct cfq_io_context *) (rq)->elevator_private)
46 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
48 static struct kmem_cache
*cfq_pool
;
49 static struct kmem_cache
*cfq_ioc_pool
;
51 static DEFINE_PER_CPU(unsigned long, ioc_count
);
52 static struct completion
*ioc_gone
;
53 static DEFINE_SPINLOCK(ioc_gone_lock
);
55 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
56 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
57 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
62 #define sample_valid(samples) ((samples) > 80)
65 * Most of our rbtree usage is for sorting with min extraction, so
66 * if we cache the leftmost node we don't have to walk down the tree
67 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
68 * move this into the elevator for the rq sorting as well.
74 #define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, }
77 * Per block device queue structure
80 struct request_queue
*queue
;
83 * rr list of queues with requests and the count of them
85 struct cfq_rb_root service_tree
;
86 unsigned int busy_queues
;
92 * queue-depth detection
97 int rq_in_driver_peak
;
100 * idle window management
102 struct timer_list idle_slice_timer
;
103 struct work_struct unplug_work
;
105 struct cfq_queue
*active_queue
;
106 struct cfq_io_context
*active_cic
;
109 * async queue for each priority case
111 struct cfq_queue
*async_cfqq
[2][IOPRIO_BE_NR
];
112 struct cfq_queue
*async_idle_cfqq
;
114 sector_t last_position
;
115 unsigned long last_end_request
;
118 * tunables, see top of file
120 unsigned int cfq_quantum
;
121 unsigned int cfq_fifo_expire
[2];
122 unsigned int cfq_back_penalty
;
123 unsigned int cfq_back_max
;
124 unsigned int cfq_slice
[2];
125 unsigned int cfq_slice_async_rq
;
126 unsigned int cfq_slice_idle
;
128 struct list_head cic_list
;
132 * Per process-grouping structure
135 /* reference count */
137 /* various state flags, see below */
139 /* parent cfq_data */
140 struct cfq_data
*cfqd
;
141 /* service_tree member */
142 struct rb_node rb_node
;
143 /* service_tree key */
144 unsigned long rb_key
;
145 /* sorted list of pending requests */
146 struct rb_root sort_list
;
147 /* if fifo isn't expired, next request to serve */
148 struct request
*next_rq
;
149 /* requests queued in sort_list */
151 /* currently allocated requests */
153 /* fifo list of requests in sort_list */
154 struct list_head fifo
;
156 unsigned long slice_end
;
159 /* pending metadata requests */
161 /* number of requests that are on the dispatch list or inside driver */
164 /* io prio of this group */
165 unsigned short ioprio
, org_ioprio
;
166 unsigned short ioprio_class
, org_ioprio_class
;
171 enum cfqq_state_flags
{
172 CFQ_CFQQ_FLAG_on_rr
= 0, /* on round-robin busy list */
173 CFQ_CFQQ_FLAG_wait_request
, /* waiting for a request */
174 CFQ_CFQQ_FLAG_must_alloc
, /* must be allowed rq alloc */
175 CFQ_CFQQ_FLAG_must_alloc_slice
, /* per-slice must_alloc flag */
176 CFQ_CFQQ_FLAG_must_dispatch
, /* must dispatch, even if expired */
177 CFQ_CFQQ_FLAG_fifo_expire
, /* FIFO checked in this slice */
178 CFQ_CFQQ_FLAG_idle_window
, /* slice idling enabled */
179 CFQ_CFQQ_FLAG_prio_changed
, /* task priority has changed */
180 CFQ_CFQQ_FLAG_queue_new
, /* queue never been serviced */
181 CFQ_CFQQ_FLAG_slice_new
, /* no requests dispatched in slice */
182 CFQ_CFQQ_FLAG_sync
, /* synchronous queue */
185 #define CFQ_CFQQ_FNS(name) \
186 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
188 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
190 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
192 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
194 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
196 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
200 CFQ_CFQQ_FNS(wait_request
);
201 CFQ_CFQQ_FNS(must_alloc
);
202 CFQ_CFQQ_FNS(must_alloc_slice
);
203 CFQ_CFQQ_FNS(must_dispatch
);
204 CFQ_CFQQ_FNS(fifo_expire
);
205 CFQ_CFQQ_FNS(idle_window
);
206 CFQ_CFQQ_FNS(prio_changed
);
207 CFQ_CFQQ_FNS(queue_new
);
208 CFQ_CFQQ_FNS(slice_new
);
212 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
213 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
214 #define cfq_log(cfqd, fmt, args...) \
215 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
217 static void cfq_dispatch_insert(struct request_queue
*, struct request
*);
218 static struct cfq_queue
*cfq_get_queue(struct cfq_data
*, int,
219 struct io_context
*, gfp_t
);
220 static struct cfq_io_context
*cfq_cic_lookup(struct cfq_data
*,
221 struct io_context
*);
223 static inline struct cfq_queue
*cic_to_cfqq(struct cfq_io_context
*cic
,
226 return cic
->cfqq
[!!is_sync
];
229 static inline void cic_set_cfqq(struct cfq_io_context
*cic
,
230 struct cfq_queue
*cfqq
, int is_sync
)
232 cic
->cfqq
[!!is_sync
] = cfqq
;
236 * We regard a request as SYNC, if it's either a read or has the SYNC bit
237 * set (in which case it could also be direct WRITE).
239 static inline int cfq_bio_sync(struct bio
*bio
)
241 if (bio_data_dir(bio
) == READ
|| bio_sync(bio
))
248 * scheduler run of queue, if there are requests pending and no one in the
249 * driver that will restart queueing
251 static inline void cfq_schedule_dispatch(struct cfq_data
*cfqd
)
253 if (cfqd
->busy_queues
) {
254 cfq_log(cfqd
, "schedule dispatch");
255 kblockd_schedule_work(cfqd
->queue
, &cfqd
->unplug_work
);
259 static int cfq_queue_empty(struct request_queue
*q
)
261 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
263 return !cfqd
->busy_queues
;
267 * Scale schedule slice based on io priority. Use the sync time slice only
268 * if a queue is marked sync and has sync io queued. A sync queue with async
269 * io only, should not get full sync slice length.
271 static inline int cfq_prio_slice(struct cfq_data
*cfqd
, int sync
,
274 const int base_slice
= cfqd
->cfq_slice
[sync
];
276 WARN_ON(prio
>= IOPRIO_BE_NR
);
278 return base_slice
+ (base_slice
/CFQ_SLICE_SCALE
* (4 - prio
));
282 cfq_prio_to_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
284 return cfq_prio_slice(cfqd
, cfq_cfqq_sync(cfqq
), cfqq
->ioprio
);
288 cfq_set_prio_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
290 cfqq
->slice_end
= cfq_prio_to_slice(cfqd
, cfqq
) + jiffies
;
291 cfq_log_cfqq(cfqd
, cfqq
, "set_slice=%lu", cfqq
->slice_end
- jiffies
);
295 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
296 * isn't valid until the first request from the dispatch is activated
297 * and the slice time set.
299 static inline int cfq_slice_used(struct cfq_queue
*cfqq
)
301 if (cfq_cfqq_slice_new(cfqq
))
303 if (time_before(jiffies
, cfqq
->slice_end
))
310 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
311 * We choose the request that is closest to the head right now. Distance
312 * behind the head is penalized and only allowed to a certain extent.
314 static struct request
*
315 cfq_choose_req(struct cfq_data
*cfqd
, struct request
*rq1
, struct request
*rq2
)
317 sector_t last
, s1
, s2
, d1
= 0, d2
= 0;
318 unsigned long back_max
;
319 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
320 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
321 unsigned wrap
= 0; /* bit mask: requests behind the disk head? */
323 if (rq1
== NULL
|| rq1
== rq2
)
328 if (rq_is_sync(rq1
) && !rq_is_sync(rq2
))
330 else if (rq_is_sync(rq2
) && !rq_is_sync(rq1
))
332 if (rq_is_meta(rq1
) && !rq_is_meta(rq2
))
334 else if (rq_is_meta(rq2
) && !rq_is_meta(rq1
))
340 last
= cfqd
->last_position
;
343 * by definition, 1KiB is 2 sectors
345 back_max
= cfqd
->cfq_back_max
* 2;
348 * Strict one way elevator _except_ in the case where we allow
349 * short backward seeks which are biased as twice the cost of a
350 * similar forward seek.
354 else if (s1
+ back_max
>= last
)
355 d1
= (last
- s1
) * cfqd
->cfq_back_penalty
;
357 wrap
|= CFQ_RQ1_WRAP
;
361 else if (s2
+ back_max
>= last
)
362 d2
= (last
- s2
) * cfqd
->cfq_back_penalty
;
364 wrap
|= CFQ_RQ2_WRAP
;
366 /* Found required data */
369 * By doing switch() on the bit mask "wrap" we avoid having to
370 * check two variables for all permutations: --> faster!
373 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
389 case (CFQ_RQ1_WRAP
|CFQ_RQ2_WRAP
): /* both rqs wrapped */
392 * Since both rqs are wrapped,
393 * start with the one that's further behind head
394 * (--> only *one* back seek required),
395 * since back seek takes more time than forward.
405 * The below is leftmost cache rbtree addon
407 static struct cfq_queue
*cfq_rb_first(struct cfq_rb_root
*root
)
410 root
->left
= rb_first(&root
->rb
);
413 return rb_entry(root
->left
, struct cfq_queue
, rb_node
);
418 static void cfq_rb_erase(struct rb_node
*n
, struct cfq_rb_root
*root
)
423 rb_erase(n
, &root
->rb
);
428 * would be nice to take fifo expire time into account as well
430 static struct request
*
431 cfq_find_next_rq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
432 struct request
*last
)
434 struct rb_node
*rbnext
= rb_next(&last
->rb_node
);
435 struct rb_node
*rbprev
= rb_prev(&last
->rb_node
);
436 struct request
*next
= NULL
, *prev
= NULL
;
438 BUG_ON(RB_EMPTY_NODE(&last
->rb_node
));
441 prev
= rb_entry_rq(rbprev
);
444 next
= rb_entry_rq(rbnext
);
446 rbnext
= rb_first(&cfqq
->sort_list
);
447 if (rbnext
&& rbnext
!= &last
->rb_node
)
448 next
= rb_entry_rq(rbnext
);
451 return cfq_choose_req(cfqd
, next
, prev
);
454 static unsigned long cfq_slice_offset(struct cfq_data
*cfqd
,
455 struct cfq_queue
*cfqq
)
458 * just an approximation, should be ok.
460 return (cfqd
->busy_queues
- 1) * (cfq_prio_slice(cfqd
, 1, 0) -
461 cfq_prio_slice(cfqd
, cfq_cfqq_sync(cfqq
), cfqq
->ioprio
));
465 * The cfqd->service_tree holds all pending cfq_queue's that have
466 * requests waiting to be processed. It is sorted in the order that
467 * we will service the queues.
469 static void cfq_service_tree_add(struct cfq_data
*cfqd
,
470 struct cfq_queue
*cfqq
, int add_front
)
472 struct rb_node
**p
, *parent
;
473 struct cfq_queue
*__cfqq
;
474 unsigned long rb_key
;
477 if (cfq_class_idle(cfqq
)) {
478 rb_key
= CFQ_IDLE_DELAY
;
479 parent
= rb_last(&cfqd
->service_tree
.rb
);
480 if (parent
&& parent
!= &cfqq
->rb_node
) {
481 __cfqq
= rb_entry(parent
, struct cfq_queue
, rb_node
);
482 rb_key
+= __cfqq
->rb_key
;
485 } else if (!add_front
) {
486 rb_key
= cfq_slice_offset(cfqd
, cfqq
) + jiffies
;
487 rb_key
+= cfqq
->slice_resid
;
488 cfqq
->slice_resid
= 0;
492 if (!RB_EMPTY_NODE(&cfqq
->rb_node
)) {
494 * same position, nothing more to do
496 if (rb_key
== cfqq
->rb_key
)
499 cfq_rb_erase(&cfqq
->rb_node
, &cfqd
->service_tree
);
504 p
= &cfqd
->service_tree
.rb
.rb_node
;
509 __cfqq
= rb_entry(parent
, struct cfq_queue
, rb_node
);
512 * sort RT queues first, we always want to give
513 * preference to them. IDLE queues goes to the back.
514 * after that, sort on the next service time.
516 if (cfq_class_rt(cfqq
) > cfq_class_rt(__cfqq
))
518 else if (cfq_class_rt(cfqq
) < cfq_class_rt(__cfqq
))
520 else if (cfq_class_idle(cfqq
) < cfq_class_idle(__cfqq
))
522 else if (cfq_class_idle(cfqq
) > cfq_class_idle(__cfqq
))
524 else if (rb_key
< __cfqq
->rb_key
)
529 if (n
== &(*p
)->rb_right
)
536 cfqd
->service_tree
.left
= &cfqq
->rb_node
;
538 cfqq
->rb_key
= rb_key
;
539 rb_link_node(&cfqq
->rb_node
, parent
, p
);
540 rb_insert_color(&cfqq
->rb_node
, &cfqd
->service_tree
.rb
);
544 * Update cfqq's position in the service tree.
546 static void cfq_resort_rr_list(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
549 * Resorting requires the cfqq to be on the RR list already.
551 if (cfq_cfqq_on_rr(cfqq
))
552 cfq_service_tree_add(cfqd
, cfqq
, 0);
556 * add to busy list of queues for service, trying to be fair in ordering
557 * the pending list according to last request service
559 static void cfq_add_cfqq_rr(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
561 cfq_log_cfqq(cfqd
, cfqq
, "add_to_rr");
562 BUG_ON(cfq_cfqq_on_rr(cfqq
));
563 cfq_mark_cfqq_on_rr(cfqq
);
566 cfq_resort_rr_list(cfqd
, cfqq
);
570 * Called when the cfqq no longer has requests pending, remove it from
573 static void cfq_del_cfqq_rr(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
575 cfq_log_cfqq(cfqd
, cfqq
, "del_from_rr");
576 BUG_ON(!cfq_cfqq_on_rr(cfqq
));
577 cfq_clear_cfqq_on_rr(cfqq
);
579 if (!RB_EMPTY_NODE(&cfqq
->rb_node
))
580 cfq_rb_erase(&cfqq
->rb_node
, &cfqd
->service_tree
);
582 BUG_ON(!cfqd
->busy_queues
);
587 * rb tree support functions
589 static void cfq_del_rq_rb(struct request
*rq
)
591 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
592 struct cfq_data
*cfqd
= cfqq
->cfqd
;
593 const int sync
= rq_is_sync(rq
);
595 BUG_ON(!cfqq
->queued
[sync
]);
596 cfqq
->queued
[sync
]--;
598 elv_rb_del(&cfqq
->sort_list
, rq
);
600 if (cfq_cfqq_on_rr(cfqq
) && RB_EMPTY_ROOT(&cfqq
->sort_list
))
601 cfq_del_cfqq_rr(cfqd
, cfqq
);
604 static void cfq_add_rq_rb(struct request
*rq
)
606 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
607 struct cfq_data
*cfqd
= cfqq
->cfqd
;
608 struct request
*__alias
;
610 cfqq
->queued
[rq_is_sync(rq
)]++;
613 * looks a little odd, but the first insert might return an alias.
614 * if that happens, put the alias on the dispatch list
616 while ((__alias
= elv_rb_add(&cfqq
->sort_list
, rq
)) != NULL
)
617 cfq_dispatch_insert(cfqd
->queue
, __alias
);
619 if (!cfq_cfqq_on_rr(cfqq
))
620 cfq_add_cfqq_rr(cfqd
, cfqq
);
623 * check if this request is a better next-serve candidate
625 cfqq
->next_rq
= cfq_choose_req(cfqd
, cfqq
->next_rq
, rq
);
626 BUG_ON(!cfqq
->next_rq
);
629 static void cfq_reposition_rq_rb(struct cfq_queue
*cfqq
, struct request
*rq
)
631 elv_rb_del(&cfqq
->sort_list
, rq
);
632 cfqq
->queued
[rq_is_sync(rq
)]--;
636 static struct request
*
637 cfq_find_rq_fmerge(struct cfq_data
*cfqd
, struct bio
*bio
)
639 struct task_struct
*tsk
= current
;
640 struct cfq_io_context
*cic
;
641 struct cfq_queue
*cfqq
;
643 cic
= cfq_cic_lookup(cfqd
, tsk
->io_context
);
647 cfqq
= cic_to_cfqq(cic
, cfq_bio_sync(bio
));
649 sector_t sector
= bio
->bi_sector
+ bio_sectors(bio
);
651 return elv_rb_find(&cfqq
->sort_list
, sector
);
657 static void cfq_activate_request(struct request_queue
*q
, struct request
*rq
)
659 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
661 cfqd
->rq_in_driver
++;
662 cfq_log_cfqq(cfqd
, RQ_CFQQ(rq
), "activate rq, drv=%d",
665 cfqd
->last_position
= rq
->hard_sector
+ rq
->hard_nr_sectors
;
668 static void cfq_deactivate_request(struct request_queue
*q
, struct request
*rq
)
670 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
672 WARN_ON(!cfqd
->rq_in_driver
);
673 cfqd
->rq_in_driver
--;
674 cfq_log_cfqq(cfqd
, RQ_CFQQ(rq
), "deactivate rq, drv=%d",
678 static void cfq_remove_request(struct request
*rq
)
680 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
682 if (cfqq
->next_rq
== rq
)
683 cfqq
->next_rq
= cfq_find_next_rq(cfqq
->cfqd
, cfqq
, rq
);
685 list_del_init(&rq
->queuelist
);
688 cfqq
->cfqd
->rq_queued
--;
689 if (rq_is_meta(rq
)) {
690 WARN_ON(!cfqq
->meta_pending
);
691 cfqq
->meta_pending
--;
695 static int cfq_merge(struct request_queue
*q
, struct request
**req
,
698 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
699 struct request
*__rq
;
701 __rq
= cfq_find_rq_fmerge(cfqd
, bio
);
702 if (__rq
&& elv_rq_merge_ok(__rq
, bio
)) {
704 return ELEVATOR_FRONT_MERGE
;
707 return ELEVATOR_NO_MERGE
;
710 static void cfq_merged_request(struct request_queue
*q
, struct request
*req
,
713 if (type
== ELEVATOR_FRONT_MERGE
) {
714 struct cfq_queue
*cfqq
= RQ_CFQQ(req
);
716 cfq_reposition_rq_rb(cfqq
, req
);
721 cfq_merged_requests(struct request_queue
*q
, struct request
*rq
,
722 struct request
*next
)
725 * reposition in fifo if next is older than rq
727 if (!list_empty(&rq
->queuelist
) && !list_empty(&next
->queuelist
) &&
728 time_before(next
->start_time
, rq
->start_time
))
729 list_move(&rq
->queuelist
, &next
->queuelist
);
731 cfq_remove_request(next
);
734 static int cfq_allow_merge(struct request_queue
*q
, struct request
*rq
,
737 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
738 struct cfq_io_context
*cic
;
739 struct cfq_queue
*cfqq
;
742 * Disallow merge of a sync bio into an async request.
744 if (cfq_bio_sync(bio
) && !rq_is_sync(rq
))
748 * Lookup the cfqq that this bio will be queued with. Allow
749 * merge only if rq is queued there.
751 cic
= cfq_cic_lookup(cfqd
, current
->io_context
);
755 cfqq
= cic_to_cfqq(cic
, cfq_bio_sync(bio
));
756 if (cfqq
== RQ_CFQQ(rq
))
762 static void __cfq_set_active_queue(struct cfq_data
*cfqd
,
763 struct cfq_queue
*cfqq
)
766 cfq_log_cfqq(cfqd
, cfqq
, "set_active");
768 cfq_clear_cfqq_must_alloc_slice(cfqq
);
769 cfq_clear_cfqq_fifo_expire(cfqq
);
770 cfq_mark_cfqq_slice_new(cfqq
);
771 cfq_clear_cfqq_queue_new(cfqq
);
774 cfqd
->active_queue
= cfqq
;
778 * current cfqq expired its slice (or was too idle), select new one
781 __cfq_slice_expired(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
784 cfq_log_cfqq(cfqd
, cfqq
, "slice expired t=%d", timed_out
);
786 if (cfq_cfqq_wait_request(cfqq
))
787 del_timer(&cfqd
->idle_slice_timer
);
789 cfq_clear_cfqq_must_dispatch(cfqq
);
790 cfq_clear_cfqq_wait_request(cfqq
);
793 * store what was left of this slice, if the queue idled/timed out
795 if (timed_out
&& !cfq_cfqq_slice_new(cfqq
)) {
796 cfqq
->slice_resid
= cfqq
->slice_end
- jiffies
;
797 cfq_log_cfqq(cfqd
, cfqq
, "resid=%ld", cfqq
->slice_resid
);
800 cfq_resort_rr_list(cfqd
, cfqq
);
802 if (cfqq
== cfqd
->active_queue
)
803 cfqd
->active_queue
= NULL
;
805 if (cfqd
->active_cic
) {
806 put_io_context(cfqd
->active_cic
->ioc
);
807 cfqd
->active_cic
= NULL
;
811 static inline void cfq_slice_expired(struct cfq_data
*cfqd
, int timed_out
)
813 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
816 __cfq_slice_expired(cfqd
, cfqq
, timed_out
);
820 * Get next queue for service. Unless we have a queue preemption,
821 * we'll simply select the first cfqq in the service tree.
823 static struct cfq_queue
*cfq_get_next_queue(struct cfq_data
*cfqd
)
825 if (RB_EMPTY_ROOT(&cfqd
->service_tree
.rb
))
828 return cfq_rb_first(&cfqd
->service_tree
);
832 * Get and set a new active queue for service.
834 static struct cfq_queue
*cfq_set_active_queue(struct cfq_data
*cfqd
)
836 struct cfq_queue
*cfqq
;
838 cfqq
= cfq_get_next_queue(cfqd
);
839 __cfq_set_active_queue(cfqd
, cfqq
);
843 static inline sector_t
cfq_dist_from_last(struct cfq_data
*cfqd
,
846 if (rq
->sector
>= cfqd
->last_position
)
847 return rq
->sector
- cfqd
->last_position
;
849 return cfqd
->last_position
- rq
->sector
;
852 static inline int cfq_rq_close(struct cfq_data
*cfqd
, struct request
*rq
)
854 struct cfq_io_context
*cic
= cfqd
->active_cic
;
856 if (!sample_valid(cic
->seek_samples
))
859 return cfq_dist_from_last(cfqd
, rq
) <= cic
->seek_mean
;
862 static int cfq_close_cooperator(struct cfq_data
*cfq_data
,
863 struct cfq_queue
*cfqq
)
866 * We should notice if some of the queues are cooperating, eg
867 * working closely on the same area of the disk. In that case,
868 * we can group them together and don't waste time idling.
873 #define CIC_SEEKY(cic) ((cic)->seek_mean > (8 * 1024))
875 static void cfq_arm_slice_timer(struct cfq_data
*cfqd
)
877 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
878 struct cfq_io_context
*cic
;
882 * SSD device without seek penalty, disable idling. But only do so
883 * for devices that support queuing, otherwise we still have a problem
884 * with sync vs async workloads.
886 if (blk_queue_nonrot(cfqd
->queue
) && cfqd
->hw_tag
)
889 WARN_ON(!RB_EMPTY_ROOT(&cfqq
->sort_list
));
890 WARN_ON(cfq_cfqq_slice_new(cfqq
));
893 * idle is disabled, either manually or by past process history
895 if (!cfqd
->cfq_slice_idle
|| !cfq_cfqq_idle_window(cfqq
))
899 * still requests with the driver, don't idle
901 if (cfqd
->rq_in_driver
)
905 * task has exited, don't wait
907 cic
= cfqd
->active_cic
;
908 if (!cic
|| !atomic_read(&cic
->ioc
->nr_tasks
))
912 * See if this prio level has a good candidate
914 if (cfq_close_cooperator(cfqd
, cfqq
) &&
915 (sample_valid(cic
->ttime_samples
) && cic
->ttime_mean
> 2))
918 cfq_mark_cfqq_must_dispatch(cfqq
);
919 cfq_mark_cfqq_wait_request(cfqq
);
922 * we don't want to idle for seeks, but we do want to allow
923 * fair distribution of slice time for a process doing back-to-back
924 * seeks. so allow a little bit of time for him to submit a new rq
926 sl
= cfqd
->cfq_slice_idle
;
927 if (sample_valid(cic
->seek_samples
) && CIC_SEEKY(cic
))
928 sl
= min(sl
, msecs_to_jiffies(CFQ_MIN_TT
));
930 mod_timer(&cfqd
->idle_slice_timer
, jiffies
+ sl
);
931 cfq_log(cfqd
, "arm_idle: %lu", sl
);
935 * Move request from internal lists to the request queue dispatch list.
937 static void cfq_dispatch_insert(struct request_queue
*q
, struct request
*rq
)
939 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
940 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
942 cfq_log_cfqq(cfqd
, cfqq
, "dispatch_insert");
944 cfq_remove_request(rq
);
946 elv_dispatch_sort(q
, rq
);
948 if (cfq_cfqq_sync(cfqq
))
953 * return expired entry, or NULL to just start from scratch in rbtree
955 static struct request
*cfq_check_fifo(struct cfq_queue
*cfqq
)
957 struct cfq_data
*cfqd
= cfqq
->cfqd
;
961 if (cfq_cfqq_fifo_expire(cfqq
))
964 cfq_mark_cfqq_fifo_expire(cfqq
);
966 if (list_empty(&cfqq
->fifo
))
969 fifo
= cfq_cfqq_sync(cfqq
);
970 rq
= rq_entry_fifo(cfqq
->fifo
.next
);
972 if (time_before(jiffies
, rq
->start_time
+ cfqd
->cfq_fifo_expire
[fifo
]))
975 cfq_log_cfqq(cfqd
, cfqq
, "fifo=%p", rq
);
980 cfq_prio_to_maxrq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
982 const int base_rq
= cfqd
->cfq_slice_async_rq
;
984 WARN_ON(cfqq
->ioprio
>= IOPRIO_BE_NR
);
986 return 2 * (base_rq
+ base_rq
* (CFQ_PRIO_LISTS
- 1 - cfqq
->ioprio
));
990 * Select a queue for service. If we have a current active queue,
991 * check whether to continue servicing it, or retrieve and set a new one.
993 static struct cfq_queue
*cfq_select_queue(struct cfq_data
*cfqd
)
995 struct cfq_queue
*cfqq
;
997 cfqq
= cfqd
->active_queue
;
1002 * The active queue has run out of time, expire it and select new.
1004 if (cfq_slice_used(cfqq
))
1008 * The active queue has requests and isn't expired, allow it to
1011 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
))
1015 * No requests pending. If the active queue still has requests in
1016 * flight or is idling for a new request, allow either of these
1017 * conditions to happen (or time out) before selecting a new queue.
1019 if (timer_pending(&cfqd
->idle_slice_timer
) ||
1020 (cfqq
->dispatched
&& cfq_cfqq_idle_window(cfqq
))) {
1026 cfq_slice_expired(cfqd
, 0);
1028 cfqq
= cfq_set_active_queue(cfqd
);
1034 * Dispatch some requests from cfqq, moving them to the request queue
1038 __cfq_dispatch_requests(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1043 BUG_ON(RB_EMPTY_ROOT(&cfqq
->sort_list
));
1049 * follow expired path, else get first next available
1051 rq
= cfq_check_fifo(cfqq
);
1056 * finally, insert request into driver dispatch list
1058 cfq_dispatch_insert(cfqd
->queue
, rq
);
1062 if (!cfqd
->active_cic
) {
1063 atomic_inc(&RQ_CIC(rq
)->ioc
->refcount
);
1064 cfqd
->active_cic
= RQ_CIC(rq
);
1067 if (RB_EMPTY_ROOT(&cfqq
->sort_list
))
1070 } while (dispatched
< max_dispatch
);
1073 * expire an async queue immediately if it has used up its slice. idle
1074 * queue always expire after 1 dispatch round.
1076 if (cfqd
->busy_queues
> 1 && ((!cfq_cfqq_sync(cfqq
) &&
1077 dispatched
>= cfq_prio_to_maxrq(cfqd
, cfqq
)) ||
1078 cfq_class_idle(cfqq
))) {
1079 cfqq
->slice_end
= jiffies
+ 1;
1080 cfq_slice_expired(cfqd
, 0);
1086 static int __cfq_forced_dispatch_cfqq(struct cfq_queue
*cfqq
)
1090 while (cfqq
->next_rq
) {
1091 cfq_dispatch_insert(cfqq
->cfqd
->queue
, cfqq
->next_rq
);
1095 BUG_ON(!list_empty(&cfqq
->fifo
));
1100 * Drain our current requests. Used for barriers and when switching
1101 * io schedulers on-the-fly.
1103 static int cfq_forced_dispatch(struct cfq_data
*cfqd
)
1105 struct cfq_queue
*cfqq
;
1108 while ((cfqq
= cfq_rb_first(&cfqd
->service_tree
)) != NULL
)
1109 dispatched
+= __cfq_forced_dispatch_cfqq(cfqq
);
1111 cfq_slice_expired(cfqd
, 0);
1113 BUG_ON(cfqd
->busy_queues
);
1115 cfq_log(cfqd
, "forced_dispatch=%d\n", dispatched
);
1119 static int cfq_dispatch_requests(struct request_queue
*q
, int force
)
1121 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1122 struct cfq_queue
*cfqq
;
1125 if (!cfqd
->busy_queues
)
1128 if (unlikely(force
))
1129 return cfq_forced_dispatch(cfqd
);
1132 while ((cfqq
= cfq_select_queue(cfqd
)) != NULL
) {
1135 max_dispatch
= cfqd
->cfq_quantum
;
1136 if (cfq_class_idle(cfqq
))
1139 if (cfqq
->dispatched
>= max_dispatch
) {
1140 if (cfqd
->busy_queues
> 1)
1142 if (cfqq
->dispatched
>= 4 * max_dispatch
)
1146 if (cfqd
->sync_flight
&& !cfq_cfqq_sync(cfqq
))
1149 cfq_clear_cfqq_must_dispatch(cfqq
);
1150 cfq_clear_cfqq_wait_request(cfqq
);
1151 del_timer(&cfqd
->idle_slice_timer
);
1153 dispatched
+= __cfq_dispatch_requests(cfqd
, cfqq
, max_dispatch
);
1156 cfq_log(cfqd
, "dispatched=%d", dispatched
);
1161 * task holds one reference to the queue, dropped when task exits. each rq
1162 * in-flight on this queue also holds a reference, dropped when rq is freed.
1164 * queue lock must be held here.
1166 static void cfq_put_queue(struct cfq_queue
*cfqq
)
1168 struct cfq_data
*cfqd
= cfqq
->cfqd
;
1170 BUG_ON(atomic_read(&cfqq
->ref
) <= 0);
1172 if (!atomic_dec_and_test(&cfqq
->ref
))
1175 cfq_log_cfqq(cfqd
, cfqq
, "put_queue");
1176 BUG_ON(rb_first(&cfqq
->sort_list
));
1177 BUG_ON(cfqq
->allocated
[READ
] + cfqq
->allocated
[WRITE
]);
1178 BUG_ON(cfq_cfqq_on_rr(cfqq
));
1180 if (unlikely(cfqd
->active_queue
== cfqq
)) {
1181 __cfq_slice_expired(cfqd
, cfqq
, 0);
1182 cfq_schedule_dispatch(cfqd
);
1185 kmem_cache_free(cfq_pool
, cfqq
);
1189 * Must always be called with the rcu_read_lock() held
1192 __call_for_each_cic(struct io_context
*ioc
,
1193 void (*func
)(struct io_context
*, struct cfq_io_context
*))
1195 struct cfq_io_context
*cic
;
1196 struct hlist_node
*n
;
1198 hlist_for_each_entry_rcu(cic
, n
, &ioc
->cic_list
, cic_list
)
1203 * Call func for each cic attached to this ioc.
1206 call_for_each_cic(struct io_context
*ioc
,
1207 void (*func
)(struct io_context
*, struct cfq_io_context
*))
1210 __call_for_each_cic(ioc
, func
);
1214 static void cfq_cic_free_rcu(struct rcu_head
*head
)
1216 struct cfq_io_context
*cic
;
1218 cic
= container_of(head
, struct cfq_io_context
, rcu_head
);
1220 kmem_cache_free(cfq_ioc_pool
, cic
);
1221 elv_ioc_count_dec(ioc_count
);
1225 * CFQ scheduler is exiting, grab exit lock and check
1226 * the pending io context count. If it hits zero,
1227 * complete ioc_gone and set it back to NULL
1229 spin_lock(&ioc_gone_lock
);
1230 if (ioc_gone
&& !elv_ioc_count_read(ioc_count
)) {
1234 spin_unlock(&ioc_gone_lock
);
1238 static void cfq_cic_free(struct cfq_io_context
*cic
)
1240 call_rcu(&cic
->rcu_head
, cfq_cic_free_rcu
);
1243 static void cic_free_func(struct io_context
*ioc
, struct cfq_io_context
*cic
)
1245 unsigned long flags
;
1247 BUG_ON(!cic
->dead_key
);
1249 spin_lock_irqsave(&ioc
->lock
, flags
);
1250 radix_tree_delete(&ioc
->radix_root
, cic
->dead_key
);
1251 hlist_del_rcu(&cic
->cic_list
);
1252 spin_unlock_irqrestore(&ioc
->lock
, flags
);
1258 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
1259 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
1260 * and ->trim() which is called with the task lock held
1262 static void cfq_free_io_context(struct io_context
*ioc
)
1265 * ioc->refcount is zero here, or we are called from elv_unregister(),
1266 * so no more cic's are allowed to be linked into this ioc. So it
1267 * should be ok to iterate over the known list, we will see all cic's
1268 * since no new ones are added.
1270 __call_for_each_cic(ioc
, cic_free_func
);
1273 static void cfq_exit_cfqq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1275 if (unlikely(cfqq
== cfqd
->active_queue
)) {
1276 __cfq_slice_expired(cfqd
, cfqq
, 0);
1277 cfq_schedule_dispatch(cfqd
);
1280 cfq_put_queue(cfqq
);
1283 static void __cfq_exit_single_io_context(struct cfq_data
*cfqd
,
1284 struct cfq_io_context
*cic
)
1286 struct io_context
*ioc
= cic
->ioc
;
1288 list_del_init(&cic
->queue_list
);
1291 * Make sure key == NULL is seen for dead queues
1294 cic
->dead_key
= (unsigned long) cic
->key
;
1297 if (ioc
->ioc_data
== cic
)
1298 rcu_assign_pointer(ioc
->ioc_data
, NULL
);
1300 if (cic
->cfqq
[ASYNC
]) {
1301 cfq_exit_cfqq(cfqd
, cic
->cfqq
[ASYNC
]);
1302 cic
->cfqq
[ASYNC
] = NULL
;
1305 if (cic
->cfqq
[SYNC
]) {
1306 cfq_exit_cfqq(cfqd
, cic
->cfqq
[SYNC
]);
1307 cic
->cfqq
[SYNC
] = NULL
;
1311 static void cfq_exit_single_io_context(struct io_context
*ioc
,
1312 struct cfq_io_context
*cic
)
1314 struct cfq_data
*cfqd
= cic
->key
;
1317 struct request_queue
*q
= cfqd
->queue
;
1318 unsigned long flags
;
1320 spin_lock_irqsave(q
->queue_lock
, flags
);
1321 __cfq_exit_single_io_context(cfqd
, cic
);
1322 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1327 * The process that ioc belongs to has exited, we need to clean up
1328 * and put the internal structures we have that belongs to that process.
1330 static void cfq_exit_io_context(struct io_context
*ioc
)
1332 call_for_each_cic(ioc
, cfq_exit_single_io_context
);
1335 static struct cfq_io_context
*
1336 cfq_alloc_io_context(struct cfq_data
*cfqd
, gfp_t gfp_mask
)
1338 struct cfq_io_context
*cic
;
1340 cic
= kmem_cache_alloc_node(cfq_ioc_pool
, gfp_mask
| __GFP_ZERO
,
1343 cic
->last_end_request
= jiffies
;
1344 INIT_LIST_HEAD(&cic
->queue_list
);
1345 INIT_HLIST_NODE(&cic
->cic_list
);
1346 cic
->dtor
= cfq_free_io_context
;
1347 cic
->exit
= cfq_exit_io_context
;
1348 elv_ioc_count_inc(ioc_count
);
1354 static void cfq_init_prio_data(struct cfq_queue
*cfqq
, struct io_context
*ioc
)
1356 struct task_struct
*tsk
= current
;
1359 if (!cfq_cfqq_prio_changed(cfqq
))
1362 ioprio_class
= IOPRIO_PRIO_CLASS(ioc
->ioprio
);
1363 switch (ioprio_class
) {
1365 printk(KERN_ERR
"cfq: bad prio %x\n", ioprio_class
);
1366 case IOPRIO_CLASS_NONE
:
1368 * no prio set, inherit CPU scheduling settings
1370 cfqq
->ioprio
= task_nice_ioprio(tsk
);
1371 cfqq
->ioprio_class
= task_nice_ioclass(tsk
);
1373 case IOPRIO_CLASS_RT
:
1374 cfqq
->ioprio
= task_ioprio(ioc
);
1375 cfqq
->ioprio_class
= IOPRIO_CLASS_RT
;
1377 case IOPRIO_CLASS_BE
:
1378 cfqq
->ioprio
= task_ioprio(ioc
);
1379 cfqq
->ioprio_class
= IOPRIO_CLASS_BE
;
1381 case IOPRIO_CLASS_IDLE
:
1382 cfqq
->ioprio_class
= IOPRIO_CLASS_IDLE
;
1384 cfq_clear_cfqq_idle_window(cfqq
);
1389 * keep track of original prio settings in case we have to temporarily
1390 * elevate the priority of this queue
1392 cfqq
->org_ioprio
= cfqq
->ioprio
;
1393 cfqq
->org_ioprio_class
= cfqq
->ioprio_class
;
1394 cfq_clear_cfqq_prio_changed(cfqq
);
1397 static void changed_ioprio(struct io_context
*ioc
, struct cfq_io_context
*cic
)
1399 struct cfq_data
*cfqd
= cic
->key
;
1400 struct cfq_queue
*cfqq
;
1401 unsigned long flags
;
1403 if (unlikely(!cfqd
))
1406 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
1408 cfqq
= cic
->cfqq
[ASYNC
];
1410 struct cfq_queue
*new_cfqq
;
1411 new_cfqq
= cfq_get_queue(cfqd
, ASYNC
, cic
->ioc
, GFP_ATOMIC
);
1413 cic
->cfqq
[ASYNC
] = new_cfqq
;
1414 cfq_put_queue(cfqq
);
1418 cfqq
= cic
->cfqq
[SYNC
];
1420 cfq_mark_cfqq_prio_changed(cfqq
);
1422 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
1425 static void cfq_ioc_set_ioprio(struct io_context
*ioc
)
1427 call_for_each_cic(ioc
, changed_ioprio
);
1428 ioc
->ioprio_changed
= 0;
1431 static struct cfq_queue
*
1432 cfq_find_alloc_queue(struct cfq_data
*cfqd
, int is_sync
,
1433 struct io_context
*ioc
, gfp_t gfp_mask
)
1435 struct cfq_queue
*cfqq
, *new_cfqq
= NULL
;
1436 struct cfq_io_context
*cic
;
1439 cic
= cfq_cic_lookup(cfqd
, ioc
);
1440 /* cic always exists here */
1441 cfqq
= cic_to_cfqq(cic
, is_sync
);
1447 } else if (gfp_mask
& __GFP_WAIT
) {
1449 * Inform the allocator of the fact that we will
1450 * just repeat this allocation if it fails, to allow
1451 * the allocator to do whatever it needs to attempt to
1454 spin_unlock_irq(cfqd
->queue
->queue_lock
);
1455 new_cfqq
= kmem_cache_alloc_node(cfq_pool
,
1456 gfp_mask
| __GFP_NOFAIL
| __GFP_ZERO
,
1458 spin_lock_irq(cfqd
->queue
->queue_lock
);
1461 cfqq
= kmem_cache_alloc_node(cfq_pool
,
1462 gfp_mask
| __GFP_ZERO
,
1468 RB_CLEAR_NODE(&cfqq
->rb_node
);
1469 INIT_LIST_HEAD(&cfqq
->fifo
);
1471 atomic_set(&cfqq
->ref
, 0);
1474 cfq_mark_cfqq_prio_changed(cfqq
);
1475 cfq_mark_cfqq_queue_new(cfqq
);
1477 cfq_init_prio_data(cfqq
, ioc
);
1480 if (!cfq_class_idle(cfqq
))
1481 cfq_mark_cfqq_idle_window(cfqq
);
1482 cfq_mark_cfqq_sync(cfqq
);
1484 cfqq
->pid
= current
->pid
;
1485 cfq_log_cfqq(cfqd
, cfqq
, "alloced");
1489 kmem_cache_free(cfq_pool
, new_cfqq
);
1492 WARN_ON((gfp_mask
& __GFP_WAIT
) && !cfqq
);
1496 static struct cfq_queue
**
1497 cfq_async_queue_prio(struct cfq_data
*cfqd
, int ioprio_class
, int ioprio
)
1499 switch (ioprio_class
) {
1500 case IOPRIO_CLASS_RT
:
1501 return &cfqd
->async_cfqq
[0][ioprio
];
1502 case IOPRIO_CLASS_BE
:
1503 return &cfqd
->async_cfqq
[1][ioprio
];
1504 case IOPRIO_CLASS_IDLE
:
1505 return &cfqd
->async_idle_cfqq
;
1511 static struct cfq_queue
*
1512 cfq_get_queue(struct cfq_data
*cfqd
, int is_sync
, struct io_context
*ioc
,
1515 const int ioprio
= task_ioprio(ioc
);
1516 const int ioprio_class
= task_ioprio_class(ioc
);
1517 struct cfq_queue
**async_cfqq
= NULL
;
1518 struct cfq_queue
*cfqq
= NULL
;
1521 async_cfqq
= cfq_async_queue_prio(cfqd
, ioprio_class
, ioprio
);
1526 cfqq
= cfq_find_alloc_queue(cfqd
, is_sync
, ioc
, gfp_mask
);
1532 * pin the queue now that it's allocated, scheduler exit will prune it
1534 if (!is_sync
&& !(*async_cfqq
)) {
1535 atomic_inc(&cfqq
->ref
);
1539 atomic_inc(&cfqq
->ref
);
1544 * We drop cfq io contexts lazily, so we may find a dead one.
1547 cfq_drop_dead_cic(struct cfq_data
*cfqd
, struct io_context
*ioc
,
1548 struct cfq_io_context
*cic
)
1550 unsigned long flags
;
1552 WARN_ON(!list_empty(&cic
->queue_list
));
1554 spin_lock_irqsave(&ioc
->lock
, flags
);
1556 BUG_ON(ioc
->ioc_data
== cic
);
1558 radix_tree_delete(&ioc
->radix_root
, (unsigned long) cfqd
);
1559 hlist_del_rcu(&cic
->cic_list
);
1560 spin_unlock_irqrestore(&ioc
->lock
, flags
);
1565 static struct cfq_io_context
*
1566 cfq_cic_lookup(struct cfq_data
*cfqd
, struct io_context
*ioc
)
1568 struct cfq_io_context
*cic
;
1569 unsigned long flags
;
1578 * we maintain a last-hit cache, to avoid browsing over the tree
1580 cic
= rcu_dereference(ioc
->ioc_data
);
1581 if (cic
&& cic
->key
== cfqd
) {
1587 cic
= radix_tree_lookup(&ioc
->radix_root
, (unsigned long) cfqd
);
1591 /* ->key must be copied to avoid race with cfq_exit_queue() */
1594 cfq_drop_dead_cic(cfqd
, ioc
, cic
);
1599 spin_lock_irqsave(&ioc
->lock
, flags
);
1600 rcu_assign_pointer(ioc
->ioc_data
, cic
);
1601 spin_unlock_irqrestore(&ioc
->lock
, flags
);
1609 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
1610 * the process specific cfq io context when entered from the block layer.
1611 * Also adds the cic to a per-cfqd list, used when this queue is removed.
1613 static int cfq_cic_link(struct cfq_data
*cfqd
, struct io_context
*ioc
,
1614 struct cfq_io_context
*cic
, gfp_t gfp_mask
)
1616 unsigned long flags
;
1619 ret
= radix_tree_preload(gfp_mask
);
1624 spin_lock_irqsave(&ioc
->lock
, flags
);
1625 ret
= radix_tree_insert(&ioc
->radix_root
,
1626 (unsigned long) cfqd
, cic
);
1628 hlist_add_head_rcu(&cic
->cic_list
, &ioc
->cic_list
);
1629 spin_unlock_irqrestore(&ioc
->lock
, flags
);
1631 radix_tree_preload_end();
1634 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
1635 list_add(&cic
->queue_list
, &cfqd
->cic_list
);
1636 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
1641 printk(KERN_ERR
"cfq: cic link failed!\n");
1647 * Setup general io context and cfq io context. There can be several cfq
1648 * io contexts per general io context, if this process is doing io to more
1649 * than one device managed by cfq.
1651 static struct cfq_io_context
*
1652 cfq_get_io_context(struct cfq_data
*cfqd
, gfp_t gfp_mask
)
1654 struct io_context
*ioc
= NULL
;
1655 struct cfq_io_context
*cic
;
1657 might_sleep_if(gfp_mask
& __GFP_WAIT
);
1659 ioc
= get_io_context(gfp_mask
, cfqd
->queue
->node
);
1663 cic
= cfq_cic_lookup(cfqd
, ioc
);
1667 cic
= cfq_alloc_io_context(cfqd
, gfp_mask
);
1671 if (cfq_cic_link(cfqd
, ioc
, cic
, gfp_mask
))
1675 smp_read_barrier_depends();
1676 if (unlikely(ioc
->ioprio_changed
))
1677 cfq_ioc_set_ioprio(ioc
);
1683 put_io_context(ioc
);
1688 cfq_update_io_thinktime(struct cfq_data
*cfqd
, struct cfq_io_context
*cic
)
1690 unsigned long elapsed
= jiffies
- cic
->last_end_request
;
1691 unsigned long ttime
= min(elapsed
, 2UL * cfqd
->cfq_slice_idle
);
1693 cic
->ttime_samples
= (7*cic
->ttime_samples
+ 256) / 8;
1694 cic
->ttime_total
= (7*cic
->ttime_total
+ 256*ttime
) / 8;
1695 cic
->ttime_mean
= (cic
->ttime_total
+ 128) / cic
->ttime_samples
;
1699 cfq_update_io_seektime(struct cfq_data
*cfqd
, struct cfq_io_context
*cic
,
1705 if (cic
->last_request_pos
< rq
->sector
)
1706 sdist
= rq
->sector
- cic
->last_request_pos
;
1708 sdist
= cic
->last_request_pos
- rq
->sector
;
1711 * Don't allow the seek distance to get too large from the
1712 * odd fragment, pagein, etc
1714 if (cic
->seek_samples
<= 60) /* second&third seek */
1715 sdist
= min(sdist
, (cic
->seek_mean
* 4) + 2*1024*1024);
1717 sdist
= min(sdist
, (cic
->seek_mean
* 4) + 2*1024*64);
1719 cic
->seek_samples
= (7*cic
->seek_samples
+ 256) / 8;
1720 cic
->seek_total
= (7*cic
->seek_total
+ (u64
)256*sdist
) / 8;
1721 total
= cic
->seek_total
+ (cic
->seek_samples
/2);
1722 do_div(total
, cic
->seek_samples
);
1723 cic
->seek_mean
= (sector_t
)total
;
1727 * Disable idle window if the process thinks too long or seeks so much that
1731 cfq_update_idle_window(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1732 struct cfq_io_context
*cic
)
1734 int old_idle
, enable_idle
;
1737 * Don't idle for async or idle io prio class
1739 if (!cfq_cfqq_sync(cfqq
) || cfq_class_idle(cfqq
))
1742 enable_idle
= old_idle
= cfq_cfqq_idle_window(cfqq
);
1744 if (!atomic_read(&cic
->ioc
->nr_tasks
) || !cfqd
->cfq_slice_idle
||
1745 (cfqd
->hw_tag
&& CIC_SEEKY(cic
)))
1747 else if (sample_valid(cic
->ttime_samples
)) {
1748 if (cic
->ttime_mean
> cfqd
->cfq_slice_idle
)
1754 if (old_idle
!= enable_idle
) {
1755 cfq_log_cfqq(cfqd
, cfqq
, "idle=%d", enable_idle
);
1757 cfq_mark_cfqq_idle_window(cfqq
);
1759 cfq_clear_cfqq_idle_window(cfqq
);
1764 * Check if new_cfqq should preempt the currently active queue. Return 0 for
1765 * no or if we aren't sure, a 1 will cause a preempt.
1768 cfq_should_preempt(struct cfq_data
*cfqd
, struct cfq_queue
*new_cfqq
,
1771 struct cfq_queue
*cfqq
;
1773 cfqq
= cfqd
->active_queue
;
1777 if (cfq_slice_used(cfqq
))
1780 if (cfq_class_idle(new_cfqq
))
1783 if (cfq_class_idle(cfqq
))
1787 * if the new request is sync, but the currently running queue is
1788 * not, let the sync request have priority.
1790 if (rq_is_sync(rq
) && !cfq_cfqq_sync(cfqq
))
1794 * So both queues are sync. Let the new request get disk time if
1795 * it's a metadata request and the current queue is doing regular IO.
1797 if (rq_is_meta(rq
) && !cfqq
->meta_pending
)
1800 if (!cfqd
->active_cic
|| !cfq_cfqq_wait_request(cfqq
))
1804 * if this request is as-good as one we would expect from the
1805 * current cfqq, let it preempt
1807 if (cfq_rq_close(cfqd
, rq
))
1814 * cfqq preempts the active queue. if we allowed preempt with no slice left,
1815 * let it have half of its nominal slice.
1817 static void cfq_preempt_queue(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1819 cfq_log_cfqq(cfqd
, cfqq
, "preempt");
1820 cfq_slice_expired(cfqd
, 1);
1823 * Put the new queue at the front of the of the current list,
1824 * so we know that it will be selected next.
1826 BUG_ON(!cfq_cfqq_on_rr(cfqq
));
1828 cfq_service_tree_add(cfqd
, cfqq
, 1);
1830 cfqq
->slice_end
= 0;
1831 cfq_mark_cfqq_slice_new(cfqq
);
1835 * Called when a new fs request (rq) is added (to cfqq). Check if there's
1836 * something we should do about it
1839 cfq_rq_enqueued(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1842 struct cfq_io_context
*cic
= RQ_CIC(rq
);
1846 cfqq
->meta_pending
++;
1848 cfq_update_io_thinktime(cfqd
, cic
);
1849 cfq_update_io_seektime(cfqd
, cic
, rq
);
1850 cfq_update_idle_window(cfqd
, cfqq
, cic
);
1852 cic
->last_request_pos
= rq
->sector
+ rq
->nr_sectors
;
1854 if (cfqq
== cfqd
->active_queue
) {
1856 * if we are waiting for a request for this queue, let it rip
1857 * immediately and flag that we must not expire this queue
1860 if (cfq_cfqq_wait_request(cfqq
)) {
1861 cfq_mark_cfqq_must_dispatch(cfqq
);
1862 del_timer(&cfqd
->idle_slice_timer
);
1863 blk_start_queueing(cfqd
->queue
);
1865 } else if (cfq_should_preempt(cfqd
, cfqq
, rq
)) {
1867 * not the active queue - expire current slice if it is
1868 * idle and has expired it's mean thinktime or this new queue
1869 * has some old slice time left and is of higher priority
1871 cfq_preempt_queue(cfqd
, cfqq
);
1872 cfq_mark_cfqq_must_dispatch(cfqq
);
1873 blk_start_queueing(cfqd
->queue
);
1877 static void cfq_insert_request(struct request_queue
*q
, struct request
*rq
)
1879 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1880 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1882 cfq_log_cfqq(cfqd
, cfqq
, "insert_request");
1883 cfq_init_prio_data(cfqq
, RQ_CIC(rq
)->ioc
);
1887 list_add_tail(&rq
->queuelist
, &cfqq
->fifo
);
1889 cfq_rq_enqueued(cfqd
, cfqq
, rq
);
1893 * Update hw_tag based on peak queue depth over 50 samples under
1896 static void cfq_update_hw_tag(struct cfq_data
*cfqd
)
1898 if (cfqd
->rq_in_driver
> cfqd
->rq_in_driver_peak
)
1899 cfqd
->rq_in_driver_peak
= cfqd
->rq_in_driver
;
1901 if (cfqd
->rq_queued
<= CFQ_HW_QUEUE_MIN
&&
1902 cfqd
->rq_in_driver
<= CFQ_HW_QUEUE_MIN
)
1905 if (cfqd
->hw_tag_samples
++ < 50)
1908 if (cfqd
->rq_in_driver_peak
>= CFQ_HW_QUEUE_MIN
)
1913 cfqd
->hw_tag_samples
= 0;
1914 cfqd
->rq_in_driver_peak
= 0;
1917 static void cfq_completed_request(struct request_queue
*q
, struct request
*rq
)
1919 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1920 struct cfq_data
*cfqd
= cfqq
->cfqd
;
1921 const int sync
= rq_is_sync(rq
);
1925 cfq_log_cfqq(cfqd
, cfqq
, "complete");
1927 cfq_update_hw_tag(cfqd
);
1929 WARN_ON(!cfqd
->rq_in_driver
);
1930 WARN_ON(!cfqq
->dispatched
);
1931 cfqd
->rq_in_driver
--;
1934 if (cfq_cfqq_sync(cfqq
))
1935 cfqd
->sync_flight
--;
1937 if (!cfq_class_idle(cfqq
))
1938 cfqd
->last_end_request
= now
;
1941 RQ_CIC(rq
)->last_end_request
= now
;
1944 * If this is the active queue, check if it needs to be expired,
1945 * or if we want to idle in case it has no pending requests.
1947 if (cfqd
->active_queue
== cfqq
) {
1948 if (cfq_cfqq_slice_new(cfqq
)) {
1949 cfq_set_prio_slice(cfqd
, cfqq
);
1950 cfq_clear_cfqq_slice_new(cfqq
);
1952 if (cfq_slice_used(cfqq
) || cfq_class_idle(cfqq
))
1953 cfq_slice_expired(cfqd
, 1);
1954 else if (sync
&& RB_EMPTY_ROOT(&cfqq
->sort_list
))
1955 cfq_arm_slice_timer(cfqd
);
1958 if (!cfqd
->rq_in_driver
)
1959 cfq_schedule_dispatch(cfqd
);
1963 * we temporarily boost lower priority queues if they are holding fs exclusive
1964 * resources. they are boosted to normal prio (CLASS_BE/4)
1966 static void cfq_prio_boost(struct cfq_queue
*cfqq
)
1968 if (has_fs_excl()) {
1970 * boost idle prio on transactions that would lock out other
1971 * users of the filesystem
1973 if (cfq_class_idle(cfqq
))
1974 cfqq
->ioprio_class
= IOPRIO_CLASS_BE
;
1975 if (cfqq
->ioprio
> IOPRIO_NORM
)
1976 cfqq
->ioprio
= IOPRIO_NORM
;
1979 * check if we need to unboost the queue
1981 if (cfqq
->ioprio_class
!= cfqq
->org_ioprio_class
)
1982 cfqq
->ioprio_class
= cfqq
->org_ioprio_class
;
1983 if (cfqq
->ioprio
!= cfqq
->org_ioprio
)
1984 cfqq
->ioprio
= cfqq
->org_ioprio
;
1988 static inline int __cfq_may_queue(struct cfq_queue
*cfqq
)
1990 if ((cfq_cfqq_wait_request(cfqq
) || cfq_cfqq_must_alloc(cfqq
)) &&
1991 !cfq_cfqq_must_alloc_slice(cfqq
)) {
1992 cfq_mark_cfqq_must_alloc_slice(cfqq
);
1993 return ELV_MQUEUE_MUST
;
1996 return ELV_MQUEUE_MAY
;
1999 static int cfq_may_queue(struct request_queue
*q
, int rw
)
2001 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2002 struct task_struct
*tsk
= current
;
2003 struct cfq_io_context
*cic
;
2004 struct cfq_queue
*cfqq
;
2007 * don't force setup of a queue from here, as a call to may_queue
2008 * does not necessarily imply that a request actually will be queued.
2009 * so just lookup a possibly existing queue, or return 'may queue'
2012 cic
= cfq_cic_lookup(cfqd
, tsk
->io_context
);
2014 return ELV_MQUEUE_MAY
;
2016 cfqq
= cic_to_cfqq(cic
, rw
& REQ_RW_SYNC
);
2018 cfq_init_prio_data(cfqq
, cic
->ioc
);
2019 cfq_prio_boost(cfqq
);
2021 return __cfq_may_queue(cfqq
);
2024 return ELV_MQUEUE_MAY
;
2028 * queue lock held here
2030 static void cfq_put_request(struct request
*rq
)
2032 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
2035 const int rw
= rq_data_dir(rq
);
2037 BUG_ON(!cfqq
->allocated
[rw
]);
2038 cfqq
->allocated
[rw
]--;
2040 put_io_context(RQ_CIC(rq
)->ioc
);
2042 rq
->elevator_private
= NULL
;
2043 rq
->elevator_private2
= NULL
;
2045 cfq_put_queue(cfqq
);
2050 * Allocate cfq data structures associated with this request.
2053 cfq_set_request(struct request_queue
*q
, struct request
*rq
, gfp_t gfp_mask
)
2055 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2056 struct cfq_io_context
*cic
;
2057 const int rw
= rq_data_dir(rq
);
2058 const int is_sync
= rq_is_sync(rq
);
2059 struct cfq_queue
*cfqq
;
2060 unsigned long flags
;
2062 might_sleep_if(gfp_mask
& __GFP_WAIT
);
2064 cic
= cfq_get_io_context(cfqd
, gfp_mask
);
2066 spin_lock_irqsave(q
->queue_lock
, flags
);
2071 cfqq
= cic_to_cfqq(cic
, is_sync
);
2073 cfqq
= cfq_get_queue(cfqd
, is_sync
, cic
->ioc
, gfp_mask
);
2078 cic_set_cfqq(cic
, cfqq
, is_sync
);
2081 cfqq
->allocated
[rw
]++;
2082 cfq_clear_cfqq_must_alloc(cfqq
);
2083 atomic_inc(&cfqq
->ref
);
2085 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2087 rq
->elevator_private
= cic
;
2088 rq
->elevator_private2
= cfqq
;
2093 put_io_context(cic
->ioc
);
2095 cfq_schedule_dispatch(cfqd
);
2096 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2097 cfq_log(cfqd
, "set_request fail");
2101 static void cfq_kick_queue(struct work_struct
*work
)
2103 struct cfq_data
*cfqd
=
2104 container_of(work
, struct cfq_data
, unplug_work
);
2105 struct request_queue
*q
= cfqd
->queue
;
2106 unsigned long flags
;
2108 spin_lock_irqsave(q
->queue_lock
, flags
);
2109 blk_start_queueing(q
);
2110 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2114 * Timer running if the active_queue is currently idling inside its time slice
2116 static void cfq_idle_slice_timer(unsigned long data
)
2118 struct cfq_data
*cfqd
= (struct cfq_data
*) data
;
2119 struct cfq_queue
*cfqq
;
2120 unsigned long flags
;
2123 cfq_log(cfqd
, "idle timer fired");
2125 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
2127 cfqq
= cfqd
->active_queue
;
2134 if (cfq_slice_used(cfqq
))
2138 * only expire and reinvoke request handler, if there are
2139 * other queues with pending requests
2141 if (!cfqd
->busy_queues
)
2145 * not expired and it has a request pending, let it dispatch
2147 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
)) {
2148 cfq_mark_cfqq_must_dispatch(cfqq
);
2153 cfq_slice_expired(cfqd
, timed_out
);
2155 cfq_schedule_dispatch(cfqd
);
2157 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
2160 static void cfq_shutdown_timer_wq(struct cfq_data
*cfqd
)
2162 del_timer_sync(&cfqd
->idle_slice_timer
);
2163 kblockd_flush_work(&cfqd
->unplug_work
);
2166 static void cfq_put_async_queues(struct cfq_data
*cfqd
)
2170 for (i
= 0; i
< IOPRIO_BE_NR
; i
++) {
2171 if (cfqd
->async_cfqq
[0][i
])
2172 cfq_put_queue(cfqd
->async_cfqq
[0][i
]);
2173 if (cfqd
->async_cfqq
[1][i
])
2174 cfq_put_queue(cfqd
->async_cfqq
[1][i
]);
2177 if (cfqd
->async_idle_cfqq
)
2178 cfq_put_queue(cfqd
->async_idle_cfqq
);
2181 static void cfq_exit_queue(elevator_t
*e
)
2183 struct cfq_data
*cfqd
= e
->elevator_data
;
2184 struct request_queue
*q
= cfqd
->queue
;
2186 cfq_shutdown_timer_wq(cfqd
);
2188 spin_lock_irq(q
->queue_lock
);
2190 if (cfqd
->active_queue
)
2191 __cfq_slice_expired(cfqd
, cfqd
->active_queue
, 0);
2193 while (!list_empty(&cfqd
->cic_list
)) {
2194 struct cfq_io_context
*cic
= list_entry(cfqd
->cic_list
.next
,
2195 struct cfq_io_context
,
2198 __cfq_exit_single_io_context(cfqd
, cic
);
2201 cfq_put_async_queues(cfqd
);
2203 spin_unlock_irq(q
->queue_lock
);
2205 cfq_shutdown_timer_wq(cfqd
);
2210 static void *cfq_init_queue(struct request_queue
*q
)
2212 struct cfq_data
*cfqd
;
2214 cfqd
= kmalloc_node(sizeof(*cfqd
), GFP_KERNEL
| __GFP_ZERO
, q
->node
);
2218 cfqd
->service_tree
= CFQ_RB_ROOT
;
2219 INIT_LIST_HEAD(&cfqd
->cic_list
);
2223 init_timer(&cfqd
->idle_slice_timer
);
2224 cfqd
->idle_slice_timer
.function
= cfq_idle_slice_timer
;
2225 cfqd
->idle_slice_timer
.data
= (unsigned long) cfqd
;
2227 INIT_WORK(&cfqd
->unplug_work
, cfq_kick_queue
);
2229 cfqd
->last_end_request
= jiffies
;
2230 cfqd
->cfq_quantum
= cfq_quantum
;
2231 cfqd
->cfq_fifo_expire
[0] = cfq_fifo_expire
[0];
2232 cfqd
->cfq_fifo_expire
[1] = cfq_fifo_expire
[1];
2233 cfqd
->cfq_back_max
= cfq_back_max
;
2234 cfqd
->cfq_back_penalty
= cfq_back_penalty
;
2235 cfqd
->cfq_slice
[0] = cfq_slice_async
;
2236 cfqd
->cfq_slice
[1] = cfq_slice_sync
;
2237 cfqd
->cfq_slice_async_rq
= cfq_slice_async_rq
;
2238 cfqd
->cfq_slice_idle
= cfq_slice_idle
;
2244 static void cfq_slab_kill(void)
2247 * Caller already ensured that pending RCU callbacks are completed,
2248 * so we should have no busy allocations at this point.
2251 kmem_cache_destroy(cfq_pool
);
2253 kmem_cache_destroy(cfq_ioc_pool
);
2256 static int __init
cfq_slab_setup(void)
2258 cfq_pool
= KMEM_CACHE(cfq_queue
, 0);
2262 cfq_ioc_pool
= KMEM_CACHE(cfq_io_context
, 0);
2273 * sysfs parts below -->
2276 cfq_var_show(unsigned int var
, char *page
)
2278 return sprintf(page
, "%d\n", var
);
2282 cfq_var_store(unsigned int *var
, const char *page
, size_t count
)
2284 char *p
= (char *) page
;
2286 *var
= simple_strtoul(p
, &p
, 10);
2290 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
2291 static ssize_t __FUNC(elevator_t *e, char *page) \
2293 struct cfq_data *cfqd = e->elevator_data; \
2294 unsigned int __data = __VAR; \
2296 __data = jiffies_to_msecs(__data); \
2297 return cfq_var_show(__data, (page)); \
2299 SHOW_FUNCTION(cfq_quantum_show
, cfqd
->cfq_quantum
, 0);
2300 SHOW_FUNCTION(cfq_fifo_expire_sync_show
, cfqd
->cfq_fifo_expire
[1], 1);
2301 SHOW_FUNCTION(cfq_fifo_expire_async_show
, cfqd
->cfq_fifo_expire
[0], 1);
2302 SHOW_FUNCTION(cfq_back_seek_max_show
, cfqd
->cfq_back_max
, 0);
2303 SHOW_FUNCTION(cfq_back_seek_penalty_show
, cfqd
->cfq_back_penalty
, 0);
2304 SHOW_FUNCTION(cfq_slice_idle_show
, cfqd
->cfq_slice_idle
, 1);
2305 SHOW_FUNCTION(cfq_slice_sync_show
, cfqd
->cfq_slice
[1], 1);
2306 SHOW_FUNCTION(cfq_slice_async_show
, cfqd
->cfq_slice
[0], 1);
2307 SHOW_FUNCTION(cfq_slice_async_rq_show
, cfqd
->cfq_slice_async_rq
, 0);
2308 #undef SHOW_FUNCTION
2310 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
2311 static ssize_t __FUNC(elevator_t *e, const char *page, size_t count) \
2313 struct cfq_data *cfqd = e->elevator_data; \
2314 unsigned int __data; \
2315 int ret = cfq_var_store(&__data, (page), count); \
2316 if (__data < (MIN)) \
2318 else if (__data > (MAX)) \
2321 *(__PTR) = msecs_to_jiffies(__data); \
2323 *(__PTR) = __data; \
2326 STORE_FUNCTION(cfq_quantum_store
, &cfqd
->cfq_quantum
, 1, UINT_MAX
, 0);
2327 STORE_FUNCTION(cfq_fifo_expire_sync_store
, &cfqd
->cfq_fifo_expire
[1], 1,
2329 STORE_FUNCTION(cfq_fifo_expire_async_store
, &cfqd
->cfq_fifo_expire
[0], 1,
2331 STORE_FUNCTION(cfq_back_seek_max_store
, &cfqd
->cfq_back_max
, 0, UINT_MAX
, 0);
2332 STORE_FUNCTION(cfq_back_seek_penalty_store
, &cfqd
->cfq_back_penalty
, 1,
2334 STORE_FUNCTION(cfq_slice_idle_store
, &cfqd
->cfq_slice_idle
, 0, UINT_MAX
, 1);
2335 STORE_FUNCTION(cfq_slice_sync_store
, &cfqd
->cfq_slice
[1], 1, UINT_MAX
, 1);
2336 STORE_FUNCTION(cfq_slice_async_store
, &cfqd
->cfq_slice
[0], 1, UINT_MAX
, 1);
2337 STORE_FUNCTION(cfq_slice_async_rq_store
, &cfqd
->cfq_slice_async_rq
, 1,
2339 #undef STORE_FUNCTION
2341 #define CFQ_ATTR(name) \
2342 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2344 static struct elv_fs_entry cfq_attrs
[] = {
2346 CFQ_ATTR(fifo_expire_sync
),
2347 CFQ_ATTR(fifo_expire_async
),
2348 CFQ_ATTR(back_seek_max
),
2349 CFQ_ATTR(back_seek_penalty
),
2350 CFQ_ATTR(slice_sync
),
2351 CFQ_ATTR(slice_async
),
2352 CFQ_ATTR(slice_async_rq
),
2353 CFQ_ATTR(slice_idle
),
2357 static struct elevator_type iosched_cfq
= {
2359 .elevator_merge_fn
= cfq_merge
,
2360 .elevator_merged_fn
= cfq_merged_request
,
2361 .elevator_merge_req_fn
= cfq_merged_requests
,
2362 .elevator_allow_merge_fn
= cfq_allow_merge
,
2363 .elevator_dispatch_fn
= cfq_dispatch_requests
,
2364 .elevator_add_req_fn
= cfq_insert_request
,
2365 .elevator_activate_req_fn
= cfq_activate_request
,
2366 .elevator_deactivate_req_fn
= cfq_deactivate_request
,
2367 .elevator_queue_empty_fn
= cfq_queue_empty
,
2368 .elevator_completed_req_fn
= cfq_completed_request
,
2369 .elevator_former_req_fn
= elv_rb_former_request
,
2370 .elevator_latter_req_fn
= elv_rb_latter_request
,
2371 .elevator_set_req_fn
= cfq_set_request
,
2372 .elevator_put_req_fn
= cfq_put_request
,
2373 .elevator_may_queue_fn
= cfq_may_queue
,
2374 .elevator_init_fn
= cfq_init_queue
,
2375 .elevator_exit_fn
= cfq_exit_queue
,
2376 .trim
= cfq_free_io_context
,
2378 .elevator_attrs
= cfq_attrs
,
2379 .elevator_name
= "cfq",
2380 .elevator_owner
= THIS_MODULE
,
2383 static int __init
cfq_init(void)
2386 * could be 0 on HZ < 1000 setups
2388 if (!cfq_slice_async
)
2389 cfq_slice_async
= 1;
2390 if (!cfq_slice_idle
)
2393 if (cfq_slab_setup())
2396 elv_register(&iosched_cfq
);
2401 static void __exit
cfq_exit(void)
2403 DECLARE_COMPLETION_ONSTACK(all_gone
);
2404 elv_unregister(&iosched_cfq
);
2405 ioc_gone
= &all_gone
;
2406 /* ioc_gone's update must be visible before reading ioc_count */
2410 * this also protects us from entering cfq_slab_kill() with
2411 * pending RCU callbacks
2413 if (elv_ioc_count_read(ioc_count
))
2414 wait_for_completion(&all_gone
);
2418 module_init(cfq_init
);
2419 module_exit(cfq_exit
);
2421 MODULE_AUTHOR("Jens Axboe");
2422 MODULE_LICENSE("GPL");
2423 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");