frv: use generic pci_enable_resources()
[linux-2.6/mini2440.git] / mm / filemap.c
blobbf8f9c0c7a835a202d6788eb9981ea2f0bd849c2
1 /*
2 * linux/mm/filemap.c
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
7 /*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/compiler.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/aio.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/syscalls.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/memcontrol.h>
36 #include "internal.h"
39 * FIXME: remove all knowledge of the buffer layer from the core VM
41 #include <linux/buffer_head.h> /* for generic_osync_inode */
43 #include <asm/mman.h>
47 * Shared mappings implemented 30.11.1994. It's not fully working yet,
48 * though.
50 * Shared mappings now work. 15.8.1995 Bruno.
52 * finished 'unifying' the page and buffer cache and SMP-threaded the
53 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
55 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
59 * Lock ordering:
61 * ->i_mmap_lock (vmtruncate)
62 * ->private_lock (__free_pte->__set_page_dirty_buffers)
63 * ->swap_lock (exclusive_swap_page, others)
64 * ->mapping->tree_lock
66 * ->i_mutex
67 * ->i_mmap_lock (truncate->unmap_mapping_range)
69 * ->mmap_sem
70 * ->i_mmap_lock
71 * ->page_table_lock or pte_lock (various, mainly in memory.c)
72 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
74 * ->mmap_sem
75 * ->lock_page (access_process_vm)
77 * ->i_mutex (generic_file_buffered_write)
78 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
80 * ->i_mutex
81 * ->i_alloc_sem (various)
83 * ->inode_lock
84 * ->sb_lock (fs/fs-writeback.c)
85 * ->mapping->tree_lock (__sync_single_inode)
87 * ->i_mmap_lock
88 * ->anon_vma.lock (vma_adjust)
90 * ->anon_vma.lock
91 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
93 * ->page_table_lock or pte_lock
94 * ->swap_lock (try_to_unmap_one)
95 * ->private_lock (try_to_unmap_one)
96 * ->tree_lock (try_to_unmap_one)
97 * ->zone.lru_lock (follow_page->mark_page_accessed)
98 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
99 * ->private_lock (page_remove_rmap->set_page_dirty)
100 * ->tree_lock (page_remove_rmap->set_page_dirty)
101 * ->inode_lock (page_remove_rmap->set_page_dirty)
102 * ->inode_lock (zap_pte_range->set_page_dirty)
103 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
105 * ->task->proc_lock
106 * ->dcache_lock (proc_pid_lookup)
110 * Remove a page from the page cache and free it. Caller has to make
111 * sure the page is locked and that nobody else uses it - or that usage
112 * is safe. The caller must hold the mapping's tree_lock.
114 void __remove_from_page_cache(struct page *page)
116 struct address_space *mapping = page->mapping;
118 mem_cgroup_uncharge_cache_page(page);
119 radix_tree_delete(&mapping->page_tree, page->index);
120 page->mapping = NULL;
121 mapping->nrpages--;
122 __dec_zone_page_state(page, NR_FILE_PAGES);
123 BUG_ON(page_mapped(page));
126 * Some filesystems seem to re-dirty the page even after
127 * the VM has canceled the dirty bit (eg ext3 journaling).
129 * Fix it up by doing a final dirty accounting check after
130 * having removed the page entirely.
132 if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
133 dec_zone_page_state(page, NR_FILE_DIRTY);
134 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
138 void remove_from_page_cache(struct page *page)
140 struct address_space *mapping = page->mapping;
142 BUG_ON(!PageLocked(page));
144 spin_lock_irq(&mapping->tree_lock);
145 __remove_from_page_cache(page);
146 spin_unlock_irq(&mapping->tree_lock);
149 static int sync_page(void *word)
151 struct address_space *mapping;
152 struct page *page;
154 page = container_of((unsigned long *)word, struct page, flags);
157 * page_mapping() is being called without PG_locked held.
158 * Some knowledge of the state and use of the page is used to
159 * reduce the requirements down to a memory barrier.
160 * The danger here is of a stale page_mapping() return value
161 * indicating a struct address_space different from the one it's
162 * associated with when it is associated with one.
163 * After smp_mb(), it's either the correct page_mapping() for
164 * the page, or an old page_mapping() and the page's own
165 * page_mapping() has gone NULL.
166 * The ->sync_page() address_space operation must tolerate
167 * page_mapping() going NULL. By an amazing coincidence,
168 * this comes about because none of the users of the page
169 * in the ->sync_page() methods make essential use of the
170 * page_mapping(), merely passing the page down to the backing
171 * device's unplug functions when it's non-NULL, which in turn
172 * ignore it for all cases but swap, where only page_private(page) is
173 * of interest. When page_mapping() does go NULL, the entire
174 * call stack gracefully ignores the page and returns.
175 * -- wli
177 smp_mb();
178 mapping = page_mapping(page);
179 if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
180 mapping->a_ops->sync_page(page);
181 io_schedule();
182 return 0;
185 static int sync_page_killable(void *word)
187 sync_page(word);
188 return fatal_signal_pending(current) ? -EINTR : 0;
192 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
193 * @mapping: address space structure to write
194 * @start: offset in bytes where the range starts
195 * @end: offset in bytes where the range ends (inclusive)
196 * @sync_mode: enable synchronous operation
198 * Start writeback against all of a mapping's dirty pages that lie
199 * within the byte offsets <start, end> inclusive.
201 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
202 * opposed to a regular memory cleansing writeback. The difference between
203 * these two operations is that if a dirty page/buffer is encountered, it must
204 * be waited upon, and not just skipped over.
206 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
207 loff_t end, int sync_mode)
209 int ret;
210 struct writeback_control wbc = {
211 .sync_mode = sync_mode,
212 .nr_to_write = mapping->nrpages * 2,
213 .range_start = start,
214 .range_end = end,
217 if (!mapping_cap_writeback_dirty(mapping))
218 return 0;
220 ret = do_writepages(mapping, &wbc);
221 return ret;
224 static inline int __filemap_fdatawrite(struct address_space *mapping,
225 int sync_mode)
227 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
230 int filemap_fdatawrite(struct address_space *mapping)
232 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
234 EXPORT_SYMBOL(filemap_fdatawrite);
236 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
237 loff_t end)
239 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
241 EXPORT_SYMBOL(filemap_fdatawrite_range);
244 * filemap_flush - mostly a non-blocking flush
245 * @mapping: target address_space
247 * This is a mostly non-blocking flush. Not suitable for data-integrity
248 * purposes - I/O may not be started against all dirty pages.
250 int filemap_flush(struct address_space *mapping)
252 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
254 EXPORT_SYMBOL(filemap_flush);
257 * wait_on_page_writeback_range - wait for writeback to complete
258 * @mapping: target address_space
259 * @start: beginning page index
260 * @end: ending page index
262 * Wait for writeback to complete against pages indexed by start->end
263 * inclusive
265 int wait_on_page_writeback_range(struct address_space *mapping,
266 pgoff_t start, pgoff_t end)
268 struct pagevec pvec;
269 int nr_pages;
270 int ret = 0;
271 pgoff_t index;
273 if (end < start)
274 return 0;
276 pagevec_init(&pvec, 0);
277 index = start;
278 while ((index <= end) &&
279 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
280 PAGECACHE_TAG_WRITEBACK,
281 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
282 unsigned i;
284 for (i = 0; i < nr_pages; i++) {
285 struct page *page = pvec.pages[i];
287 /* until radix tree lookup accepts end_index */
288 if (page->index > end)
289 continue;
291 wait_on_page_writeback(page);
292 if (PageError(page))
293 ret = -EIO;
295 pagevec_release(&pvec);
296 cond_resched();
299 /* Check for outstanding write errors */
300 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
301 ret = -ENOSPC;
302 if (test_and_clear_bit(AS_EIO, &mapping->flags))
303 ret = -EIO;
305 return ret;
309 * sync_page_range - write and wait on all pages in the passed range
310 * @inode: target inode
311 * @mapping: target address_space
312 * @pos: beginning offset in pages to write
313 * @count: number of bytes to write
315 * Write and wait upon all the pages in the passed range. This is a "data
316 * integrity" operation. It waits upon in-flight writeout before starting and
317 * waiting upon new writeout. If there was an IO error, return it.
319 * We need to re-take i_mutex during the generic_osync_inode list walk because
320 * it is otherwise livelockable.
322 int sync_page_range(struct inode *inode, struct address_space *mapping,
323 loff_t pos, loff_t count)
325 pgoff_t start = pos >> PAGE_CACHE_SHIFT;
326 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
327 int ret;
329 if (!mapping_cap_writeback_dirty(mapping) || !count)
330 return 0;
331 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
332 if (ret == 0) {
333 mutex_lock(&inode->i_mutex);
334 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
335 mutex_unlock(&inode->i_mutex);
337 if (ret == 0)
338 ret = wait_on_page_writeback_range(mapping, start, end);
339 return ret;
341 EXPORT_SYMBOL(sync_page_range);
344 * sync_page_range_nolock - write & wait on all pages in the passed range without locking
345 * @inode: target inode
346 * @mapping: target address_space
347 * @pos: beginning offset in pages to write
348 * @count: number of bytes to write
350 * Note: Holding i_mutex across sync_page_range_nolock() is not a good idea
351 * as it forces O_SYNC writers to different parts of the same file
352 * to be serialised right until io completion.
354 int sync_page_range_nolock(struct inode *inode, struct address_space *mapping,
355 loff_t pos, loff_t count)
357 pgoff_t start = pos >> PAGE_CACHE_SHIFT;
358 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
359 int ret;
361 if (!mapping_cap_writeback_dirty(mapping) || !count)
362 return 0;
363 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
364 if (ret == 0)
365 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
366 if (ret == 0)
367 ret = wait_on_page_writeback_range(mapping, start, end);
368 return ret;
370 EXPORT_SYMBOL(sync_page_range_nolock);
373 * filemap_fdatawait - wait for all under-writeback pages to complete
374 * @mapping: address space structure to wait for
376 * Walk the list of under-writeback pages of the given address space
377 * and wait for all of them.
379 int filemap_fdatawait(struct address_space *mapping)
381 loff_t i_size = i_size_read(mapping->host);
383 if (i_size == 0)
384 return 0;
386 return wait_on_page_writeback_range(mapping, 0,
387 (i_size - 1) >> PAGE_CACHE_SHIFT);
389 EXPORT_SYMBOL(filemap_fdatawait);
391 int filemap_write_and_wait(struct address_space *mapping)
393 int err = 0;
395 if (mapping->nrpages) {
396 err = filemap_fdatawrite(mapping);
398 * Even if the above returned error, the pages may be
399 * written partially (e.g. -ENOSPC), so we wait for it.
400 * But the -EIO is special case, it may indicate the worst
401 * thing (e.g. bug) happened, so we avoid waiting for it.
403 if (err != -EIO) {
404 int err2 = filemap_fdatawait(mapping);
405 if (!err)
406 err = err2;
409 return err;
411 EXPORT_SYMBOL(filemap_write_and_wait);
414 * filemap_write_and_wait_range - write out & wait on a file range
415 * @mapping: the address_space for the pages
416 * @lstart: offset in bytes where the range starts
417 * @lend: offset in bytes where the range ends (inclusive)
419 * Write out and wait upon file offsets lstart->lend, inclusive.
421 * Note that `lend' is inclusive (describes the last byte to be written) so
422 * that this function can be used to write to the very end-of-file (end = -1).
424 int filemap_write_and_wait_range(struct address_space *mapping,
425 loff_t lstart, loff_t lend)
427 int err = 0;
429 if (mapping->nrpages) {
430 err = __filemap_fdatawrite_range(mapping, lstart, lend,
431 WB_SYNC_ALL);
432 /* See comment of filemap_write_and_wait() */
433 if (err != -EIO) {
434 int err2 = wait_on_page_writeback_range(mapping,
435 lstart >> PAGE_CACHE_SHIFT,
436 lend >> PAGE_CACHE_SHIFT);
437 if (!err)
438 err = err2;
441 return err;
445 * add_to_page_cache_locked - add a locked page to the pagecache
446 * @page: page to add
447 * @mapping: the page's address_space
448 * @offset: page index
449 * @gfp_mask: page allocation mode
451 * This function is used to add a page to the pagecache. It must be locked.
452 * This function does not add the page to the LRU. The caller must do that.
454 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
455 pgoff_t offset, gfp_t gfp_mask)
457 int error;
459 VM_BUG_ON(!PageLocked(page));
461 error = mem_cgroup_cache_charge(page, current->mm,
462 gfp_mask & ~__GFP_HIGHMEM);
463 if (error)
464 goto out;
466 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
467 if (error == 0) {
468 page_cache_get(page);
469 page->mapping = mapping;
470 page->index = offset;
472 spin_lock_irq(&mapping->tree_lock);
473 error = radix_tree_insert(&mapping->page_tree, offset, page);
474 if (likely(!error)) {
475 mapping->nrpages++;
476 __inc_zone_page_state(page, NR_FILE_PAGES);
477 } else {
478 page->mapping = NULL;
479 mem_cgroup_uncharge_cache_page(page);
480 page_cache_release(page);
483 spin_unlock_irq(&mapping->tree_lock);
484 radix_tree_preload_end();
485 } else
486 mem_cgroup_uncharge_cache_page(page);
487 out:
488 return error;
490 EXPORT_SYMBOL(add_to_page_cache_locked);
492 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
493 pgoff_t offset, gfp_t gfp_mask)
495 int ret = add_to_page_cache(page, mapping, offset, gfp_mask);
496 if (ret == 0)
497 lru_cache_add(page);
498 return ret;
501 #ifdef CONFIG_NUMA
502 struct page *__page_cache_alloc(gfp_t gfp)
504 if (cpuset_do_page_mem_spread()) {
505 int n = cpuset_mem_spread_node();
506 return alloc_pages_node(n, gfp, 0);
508 return alloc_pages(gfp, 0);
510 EXPORT_SYMBOL(__page_cache_alloc);
511 #endif
513 static int __sleep_on_page_lock(void *word)
515 io_schedule();
516 return 0;
520 * In order to wait for pages to become available there must be
521 * waitqueues associated with pages. By using a hash table of
522 * waitqueues where the bucket discipline is to maintain all
523 * waiters on the same queue and wake all when any of the pages
524 * become available, and for the woken contexts to check to be
525 * sure the appropriate page became available, this saves space
526 * at a cost of "thundering herd" phenomena during rare hash
527 * collisions.
529 static wait_queue_head_t *page_waitqueue(struct page *page)
531 const struct zone *zone = page_zone(page);
533 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
536 static inline void wake_up_page(struct page *page, int bit)
538 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
541 void wait_on_page_bit(struct page *page, int bit_nr)
543 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
545 if (test_bit(bit_nr, &page->flags))
546 __wait_on_bit(page_waitqueue(page), &wait, sync_page,
547 TASK_UNINTERRUPTIBLE);
549 EXPORT_SYMBOL(wait_on_page_bit);
552 * unlock_page - unlock a locked page
553 * @page: the page
555 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
556 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
557 * mechananism between PageLocked pages and PageWriteback pages is shared.
558 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
560 * The first mb is necessary to safely close the critical section opened by the
561 * test_and_set_bit() to lock the page; the second mb is necessary to enforce
562 * ordering between the clear_bit and the read of the waitqueue (to avoid SMP
563 * races with a parallel wait_on_page_locked()).
565 void unlock_page(struct page *page)
567 smp_mb__before_clear_bit();
568 if (!test_and_clear_bit(PG_locked, &page->flags))
569 BUG();
570 smp_mb__after_clear_bit();
571 wake_up_page(page, PG_locked);
573 EXPORT_SYMBOL(unlock_page);
576 * end_page_writeback - end writeback against a page
577 * @page: the page
579 void end_page_writeback(struct page *page)
581 if (TestClearPageReclaim(page))
582 rotate_reclaimable_page(page);
584 if (!test_clear_page_writeback(page))
585 BUG();
587 smp_mb__after_clear_bit();
588 wake_up_page(page, PG_writeback);
590 EXPORT_SYMBOL(end_page_writeback);
593 * __lock_page - get a lock on the page, assuming we need to sleep to get it
594 * @page: the page to lock
596 * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some
597 * random driver's requestfn sets TASK_RUNNING, we could busywait. However
598 * chances are that on the second loop, the block layer's plug list is empty,
599 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
601 void __lock_page(struct page *page)
603 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
605 __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
606 TASK_UNINTERRUPTIBLE);
608 EXPORT_SYMBOL(__lock_page);
610 int __lock_page_killable(struct page *page)
612 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
614 return __wait_on_bit_lock(page_waitqueue(page), &wait,
615 sync_page_killable, TASK_KILLABLE);
619 * __lock_page_nosync - get a lock on the page, without calling sync_page()
620 * @page: the page to lock
622 * Variant of lock_page that does not require the caller to hold a reference
623 * on the page's mapping.
625 void __lock_page_nosync(struct page *page)
627 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
628 __wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
629 TASK_UNINTERRUPTIBLE);
633 * find_get_page - find and get a page reference
634 * @mapping: the address_space to search
635 * @offset: the page index
637 * Is there a pagecache struct page at the given (mapping, offset) tuple?
638 * If yes, increment its refcount and return it; if no, return NULL.
640 struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
642 void **pagep;
643 struct page *page;
645 rcu_read_lock();
646 repeat:
647 page = NULL;
648 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
649 if (pagep) {
650 page = radix_tree_deref_slot(pagep);
651 if (unlikely(!page || page == RADIX_TREE_RETRY))
652 goto repeat;
654 if (!page_cache_get_speculative(page))
655 goto repeat;
658 * Has the page moved?
659 * This is part of the lockless pagecache protocol. See
660 * include/linux/pagemap.h for details.
662 if (unlikely(page != *pagep)) {
663 page_cache_release(page);
664 goto repeat;
667 rcu_read_unlock();
669 return page;
671 EXPORT_SYMBOL(find_get_page);
674 * find_lock_page - locate, pin and lock a pagecache page
675 * @mapping: the address_space to search
676 * @offset: the page index
678 * Locates the desired pagecache page, locks it, increments its reference
679 * count and returns its address.
681 * Returns zero if the page was not present. find_lock_page() may sleep.
683 struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
685 struct page *page;
687 repeat:
688 page = find_get_page(mapping, offset);
689 if (page) {
690 lock_page(page);
691 /* Has the page been truncated? */
692 if (unlikely(page->mapping != mapping)) {
693 unlock_page(page);
694 page_cache_release(page);
695 goto repeat;
697 VM_BUG_ON(page->index != offset);
699 return page;
701 EXPORT_SYMBOL(find_lock_page);
704 * find_or_create_page - locate or add a pagecache page
705 * @mapping: the page's address_space
706 * @index: the page's index into the mapping
707 * @gfp_mask: page allocation mode
709 * Locates a page in the pagecache. If the page is not present, a new page
710 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
711 * LRU list. The returned page is locked and has its reference count
712 * incremented.
714 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
715 * allocation!
717 * find_or_create_page() returns the desired page's address, or zero on
718 * memory exhaustion.
720 struct page *find_or_create_page(struct address_space *mapping,
721 pgoff_t index, gfp_t gfp_mask)
723 struct page *page;
724 int err;
725 repeat:
726 page = find_lock_page(mapping, index);
727 if (!page) {
728 page = __page_cache_alloc(gfp_mask);
729 if (!page)
730 return NULL;
731 err = add_to_page_cache_lru(page, mapping, index, gfp_mask);
732 if (unlikely(err)) {
733 page_cache_release(page);
734 page = NULL;
735 if (err == -EEXIST)
736 goto repeat;
739 return page;
741 EXPORT_SYMBOL(find_or_create_page);
744 * find_get_pages - gang pagecache lookup
745 * @mapping: The address_space to search
746 * @start: The starting page index
747 * @nr_pages: The maximum number of pages
748 * @pages: Where the resulting pages are placed
750 * find_get_pages() will search for and return a group of up to
751 * @nr_pages pages in the mapping. The pages are placed at @pages.
752 * find_get_pages() takes a reference against the returned pages.
754 * The search returns a group of mapping-contiguous pages with ascending
755 * indexes. There may be holes in the indices due to not-present pages.
757 * find_get_pages() returns the number of pages which were found.
759 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
760 unsigned int nr_pages, struct page **pages)
762 unsigned int i;
763 unsigned int ret;
764 unsigned int nr_found;
766 rcu_read_lock();
767 restart:
768 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
769 (void ***)pages, start, nr_pages);
770 ret = 0;
771 for (i = 0; i < nr_found; i++) {
772 struct page *page;
773 repeat:
774 page = radix_tree_deref_slot((void **)pages[i]);
775 if (unlikely(!page))
776 continue;
778 * this can only trigger if nr_found == 1, making livelock
779 * a non issue.
781 if (unlikely(page == RADIX_TREE_RETRY))
782 goto restart;
784 if (!page_cache_get_speculative(page))
785 goto repeat;
787 /* Has the page moved? */
788 if (unlikely(page != *((void **)pages[i]))) {
789 page_cache_release(page);
790 goto repeat;
793 pages[ret] = page;
794 ret++;
796 rcu_read_unlock();
797 return ret;
801 * find_get_pages_contig - gang contiguous pagecache lookup
802 * @mapping: The address_space to search
803 * @index: The starting page index
804 * @nr_pages: The maximum number of pages
805 * @pages: Where the resulting pages are placed
807 * find_get_pages_contig() works exactly like find_get_pages(), except
808 * that the returned number of pages are guaranteed to be contiguous.
810 * find_get_pages_contig() returns the number of pages which were found.
812 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
813 unsigned int nr_pages, struct page **pages)
815 unsigned int i;
816 unsigned int ret;
817 unsigned int nr_found;
819 rcu_read_lock();
820 restart:
821 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
822 (void ***)pages, index, nr_pages);
823 ret = 0;
824 for (i = 0; i < nr_found; i++) {
825 struct page *page;
826 repeat:
827 page = radix_tree_deref_slot((void **)pages[i]);
828 if (unlikely(!page))
829 continue;
831 * this can only trigger if nr_found == 1, making livelock
832 * a non issue.
834 if (unlikely(page == RADIX_TREE_RETRY))
835 goto restart;
837 if (page->mapping == NULL || page->index != index)
838 break;
840 if (!page_cache_get_speculative(page))
841 goto repeat;
843 /* Has the page moved? */
844 if (unlikely(page != *((void **)pages[i]))) {
845 page_cache_release(page);
846 goto repeat;
849 pages[ret] = page;
850 ret++;
851 index++;
853 rcu_read_unlock();
854 return ret;
856 EXPORT_SYMBOL(find_get_pages_contig);
859 * find_get_pages_tag - find and return pages that match @tag
860 * @mapping: the address_space to search
861 * @index: the starting page index
862 * @tag: the tag index
863 * @nr_pages: the maximum number of pages
864 * @pages: where the resulting pages are placed
866 * Like find_get_pages, except we only return pages which are tagged with
867 * @tag. We update @index to index the next page for the traversal.
869 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
870 int tag, unsigned int nr_pages, struct page **pages)
872 unsigned int i;
873 unsigned int ret;
874 unsigned int nr_found;
876 rcu_read_lock();
877 restart:
878 nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree,
879 (void ***)pages, *index, nr_pages, tag);
880 ret = 0;
881 for (i = 0; i < nr_found; i++) {
882 struct page *page;
883 repeat:
884 page = radix_tree_deref_slot((void **)pages[i]);
885 if (unlikely(!page))
886 continue;
888 * this can only trigger if nr_found == 1, making livelock
889 * a non issue.
891 if (unlikely(page == RADIX_TREE_RETRY))
892 goto restart;
894 if (!page_cache_get_speculative(page))
895 goto repeat;
897 /* Has the page moved? */
898 if (unlikely(page != *((void **)pages[i]))) {
899 page_cache_release(page);
900 goto repeat;
903 pages[ret] = page;
904 ret++;
906 rcu_read_unlock();
908 if (ret)
909 *index = pages[ret - 1]->index + 1;
911 return ret;
913 EXPORT_SYMBOL(find_get_pages_tag);
916 * grab_cache_page_nowait - returns locked page at given index in given cache
917 * @mapping: target address_space
918 * @index: the page index
920 * Same as grab_cache_page(), but do not wait if the page is unavailable.
921 * This is intended for speculative data generators, where the data can
922 * be regenerated if the page couldn't be grabbed. This routine should
923 * be safe to call while holding the lock for another page.
925 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
926 * and deadlock against the caller's locked page.
928 struct page *
929 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
931 struct page *page = find_get_page(mapping, index);
933 if (page) {
934 if (trylock_page(page))
935 return page;
936 page_cache_release(page);
937 return NULL;
939 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
940 if (page && add_to_page_cache_lru(page, mapping, index, GFP_KERNEL)) {
941 page_cache_release(page);
942 page = NULL;
944 return page;
946 EXPORT_SYMBOL(grab_cache_page_nowait);
949 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
950 * a _large_ part of the i/o request. Imagine the worst scenario:
952 * ---R__________________________________________B__________
953 * ^ reading here ^ bad block(assume 4k)
955 * read(R) => miss => readahead(R...B) => media error => frustrating retries
956 * => failing the whole request => read(R) => read(R+1) =>
957 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
958 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
959 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
961 * It is going insane. Fix it by quickly scaling down the readahead size.
963 static void shrink_readahead_size_eio(struct file *filp,
964 struct file_ra_state *ra)
966 if (!ra->ra_pages)
967 return;
969 ra->ra_pages /= 4;
973 * do_generic_file_read - generic file read routine
974 * @filp: the file to read
975 * @ppos: current file position
976 * @desc: read_descriptor
977 * @actor: read method
979 * This is a generic file read routine, and uses the
980 * mapping->a_ops->readpage() function for the actual low-level stuff.
982 * This is really ugly. But the goto's actually try to clarify some
983 * of the logic when it comes to error handling etc.
985 static void do_generic_file_read(struct file *filp, loff_t *ppos,
986 read_descriptor_t *desc, read_actor_t actor)
988 struct address_space *mapping = filp->f_mapping;
989 struct inode *inode = mapping->host;
990 struct file_ra_state *ra = &filp->f_ra;
991 pgoff_t index;
992 pgoff_t last_index;
993 pgoff_t prev_index;
994 unsigned long offset; /* offset into pagecache page */
995 unsigned int prev_offset;
996 int error;
998 index = *ppos >> PAGE_CACHE_SHIFT;
999 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1000 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1001 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1002 offset = *ppos & ~PAGE_CACHE_MASK;
1004 for (;;) {
1005 struct page *page;
1006 pgoff_t end_index;
1007 loff_t isize;
1008 unsigned long nr, ret;
1010 cond_resched();
1011 find_page:
1012 page = find_get_page(mapping, index);
1013 if (!page) {
1014 page_cache_sync_readahead(mapping,
1015 ra, filp,
1016 index, last_index - index);
1017 page = find_get_page(mapping, index);
1018 if (unlikely(page == NULL))
1019 goto no_cached_page;
1021 if (PageReadahead(page)) {
1022 page_cache_async_readahead(mapping,
1023 ra, filp, page,
1024 index, last_index - index);
1026 if (!PageUptodate(page)) {
1027 if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1028 !mapping->a_ops->is_partially_uptodate)
1029 goto page_not_up_to_date;
1030 if (!trylock_page(page))
1031 goto page_not_up_to_date;
1032 if (!mapping->a_ops->is_partially_uptodate(page,
1033 desc, offset))
1034 goto page_not_up_to_date_locked;
1035 unlock_page(page);
1037 page_ok:
1039 * i_size must be checked after we know the page is Uptodate.
1041 * Checking i_size after the check allows us to calculate
1042 * the correct value for "nr", which means the zero-filled
1043 * part of the page is not copied back to userspace (unless
1044 * another truncate extends the file - this is desired though).
1047 isize = i_size_read(inode);
1048 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1049 if (unlikely(!isize || index > end_index)) {
1050 page_cache_release(page);
1051 goto out;
1054 /* nr is the maximum number of bytes to copy from this page */
1055 nr = PAGE_CACHE_SIZE;
1056 if (index == end_index) {
1057 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1058 if (nr <= offset) {
1059 page_cache_release(page);
1060 goto out;
1063 nr = nr - offset;
1065 /* If users can be writing to this page using arbitrary
1066 * virtual addresses, take care about potential aliasing
1067 * before reading the page on the kernel side.
1069 if (mapping_writably_mapped(mapping))
1070 flush_dcache_page(page);
1073 * When a sequential read accesses a page several times,
1074 * only mark it as accessed the first time.
1076 if (prev_index != index || offset != prev_offset)
1077 mark_page_accessed(page);
1078 prev_index = index;
1081 * Ok, we have the page, and it's up-to-date, so
1082 * now we can copy it to user space...
1084 * The actor routine returns how many bytes were actually used..
1085 * NOTE! This may not be the same as how much of a user buffer
1086 * we filled up (we may be padding etc), so we can only update
1087 * "pos" here (the actor routine has to update the user buffer
1088 * pointers and the remaining count).
1090 ret = actor(desc, page, offset, nr);
1091 offset += ret;
1092 index += offset >> PAGE_CACHE_SHIFT;
1093 offset &= ~PAGE_CACHE_MASK;
1094 prev_offset = offset;
1096 page_cache_release(page);
1097 if (ret == nr && desc->count)
1098 continue;
1099 goto out;
1101 page_not_up_to_date:
1102 /* Get exclusive access to the page ... */
1103 if (lock_page_killable(page))
1104 goto readpage_eio;
1106 page_not_up_to_date_locked:
1107 /* Did it get truncated before we got the lock? */
1108 if (!page->mapping) {
1109 unlock_page(page);
1110 page_cache_release(page);
1111 continue;
1114 /* Did somebody else fill it already? */
1115 if (PageUptodate(page)) {
1116 unlock_page(page);
1117 goto page_ok;
1120 readpage:
1121 /* Start the actual read. The read will unlock the page. */
1122 error = mapping->a_ops->readpage(filp, page);
1124 if (unlikely(error)) {
1125 if (error == AOP_TRUNCATED_PAGE) {
1126 page_cache_release(page);
1127 goto find_page;
1129 goto readpage_error;
1132 if (!PageUptodate(page)) {
1133 if (lock_page_killable(page))
1134 goto readpage_eio;
1135 if (!PageUptodate(page)) {
1136 if (page->mapping == NULL) {
1138 * invalidate_inode_pages got it
1140 unlock_page(page);
1141 page_cache_release(page);
1142 goto find_page;
1144 unlock_page(page);
1145 shrink_readahead_size_eio(filp, ra);
1146 goto readpage_eio;
1148 unlock_page(page);
1151 goto page_ok;
1153 readpage_eio:
1154 error = -EIO;
1155 readpage_error:
1156 /* UHHUH! A synchronous read error occurred. Report it */
1157 desc->error = error;
1158 page_cache_release(page);
1159 goto out;
1161 no_cached_page:
1163 * Ok, it wasn't cached, so we need to create a new
1164 * page..
1166 page = page_cache_alloc_cold(mapping);
1167 if (!page) {
1168 desc->error = -ENOMEM;
1169 goto out;
1171 error = add_to_page_cache_lru(page, mapping,
1172 index, GFP_KERNEL);
1173 if (error) {
1174 page_cache_release(page);
1175 if (error == -EEXIST)
1176 goto find_page;
1177 desc->error = error;
1178 goto out;
1180 goto readpage;
1183 out:
1184 ra->prev_pos = prev_index;
1185 ra->prev_pos <<= PAGE_CACHE_SHIFT;
1186 ra->prev_pos |= prev_offset;
1188 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1189 file_accessed(filp);
1192 int file_read_actor(read_descriptor_t *desc, struct page *page,
1193 unsigned long offset, unsigned long size)
1195 char *kaddr;
1196 unsigned long left, count = desc->count;
1198 if (size > count)
1199 size = count;
1202 * Faults on the destination of a read are common, so do it before
1203 * taking the kmap.
1205 if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1206 kaddr = kmap_atomic(page, KM_USER0);
1207 left = __copy_to_user_inatomic(desc->arg.buf,
1208 kaddr + offset, size);
1209 kunmap_atomic(kaddr, KM_USER0);
1210 if (left == 0)
1211 goto success;
1214 /* Do it the slow way */
1215 kaddr = kmap(page);
1216 left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1217 kunmap(page);
1219 if (left) {
1220 size -= left;
1221 desc->error = -EFAULT;
1223 success:
1224 desc->count = count - size;
1225 desc->written += size;
1226 desc->arg.buf += size;
1227 return size;
1231 * Performs necessary checks before doing a write
1232 * @iov: io vector request
1233 * @nr_segs: number of segments in the iovec
1234 * @count: number of bytes to write
1235 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1237 * Adjust number of segments and amount of bytes to write (nr_segs should be
1238 * properly initialized first). Returns appropriate error code that caller
1239 * should return or zero in case that write should be allowed.
1241 int generic_segment_checks(const struct iovec *iov,
1242 unsigned long *nr_segs, size_t *count, int access_flags)
1244 unsigned long seg;
1245 size_t cnt = 0;
1246 for (seg = 0; seg < *nr_segs; seg++) {
1247 const struct iovec *iv = &iov[seg];
1250 * If any segment has a negative length, or the cumulative
1251 * length ever wraps negative then return -EINVAL.
1253 cnt += iv->iov_len;
1254 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1255 return -EINVAL;
1256 if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1257 continue;
1258 if (seg == 0)
1259 return -EFAULT;
1260 *nr_segs = seg;
1261 cnt -= iv->iov_len; /* This segment is no good */
1262 break;
1264 *count = cnt;
1265 return 0;
1267 EXPORT_SYMBOL(generic_segment_checks);
1270 * generic_file_aio_read - generic filesystem read routine
1271 * @iocb: kernel I/O control block
1272 * @iov: io vector request
1273 * @nr_segs: number of segments in the iovec
1274 * @pos: current file position
1276 * This is the "read()" routine for all filesystems
1277 * that can use the page cache directly.
1279 ssize_t
1280 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1281 unsigned long nr_segs, loff_t pos)
1283 struct file *filp = iocb->ki_filp;
1284 ssize_t retval;
1285 unsigned long seg;
1286 size_t count;
1287 loff_t *ppos = &iocb->ki_pos;
1289 count = 0;
1290 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1291 if (retval)
1292 return retval;
1294 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1295 if (filp->f_flags & O_DIRECT) {
1296 loff_t size;
1297 struct address_space *mapping;
1298 struct inode *inode;
1300 mapping = filp->f_mapping;
1301 inode = mapping->host;
1302 if (!count)
1303 goto out; /* skip atime */
1304 size = i_size_read(inode);
1305 if (pos < size) {
1306 retval = filemap_write_and_wait(mapping);
1307 if (!retval) {
1308 retval = mapping->a_ops->direct_IO(READ, iocb,
1309 iov, pos, nr_segs);
1311 if (retval > 0)
1312 *ppos = pos + retval;
1313 if (retval) {
1314 file_accessed(filp);
1315 goto out;
1320 for (seg = 0; seg < nr_segs; seg++) {
1321 read_descriptor_t desc;
1323 desc.written = 0;
1324 desc.arg.buf = iov[seg].iov_base;
1325 desc.count = iov[seg].iov_len;
1326 if (desc.count == 0)
1327 continue;
1328 desc.error = 0;
1329 do_generic_file_read(filp, ppos, &desc, file_read_actor);
1330 retval += desc.written;
1331 if (desc.error) {
1332 retval = retval ?: desc.error;
1333 break;
1335 if (desc.count > 0)
1336 break;
1338 out:
1339 return retval;
1341 EXPORT_SYMBOL(generic_file_aio_read);
1343 static ssize_t
1344 do_readahead(struct address_space *mapping, struct file *filp,
1345 pgoff_t index, unsigned long nr)
1347 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1348 return -EINVAL;
1350 force_page_cache_readahead(mapping, filp, index,
1351 max_sane_readahead(nr));
1352 return 0;
1355 asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count)
1357 ssize_t ret;
1358 struct file *file;
1360 ret = -EBADF;
1361 file = fget(fd);
1362 if (file) {
1363 if (file->f_mode & FMODE_READ) {
1364 struct address_space *mapping = file->f_mapping;
1365 pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1366 pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1367 unsigned long len = end - start + 1;
1368 ret = do_readahead(mapping, file, start, len);
1370 fput(file);
1372 return ret;
1375 #ifdef CONFIG_MMU
1377 * page_cache_read - adds requested page to the page cache if not already there
1378 * @file: file to read
1379 * @offset: page index
1381 * This adds the requested page to the page cache if it isn't already there,
1382 * and schedules an I/O to read in its contents from disk.
1384 static int page_cache_read(struct file *file, pgoff_t offset)
1386 struct address_space *mapping = file->f_mapping;
1387 struct page *page;
1388 int ret;
1390 do {
1391 page = page_cache_alloc_cold(mapping);
1392 if (!page)
1393 return -ENOMEM;
1395 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1396 if (ret == 0)
1397 ret = mapping->a_ops->readpage(file, page);
1398 else if (ret == -EEXIST)
1399 ret = 0; /* losing race to add is OK */
1401 page_cache_release(page);
1403 } while (ret == AOP_TRUNCATED_PAGE);
1405 return ret;
1408 #define MMAP_LOTSAMISS (100)
1411 * filemap_fault - read in file data for page fault handling
1412 * @vma: vma in which the fault was taken
1413 * @vmf: struct vm_fault containing details of the fault
1415 * filemap_fault() is invoked via the vma operations vector for a
1416 * mapped memory region to read in file data during a page fault.
1418 * The goto's are kind of ugly, but this streamlines the normal case of having
1419 * it in the page cache, and handles the special cases reasonably without
1420 * having a lot of duplicated code.
1422 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1424 int error;
1425 struct file *file = vma->vm_file;
1426 struct address_space *mapping = file->f_mapping;
1427 struct file_ra_state *ra = &file->f_ra;
1428 struct inode *inode = mapping->host;
1429 struct page *page;
1430 pgoff_t size;
1431 int did_readaround = 0;
1432 int ret = 0;
1434 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1435 if (vmf->pgoff >= size)
1436 return VM_FAULT_SIGBUS;
1438 /* If we don't want any read-ahead, don't bother */
1439 if (VM_RandomReadHint(vma))
1440 goto no_cached_page;
1443 * Do we have something in the page cache already?
1445 retry_find:
1446 page = find_lock_page(mapping, vmf->pgoff);
1448 * For sequential accesses, we use the generic readahead logic.
1450 if (VM_SequentialReadHint(vma)) {
1451 if (!page) {
1452 page_cache_sync_readahead(mapping, ra, file,
1453 vmf->pgoff, 1);
1454 page = find_lock_page(mapping, vmf->pgoff);
1455 if (!page)
1456 goto no_cached_page;
1458 if (PageReadahead(page)) {
1459 page_cache_async_readahead(mapping, ra, file, page,
1460 vmf->pgoff, 1);
1464 if (!page) {
1465 unsigned long ra_pages;
1467 ra->mmap_miss++;
1470 * Do we miss much more than hit in this file? If so,
1471 * stop bothering with read-ahead. It will only hurt.
1473 if (ra->mmap_miss > MMAP_LOTSAMISS)
1474 goto no_cached_page;
1477 * To keep the pgmajfault counter straight, we need to
1478 * check did_readaround, as this is an inner loop.
1480 if (!did_readaround) {
1481 ret = VM_FAULT_MAJOR;
1482 count_vm_event(PGMAJFAULT);
1484 did_readaround = 1;
1485 ra_pages = max_sane_readahead(file->f_ra.ra_pages);
1486 if (ra_pages) {
1487 pgoff_t start = 0;
1489 if (vmf->pgoff > ra_pages / 2)
1490 start = vmf->pgoff - ra_pages / 2;
1491 do_page_cache_readahead(mapping, file, start, ra_pages);
1493 page = find_lock_page(mapping, vmf->pgoff);
1494 if (!page)
1495 goto no_cached_page;
1498 if (!did_readaround)
1499 ra->mmap_miss--;
1502 * We have a locked page in the page cache, now we need to check
1503 * that it's up-to-date. If not, it is going to be due to an error.
1505 if (unlikely(!PageUptodate(page)))
1506 goto page_not_uptodate;
1508 /* Must recheck i_size under page lock */
1509 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1510 if (unlikely(vmf->pgoff >= size)) {
1511 unlock_page(page);
1512 page_cache_release(page);
1513 return VM_FAULT_SIGBUS;
1517 * Found the page and have a reference on it.
1519 mark_page_accessed(page);
1520 ra->prev_pos = (loff_t)page->index << PAGE_CACHE_SHIFT;
1521 vmf->page = page;
1522 return ret | VM_FAULT_LOCKED;
1524 no_cached_page:
1526 * We're only likely to ever get here if MADV_RANDOM is in
1527 * effect.
1529 error = page_cache_read(file, vmf->pgoff);
1532 * The page we want has now been added to the page cache.
1533 * In the unlikely event that someone removed it in the
1534 * meantime, we'll just come back here and read it again.
1536 if (error >= 0)
1537 goto retry_find;
1540 * An error return from page_cache_read can result if the
1541 * system is low on memory, or a problem occurs while trying
1542 * to schedule I/O.
1544 if (error == -ENOMEM)
1545 return VM_FAULT_OOM;
1546 return VM_FAULT_SIGBUS;
1548 page_not_uptodate:
1549 /* IO error path */
1550 if (!did_readaround) {
1551 ret = VM_FAULT_MAJOR;
1552 count_vm_event(PGMAJFAULT);
1556 * Umm, take care of errors if the page isn't up-to-date.
1557 * Try to re-read it _once_. We do this synchronously,
1558 * because there really aren't any performance issues here
1559 * and we need to check for errors.
1561 ClearPageError(page);
1562 error = mapping->a_ops->readpage(file, page);
1563 if (!error) {
1564 wait_on_page_locked(page);
1565 if (!PageUptodate(page))
1566 error = -EIO;
1568 page_cache_release(page);
1570 if (!error || error == AOP_TRUNCATED_PAGE)
1571 goto retry_find;
1573 /* Things didn't work out. Return zero to tell the mm layer so. */
1574 shrink_readahead_size_eio(file, ra);
1575 return VM_FAULT_SIGBUS;
1577 EXPORT_SYMBOL(filemap_fault);
1579 struct vm_operations_struct generic_file_vm_ops = {
1580 .fault = filemap_fault,
1583 /* This is used for a general mmap of a disk file */
1585 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1587 struct address_space *mapping = file->f_mapping;
1589 if (!mapping->a_ops->readpage)
1590 return -ENOEXEC;
1591 file_accessed(file);
1592 vma->vm_ops = &generic_file_vm_ops;
1593 vma->vm_flags |= VM_CAN_NONLINEAR;
1594 return 0;
1598 * This is for filesystems which do not implement ->writepage.
1600 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1602 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1603 return -EINVAL;
1604 return generic_file_mmap(file, vma);
1606 #else
1607 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1609 return -ENOSYS;
1611 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1613 return -ENOSYS;
1615 #endif /* CONFIG_MMU */
1617 EXPORT_SYMBOL(generic_file_mmap);
1618 EXPORT_SYMBOL(generic_file_readonly_mmap);
1620 static struct page *__read_cache_page(struct address_space *mapping,
1621 pgoff_t index,
1622 int (*filler)(void *,struct page*),
1623 void *data)
1625 struct page *page;
1626 int err;
1627 repeat:
1628 page = find_get_page(mapping, index);
1629 if (!page) {
1630 page = page_cache_alloc_cold(mapping);
1631 if (!page)
1632 return ERR_PTR(-ENOMEM);
1633 err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1634 if (unlikely(err)) {
1635 page_cache_release(page);
1636 if (err == -EEXIST)
1637 goto repeat;
1638 /* Presumably ENOMEM for radix tree node */
1639 return ERR_PTR(err);
1641 err = filler(data, page);
1642 if (err < 0) {
1643 page_cache_release(page);
1644 page = ERR_PTR(err);
1647 return page;
1651 * read_cache_page_async - read into page cache, fill it if needed
1652 * @mapping: the page's address_space
1653 * @index: the page index
1654 * @filler: function to perform the read
1655 * @data: destination for read data
1657 * Same as read_cache_page, but don't wait for page to become unlocked
1658 * after submitting it to the filler.
1660 * Read into the page cache. If a page already exists, and PageUptodate() is
1661 * not set, try to fill the page but don't wait for it to become unlocked.
1663 * If the page does not get brought uptodate, return -EIO.
1665 struct page *read_cache_page_async(struct address_space *mapping,
1666 pgoff_t index,
1667 int (*filler)(void *,struct page*),
1668 void *data)
1670 struct page *page;
1671 int err;
1673 retry:
1674 page = __read_cache_page(mapping, index, filler, data);
1675 if (IS_ERR(page))
1676 return page;
1677 if (PageUptodate(page))
1678 goto out;
1680 lock_page(page);
1681 if (!page->mapping) {
1682 unlock_page(page);
1683 page_cache_release(page);
1684 goto retry;
1686 if (PageUptodate(page)) {
1687 unlock_page(page);
1688 goto out;
1690 err = filler(data, page);
1691 if (err < 0) {
1692 page_cache_release(page);
1693 return ERR_PTR(err);
1695 out:
1696 mark_page_accessed(page);
1697 return page;
1699 EXPORT_SYMBOL(read_cache_page_async);
1702 * read_cache_page - read into page cache, fill it if needed
1703 * @mapping: the page's address_space
1704 * @index: the page index
1705 * @filler: function to perform the read
1706 * @data: destination for read data
1708 * Read into the page cache. If a page already exists, and PageUptodate() is
1709 * not set, try to fill the page then wait for it to become unlocked.
1711 * If the page does not get brought uptodate, return -EIO.
1713 struct page *read_cache_page(struct address_space *mapping,
1714 pgoff_t index,
1715 int (*filler)(void *,struct page*),
1716 void *data)
1718 struct page *page;
1720 page = read_cache_page_async(mapping, index, filler, data);
1721 if (IS_ERR(page))
1722 goto out;
1723 wait_on_page_locked(page);
1724 if (!PageUptodate(page)) {
1725 page_cache_release(page);
1726 page = ERR_PTR(-EIO);
1728 out:
1729 return page;
1731 EXPORT_SYMBOL(read_cache_page);
1734 * The logic we want is
1736 * if suid or (sgid and xgrp)
1737 * remove privs
1739 int should_remove_suid(struct dentry *dentry)
1741 mode_t mode = dentry->d_inode->i_mode;
1742 int kill = 0;
1744 /* suid always must be killed */
1745 if (unlikely(mode & S_ISUID))
1746 kill = ATTR_KILL_SUID;
1749 * sgid without any exec bits is just a mandatory locking mark; leave
1750 * it alone. If some exec bits are set, it's a real sgid; kill it.
1752 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1753 kill |= ATTR_KILL_SGID;
1755 if (unlikely(kill && !capable(CAP_FSETID)))
1756 return kill;
1758 return 0;
1760 EXPORT_SYMBOL(should_remove_suid);
1762 static int __remove_suid(struct dentry *dentry, int kill)
1764 struct iattr newattrs;
1766 newattrs.ia_valid = ATTR_FORCE | kill;
1767 return notify_change(dentry, &newattrs);
1770 int file_remove_suid(struct file *file)
1772 struct dentry *dentry = file->f_path.dentry;
1773 int killsuid = should_remove_suid(dentry);
1774 int killpriv = security_inode_need_killpriv(dentry);
1775 int error = 0;
1777 if (killpriv < 0)
1778 return killpriv;
1779 if (killpriv)
1780 error = security_inode_killpriv(dentry);
1781 if (!error && killsuid)
1782 error = __remove_suid(dentry, killsuid);
1784 return error;
1786 EXPORT_SYMBOL(file_remove_suid);
1788 static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1789 const struct iovec *iov, size_t base, size_t bytes)
1791 size_t copied = 0, left = 0;
1793 while (bytes) {
1794 char __user *buf = iov->iov_base + base;
1795 int copy = min(bytes, iov->iov_len - base);
1797 base = 0;
1798 left = __copy_from_user_inatomic_nocache(vaddr, buf, copy);
1799 copied += copy;
1800 bytes -= copy;
1801 vaddr += copy;
1802 iov++;
1804 if (unlikely(left))
1805 break;
1807 return copied - left;
1811 * Copy as much as we can into the page and return the number of bytes which
1812 * were sucessfully copied. If a fault is encountered then return the number of
1813 * bytes which were copied.
1815 size_t iov_iter_copy_from_user_atomic(struct page *page,
1816 struct iov_iter *i, unsigned long offset, size_t bytes)
1818 char *kaddr;
1819 size_t copied;
1821 BUG_ON(!in_atomic());
1822 kaddr = kmap_atomic(page, KM_USER0);
1823 if (likely(i->nr_segs == 1)) {
1824 int left;
1825 char __user *buf = i->iov->iov_base + i->iov_offset;
1826 left = __copy_from_user_inatomic_nocache(kaddr + offset,
1827 buf, bytes);
1828 copied = bytes - left;
1829 } else {
1830 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1831 i->iov, i->iov_offset, bytes);
1833 kunmap_atomic(kaddr, KM_USER0);
1835 return copied;
1837 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
1840 * This has the same sideeffects and return value as
1841 * iov_iter_copy_from_user_atomic().
1842 * The difference is that it attempts to resolve faults.
1843 * Page must not be locked.
1845 size_t iov_iter_copy_from_user(struct page *page,
1846 struct iov_iter *i, unsigned long offset, size_t bytes)
1848 char *kaddr;
1849 size_t copied;
1851 kaddr = kmap(page);
1852 if (likely(i->nr_segs == 1)) {
1853 int left;
1854 char __user *buf = i->iov->iov_base + i->iov_offset;
1855 left = __copy_from_user_nocache(kaddr + offset, buf, bytes);
1856 copied = bytes - left;
1857 } else {
1858 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1859 i->iov, i->iov_offset, bytes);
1861 kunmap(page);
1862 return copied;
1864 EXPORT_SYMBOL(iov_iter_copy_from_user);
1866 void iov_iter_advance(struct iov_iter *i, size_t bytes)
1868 BUG_ON(i->count < bytes);
1870 if (likely(i->nr_segs == 1)) {
1871 i->iov_offset += bytes;
1872 i->count -= bytes;
1873 } else {
1874 const struct iovec *iov = i->iov;
1875 size_t base = i->iov_offset;
1878 * The !iov->iov_len check ensures we skip over unlikely
1879 * zero-length segments (without overruning the iovec).
1881 while (bytes || unlikely(i->count && !iov->iov_len)) {
1882 int copy;
1884 copy = min(bytes, iov->iov_len - base);
1885 BUG_ON(!i->count || i->count < copy);
1886 i->count -= copy;
1887 bytes -= copy;
1888 base += copy;
1889 if (iov->iov_len == base) {
1890 iov++;
1891 base = 0;
1894 i->iov = iov;
1895 i->iov_offset = base;
1898 EXPORT_SYMBOL(iov_iter_advance);
1901 * Fault in the first iovec of the given iov_iter, to a maximum length
1902 * of bytes. Returns 0 on success, or non-zero if the memory could not be
1903 * accessed (ie. because it is an invalid address).
1905 * writev-intensive code may want this to prefault several iovecs -- that
1906 * would be possible (callers must not rely on the fact that _only_ the
1907 * first iovec will be faulted with the current implementation).
1909 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
1911 char __user *buf = i->iov->iov_base + i->iov_offset;
1912 bytes = min(bytes, i->iov->iov_len - i->iov_offset);
1913 return fault_in_pages_readable(buf, bytes);
1915 EXPORT_SYMBOL(iov_iter_fault_in_readable);
1918 * Return the count of just the current iov_iter segment.
1920 size_t iov_iter_single_seg_count(struct iov_iter *i)
1922 const struct iovec *iov = i->iov;
1923 if (i->nr_segs == 1)
1924 return i->count;
1925 else
1926 return min(i->count, iov->iov_len - i->iov_offset);
1928 EXPORT_SYMBOL(iov_iter_single_seg_count);
1931 * Performs necessary checks before doing a write
1933 * Can adjust writing position or amount of bytes to write.
1934 * Returns appropriate error code that caller should return or
1935 * zero in case that write should be allowed.
1937 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1939 struct inode *inode = file->f_mapping->host;
1940 unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1942 if (unlikely(*pos < 0))
1943 return -EINVAL;
1945 if (!isblk) {
1946 /* FIXME: this is for backwards compatibility with 2.4 */
1947 if (file->f_flags & O_APPEND)
1948 *pos = i_size_read(inode);
1950 if (limit != RLIM_INFINITY) {
1951 if (*pos >= limit) {
1952 send_sig(SIGXFSZ, current, 0);
1953 return -EFBIG;
1955 if (*count > limit - (typeof(limit))*pos) {
1956 *count = limit - (typeof(limit))*pos;
1962 * LFS rule
1964 if (unlikely(*pos + *count > MAX_NON_LFS &&
1965 !(file->f_flags & O_LARGEFILE))) {
1966 if (*pos >= MAX_NON_LFS) {
1967 return -EFBIG;
1969 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
1970 *count = MAX_NON_LFS - (unsigned long)*pos;
1975 * Are we about to exceed the fs block limit ?
1977 * If we have written data it becomes a short write. If we have
1978 * exceeded without writing data we send a signal and return EFBIG.
1979 * Linus frestrict idea will clean these up nicely..
1981 if (likely(!isblk)) {
1982 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
1983 if (*count || *pos > inode->i_sb->s_maxbytes) {
1984 return -EFBIG;
1986 /* zero-length writes at ->s_maxbytes are OK */
1989 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
1990 *count = inode->i_sb->s_maxbytes - *pos;
1991 } else {
1992 #ifdef CONFIG_BLOCK
1993 loff_t isize;
1994 if (bdev_read_only(I_BDEV(inode)))
1995 return -EPERM;
1996 isize = i_size_read(inode);
1997 if (*pos >= isize) {
1998 if (*count || *pos > isize)
1999 return -ENOSPC;
2002 if (*pos + *count > isize)
2003 *count = isize - *pos;
2004 #else
2005 return -EPERM;
2006 #endif
2008 return 0;
2010 EXPORT_SYMBOL(generic_write_checks);
2012 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2013 loff_t pos, unsigned len, unsigned flags,
2014 struct page **pagep, void **fsdata)
2016 const struct address_space_operations *aops = mapping->a_ops;
2018 if (aops->write_begin) {
2019 return aops->write_begin(file, mapping, pos, len, flags,
2020 pagep, fsdata);
2021 } else {
2022 int ret;
2023 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
2024 unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
2025 struct inode *inode = mapping->host;
2026 struct page *page;
2027 again:
2028 page = __grab_cache_page(mapping, index);
2029 *pagep = page;
2030 if (!page)
2031 return -ENOMEM;
2033 if (flags & AOP_FLAG_UNINTERRUPTIBLE && !PageUptodate(page)) {
2035 * There is no way to resolve a short write situation
2036 * for a !Uptodate page (except by double copying in
2037 * the caller done by generic_perform_write_2copy).
2039 * Instead, we have to bring it uptodate here.
2041 ret = aops->readpage(file, page);
2042 page_cache_release(page);
2043 if (ret) {
2044 if (ret == AOP_TRUNCATED_PAGE)
2045 goto again;
2046 return ret;
2048 goto again;
2051 ret = aops->prepare_write(file, page, offset, offset+len);
2052 if (ret) {
2053 unlock_page(page);
2054 page_cache_release(page);
2055 if (pos + len > inode->i_size)
2056 vmtruncate(inode, inode->i_size);
2058 return ret;
2061 EXPORT_SYMBOL(pagecache_write_begin);
2063 int pagecache_write_end(struct file *file, struct address_space *mapping,
2064 loff_t pos, unsigned len, unsigned copied,
2065 struct page *page, void *fsdata)
2067 const struct address_space_operations *aops = mapping->a_ops;
2068 int ret;
2070 if (aops->write_end) {
2071 mark_page_accessed(page);
2072 ret = aops->write_end(file, mapping, pos, len, copied,
2073 page, fsdata);
2074 } else {
2075 unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
2076 struct inode *inode = mapping->host;
2078 flush_dcache_page(page);
2079 ret = aops->commit_write(file, page, offset, offset+len);
2080 unlock_page(page);
2081 mark_page_accessed(page);
2082 page_cache_release(page);
2084 if (ret < 0) {
2085 if (pos + len > inode->i_size)
2086 vmtruncate(inode, inode->i_size);
2087 } else if (ret > 0)
2088 ret = min_t(size_t, copied, ret);
2089 else
2090 ret = copied;
2093 return ret;
2095 EXPORT_SYMBOL(pagecache_write_end);
2097 ssize_t
2098 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2099 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2100 size_t count, size_t ocount)
2102 struct file *file = iocb->ki_filp;
2103 struct address_space *mapping = file->f_mapping;
2104 struct inode *inode = mapping->host;
2105 ssize_t written;
2106 size_t write_len;
2107 pgoff_t end;
2109 if (count != ocount)
2110 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2113 * Unmap all mmappings of the file up-front.
2115 * This will cause any pte dirty bits to be propagated into the
2116 * pageframes for the subsequent filemap_write_and_wait().
2118 write_len = iov_length(iov, *nr_segs);
2119 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2120 if (mapping_mapped(mapping))
2121 unmap_mapping_range(mapping, pos, write_len, 0);
2123 written = filemap_write_and_wait(mapping);
2124 if (written)
2125 goto out;
2128 * After a write we want buffered reads to be sure to go to disk to get
2129 * the new data. We invalidate clean cached page from the region we're
2130 * about to write. We do this *before* the write so that we can return
2131 * without clobbering -EIOCBQUEUED from ->direct_IO().
2133 if (mapping->nrpages) {
2134 written = invalidate_inode_pages2_range(mapping,
2135 pos >> PAGE_CACHE_SHIFT, end);
2137 * If a page can not be invalidated, return 0 to fall back
2138 * to buffered write.
2140 if (written) {
2141 if (written == -EBUSY)
2142 return 0;
2143 goto out;
2147 written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2150 * Finally, try again to invalidate clean pages which might have been
2151 * cached by non-direct readahead, or faulted in by get_user_pages()
2152 * if the source of the write was an mmap'ed region of the file
2153 * we're writing. Either one is a pretty crazy thing to do,
2154 * so we don't support it 100%. If this invalidation
2155 * fails, tough, the write still worked...
2157 if (mapping->nrpages) {
2158 invalidate_inode_pages2_range(mapping,
2159 pos >> PAGE_CACHE_SHIFT, end);
2162 if (written > 0) {
2163 loff_t end = pos + written;
2164 if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2165 i_size_write(inode, end);
2166 mark_inode_dirty(inode);
2168 *ppos = end;
2172 * Sync the fs metadata but not the minor inode changes and
2173 * of course not the data as we did direct DMA for the IO.
2174 * i_mutex is held, which protects generic_osync_inode() from
2175 * livelocking. AIO O_DIRECT ops attempt to sync metadata here.
2177 out:
2178 if ((written >= 0 || written == -EIOCBQUEUED) &&
2179 ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2180 int err = generic_osync_inode(inode, mapping, OSYNC_METADATA);
2181 if (err < 0)
2182 written = err;
2184 return written;
2186 EXPORT_SYMBOL(generic_file_direct_write);
2189 * Find or create a page at the given pagecache position. Return the locked
2190 * page. This function is specifically for buffered writes.
2192 struct page *__grab_cache_page(struct address_space *mapping, pgoff_t index)
2194 int status;
2195 struct page *page;
2196 repeat:
2197 page = find_lock_page(mapping, index);
2198 if (likely(page))
2199 return page;
2201 page = page_cache_alloc(mapping);
2202 if (!page)
2203 return NULL;
2204 status = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
2205 if (unlikely(status)) {
2206 page_cache_release(page);
2207 if (status == -EEXIST)
2208 goto repeat;
2209 return NULL;
2211 return page;
2213 EXPORT_SYMBOL(__grab_cache_page);
2215 static ssize_t generic_perform_write_2copy(struct file *file,
2216 struct iov_iter *i, loff_t pos)
2218 struct address_space *mapping = file->f_mapping;
2219 const struct address_space_operations *a_ops = mapping->a_ops;
2220 struct inode *inode = mapping->host;
2221 long status = 0;
2222 ssize_t written = 0;
2224 do {
2225 struct page *src_page;
2226 struct page *page;
2227 pgoff_t index; /* Pagecache index for current page */
2228 unsigned long offset; /* Offset into pagecache page */
2229 unsigned long bytes; /* Bytes to write to page */
2230 size_t copied; /* Bytes copied from user */
2232 offset = (pos & (PAGE_CACHE_SIZE - 1));
2233 index = pos >> PAGE_CACHE_SHIFT;
2234 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2235 iov_iter_count(i));
2238 * a non-NULL src_page indicates that we're doing the
2239 * copy via get_user_pages and kmap.
2241 src_page = NULL;
2244 * Bring in the user page that we will copy from _first_.
2245 * Otherwise there's a nasty deadlock on copying from the
2246 * same page as we're writing to, without it being marked
2247 * up-to-date.
2249 * Not only is this an optimisation, but it is also required
2250 * to check that the address is actually valid, when atomic
2251 * usercopies are used, below.
2253 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2254 status = -EFAULT;
2255 break;
2258 page = __grab_cache_page(mapping, index);
2259 if (!page) {
2260 status = -ENOMEM;
2261 break;
2265 * non-uptodate pages cannot cope with short copies, and we
2266 * cannot take a pagefault with the destination page locked.
2267 * So pin the source page to copy it.
2269 if (!PageUptodate(page) && !segment_eq(get_fs(), KERNEL_DS)) {
2270 unlock_page(page);
2272 src_page = alloc_page(GFP_KERNEL);
2273 if (!src_page) {
2274 page_cache_release(page);
2275 status = -ENOMEM;
2276 break;
2280 * Cannot get_user_pages with a page locked for the
2281 * same reason as we can't take a page fault with a
2282 * page locked (as explained below).
2284 copied = iov_iter_copy_from_user(src_page, i,
2285 offset, bytes);
2286 if (unlikely(copied == 0)) {
2287 status = -EFAULT;
2288 page_cache_release(page);
2289 page_cache_release(src_page);
2290 break;
2292 bytes = copied;
2294 lock_page(page);
2296 * Can't handle the page going uptodate here, because
2297 * that means we would use non-atomic usercopies, which
2298 * zero out the tail of the page, which can cause
2299 * zeroes to become transiently visible. We could just
2300 * use a non-zeroing copy, but the APIs aren't too
2301 * consistent.
2303 if (unlikely(!page->mapping || PageUptodate(page))) {
2304 unlock_page(page);
2305 page_cache_release(page);
2306 page_cache_release(src_page);
2307 continue;
2311 status = a_ops->prepare_write(file, page, offset, offset+bytes);
2312 if (unlikely(status))
2313 goto fs_write_aop_error;
2315 if (!src_page) {
2317 * Must not enter the pagefault handler here, because
2318 * we hold the page lock, so we might recursively
2319 * deadlock on the same lock, or get an ABBA deadlock
2320 * against a different lock, or against the mmap_sem
2321 * (which nests outside the page lock). So increment
2322 * preempt count, and use _atomic usercopies.
2324 * The page is uptodate so we are OK to encounter a
2325 * short copy: if unmodified parts of the page are
2326 * marked dirty and written out to disk, it doesn't
2327 * really matter.
2329 pagefault_disable();
2330 copied = iov_iter_copy_from_user_atomic(page, i,
2331 offset, bytes);
2332 pagefault_enable();
2333 } else {
2334 void *src, *dst;
2335 src = kmap_atomic(src_page, KM_USER0);
2336 dst = kmap_atomic(page, KM_USER1);
2337 memcpy(dst + offset, src + offset, bytes);
2338 kunmap_atomic(dst, KM_USER1);
2339 kunmap_atomic(src, KM_USER0);
2340 copied = bytes;
2342 flush_dcache_page(page);
2344 status = a_ops->commit_write(file, page, offset, offset+bytes);
2345 if (unlikely(status < 0))
2346 goto fs_write_aop_error;
2347 if (unlikely(status > 0)) /* filesystem did partial write */
2348 copied = min_t(size_t, copied, status);
2350 unlock_page(page);
2351 mark_page_accessed(page);
2352 page_cache_release(page);
2353 if (src_page)
2354 page_cache_release(src_page);
2356 iov_iter_advance(i, copied);
2357 pos += copied;
2358 written += copied;
2360 balance_dirty_pages_ratelimited(mapping);
2361 cond_resched();
2362 continue;
2364 fs_write_aop_error:
2365 unlock_page(page);
2366 page_cache_release(page);
2367 if (src_page)
2368 page_cache_release(src_page);
2371 * prepare_write() may have instantiated a few blocks
2372 * outside i_size. Trim these off again. Don't need
2373 * i_size_read because we hold i_mutex.
2375 if (pos + bytes > inode->i_size)
2376 vmtruncate(inode, inode->i_size);
2377 break;
2378 } while (iov_iter_count(i));
2380 return written ? written : status;
2383 static ssize_t generic_perform_write(struct file *file,
2384 struct iov_iter *i, loff_t pos)
2386 struct address_space *mapping = file->f_mapping;
2387 const struct address_space_operations *a_ops = mapping->a_ops;
2388 long status = 0;
2389 ssize_t written = 0;
2390 unsigned int flags = 0;
2393 * Copies from kernel address space cannot fail (NFSD is a big user).
2395 if (segment_eq(get_fs(), KERNEL_DS))
2396 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2398 do {
2399 struct page *page;
2400 pgoff_t index; /* Pagecache index for current page */
2401 unsigned long offset; /* Offset into pagecache page */
2402 unsigned long bytes; /* Bytes to write to page */
2403 size_t copied; /* Bytes copied from user */
2404 void *fsdata;
2406 offset = (pos & (PAGE_CACHE_SIZE - 1));
2407 index = pos >> PAGE_CACHE_SHIFT;
2408 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2409 iov_iter_count(i));
2411 again:
2414 * Bring in the user page that we will copy from _first_.
2415 * Otherwise there's a nasty deadlock on copying from the
2416 * same page as we're writing to, without it being marked
2417 * up-to-date.
2419 * Not only is this an optimisation, but it is also required
2420 * to check that the address is actually valid, when atomic
2421 * usercopies are used, below.
2423 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2424 status = -EFAULT;
2425 break;
2428 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2429 &page, &fsdata);
2430 if (unlikely(status))
2431 break;
2433 pagefault_disable();
2434 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2435 pagefault_enable();
2436 flush_dcache_page(page);
2438 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2439 page, fsdata);
2440 if (unlikely(status < 0))
2441 break;
2442 copied = status;
2444 cond_resched();
2446 iov_iter_advance(i, copied);
2447 if (unlikely(copied == 0)) {
2449 * If we were unable to copy any data at all, we must
2450 * fall back to a single segment length write.
2452 * If we didn't fallback here, we could livelock
2453 * because not all segments in the iov can be copied at
2454 * once without a pagefault.
2456 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2457 iov_iter_single_seg_count(i));
2458 goto again;
2460 pos += copied;
2461 written += copied;
2463 balance_dirty_pages_ratelimited(mapping);
2465 } while (iov_iter_count(i));
2467 return written ? written : status;
2470 ssize_t
2471 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2472 unsigned long nr_segs, loff_t pos, loff_t *ppos,
2473 size_t count, ssize_t written)
2475 struct file *file = iocb->ki_filp;
2476 struct address_space *mapping = file->f_mapping;
2477 const struct address_space_operations *a_ops = mapping->a_ops;
2478 struct inode *inode = mapping->host;
2479 ssize_t status;
2480 struct iov_iter i;
2482 iov_iter_init(&i, iov, nr_segs, count, written);
2483 if (a_ops->write_begin)
2484 status = generic_perform_write(file, &i, pos);
2485 else
2486 status = generic_perform_write_2copy(file, &i, pos);
2488 if (likely(status >= 0)) {
2489 written += status;
2490 *ppos = pos + status;
2493 * For now, when the user asks for O_SYNC, we'll actually give
2494 * O_DSYNC
2496 if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2497 if (!a_ops->writepage || !is_sync_kiocb(iocb))
2498 status = generic_osync_inode(inode, mapping,
2499 OSYNC_METADATA|OSYNC_DATA);
2504 * If we get here for O_DIRECT writes then we must have fallen through
2505 * to buffered writes (block instantiation inside i_size). So we sync
2506 * the file data here, to try to honour O_DIRECT expectations.
2508 if (unlikely(file->f_flags & O_DIRECT) && written)
2509 status = filemap_write_and_wait(mapping);
2511 return written ? written : status;
2513 EXPORT_SYMBOL(generic_file_buffered_write);
2515 static ssize_t
2516 __generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2517 unsigned long nr_segs, loff_t *ppos)
2519 struct file *file = iocb->ki_filp;
2520 struct address_space * mapping = file->f_mapping;
2521 size_t ocount; /* original count */
2522 size_t count; /* after file limit checks */
2523 struct inode *inode = mapping->host;
2524 loff_t pos;
2525 ssize_t written;
2526 ssize_t err;
2528 ocount = 0;
2529 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2530 if (err)
2531 return err;
2533 count = ocount;
2534 pos = *ppos;
2536 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2538 /* We can write back this queue in page reclaim */
2539 current->backing_dev_info = mapping->backing_dev_info;
2540 written = 0;
2542 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2543 if (err)
2544 goto out;
2546 if (count == 0)
2547 goto out;
2549 err = file_remove_suid(file);
2550 if (err)
2551 goto out;
2553 file_update_time(file);
2555 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2556 if (unlikely(file->f_flags & O_DIRECT)) {
2557 loff_t endbyte;
2558 ssize_t written_buffered;
2560 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2561 ppos, count, ocount);
2562 if (written < 0 || written == count)
2563 goto out;
2565 * direct-io write to a hole: fall through to buffered I/O
2566 * for completing the rest of the request.
2568 pos += written;
2569 count -= written;
2570 written_buffered = generic_file_buffered_write(iocb, iov,
2571 nr_segs, pos, ppos, count,
2572 written);
2574 * If generic_file_buffered_write() retuned a synchronous error
2575 * then we want to return the number of bytes which were
2576 * direct-written, or the error code if that was zero. Note
2577 * that this differs from normal direct-io semantics, which
2578 * will return -EFOO even if some bytes were written.
2580 if (written_buffered < 0) {
2581 err = written_buffered;
2582 goto out;
2586 * We need to ensure that the page cache pages are written to
2587 * disk and invalidated to preserve the expected O_DIRECT
2588 * semantics.
2590 endbyte = pos + written_buffered - written - 1;
2591 err = do_sync_mapping_range(file->f_mapping, pos, endbyte,
2592 SYNC_FILE_RANGE_WAIT_BEFORE|
2593 SYNC_FILE_RANGE_WRITE|
2594 SYNC_FILE_RANGE_WAIT_AFTER);
2595 if (err == 0) {
2596 written = written_buffered;
2597 invalidate_mapping_pages(mapping,
2598 pos >> PAGE_CACHE_SHIFT,
2599 endbyte >> PAGE_CACHE_SHIFT);
2600 } else {
2602 * We don't know how much we wrote, so just return
2603 * the number of bytes which were direct-written
2606 } else {
2607 written = generic_file_buffered_write(iocb, iov, nr_segs,
2608 pos, ppos, count, written);
2610 out:
2611 current->backing_dev_info = NULL;
2612 return written ? written : err;
2615 ssize_t generic_file_aio_write_nolock(struct kiocb *iocb,
2616 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
2618 struct file *file = iocb->ki_filp;
2619 struct address_space *mapping = file->f_mapping;
2620 struct inode *inode = mapping->host;
2621 ssize_t ret;
2623 BUG_ON(iocb->ki_pos != pos);
2625 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2626 &iocb->ki_pos);
2628 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2629 ssize_t err;
2631 err = sync_page_range_nolock(inode, mapping, pos, ret);
2632 if (err < 0)
2633 ret = err;
2635 return ret;
2637 EXPORT_SYMBOL(generic_file_aio_write_nolock);
2639 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2640 unsigned long nr_segs, loff_t pos)
2642 struct file *file = iocb->ki_filp;
2643 struct address_space *mapping = file->f_mapping;
2644 struct inode *inode = mapping->host;
2645 ssize_t ret;
2647 BUG_ON(iocb->ki_pos != pos);
2649 mutex_lock(&inode->i_mutex);
2650 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2651 &iocb->ki_pos);
2652 mutex_unlock(&inode->i_mutex);
2654 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2655 ssize_t err;
2657 err = sync_page_range(inode, mapping, pos, ret);
2658 if (err < 0)
2659 ret = err;
2661 return ret;
2663 EXPORT_SYMBOL(generic_file_aio_write);
2666 * try_to_release_page() - release old fs-specific metadata on a page
2668 * @page: the page which the kernel is trying to free
2669 * @gfp_mask: memory allocation flags (and I/O mode)
2671 * The address_space is to try to release any data against the page
2672 * (presumably at page->private). If the release was successful, return `1'.
2673 * Otherwise return zero.
2675 * The @gfp_mask argument specifies whether I/O may be performed to release
2676 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2679 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2681 struct address_space * const mapping = page->mapping;
2683 BUG_ON(!PageLocked(page));
2684 if (PageWriteback(page))
2685 return 0;
2687 if (mapping && mapping->a_ops->releasepage)
2688 return mapping->a_ops->releasepage(page, gfp_mask);
2689 return try_to_free_buffers(page);
2692 EXPORT_SYMBOL(try_to_release_page);