2 * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_types.h"
25 #include "xfs_trans.h"
26 #include "xfs_trans_priv.h"
31 #include "xfs_dmapi.h"
32 #include "xfs_mount.h"
33 #include "xfs_bmap_btree.h"
34 #include "xfs_alloc_btree.h"
35 #include "xfs_ialloc_btree.h"
36 #include "xfs_dir_sf.h"
37 #include "xfs_dir2_sf.h"
38 #include "xfs_attr_sf.h"
39 #include "xfs_dinode.h"
40 #include "xfs_inode.h"
41 #include "xfs_buf_item.h"
42 #include "xfs_inode_item.h"
43 #include "xfs_btree.h"
44 #include "xfs_alloc.h"
45 #include "xfs_ialloc.h"
48 #include "xfs_error.h"
49 #include "xfs_utils.h"
50 #include "xfs_dir2_trace.h"
51 #include "xfs_quota.h"
56 kmem_zone_t
*xfs_ifork_zone
;
57 kmem_zone_t
*xfs_inode_zone
;
58 kmem_zone_t
*xfs_chashlist_zone
;
61 * Used in xfs_itruncate(). This is the maximum number of extents
62 * freed from a file in a single transaction.
64 #define XFS_ITRUNC_MAX_EXTENTS 2
66 STATIC
int xfs_iflush_int(xfs_inode_t
*, xfs_buf_t
*);
67 STATIC
int xfs_iformat_local(xfs_inode_t
*, xfs_dinode_t
*, int, int);
68 STATIC
int xfs_iformat_extents(xfs_inode_t
*, xfs_dinode_t
*, int);
69 STATIC
int xfs_iformat_btree(xfs_inode_t
*, xfs_dinode_t
*, int);
74 * Make sure that the extents in the given memory buffer
88 for (i
= 0; i
< nrecs
; i
++) {
89 rec
.l0
= get_unaligned((__uint64_t
*)&ep
->l0
);
90 rec
.l1
= get_unaligned((__uint64_t
*)&ep
->l1
);
92 xfs_bmbt_disk_get_all(&rec
, &irec
);
94 xfs_bmbt_get_all(&rec
, &irec
);
95 if (fmt
== XFS_EXTFMT_NOSTATE
)
96 ASSERT(irec
.br_state
== XFS_EXT_NORM
);
101 #define xfs_validate_extents(ep, nrecs, disk, fmt)
105 * Check that none of the inode's in the buffer have a next
106 * unlinked field of 0.
118 j
= mp
->m_inode_cluster_size
>> mp
->m_sb
.sb_inodelog
;
120 for (i
= 0; i
< j
; i
++) {
121 dip
= (xfs_dinode_t
*)xfs_buf_offset(bp
,
122 i
* mp
->m_sb
.sb_inodesize
);
123 if (!dip
->di_next_unlinked
) {
124 xfs_fs_cmn_err(CE_ALERT
, mp
,
125 "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.",
127 ASSERT(dip
->di_next_unlinked
);
134 * This routine is called to map an inode number within a file
135 * system to the buffer containing the on-disk version of the
136 * inode. It returns a pointer to the buffer containing the
137 * on-disk inode in the bpp parameter, and in the dip parameter
138 * it returns a pointer to the on-disk inode within that buffer.
140 * If a non-zero error is returned, then the contents of bpp and
141 * dipp are undefined.
143 * Use xfs_imap() to determine the size and location of the
144 * buffer to read from disk.
162 * Call the space managment code to find the location of the
166 error
= xfs_imap(mp
, tp
, ino
, &imap
, XFS_IMAP_LOOKUP
);
169 "xfs_inotobp: xfs_imap() returned an "
170 "error %d on %s. Returning error.", error
, mp
->m_fsname
);
175 * If the inode number maps to a block outside the bounds of the
176 * file system then return NULL rather than calling read_buf
177 * and panicing when we get an error from the driver.
179 if ((imap
.im_blkno
+ imap
.im_len
) >
180 XFS_FSB_TO_BB(mp
, mp
->m_sb
.sb_dblocks
)) {
182 "xfs_inotobp: inode number (%llu + %d) maps to a block outside the bounds "
183 "of the file system %s. Returning EINVAL.",
184 (unsigned long long)imap
.im_blkno
,
185 imap
.im_len
, mp
->m_fsname
);
186 return XFS_ERROR(EINVAL
);
190 * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
191 * default to just a read_buf() call.
193 error
= xfs_trans_read_buf(mp
, tp
, mp
->m_ddev_targp
, imap
.im_blkno
,
194 (int)imap
.im_len
, XFS_BUF_LOCK
, &bp
);
198 "xfs_inotobp: xfs_trans_read_buf() returned an "
199 "error %d on %s. Returning error.", error
, mp
->m_fsname
);
202 dip
= (xfs_dinode_t
*)xfs_buf_offset(bp
, 0);
204 INT_GET(dip
->di_core
.di_magic
, ARCH_CONVERT
) == XFS_DINODE_MAGIC
&&
205 XFS_DINODE_GOOD_VERSION(INT_GET(dip
->di_core
.di_version
, ARCH_CONVERT
));
206 if (unlikely(XFS_TEST_ERROR(!di_ok
, mp
, XFS_ERRTAG_ITOBP_INOTOBP
,
207 XFS_RANDOM_ITOBP_INOTOBP
))) {
208 XFS_CORRUPTION_ERROR("xfs_inotobp", XFS_ERRLEVEL_LOW
, mp
, dip
);
209 xfs_trans_brelse(tp
, bp
);
211 "xfs_inotobp: XFS_TEST_ERROR() returned an "
212 "error on %s. Returning EFSCORRUPTED.", mp
->m_fsname
);
213 return XFS_ERROR(EFSCORRUPTED
);
216 xfs_inobp_check(mp
, bp
);
219 * Set *dipp to point to the on-disk inode in the buffer.
221 *dipp
= (xfs_dinode_t
*)xfs_buf_offset(bp
, imap
.im_boffset
);
223 *offset
= imap
.im_boffset
;
229 * This routine is called to map an inode to the buffer containing
230 * the on-disk version of the inode. It returns a pointer to the
231 * buffer containing the on-disk inode in the bpp parameter, and in
232 * the dip parameter it returns a pointer to the on-disk inode within
235 * If a non-zero error is returned, then the contents of bpp and
236 * dipp are undefined.
238 * If the inode is new and has not yet been initialized, use xfs_imap()
239 * to determine the size and location of the buffer to read from disk.
240 * If the inode has already been mapped to its buffer and read in once,
241 * then use the mapping information stored in the inode rather than
242 * calling xfs_imap(). This allows us to avoid the overhead of looking
243 * at the inode btree for small block file systems (see xfs_dilocate()).
244 * We can tell whether the inode has been mapped in before by comparing
245 * its disk block address to 0. Only uninitialized inodes will have
246 * 0 for the disk block address.
265 if (ip
->i_blkno
== (xfs_daddr_t
)0) {
267 * Call the space management code to find the location of the
271 error
= xfs_imap(mp
, tp
, ip
->i_ino
, &imap
, XFS_IMAP_LOOKUP
);
277 * If the inode number maps to a block outside the bounds
278 * of the file system then return NULL rather than calling
279 * read_buf and panicing when we get an error from the
282 if ((imap
.im_blkno
+ imap
.im_len
) >
283 XFS_FSB_TO_BB(mp
, mp
->m_sb
.sb_dblocks
)) {
285 xfs_fs_cmn_err(CE_ALERT
, mp
, "xfs_itobp: "
286 "(imap.im_blkno (0x%llx) "
287 "+ imap.im_len (0x%llx)) > "
288 " XFS_FSB_TO_BB(mp, "
289 "mp->m_sb.sb_dblocks) (0x%llx)",
290 (unsigned long long) imap
.im_blkno
,
291 (unsigned long long) imap
.im_len
,
292 XFS_FSB_TO_BB(mp
, mp
->m_sb
.sb_dblocks
));
294 return XFS_ERROR(EINVAL
);
298 * Fill in the fields in the inode that will be used to
299 * map the inode to its buffer from now on.
301 ip
->i_blkno
= imap
.im_blkno
;
302 ip
->i_len
= imap
.im_len
;
303 ip
->i_boffset
= imap
.im_boffset
;
306 * We've already mapped the inode once, so just use the
307 * mapping that we saved the first time.
309 imap
.im_blkno
= ip
->i_blkno
;
310 imap
.im_len
= ip
->i_len
;
311 imap
.im_boffset
= ip
->i_boffset
;
313 ASSERT(bno
== 0 || bno
== imap
.im_blkno
);
316 * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
317 * default to just a read_buf() call.
319 error
= xfs_trans_read_buf(mp
, tp
, mp
->m_ddev_targp
, imap
.im_blkno
,
320 (int)imap
.im_len
, XFS_BUF_LOCK
, &bp
);
324 xfs_fs_cmn_err(CE_ALERT
, mp
, "xfs_itobp: "
325 "xfs_trans_read_buf() returned error %d, "
326 "imap.im_blkno 0x%llx, imap.im_len 0x%llx",
327 error
, (unsigned long long) imap
.im_blkno
,
328 (unsigned long long) imap
.im_len
);
334 * Validate the magic number and version of every inode in the buffer
335 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
338 ni
= BBTOB(imap
.im_len
) >> mp
->m_sb
.sb_inodelog
;
342 for (i
= 0; i
< ni
; i
++) {
346 dip
= (xfs_dinode_t
*)xfs_buf_offset(bp
,
347 (i
<< mp
->m_sb
.sb_inodelog
));
348 di_ok
= INT_GET(dip
->di_core
.di_magic
, ARCH_CONVERT
) == XFS_DINODE_MAGIC
&&
349 XFS_DINODE_GOOD_VERSION(INT_GET(dip
->di_core
.di_version
, ARCH_CONVERT
));
350 if (unlikely(XFS_TEST_ERROR(!di_ok
, mp
, XFS_ERRTAG_ITOBP_INOTOBP
,
351 XFS_RANDOM_ITOBP_INOTOBP
))) {
353 prdev("bad inode magic/vsn daddr %lld #%d (magic=%x)",
355 (unsigned long long)imap
.im_blkno
, i
,
356 INT_GET(dip
->di_core
.di_magic
, ARCH_CONVERT
));
358 XFS_CORRUPTION_ERROR("xfs_itobp", XFS_ERRLEVEL_HIGH
,
360 xfs_trans_brelse(tp
, bp
);
361 return XFS_ERROR(EFSCORRUPTED
);
364 #endif /* __KERNEL__ */
366 xfs_inobp_check(mp
, bp
);
369 * Mark the buffer as an inode buffer now that it looks good
371 XFS_BUF_SET_VTYPE(bp
, B_FS_INO
);
374 * Set *dipp to point to the on-disk inode in the buffer.
376 *dipp
= (xfs_dinode_t
*)xfs_buf_offset(bp
, imap
.im_boffset
);
382 * Move inode type and inode format specific information from the
383 * on-disk inode to the in-core inode. For fifos, devs, and sockets
384 * this means set if_rdev to the proper value. For files, directories,
385 * and symlinks this means to bring in the in-line data or extent
386 * pointers. For a file in B-tree format, only the root is immediately
387 * brought in-core. The rest will be in-lined in if_extents when it
388 * is first referenced (see xfs_iread_extents()).
395 xfs_attr_shortform_t
*atp
;
399 ip
->i_df
.if_ext_max
=
400 XFS_IFORK_DSIZE(ip
) / (uint
)sizeof(xfs_bmbt_rec_t
);
404 INT_GET(dip
->di_core
.di_nextents
, ARCH_CONVERT
) +
405 INT_GET(dip
->di_core
.di_anextents
, ARCH_CONVERT
) >
406 INT_GET(dip
->di_core
.di_nblocks
, ARCH_CONVERT
))) {
407 xfs_fs_cmn_err(CE_WARN
, ip
->i_mount
,
408 "corrupt dinode %Lu, extent total = %d, nblocks = %Lu."
409 " Unmount and run xfs_repair.",
410 (unsigned long long)ip
->i_ino
,
411 (int)(INT_GET(dip
->di_core
.di_nextents
, ARCH_CONVERT
)
412 + INT_GET(dip
->di_core
.di_anextents
, ARCH_CONVERT
)),
414 INT_GET(dip
->di_core
.di_nblocks
, ARCH_CONVERT
));
415 XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW
,
417 return XFS_ERROR(EFSCORRUPTED
);
420 if (unlikely(INT_GET(dip
->di_core
.di_forkoff
, ARCH_CONVERT
) > ip
->i_mount
->m_sb
.sb_inodesize
)) {
421 xfs_fs_cmn_err(CE_WARN
, ip
->i_mount
,
422 "corrupt dinode %Lu, forkoff = 0x%x."
423 " Unmount and run xfs_repair.",
424 (unsigned long long)ip
->i_ino
,
425 (int)(INT_GET(dip
->di_core
.di_forkoff
, ARCH_CONVERT
)));
426 XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW
,
428 return XFS_ERROR(EFSCORRUPTED
);
431 switch (ip
->i_d
.di_mode
& S_IFMT
) {
436 if (unlikely(INT_GET(dip
->di_core
.di_format
, ARCH_CONVERT
) != XFS_DINODE_FMT_DEV
)) {
437 XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW
,
439 return XFS_ERROR(EFSCORRUPTED
);
442 ip
->i_df
.if_u2
.if_rdev
= INT_GET(dip
->di_u
.di_dev
, ARCH_CONVERT
);
448 switch (INT_GET(dip
->di_core
.di_format
, ARCH_CONVERT
)) {
449 case XFS_DINODE_FMT_LOCAL
:
451 * no local regular files yet
453 if (unlikely((INT_GET(dip
->di_core
.di_mode
, ARCH_CONVERT
) & S_IFMT
) == S_IFREG
)) {
454 xfs_fs_cmn_err(CE_WARN
, ip
->i_mount
,
455 "corrupt inode (local format for regular file) %Lu. Unmount and run xfs_repair.",
456 (unsigned long long) ip
->i_ino
);
457 XFS_CORRUPTION_ERROR("xfs_iformat(4)",
460 return XFS_ERROR(EFSCORRUPTED
);
463 di_size
= INT_GET(dip
->di_core
.di_size
, ARCH_CONVERT
);
464 if (unlikely(di_size
> XFS_DFORK_DSIZE(dip
, ip
->i_mount
))) {
465 xfs_fs_cmn_err(CE_WARN
, ip
->i_mount
,
466 "corrupt inode %Lu (bad size %Ld for local inode). Unmount and run xfs_repair.",
467 (unsigned long long) ip
->i_ino
,
468 (long long) di_size
);
469 XFS_CORRUPTION_ERROR("xfs_iformat(5)",
472 return XFS_ERROR(EFSCORRUPTED
);
476 error
= xfs_iformat_local(ip
, dip
, XFS_DATA_FORK
, size
);
478 case XFS_DINODE_FMT_EXTENTS
:
479 error
= xfs_iformat_extents(ip
, dip
, XFS_DATA_FORK
);
481 case XFS_DINODE_FMT_BTREE
:
482 error
= xfs_iformat_btree(ip
, dip
, XFS_DATA_FORK
);
485 XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW
,
487 return XFS_ERROR(EFSCORRUPTED
);
492 XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW
, ip
->i_mount
);
493 return XFS_ERROR(EFSCORRUPTED
);
498 if (!XFS_DFORK_Q(dip
))
500 ASSERT(ip
->i_afp
== NULL
);
501 ip
->i_afp
= kmem_zone_zalloc(xfs_ifork_zone
, KM_SLEEP
);
502 ip
->i_afp
->if_ext_max
=
503 XFS_IFORK_ASIZE(ip
) / (uint
)sizeof(xfs_bmbt_rec_t
);
504 switch (INT_GET(dip
->di_core
.di_aformat
, ARCH_CONVERT
)) {
505 case XFS_DINODE_FMT_LOCAL
:
506 atp
= (xfs_attr_shortform_t
*)XFS_DFORK_APTR(dip
);
507 size
= (int)INT_GET(atp
->hdr
.totsize
, ARCH_CONVERT
);
508 error
= xfs_iformat_local(ip
, dip
, XFS_ATTR_FORK
, size
);
510 case XFS_DINODE_FMT_EXTENTS
:
511 error
= xfs_iformat_extents(ip
, dip
, XFS_ATTR_FORK
);
513 case XFS_DINODE_FMT_BTREE
:
514 error
= xfs_iformat_btree(ip
, dip
, XFS_ATTR_FORK
);
517 error
= XFS_ERROR(EFSCORRUPTED
);
521 kmem_zone_free(xfs_ifork_zone
, ip
->i_afp
);
523 xfs_idestroy_fork(ip
, XFS_DATA_FORK
);
529 * The file is in-lined in the on-disk inode.
530 * If it fits into if_inline_data, then copy
531 * it there, otherwise allocate a buffer for it
532 * and copy the data there. Either way, set
533 * if_data to point at the data.
534 * If we allocate a buffer for the data, make
535 * sure that its size is a multiple of 4 and
536 * record the real size in i_real_bytes.
549 * If the size is unreasonable, then something
550 * is wrong and we just bail out rather than crash in
551 * kmem_alloc() or memcpy() below.
553 if (unlikely(size
> XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
))) {
554 xfs_fs_cmn_err(CE_WARN
, ip
->i_mount
,
555 "corrupt inode %Lu (bad size %d for local fork, size = %d). Unmount and run xfs_repair.",
556 (unsigned long long) ip
->i_ino
, size
,
557 XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
));
558 XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW
,
560 return XFS_ERROR(EFSCORRUPTED
);
562 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
565 ifp
->if_u1
.if_data
= NULL
;
566 else if (size
<= sizeof(ifp
->if_u2
.if_inline_data
))
567 ifp
->if_u1
.if_data
= ifp
->if_u2
.if_inline_data
;
569 real_size
= roundup(size
, 4);
570 ifp
->if_u1
.if_data
= kmem_alloc(real_size
, KM_SLEEP
);
572 ifp
->if_bytes
= size
;
573 ifp
->if_real_bytes
= real_size
;
575 memcpy(ifp
->if_u1
.if_data
, XFS_DFORK_PTR(dip
, whichfork
), size
);
576 ifp
->if_flags
&= ~XFS_IFEXTENTS
;
577 ifp
->if_flags
|= XFS_IFINLINE
;
582 * The file consists of a set of extents all
583 * of which fit into the on-disk inode.
584 * If there are few enough extents to fit into
585 * the if_inline_ext, then copy them there.
586 * Otherwise allocate a buffer for them and copy
587 * them into it. Either way, set if_extents
588 * to point at the extents.
596 xfs_bmbt_rec_t
*ep
, *dp
;
603 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
604 nex
= XFS_DFORK_NEXTENTS(dip
, whichfork
);
605 size
= nex
* (uint
)sizeof(xfs_bmbt_rec_t
);
608 * If the number of extents is unreasonable, then something
609 * is wrong and we just bail out rather than crash in
610 * kmem_alloc() or memcpy() below.
612 if (unlikely(size
< 0 || size
> XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
))) {
613 xfs_fs_cmn_err(CE_WARN
, ip
->i_mount
,
614 "corrupt inode %Lu ((a)extents = %d). Unmount and run xfs_repair.",
615 (unsigned long long) ip
->i_ino
, nex
);
616 XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW
,
618 return XFS_ERROR(EFSCORRUPTED
);
623 ifp
->if_u1
.if_extents
= NULL
;
624 else if (nex
<= XFS_INLINE_EXTS
)
625 ifp
->if_u1
.if_extents
= ifp
->if_u2
.if_inline_ext
;
627 ifp
->if_u1
.if_extents
= kmem_alloc(size
, KM_SLEEP
);
628 ASSERT(ifp
->if_u1
.if_extents
!= NULL
);
631 ifp
->if_bytes
= size
;
632 ifp
->if_real_bytes
= real_size
;
634 dp
= (xfs_bmbt_rec_t
*) XFS_DFORK_PTR(dip
, whichfork
);
635 xfs_validate_extents(dp
, nex
, 1, XFS_EXTFMT_INODE(ip
));
636 ep
= ifp
->if_u1
.if_extents
;
637 for (i
= 0; i
< nex
; i
++, ep
++, dp
++) {
638 ep
->l0
= INT_GET(get_unaligned((__uint64_t
*)&dp
->l0
),
640 ep
->l1
= INT_GET(get_unaligned((__uint64_t
*)&dp
->l1
),
643 xfs_bmap_trace_exlist("xfs_iformat_extents", ip
, nex
,
645 if (whichfork
!= XFS_DATA_FORK
||
646 XFS_EXTFMT_INODE(ip
) == XFS_EXTFMT_NOSTATE
)
647 if (unlikely(xfs_check_nostate_extents(
648 ifp
->if_u1
.if_extents
, nex
))) {
649 XFS_ERROR_REPORT("xfs_iformat_extents(2)",
652 return XFS_ERROR(EFSCORRUPTED
);
655 ifp
->if_flags
|= XFS_IFEXTENTS
;
660 * The file has too many extents to fit into
661 * the inode, so they are in B-tree format.
662 * Allocate a buffer for the root of the B-tree
663 * and copy the root into it. The i_extents
664 * field will remain NULL until all of the
665 * extents are read in (when they are needed).
673 xfs_bmdr_block_t
*dfp
;
679 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
680 dfp
= (xfs_bmdr_block_t
*)XFS_DFORK_PTR(dip
, whichfork
);
681 size
= XFS_BMAP_BROOT_SPACE(dfp
);
682 nrecs
= XFS_BMAP_BROOT_NUMRECS(dfp
);
685 * blow out if -- fork has less extents than can fit in
686 * fork (fork shouldn't be a btree format), root btree
687 * block has more records than can fit into the fork,
688 * or the number of extents is greater than the number of
691 if (unlikely(XFS_IFORK_NEXTENTS(ip
, whichfork
) <= ifp
->if_ext_max
692 || XFS_BMDR_SPACE_CALC(nrecs
) >
693 XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
)
694 || XFS_IFORK_NEXTENTS(ip
, whichfork
) > ip
->i_d
.di_nblocks
)) {
695 xfs_fs_cmn_err(CE_WARN
, ip
->i_mount
,
696 "corrupt inode %Lu (btree). Unmount and run xfs_repair.",
697 (unsigned long long) ip
->i_ino
);
698 XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW
,
700 return XFS_ERROR(EFSCORRUPTED
);
703 ifp
->if_broot_bytes
= size
;
704 ifp
->if_broot
= kmem_alloc(size
, KM_SLEEP
);
705 ASSERT(ifp
->if_broot
!= NULL
);
707 * Copy and convert from the on-disk structure
708 * to the in-memory structure.
710 xfs_bmdr_to_bmbt(dfp
, XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
),
711 ifp
->if_broot
, size
);
712 ifp
->if_flags
&= ~XFS_IFEXTENTS
;
713 ifp
->if_flags
|= XFS_IFBROOT
;
719 * xfs_xlate_dinode_core - translate an xfs_inode_core_t between ondisk
722 * buf = on-disk representation
723 * dip = native representation
724 * dir = direction - +ve -> disk to native
725 * -ve -> native to disk
728 xfs_xlate_dinode_core(
730 xfs_dinode_core_t
*dip
,
733 xfs_dinode_core_t
*buf_core
= (xfs_dinode_core_t
*)buf
;
734 xfs_dinode_core_t
*mem_core
= (xfs_dinode_core_t
*)dip
;
735 xfs_arch_t arch
= ARCH_CONVERT
;
739 INT_XLATE(buf_core
->di_magic
, mem_core
->di_magic
, dir
, arch
);
740 INT_XLATE(buf_core
->di_mode
, mem_core
->di_mode
, dir
, arch
);
741 INT_XLATE(buf_core
->di_version
, mem_core
->di_version
, dir
, arch
);
742 INT_XLATE(buf_core
->di_format
, mem_core
->di_format
, dir
, arch
);
743 INT_XLATE(buf_core
->di_onlink
, mem_core
->di_onlink
, dir
, arch
);
744 INT_XLATE(buf_core
->di_uid
, mem_core
->di_uid
, dir
, arch
);
745 INT_XLATE(buf_core
->di_gid
, mem_core
->di_gid
, dir
, arch
);
746 INT_XLATE(buf_core
->di_nlink
, mem_core
->di_nlink
, dir
, arch
);
747 INT_XLATE(buf_core
->di_projid
, mem_core
->di_projid
, dir
, arch
);
750 memcpy(mem_core
->di_pad
, buf_core
->di_pad
,
751 sizeof(buf_core
->di_pad
));
753 memcpy(buf_core
->di_pad
, mem_core
->di_pad
,
754 sizeof(buf_core
->di_pad
));
757 INT_XLATE(buf_core
->di_flushiter
, mem_core
->di_flushiter
, dir
, arch
);
759 INT_XLATE(buf_core
->di_atime
.t_sec
, mem_core
->di_atime
.t_sec
,
761 INT_XLATE(buf_core
->di_atime
.t_nsec
, mem_core
->di_atime
.t_nsec
,
763 INT_XLATE(buf_core
->di_mtime
.t_sec
, mem_core
->di_mtime
.t_sec
,
765 INT_XLATE(buf_core
->di_mtime
.t_nsec
, mem_core
->di_mtime
.t_nsec
,
767 INT_XLATE(buf_core
->di_ctime
.t_sec
, mem_core
->di_ctime
.t_sec
,
769 INT_XLATE(buf_core
->di_ctime
.t_nsec
, mem_core
->di_ctime
.t_nsec
,
771 INT_XLATE(buf_core
->di_size
, mem_core
->di_size
, dir
, arch
);
772 INT_XLATE(buf_core
->di_nblocks
, mem_core
->di_nblocks
, dir
, arch
);
773 INT_XLATE(buf_core
->di_extsize
, mem_core
->di_extsize
, dir
, arch
);
774 INT_XLATE(buf_core
->di_nextents
, mem_core
->di_nextents
, dir
, arch
);
775 INT_XLATE(buf_core
->di_anextents
, mem_core
->di_anextents
, dir
, arch
);
776 INT_XLATE(buf_core
->di_forkoff
, mem_core
->di_forkoff
, dir
, arch
);
777 INT_XLATE(buf_core
->di_aformat
, mem_core
->di_aformat
, dir
, arch
);
778 INT_XLATE(buf_core
->di_dmevmask
, mem_core
->di_dmevmask
, dir
, arch
);
779 INT_XLATE(buf_core
->di_dmstate
, mem_core
->di_dmstate
, dir
, arch
);
780 INT_XLATE(buf_core
->di_flags
, mem_core
->di_flags
, dir
, arch
);
781 INT_XLATE(buf_core
->di_gen
, mem_core
->di_gen
, dir
, arch
);
786 xfs_dinode_core_t
*dic
,
791 if (di_flags
& XFS_DIFLAG_ANY
) {
792 if (di_flags
& XFS_DIFLAG_REALTIME
)
793 flags
|= XFS_XFLAG_REALTIME
;
794 if (di_flags
& XFS_DIFLAG_PREALLOC
)
795 flags
|= XFS_XFLAG_PREALLOC
;
796 if (di_flags
& XFS_DIFLAG_IMMUTABLE
)
797 flags
|= XFS_XFLAG_IMMUTABLE
;
798 if (di_flags
& XFS_DIFLAG_APPEND
)
799 flags
|= XFS_XFLAG_APPEND
;
800 if (di_flags
& XFS_DIFLAG_SYNC
)
801 flags
|= XFS_XFLAG_SYNC
;
802 if (di_flags
& XFS_DIFLAG_NOATIME
)
803 flags
|= XFS_XFLAG_NOATIME
;
804 if (di_flags
& XFS_DIFLAG_NODUMP
)
805 flags
|= XFS_XFLAG_NODUMP
;
806 if (di_flags
& XFS_DIFLAG_RTINHERIT
)
807 flags
|= XFS_XFLAG_RTINHERIT
;
808 if (di_flags
& XFS_DIFLAG_PROJINHERIT
)
809 flags
|= XFS_XFLAG_PROJINHERIT
;
810 if (di_flags
& XFS_DIFLAG_NOSYMLINKS
)
811 flags
|= XFS_XFLAG_NOSYMLINKS
;
821 xfs_dinode_core_t
*dic
= &ip
->i_d
;
823 return _xfs_dic2xflags(dic
, dic
->di_flags
) |
824 (XFS_CFORK_Q(dic
) ? XFS_XFLAG_HASATTR
: 0);
829 xfs_dinode_core_t
*dic
)
831 return _xfs_dic2xflags(dic
, INT_GET(dic
->di_flags
, ARCH_CONVERT
)) |
832 (XFS_CFORK_Q_DISK(dic
) ? XFS_XFLAG_HASATTR
: 0);
836 * Given a mount structure and an inode number, return a pointer
837 * to a newly allocated in-core inode coresponding to the given
840 * Initialize the inode's attributes and extent pointers if it
841 * already has them (it will not if the inode has no links).
856 ASSERT(xfs_inode_zone
!= NULL
);
858 ip
= kmem_zone_zalloc(xfs_inode_zone
, KM_SLEEP
);
863 * Get pointer's to the on-disk inode and the buffer containing it.
864 * If the inode number refers to a block outside the file system
865 * then xfs_itobp() will return NULL. In this case we should
866 * return NULL as well. Set i_blkno to 0 so that xfs_itobp() will
867 * know that this is a new incore inode.
869 error
= xfs_itobp(mp
, tp
, ip
, &dip
, &bp
, bno
);
872 kmem_zone_free(xfs_inode_zone
, ip
);
877 * Initialize inode's trace buffers.
878 * Do this before xfs_iformat in case it adds entries.
880 #ifdef XFS_BMAP_TRACE
881 ip
->i_xtrace
= ktrace_alloc(XFS_BMAP_KTRACE_SIZE
, KM_SLEEP
);
883 #ifdef XFS_BMBT_TRACE
884 ip
->i_btrace
= ktrace_alloc(XFS_BMBT_KTRACE_SIZE
, KM_SLEEP
);
887 ip
->i_rwtrace
= ktrace_alloc(XFS_RW_KTRACE_SIZE
, KM_SLEEP
);
889 #ifdef XFS_ILOCK_TRACE
890 ip
->i_lock_trace
= ktrace_alloc(XFS_ILOCK_KTRACE_SIZE
, KM_SLEEP
);
892 #ifdef XFS_DIR2_TRACE
893 ip
->i_dir_trace
= ktrace_alloc(XFS_DIR2_KTRACE_SIZE
, KM_SLEEP
);
897 * If we got something that isn't an inode it means someone
898 * (nfs or dmi) has a stale handle.
900 if (INT_GET(dip
->di_core
.di_magic
, ARCH_CONVERT
) != XFS_DINODE_MAGIC
) {
901 kmem_zone_free(xfs_inode_zone
, ip
);
902 xfs_trans_brelse(tp
, bp
);
904 xfs_fs_cmn_err(CE_ALERT
, mp
, "xfs_iread: "
905 "dip->di_core.di_magic (0x%x) != "
906 "XFS_DINODE_MAGIC (0x%x)",
907 INT_GET(dip
->di_core
.di_magic
, ARCH_CONVERT
),
910 return XFS_ERROR(EINVAL
);
914 * If the on-disk inode is already linked to a directory
915 * entry, copy all of the inode into the in-core inode.
916 * xfs_iformat() handles copying in the inode format
917 * specific information.
918 * Otherwise, just get the truly permanent information.
920 if (dip
->di_core
.di_mode
) {
921 xfs_xlate_dinode_core((xfs_caddr_t
)&dip
->di_core
,
923 error
= xfs_iformat(ip
, dip
);
925 kmem_zone_free(xfs_inode_zone
, ip
);
926 xfs_trans_brelse(tp
, bp
);
928 xfs_fs_cmn_err(CE_ALERT
, mp
, "xfs_iread: "
929 "xfs_iformat() returned error %d",
935 ip
->i_d
.di_magic
= INT_GET(dip
->di_core
.di_magic
, ARCH_CONVERT
);
936 ip
->i_d
.di_version
= INT_GET(dip
->di_core
.di_version
, ARCH_CONVERT
);
937 ip
->i_d
.di_gen
= INT_GET(dip
->di_core
.di_gen
, ARCH_CONVERT
);
938 ip
->i_d
.di_flushiter
= INT_GET(dip
->di_core
.di_flushiter
, ARCH_CONVERT
);
940 * Make sure to pull in the mode here as well in
941 * case the inode is released without being used.
942 * This ensures that xfs_inactive() will see that
943 * the inode is already free and not try to mess
944 * with the uninitialized part of it.
948 * Initialize the per-fork minima and maxima for a new
949 * inode here. xfs_iformat will do it for old inodes.
951 ip
->i_df
.if_ext_max
=
952 XFS_IFORK_DSIZE(ip
) / (uint
)sizeof(xfs_bmbt_rec_t
);
955 INIT_LIST_HEAD(&ip
->i_reclaim
);
958 * The inode format changed when we moved the link count and
959 * made it 32 bits long. If this is an old format inode,
960 * convert it in memory to look like a new one. If it gets
961 * flushed to disk we will convert back before flushing or
962 * logging it. We zero out the new projid field and the old link
963 * count field. We'll handle clearing the pad field (the remains
964 * of the old uuid field) when we actually convert the inode to
965 * the new format. We don't change the version number so that we
966 * can distinguish this from a real new format inode.
968 if (ip
->i_d
.di_version
== XFS_DINODE_VERSION_1
) {
969 ip
->i_d
.di_nlink
= ip
->i_d
.di_onlink
;
970 ip
->i_d
.di_onlink
= 0;
971 ip
->i_d
.di_projid
= 0;
974 ip
->i_delayed_blks
= 0;
977 * Mark the buffer containing the inode as something to keep
978 * around for a while. This helps to keep recently accessed
979 * meta-data in-core longer.
981 XFS_BUF_SET_REF(bp
, XFS_INO_REF
);
984 * Use xfs_trans_brelse() to release the buffer containing the
985 * on-disk inode, because it was acquired with xfs_trans_read_buf()
986 * in xfs_itobp() above. If tp is NULL, this is just a normal
987 * brelse(). If we're within a transaction, then xfs_trans_brelse()
988 * will only release the buffer if it is not dirty within the
989 * transaction. It will be OK to release the buffer in this case,
990 * because inodes on disk are never destroyed and we will be
991 * locking the new in-core inode before putting it in the hash
992 * table where other processes can find it. Thus we don't have
993 * to worry about the inode being changed just because we released
996 xfs_trans_brelse(tp
, bp
);
1002 * Read in extents from a btree-format inode.
1003 * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
1015 if (unlikely(XFS_IFORK_FORMAT(ip
, whichfork
) != XFS_DINODE_FMT_BTREE
)) {
1016 XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW
,
1018 return XFS_ERROR(EFSCORRUPTED
);
1020 size
= XFS_IFORK_NEXTENTS(ip
, whichfork
) * (uint
)sizeof(xfs_bmbt_rec_t
);
1021 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
1023 * We know that the size is valid (it's checked in iformat_btree)
1025 ifp
->if_u1
.if_extents
= kmem_alloc(size
, KM_SLEEP
);
1026 ASSERT(ifp
->if_u1
.if_extents
!= NULL
);
1027 ifp
->if_lastex
= NULLEXTNUM
;
1028 ifp
->if_bytes
= ifp
->if_real_bytes
= (int)size
;
1029 ifp
->if_flags
|= XFS_IFEXTENTS
;
1030 error
= xfs_bmap_read_extents(tp
, ip
, whichfork
);
1032 kmem_free(ifp
->if_u1
.if_extents
, size
);
1033 ifp
->if_u1
.if_extents
= NULL
;
1034 ifp
->if_bytes
= ifp
->if_real_bytes
= 0;
1035 ifp
->if_flags
&= ~XFS_IFEXTENTS
;
1038 xfs_validate_extents((xfs_bmbt_rec_t
*)ifp
->if_u1
.if_extents
,
1039 XFS_IFORK_NEXTENTS(ip
, whichfork
), 0, XFS_EXTFMT_INODE(ip
));
1044 * Allocate an inode on disk and return a copy of its in-core version.
1045 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
1046 * appropriately within the inode. The uid and gid for the inode are
1047 * set according to the contents of the given cred structure.
1049 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
1050 * has a free inode available, call xfs_iget()
1051 * to obtain the in-core version of the allocated inode. Finally,
1052 * fill in the inode and log its initial contents. In this case,
1053 * ialloc_context would be set to NULL and call_again set to false.
1055 * If xfs_dialloc() does not have an available inode,
1056 * it will replenish its supply by doing an allocation. Since we can
1057 * only do one allocation within a transaction without deadlocks, we
1058 * must commit the current transaction before returning the inode itself.
1059 * In this case, therefore, we will set call_again to true and return.
1060 * The caller should then commit the current transaction, start a new
1061 * transaction, and call xfs_ialloc() again to actually get the inode.
1063 * To ensure that some other process does not grab the inode that
1064 * was allocated during the first call to xfs_ialloc(), this routine
1065 * also returns the [locked] bp pointing to the head of the freelist
1066 * as ialloc_context. The caller should hold this buffer across
1067 * the commit and pass it back into this routine on the second call.
1079 xfs_buf_t
**ialloc_context
,
1080 boolean_t
*call_again
,
1090 * Call the space management code to pick
1091 * the on-disk inode to be allocated.
1093 error
= xfs_dialloc(tp
, pip
->i_ino
, mode
, okalloc
,
1094 ialloc_context
, call_again
, &ino
);
1098 if (*call_again
|| ino
== NULLFSINO
) {
1102 ASSERT(*ialloc_context
== NULL
);
1105 * Get the in-core inode with the lock held exclusively.
1106 * This is because we're setting fields here we need
1107 * to prevent others from looking at until we're done.
1109 error
= xfs_trans_iget(tp
->t_mountp
, tp
, ino
,
1110 IGET_CREATE
, XFS_ILOCK_EXCL
, &ip
);
1117 ip
->i_d
.di_mode
= (__uint16_t
)mode
;
1118 ip
->i_d
.di_onlink
= 0;
1119 ip
->i_d
.di_nlink
= nlink
;
1120 ASSERT(ip
->i_d
.di_nlink
== nlink
);
1121 ip
->i_d
.di_uid
= current_fsuid(cr
);
1122 ip
->i_d
.di_gid
= current_fsgid(cr
);
1123 ip
->i_d
.di_projid
= prid
;
1124 memset(&(ip
->i_d
.di_pad
[0]), 0, sizeof(ip
->i_d
.di_pad
));
1127 * If the superblock version is up to where we support new format
1128 * inodes and this is currently an old format inode, then change
1129 * the inode version number now. This way we only do the conversion
1130 * here rather than here and in the flush/logging code.
1132 if (XFS_SB_VERSION_HASNLINK(&tp
->t_mountp
->m_sb
) &&
1133 ip
->i_d
.di_version
== XFS_DINODE_VERSION_1
) {
1134 ip
->i_d
.di_version
= XFS_DINODE_VERSION_2
;
1136 * We've already zeroed the old link count, the projid field,
1137 * and the pad field.
1142 * Project ids won't be stored on disk if we are using a version 1 inode.
1144 if ( (prid
!= 0) && (ip
->i_d
.di_version
== XFS_DINODE_VERSION_1
))
1145 xfs_bump_ino_vers2(tp
, ip
);
1147 if (XFS_INHERIT_GID(pip
, vp
->v_vfsp
)) {
1148 ip
->i_d
.di_gid
= pip
->i_d
.di_gid
;
1149 if ((pip
->i_d
.di_mode
& S_ISGID
) && (mode
& S_IFMT
) == S_IFDIR
) {
1150 ip
->i_d
.di_mode
|= S_ISGID
;
1155 * If the group ID of the new file does not match the effective group
1156 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1157 * (and only if the irix_sgid_inherit compatibility variable is set).
1159 if ((irix_sgid_inherit
) &&
1160 (ip
->i_d
.di_mode
& S_ISGID
) &&
1161 (!in_group_p((gid_t
)ip
->i_d
.di_gid
))) {
1162 ip
->i_d
.di_mode
&= ~S_ISGID
;
1165 ip
->i_d
.di_size
= 0;
1166 ip
->i_d
.di_nextents
= 0;
1167 ASSERT(ip
->i_d
.di_nblocks
== 0);
1168 xfs_ichgtime(ip
, XFS_ICHGTIME_CHG
|XFS_ICHGTIME_ACC
|XFS_ICHGTIME_MOD
);
1170 * di_gen will have been taken care of in xfs_iread.
1172 ip
->i_d
.di_extsize
= 0;
1173 ip
->i_d
.di_dmevmask
= 0;
1174 ip
->i_d
.di_dmstate
= 0;
1175 ip
->i_d
.di_flags
= 0;
1176 flags
= XFS_ILOG_CORE
;
1177 switch (mode
& S_IFMT
) {
1182 ip
->i_d
.di_format
= XFS_DINODE_FMT_DEV
;
1183 ip
->i_df
.if_u2
.if_rdev
= rdev
;
1184 ip
->i_df
.if_flags
= 0;
1185 flags
|= XFS_ILOG_DEV
;
1189 if (unlikely(pip
->i_d
.di_flags
& XFS_DIFLAG_ANY
)) {
1192 if ((mode
& S_IFMT
) == S_IFDIR
) {
1193 if (pip
->i_d
.di_flags
& XFS_DIFLAG_RTINHERIT
)
1194 di_flags
|= XFS_DIFLAG_RTINHERIT
;
1196 if (pip
->i_d
.di_flags
& XFS_DIFLAG_RTINHERIT
) {
1197 di_flags
|= XFS_DIFLAG_REALTIME
;
1198 ip
->i_iocore
.io_flags
|= XFS_IOCORE_RT
;
1201 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NOATIME
) &&
1202 xfs_inherit_noatime
)
1203 di_flags
|= XFS_DIFLAG_NOATIME
;
1204 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NODUMP
) &&
1206 di_flags
|= XFS_DIFLAG_NODUMP
;
1207 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_SYNC
) &&
1209 di_flags
|= XFS_DIFLAG_SYNC
;
1210 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NOSYMLINKS
) &&
1211 xfs_inherit_nosymlinks
)
1212 di_flags
|= XFS_DIFLAG_NOSYMLINKS
;
1213 if (pip
->i_d
.di_flags
& XFS_DIFLAG_PROJINHERIT
)
1214 di_flags
|= XFS_DIFLAG_PROJINHERIT
;
1215 ip
->i_d
.di_flags
|= di_flags
;
1219 ip
->i_d
.di_format
= XFS_DINODE_FMT_EXTENTS
;
1220 ip
->i_df
.if_flags
= XFS_IFEXTENTS
;
1221 ip
->i_df
.if_bytes
= ip
->i_df
.if_real_bytes
= 0;
1222 ip
->i_df
.if_u1
.if_extents
= NULL
;
1228 * Attribute fork settings for new inode.
1230 ip
->i_d
.di_aformat
= XFS_DINODE_FMT_EXTENTS
;
1231 ip
->i_d
.di_anextents
= 0;
1234 * Log the new values stuffed into the inode.
1236 xfs_trans_log_inode(tp
, ip
, flags
);
1238 /* now that we have an i_mode we can set Linux inode ops (& unlock) */
1239 VFS_INIT_VNODE(XFS_MTOVFS(tp
->t_mountp
), vp
, XFS_ITOBHV(ip
), 1);
1246 * Check to make sure that there are no blocks allocated to the
1247 * file beyond the size of the file. We don't check this for
1248 * files with fixed size extents or real time extents, but we
1249 * at least do it for regular files.
1258 xfs_fileoff_t map_first
;
1260 xfs_bmbt_irec_t imaps
[2];
1262 if ((ip
->i_d
.di_mode
& S_IFMT
) != S_IFREG
)
1265 if ( ip
->i_d
.di_flags
& XFS_DIFLAG_REALTIME
)
1269 map_first
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)isize
);
1271 * The filesystem could be shutting down, so bmapi may return
1274 if (xfs_bmapi(NULL
, ip
, map_first
,
1276 (xfs_ufsize_t
)XFS_MAXIOFFSET(mp
)) -
1278 XFS_BMAPI_ENTIRE
, NULL
, 0, imaps
, &nimaps
,
1281 ASSERT(nimaps
== 1);
1282 ASSERT(imaps
[0].br_startblock
== HOLESTARTBLOCK
);
1287 * Calculate the last possible buffered byte in a file. This must
1288 * include data that was buffered beyond the EOF by the write code.
1289 * This also needs to deal with overflowing the xfs_fsize_t type
1290 * which can happen for sizes near the limit.
1292 * We also need to take into account any blocks beyond the EOF. It
1293 * may be the case that they were buffered by a write which failed.
1294 * In that case the pages will still be in memory, but the inode size
1295 * will never have been updated.
1302 xfs_fsize_t last_byte
;
1303 xfs_fileoff_t last_block
;
1304 xfs_fileoff_t size_last_block
;
1307 ASSERT(ismrlocked(&(ip
->i_iolock
), MR_UPDATE
| MR_ACCESS
));
1311 * Only check for blocks beyond the EOF if the extents have
1312 * been read in. This eliminates the need for the inode lock,
1313 * and it also saves us from looking when it really isn't
1316 if (ip
->i_df
.if_flags
& XFS_IFEXTENTS
) {
1317 error
= xfs_bmap_last_offset(NULL
, ip
, &last_block
,
1325 size_last_block
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)ip
->i_d
.di_size
);
1326 last_block
= XFS_FILEOFF_MAX(last_block
, size_last_block
);
1328 last_byte
= XFS_FSB_TO_B(mp
, last_block
);
1329 if (last_byte
< 0) {
1330 return XFS_MAXIOFFSET(mp
);
1332 last_byte
+= (1 << mp
->m_writeio_log
);
1333 if (last_byte
< 0) {
1334 return XFS_MAXIOFFSET(mp
);
1339 #if defined(XFS_RW_TRACE)
1345 xfs_fsize_t new_size
,
1346 xfs_off_t toss_start
,
1347 xfs_off_t toss_finish
)
1349 if (ip
->i_rwtrace
== NULL
) {
1353 ktrace_enter(ip
->i_rwtrace
,
1356 (void*)(unsigned long)((ip
->i_d
.di_size
>> 32) & 0xffffffff),
1357 (void*)(unsigned long)(ip
->i_d
.di_size
& 0xffffffff),
1358 (void*)((long)flag
),
1359 (void*)(unsigned long)((new_size
>> 32) & 0xffffffff),
1360 (void*)(unsigned long)(new_size
& 0xffffffff),
1361 (void*)(unsigned long)((toss_start
>> 32) & 0xffffffff),
1362 (void*)(unsigned long)(toss_start
& 0xffffffff),
1363 (void*)(unsigned long)((toss_finish
>> 32) & 0xffffffff),
1364 (void*)(unsigned long)(toss_finish
& 0xffffffff),
1365 (void*)(unsigned long)current_cpu(),
1372 #define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
1376 * Start the truncation of the file to new_size. The new size
1377 * must be smaller than the current size. This routine will
1378 * clear the buffer and page caches of file data in the removed
1379 * range, and xfs_itruncate_finish() will remove the underlying
1382 * The inode must have its I/O lock locked EXCLUSIVELY, and it
1383 * must NOT have the inode lock held at all. This is because we're
1384 * calling into the buffer/page cache code and we can't hold the
1385 * inode lock when we do so.
1387 * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
1388 * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
1389 * in the case that the caller is locking things out of order and
1390 * may not be able to call xfs_itruncate_finish() with the inode lock
1391 * held without dropping the I/O lock. If the caller must drop the
1392 * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
1393 * must be called again with all the same restrictions as the initial
1397 xfs_itruncate_start(
1400 xfs_fsize_t new_size
)
1402 xfs_fsize_t last_byte
;
1403 xfs_off_t toss_start
;
1407 ASSERT(ismrlocked(&ip
->i_iolock
, MR_UPDATE
) != 0);
1408 ASSERT((new_size
== 0) || (new_size
<= ip
->i_d
.di_size
));
1409 ASSERT((flags
== XFS_ITRUNC_DEFINITE
) ||
1410 (flags
== XFS_ITRUNC_MAYBE
));
1415 * Call VOP_TOSS_PAGES() or VOP_FLUSHINVAL_PAGES() to get rid of pages and buffers
1416 * overlapping the region being removed. We have to use
1417 * the less efficient VOP_FLUSHINVAL_PAGES() in the case that the
1418 * caller may not be able to finish the truncate without
1419 * dropping the inode's I/O lock. Make sure
1420 * to catch any pages brought in by buffers overlapping
1421 * the EOF by searching out beyond the isize by our
1422 * block size. We round new_size up to a block boundary
1423 * so that we don't toss things on the same block as
1424 * new_size but before it.
1426 * Before calling VOP_TOSS_PAGES() or VOP_FLUSHINVAL_PAGES(), make sure to
1427 * call remapf() over the same region if the file is mapped.
1428 * This frees up mapped file references to the pages in the
1429 * given range and for the VOP_FLUSHINVAL_PAGES() case it ensures
1430 * that we get the latest mapped changes flushed out.
1432 toss_start
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)new_size
);
1433 toss_start
= XFS_FSB_TO_B(mp
, toss_start
);
1434 if (toss_start
< 0) {
1436 * The place to start tossing is beyond our maximum
1437 * file size, so there is no way that the data extended
1442 last_byte
= xfs_file_last_byte(ip
);
1443 xfs_itrunc_trace(XFS_ITRUNC_START
, ip
, flags
, new_size
, toss_start
,
1445 if (last_byte
> toss_start
) {
1446 if (flags
& XFS_ITRUNC_DEFINITE
) {
1447 VOP_TOSS_PAGES(vp
, toss_start
, -1, FI_REMAPF_LOCKED
);
1449 VOP_FLUSHINVAL_PAGES(vp
, toss_start
, -1, FI_REMAPF_LOCKED
);
1454 if (new_size
== 0) {
1455 ASSERT(VN_CACHED(vp
) == 0);
1461 * Shrink the file to the given new_size. The new
1462 * size must be smaller than the current size.
1463 * This will free up the underlying blocks
1464 * in the removed range after a call to xfs_itruncate_start()
1465 * or xfs_atruncate_start().
1467 * The transaction passed to this routine must have made
1468 * a permanent log reservation of at least XFS_ITRUNCATE_LOG_RES.
1469 * This routine may commit the given transaction and
1470 * start new ones, so make sure everything involved in
1471 * the transaction is tidy before calling here.
1472 * Some transaction will be returned to the caller to be
1473 * committed. The incoming transaction must already include
1474 * the inode, and both inode locks must be held exclusively.
1475 * The inode must also be "held" within the transaction. On
1476 * return the inode will be "held" within the returned transaction.
1477 * This routine does NOT require any disk space to be reserved
1478 * for it within the transaction.
1480 * The fork parameter must be either xfs_attr_fork or xfs_data_fork,
1481 * and it indicates the fork which is to be truncated. For the
1482 * attribute fork we only support truncation to size 0.
1484 * We use the sync parameter to indicate whether or not the first
1485 * transaction we perform might have to be synchronous. For the attr fork,
1486 * it needs to be so if the unlink of the inode is not yet known to be
1487 * permanent in the log. This keeps us from freeing and reusing the
1488 * blocks of the attribute fork before the unlink of the inode becomes
1491 * For the data fork, we normally have to run synchronously if we're
1492 * being called out of the inactive path or we're being called
1493 * out of the create path where we're truncating an existing file.
1494 * Either way, the truncate needs to be sync so blocks don't reappear
1495 * in the file with altered data in case of a crash. wsync filesystems
1496 * can run the first case async because anything that shrinks the inode
1497 * has to run sync so by the time we're called here from inactive, the
1498 * inode size is permanently set to 0.
1500 * Calls from the truncate path always need to be sync unless we're
1501 * in a wsync filesystem and the file has already been unlinked.
1503 * The caller is responsible for correctly setting the sync parameter.
1504 * It gets too hard for us to guess here which path we're being called
1505 * out of just based on inode state.
1508 xfs_itruncate_finish(
1511 xfs_fsize_t new_size
,
1515 xfs_fsblock_t first_block
;
1516 xfs_fileoff_t first_unmap_block
;
1517 xfs_fileoff_t last_block
;
1518 xfs_filblks_t unmap_len
=0;
1523 xfs_bmap_free_t free_list
;
1526 ASSERT(ismrlocked(&ip
->i_iolock
, MR_UPDATE
) != 0);
1527 ASSERT(ismrlocked(&ip
->i_lock
, MR_UPDATE
) != 0);
1528 ASSERT((new_size
== 0) || (new_size
<= ip
->i_d
.di_size
));
1529 ASSERT(*tp
!= NULL
);
1530 ASSERT((*tp
)->t_flags
& XFS_TRANS_PERM_LOG_RES
);
1531 ASSERT(ip
->i_transp
== *tp
);
1532 ASSERT(ip
->i_itemp
!= NULL
);
1533 ASSERT(ip
->i_itemp
->ili_flags
& XFS_ILI_HOLD
);
1537 mp
= (ntp
)->t_mountp
;
1538 ASSERT(! XFS_NOT_DQATTACHED(mp
, ip
));
1541 * We only support truncating the entire attribute fork.
1543 if (fork
== XFS_ATTR_FORK
) {
1546 first_unmap_block
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)new_size
);
1547 xfs_itrunc_trace(XFS_ITRUNC_FINISH1
, ip
, 0, new_size
, 0, 0);
1549 * The first thing we do is set the size to new_size permanently
1550 * on disk. This way we don't have to worry about anyone ever
1551 * being able to look at the data being freed even in the face
1552 * of a crash. What we're getting around here is the case where
1553 * we free a block, it is allocated to another file, it is written
1554 * to, and then we crash. If the new data gets written to the
1555 * file but the log buffers containing the free and reallocation
1556 * don't, then we'd end up with garbage in the blocks being freed.
1557 * As long as we make the new_size permanent before actually
1558 * freeing any blocks it doesn't matter if they get writtten to.
1560 * The callers must signal into us whether or not the size
1561 * setting here must be synchronous. There are a few cases
1562 * where it doesn't have to be synchronous. Those cases
1563 * occur if the file is unlinked and we know the unlink is
1564 * permanent or if the blocks being truncated are guaranteed
1565 * to be beyond the inode eof (regardless of the link count)
1566 * and the eof value is permanent. Both of these cases occur
1567 * only on wsync-mounted filesystems. In those cases, we're
1568 * guaranteed that no user will ever see the data in the blocks
1569 * that are being truncated so the truncate can run async.
1570 * In the free beyond eof case, the file may wind up with
1571 * more blocks allocated to it than it needs if we crash
1572 * and that won't get fixed until the next time the file
1573 * is re-opened and closed but that's ok as that shouldn't
1574 * be too many blocks.
1576 * However, we can't just make all wsync xactions run async
1577 * because there's one call out of the create path that needs
1578 * to run sync where it's truncating an existing file to size
1579 * 0 whose size is > 0.
1581 * It's probably possible to come up with a test in this
1582 * routine that would correctly distinguish all the above
1583 * cases from the values of the function parameters and the
1584 * inode state but for sanity's sake, I've decided to let the
1585 * layers above just tell us. It's simpler to correctly figure
1586 * out in the layer above exactly under what conditions we
1587 * can run async and I think it's easier for others read and
1588 * follow the logic in case something has to be changed.
1589 * cscope is your friend -- rcc.
1591 * The attribute fork is much simpler.
1593 * For the attribute fork we allow the caller to tell us whether
1594 * the unlink of the inode that led to this call is yet permanent
1595 * in the on disk log. If it is not and we will be freeing extents
1596 * in this inode then we make the first transaction synchronous
1597 * to make sure that the unlink is permanent by the time we free
1600 if (fork
== XFS_DATA_FORK
) {
1601 if (ip
->i_d
.di_nextents
> 0) {
1602 ip
->i_d
.di_size
= new_size
;
1603 xfs_trans_log_inode(ntp
, ip
, XFS_ILOG_CORE
);
1606 ASSERT(!(mp
->m_flags
& XFS_MOUNT_WSYNC
));
1607 if (ip
->i_d
.di_anextents
> 0)
1608 xfs_trans_set_sync(ntp
);
1610 ASSERT(fork
== XFS_DATA_FORK
||
1611 (fork
== XFS_ATTR_FORK
&&
1612 ((sync
&& !(mp
->m_flags
& XFS_MOUNT_WSYNC
)) ||
1613 (sync
== 0 && (mp
->m_flags
& XFS_MOUNT_WSYNC
)))));
1616 * Since it is possible for space to become allocated beyond
1617 * the end of the file (in a crash where the space is allocated
1618 * but the inode size is not yet updated), simply remove any
1619 * blocks which show up between the new EOF and the maximum
1620 * possible file size. If the first block to be removed is
1621 * beyond the maximum file size (ie it is the same as last_block),
1622 * then there is nothing to do.
1624 last_block
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)XFS_MAXIOFFSET(mp
));
1625 ASSERT(first_unmap_block
<= last_block
);
1627 if (last_block
== first_unmap_block
) {
1630 unmap_len
= last_block
- first_unmap_block
+ 1;
1634 * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
1635 * will tell us whether it freed the entire range or
1636 * not. If this is a synchronous mount (wsync),
1637 * then we can tell bunmapi to keep all the
1638 * transactions asynchronous since the unlink
1639 * transaction that made this inode inactive has
1640 * already hit the disk. There's no danger of
1641 * the freed blocks being reused, there being a
1642 * crash, and the reused blocks suddenly reappearing
1643 * in this file with garbage in them once recovery
1646 XFS_BMAP_INIT(&free_list
, &first_block
);
1647 error
= xfs_bunmapi(ntp
, ip
, first_unmap_block
,
1649 XFS_BMAPI_AFLAG(fork
) |
1650 (sync
? 0 : XFS_BMAPI_ASYNC
),
1651 XFS_ITRUNC_MAX_EXTENTS
,
1652 &first_block
, &free_list
, &done
);
1655 * If the bunmapi call encounters an error,
1656 * return to the caller where the transaction
1657 * can be properly aborted. We just need to
1658 * make sure we're not holding any resources
1659 * that we were not when we came in.
1661 xfs_bmap_cancel(&free_list
);
1666 * Duplicate the transaction that has the permanent
1667 * reservation and commit the old transaction.
1669 error
= xfs_bmap_finish(tp
, &free_list
, first_block
,
1674 * If the bmap finish call encounters an error,
1675 * return to the caller where the transaction
1676 * can be properly aborted. We just need to
1677 * make sure we're not holding any resources
1678 * that we were not when we came in.
1680 * Aborting from this point might lose some
1681 * blocks in the file system, but oh well.
1683 xfs_bmap_cancel(&free_list
);
1686 * If the passed in transaction committed
1687 * in xfs_bmap_finish(), then we want to
1688 * add the inode to this one before returning.
1689 * This keeps things simple for the higher
1690 * level code, because it always knows that
1691 * the inode is locked and held in the
1692 * transaction that returns to it whether
1693 * errors occur or not. We don't mark the
1694 * inode dirty so that this transaction can
1695 * be easily aborted if possible.
1697 xfs_trans_ijoin(ntp
, ip
,
1698 XFS_ILOCK_EXCL
| XFS_IOLOCK_EXCL
);
1699 xfs_trans_ihold(ntp
, ip
);
1706 * The first xact was committed,
1707 * so add the inode to the new one.
1708 * Mark it dirty so it will be logged
1709 * and moved forward in the log as
1710 * part of every commit.
1712 xfs_trans_ijoin(ntp
, ip
,
1713 XFS_ILOCK_EXCL
| XFS_IOLOCK_EXCL
);
1714 xfs_trans_ihold(ntp
, ip
);
1715 xfs_trans_log_inode(ntp
, ip
, XFS_ILOG_CORE
);
1717 ntp
= xfs_trans_dup(ntp
);
1718 (void) xfs_trans_commit(*tp
, 0, NULL
);
1720 error
= xfs_trans_reserve(ntp
, 0, XFS_ITRUNCATE_LOG_RES(mp
), 0,
1721 XFS_TRANS_PERM_LOG_RES
,
1722 XFS_ITRUNCATE_LOG_COUNT
);
1724 * Add the inode being truncated to the next chained
1727 xfs_trans_ijoin(ntp
, ip
, XFS_ILOCK_EXCL
| XFS_IOLOCK_EXCL
);
1728 xfs_trans_ihold(ntp
, ip
);
1733 * Only update the size in the case of the data fork, but
1734 * always re-log the inode so that our permanent transaction
1735 * can keep on rolling it forward in the log.
1737 if (fork
== XFS_DATA_FORK
) {
1738 xfs_isize_check(mp
, ip
, new_size
);
1739 ip
->i_d
.di_size
= new_size
;
1741 xfs_trans_log_inode(ntp
, ip
, XFS_ILOG_CORE
);
1742 ASSERT((new_size
!= 0) ||
1743 (fork
== XFS_ATTR_FORK
) ||
1744 (ip
->i_delayed_blks
== 0));
1745 ASSERT((new_size
!= 0) ||
1746 (fork
== XFS_ATTR_FORK
) ||
1747 (ip
->i_d
.di_nextents
== 0));
1748 xfs_itrunc_trace(XFS_ITRUNC_FINISH2
, ip
, 0, new_size
, 0, 0);
1756 * Do the first part of growing a file: zero any data in the last
1757 * block that is beyond the old EOF. We need to do this before
1758 * the inode is joined to the transaction to modify the i_size.
1759 * That way we can drop the inode lock and call into the buffer
1760 * cache to get the buffer mapping the EOF.
1765 xfs_fsize_t new_size
,
1771 ASSERT(ismrlocked(&(ip
->i_lock
), MR_UPDATE
) != 0);
1772 ASSERT(ismrlocked(&(ip
->i_iolock
), MR_UPDATE
) != 0);
1773 ASSERT(new_size
> ip
->i_d
.di_size
);
1776 isize
= ip
->i_d
.di_size
;
1778 * Zero any pages that may have been created by
1779 * xfs_write_file() beyond the end of the file
1780 * and any blocks between the old and new file sizes.
1782 error
= xfs_zero_eof(XFS_ITOV(ip
), &ip
->i_iocore
, new_size
, isize
,
1790 * This routine is called to extend the size of a file.
1791 * The inode must have both the iolock and the ilock locked
1792 * for update and it must be a part of the current transaction.
1793 * The xfs_igrow_start() function must have been called previously.
1794 * If the change_flag is not zero, the inode change timestamp will
1801 xfs_fsize_t new_size
,
1804 ASSERT(ismrlocked(&(ip
->i_lock
), MR_UPDATE
) != 0);
1805 ASSERT(ismrlocked(&(ip
->i_iolock
), MR_UPDATE
) != 0);
1806 ASSERT(ip
->i_transp
== tp
);
1807 ASSERT(new_size
> ip
->i_d
.di_size
);
1810 * Update the file size. Update the inode change timestamp
1811 * if change_flag set.
1813 ip
->i_d
.di_size
= new_size
;
1815 xfs_ichgtime(ip
, XFS_ICHGTIME_CHG
);
1816 xfs_trans_log_inode(tp
, ip
, XFS_ILOG_CORE
);
1822 * This is called when the inode's link count goes to 0.
1823 * We place the on-disk inode on a list in the AGI. It
1824 * will be pulled from this list when the inode is freed.
1836 xfs_agnumber_t agno
;
1837 xfs_daddr_t agdaddr
;
1844 ASSERT(ip
->i_d
.di_nlink
== 0);
1845 ASSERT(ip
->i_d
.di_mode
!= 0);
1846 ASSERT(ip
->i_transp
== tp
);
1850 agno
= XFS_INO_TO_AGNO(mp
, ip
->i_ino
);
1851 agdaddr
= XFS_AG_DADDR(mp
, agno
, XFS_AGI_DADDR(mp
));
1854 * Get the agi buffer first. It ensures lock ordering
1857 error
= xfs_trans_read_buf(mp
, tp
, mp
->m_ddev_targp
, agdaddr
,
1858 XFS_FSS_TO_BB(mp
, 1), 0, &agibp
);
1863 * Validate the magic number of the agi block.
1865 agi
= XFS_BUF_TO_AGI(agibp
);
1867 be32_to_cpu(agi
->agi_magicnum
) == XFS_AGI_MAGIC
&&
1868 XFS_AGI_GOOD_VERSION(be32_to_cpu(agi
->agi_versionnum
));
1869 if (unlikely(XFS_TEST_ERROR(!agi_ok
, mp
, XFS_ERRTAG_IUNLINK
,
1870 XFS_RANDOM_IUNLINK
))) {
1871 XFS_CORRUPTION_ERROR("xfs_iunlink", XFS_ERRLEVEL_LOW
, mp
, agi
);
1872 xfs_trans_brelse(tp
, agibp
);
1873 return XFS_ERROR(EFSCORRUPTED
);
1876 * Get the index into the agi hash table for the
1877 * list this inode will go on.
1879 agino
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
);
1881 bucket_index
= agino
% XFS_AGI_UNLINKED_BUCKETS
;
1882 ASSERT(agi
->agi_unlinked
[bucket_index
]);
1883 ASSERT(be32_to_cpu(agi
->agi_unlinked
[bucket_index
]) != agino
);
1885 if (be32_to_cpu(agi
->agi_unlinked
[bucket_index
]) != NULLAGINO
) {
1887 * There is already another inode in the bucket we need
1888 * to add ourselves to. Add us at the front of the list.
1889 * Here we put the head pointer into our next pointer,
1890 * and then we fall through to point the head at us.
1892 error
= xfs_itobp(mp
, tp
, ip
, &dip
, &ibp
, 0);
1896 ASSERT(INT_GET(dip
->di_next_unlinked
, ARCH_CONVERT
) == NULLAGINO
);
1897 ASSERT(dip
->di_next_unlinked
);
1898 /* both on-disk, don't endian flip twice */
1899 dip
->di_next_unlinked
= agi
->agi_unlinked
[bucket_index
];
1900 offset
= ip
->i_boffset
+
1901 offsetof(xfs_dinode_t
, di_next_unlinked
);
1902 xfs_trans_inode_buf(tp
, ibp
);
1903 xfs_trans_log_buf(tp
, ibp
, offset
,
1904 (offset
+ sizeof(xfs_agino_t
) - 1));
1905 xfs_inobp_check(mp
, ibp
);
1909 * Point the bucket head pointer at the inode being inserted.
1912 agi
->agi_unlinked
[bucket_index
] = cpu_to_be32(agino
);
1913 offset
= offsetof(xfs_agi_t
, agi_unlinked
) +
1914 (sizeof(xfs_agino_t
) * bucket_index
);
1915 xfs_trans_log_buf(tp
, agibp
, offset
,
1916 (offset
+ sizeof(xfs_agino_t
) - 1));
1921 * Pull the on-disk inode from the AGI unlinked list.
1934 xfs_agnumber_t agno
;
1935 xfs_daddr_t agdaddr
;
1937 xfs_agino_t next_agino
;
1938 xfs_buf_t
*last_ibp
;
1939 xfs_dinode_t
*last_dip
;
1941 int offset
, last_offset
;
1946 * First pull the on-disk inode from the AGI unlinked list.
1950 agno
= XFS_INO_TO_AGNO(mp
, ip
->i_ino
);
1951 agdaddr
= XFS_AG_DADDR(mp
, agno
, XFS_AGI_DADDR(mp
));
1954 * Get the agi buffer first. It ensures lock ordering
1957 error
= xfs_trans_read_buf(mp
, tp
, mp
->m_ddev_targp
, agdaddr
,
1958 XFS_FSS_TO_BB(mp
, 1), 0, &agibp
);
1961 "xfs_iunlink_remove: xfs_trans_read_buf() returned an error %d on %s. Returning error.",
1962 error
, mp
->m_fsname
);
1966 * Validate the magic number of the agi block.
1968 agi
= XFS_BUF_TO_AGI(agibp
);
1970 be32_to_cpu(agi
->agi_magicnum
) == XFS_AGI_MAGIC
&&
1971 XFS_AGI_GOOD_VERSION(be32_to_cpu(agi
->agi_versionnum
));
1972 if (unlikely(XFS_TEST_ERROR(!agi_ok
, mp
, XFS_ERRTAG_IUNLINK_REMOVE
,
1973 XFS_RANDOM_IUNLINK_REMOVE
))) {
1974 XFS_CORRUPTION_ERROR("xfs_iunlink_remove", XFS_ERRLEVEL_LOW
,
1976 xfs_trans_brelse(tp
, agibp
);
1978 "xfs_iunlink_remove: XFS_TEST_ERROR() returned an error on %s. Returning EFSCORRUPTED.",
1980 return XFS_ERROR(EFSCORRUPTED
);
1983 * Get the index into the agi hash table for the
1984 * list this inode will go on.
1986 agino
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
);
1988 bucket_index
= agino
% XFS_AGI_UNLINKED_BUCKETS
;
1989 ASSERT(be32_to_cpu(agi
->agi_unlinked
[bucket_index
]) != NULLAGINO
);
1990 ASSERT(agi
->agi_unlinked
[bucket_index
]);
1992 if (be32_to_cpu(agi
->agi_unlinked
[bucket_index
]) == agino
) {
1994 * We're at the head of the list. Get the inode's
1995 * on-disk buffer to see if there is anyone after us
1996 * on the list. Only modify our next pointer if it
1997 * is not already NULLAGINO. This saves us the overhead
1998 * of dealing with the buffer when there is no need to
2001 error
= xfs_itobp(mp
, tp
, ip
, &dip
, &ibp
, 0);
2004 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
2005 error
, mp
->m_fsname
);
2008 next_agino
= INT_GET(dip
->di_next_unlinked
, ARCH_CONVERT
);
2009 ASSERT(next_agino
!= 0);
2010 if (next_agino
!= NULLAGINO
) {
2011 INT_SET(dip
->di_next_unlinked
, ARCH_CONVERT
, NULLAGINO
);
2012 offset
= ip
->i_boffset
+
2013 offsetof(xfs_dinode_t
, di_next_unlinked
);
2014 xfs_trans_inode_buf(tp
, ibp
);
2015 xfs_trans_log_buf(tp
, ibp
, offset
,
2016 (offset
+ sizeof(xfs_agino_t
) - 1));
2017 xfs_inobp_check(mp
, ibp
);
2019 xfs_trans_brelse(tp
, ibp
);
2022 * Point the bucket head pointer at the next inode.
2024 ASSERT(next_agino
!= 0);
2025 ASSERT(next_agino
!= agino
);
2026 agi
->agi_unlinked
[bucket_index
] = cpu_to_be32(next_agino
);
2027 offset
= offsetof(xfs_agi_t
, agi_unlinked
) +
2028 (sizeof(xfs_agino_t
) * bucket_index
);
2029 xfs_trans_log_buf(tp
, agibp
, offset
,
2030 (offset
+ sizeof(xfs_agino_t
) - 1));
2033 * We need to search the list for the inode being freed.
2035 next_agino
= be32_to_cpu(agi
->agi_unlinked
[bucket_index
]);
2037 while (next_agino
!= agino
) {
2039 * If the last inode wasn't the one pointing to
2040 * us, then release its buffer since we're not
2041 * going to do anything with it.
2043 if (last_ibp
!= NULL
) {
2044 xfs_trans_brelse(tp
, last_ibp
);
2046 next_ino
= XFS_AGINO_TO_INO(mp
, agno
, next_agino
);
2047 error
= xfs_inotobp(mp
, tp
, next_ino
, &last_dip
,
2048 &last_ibp
, &last_offset
);
2051 "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.",
2052 error
, mp
->m_fsname
);
2055 next_agino
= INT_GET(last_dip
->di_next_unlinked
, ARCH_CONVERT
);
2056 ASSERT(next_agino
!= NULLAGINO
);
2057 ASSERT(next_agino
!= 0);
2060 * Now last_ibp points to the buffer previous to us on
2061 * the unlinked list. Pull us from the list.
2063 error
= xfs_itobp(mp
, tp
, ip
, &dip
, &ibp
, 0);
2066 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
2067 error
, mp
->m_fsname
);
2070 next_agino
= INT_GET(dip
->di_next_unlinked
, ARCH_CONVERT
);
2071 ASSERT(next_agino
!= 0);
2072 ASSERT(next_agino
!= agino
);
2073 if (next_agino
!= NULLAGINO
) {
2074 INT_SET(dip
->di_next_unlinked
, ARCH_CONVERT
, NULLAGINO
);
2075 offset
= ip
->i_boffset
+
2076 offsetof(xfs_dinode_t
, di_next_unlinked
);
2077 xfs_trans_inode_buf(tp
, ibp
);
2078 xfs_trans_log_buf(tp
, ibp
, offset
,
2079 (offset
+ sizeof(xfs_agino_t
) - 1));
2080 xfs_inobp_check(mp
, ibp
);
2082 xfs_trans_brelse(tp
, ibp
);
2085 * Point the previous inode on the list to the next inode.
2087 INT_SET(last_dip
->di_next_unlinked
, ARCH_CONVERT
, next_agino
);
2088 ASSERT(next_agino
!= 0);
2089 offset
= last_offset
+ offsetof(xfs_dinode_t
, di_next_unlinked
);
2090 xfs_trans_inode_buf(tp
, last_ibp
);
2091 xfs_trans_log_buf(tp
, last_ibp
, offset
,
2092 (offset
+ sizeof(xfs_agino_t
) - 1));
2093 xfs_inobp_check(mp
, last_ibp
);
2098 static __inline__
int xfs_inode_clean(xfs_inode_t
*ip
)
2100 return (((ip
->i_itemp
== NULL
) ||
2101 !(ip
->i_itemp
->ili_format
.ilf_fields
& XFS_ILOG_ALL
)) &&
2102 (ip
->i_update_core
== 0));
2107 xfs_inode_t
*free_ip
,
2111 xfs_mount_t
*mp
= free_ip
->i_mount
;
2112 int blks_per_cluster
;
2115 int i
, j
, found
, pre_flushed
;
2119 xfs_inode_t
*ip
, **ip_found
;
2120 xfs_inode_log_item_t
*iip
;
2121 xfs_log_item_t
*lip
;
2124 if (mp
->m_sb
.sb_blocksize
>= XFS_INODE_CLUSTER_SIZE(mp
)) {
2125 blks_per_cluster
= 1;
2126 ninodes
= mp
->m_sb
.sb_inopblock
;
2127 nbufs
= XFS_IALLOC_BLOCKS(mp
);
2129 blks_per_cluster
= XFS_INODE_CLUSTER_SIZE(mp
) /
2130 mp
->m_sb
.sb_blocksize
;
2131 ninodes
= blks_per_cluster
* mp
->m_sb
.sb_inopblock
;
2132 nbufs
= XFS_IALLOC_BLOCKS(mp
) / blks_per_cluster
;
2135 ip_found
= kmem_alloc(ninodes
* sizeof(xfs_inode_t
*), KM_NOFS
);
2137 for (j
= 0; j
< nbufs
; j
++, inum
+= ninodes
) {
2138 blkno
= XFS_AGB_TO_DADDR(mp
, XFS_INO_TO_AGNO(mp
, inum
),
2139 XFS_INO_TO_AGBNO(mp
, inum
));
2143 * Look for each inode in memory and attempt to lock it,
2144 * we can be racing with flush and tail pushing here.
2145 * any inode we get the locks on, add to an array of
2146 * inode items to process later.
2148 * The get the buffer lock, we could beat a flush
2149 * or tail pushing thread to the lock here, in which
2150 * case they will go looking for the inode buffer
2151 * and fail, we need some other form of interlock
2155 for (i
= 0; i
< ninodes
; i
++) {
2156 ih
= XFS_IHASH(mp
, inum
+ i
);
2157 read_lock(&ih
->ih_lock
);
2158 for (ip
= ih
->ih_next
; ip
!= NULL
; ip
= ip
->i_next
) {
2159 if (ip
->i_ino
== inum
+ i
)
2163 /* Inode not in memory or we found it already,
2166 if (!ip
|| (ip
->i_flags
& XFS_ISTALE
)) {
2167 read_unlock(&ih
->ih_lock
);
2171 if (xfs_inode_clean(ip
)) {
2172 read_unlock(&ih
->ih_lock
);
2176 /* If we can get the locks then add it to the
2177 * list, otherwise by the time we get the bp lock
2178 * below it will already be attached to the
2182 /* This inode will already be locked - by us, lets
2186 if (ip
== free_ip
) {
2187 if (xfs_iflock_nowait(ip
)) {
2188 ip
->i_flags
|= XFS_ISTALE
;
2190 if (xfs_inode_clean(ip
)) {
2193 ip_found
[found
++] = ip
;
2196 read_unlock(&ih
->ih_lock
);
2200 if (xfs_ilock_nowait(ip
, XFS_ILOCK_EXCL
)) {
2201 if (xfs_iflock_nowait(ip
)) {
2202 ip
->i_flags
|= XFS_ISTALE
;
2204 if (xfs_inode_clean(ip
)) {
2206 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
2208 ip_found
[found
++] = ip
;
2211 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
2215 read_unlock(&ih
->ih_lock
);
2218 bp
= xfs_trans_get_buf(tp
, mp
->m_ddev_targp
, blkno
,
2219 mp
->m_bsize
* blks_per_cluster
,
2223 lip
= XFS_BUF_FSPRIVATE(bp
, xfs_log_item_t
*);
2225 if (lip
->li_type
== XFS_LI_INODE
) {
2226 iip
= (xfs_inode_log_item_t
*)lip
;
2227 ASSERT(iip
->ili_logged
== 1);
2228 lip
->li_cb
= (void(*)(xfs_buf_t
*,xfs_log_item_t
*)) xfs_istale_done
;
2230 iip
->ili_flush_lsn
= iip
->ili_item
.li_lsn
;
2232 iip
->ili_inode
->i_flags
|= XFS_ISTALE
;
2235 lip
= lip
->li_bio_list
;
2238 for (i
= 0; i
< found
; i
++) {
2243 ip
->i_update_core
= 0;
2245 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
2249 iip
->ili_last_fields
= iip
->ili_format
.ilf_fields
;
2250 iip
->ili_format
.ilf_fields
= 0;
2251 iip
->ili_logged
= 1;
2253 iip
->ili_flush_lsn
= iip
->ili_item
.li_lsn
;
2256 xfs_buf_attach_iodone(bp
,
2257 (void(*)(xfs_buf_t
*,xfs_log_item_t
*))
2258 xfs_istale_done
, (xfs_log_item_t
*)iip
);
2259 if (ip
!= free_ip
) {
2260 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
2264 if (found
|| pre_flushed
)
2265 xfs_trans_stale_inode_buf(tp
, bp
);
2266 xfs_trans_binval(tp
, bp
);
2269 kmem_free(ip_found
, ninodes
* sizeof(xfs_inode_t
*));
2273 * This is called to return an inode to the inode free list.
2274 * The inode should already be truncated to 0 length and have
2275 * no pages associated with it. This routine also assumes that
2276 * the inode is already a part of the transaction.
2278 * The on-disk copy of the inode will have been added to the list
2279 * of unlinked inodes in the AGI. We need to remove the inode from
2280 * that list atomically with respect to freeing it here.
2286 xfs_bmap_free_t
*flist
)
2290 xfs_ino_t first_ino
;
2292 ASSERT(ismrlocked(&ip
->i_lock
, MR_UPDATE
));
2293 ASSERT(ip
->i_transp
== tp
);
2294 ASSERT(ip
->i_d
.di_nlink
== 0);
2295 ASSERT(ip
->i_d
.di_nextents
== 0);
2296 ASSERT(ip
->i_d
.di_anextents
== 0);
2297 ASSERT((ip
->i_d
.di_size
== 0) ||
2298 ((ip
->i_d
.di_mode
& S_IFMT
) != S_IFREG
));
2299 ASSERT(ip
->i_d
.di_nblocks
== 0);
2302 * Pull the on-disk inode from the AGI unlinked list.
2304 error
= xfs_iunlink_remove(tp
, ip
);
2309 error
= xfs_difree(tp
, ip
->i_ino
, flist
, &delete, &first_ino
);
2313 ip
->i_d
.di_mode
= 0; /* mark incore inode as free */
2314 ip
->i_d
.di_flags
= 0;
2315 ip
->i_d
.di_dmevmask
= 0;
2316 ip
->i_d
.di_forkoff
= 0; /* mark the attr fork not in use */
2317 ip
->i_df
.if_ext_max
=
2318 XFS_IFORK_DSIZE(ip
) / (uint
)sizeof(xfs_bmbt_rec_t
);
2319 ip
->i_d
.di_format
= XFS_DINODE_FMT_EXTENTS
;
2320 ip
->i_d
.di_aformat
= XFS_DINODE_FMT_EXTENTS
;
2322 * Bump the generation count so no one will be confused
2323 * by reincarnations of this inode.
2326 xfs_trans_log_inode(tp
, ip
, XFS_ILOG_CORE
);
2329 xfs_ifree_cluster(ip
, tp
, first_ino
);
2336 * Reallocate the space for if_broot based on the number of records
2337 * being added or deleted as indicated in rec_diff. Move the records
2338 * and pointers in if_broot to fit the new size. When shrinking this
2339 * will eliminate holes between the records and pointers created by
2340 * the caller. When growing this will create holes to be filled in
2343 * The caller must not request to add more records than would fit in
2344 * the on-disk inode root. If the if_broot is currently NULL, then
2345 * if we adding records one will be allocated. The caller must also
2346 * not request that the number of records go below zero, although
2347 * it can go to zero.
2349 * ip -- the inode whose if_broot area is changing
2350 * ext_diff -- the change in the number of records, positive or negative,
2351 * requested for the if_broot array.
2361 xfs_bmbt_block_t
*new_broot
;
2368 * Handle the degenerate case quietly.
2370 if (rec_diff
== 0) {
2374 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2377 * If there wasn't any memory allocated before, just
2378 * allocate it now and get out.
2380 if (ifp
->if_broot_bytes
== 0) {
2381 new_size
= (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff
);
2382 ifp
->if_broot
= (xfs_bmbt_block_t
*)kmem_alloc(new_size
,
2384 ifp
->if_broot_bytes
= (int)new_size
;
2389 * If there is already an existing if_broot, then we need
2390 * to realloc() it and shift the pointers to their new
2391 * location. The records don't change location because
2392 * they are kept butted up against the btree block header.
2394 cur_max
= XFS_BMAP_BROOT_MAXRECS(ifp
->if_broot_bytes
);
2395 new_max
= cur_max
+ rec_diff
;
2396 new_size
= (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max
);
2397 ifp
->if_broot
= (xfs_bmbt_block_t
*)
2398 kmem_realloc(ifp
->if_broot
,
2400 (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max
), /* old size */
2402 op
= (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp
->if_broot
, 1,
2403 ifp
->if_broot_bytes
);
2404 np
= (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp
->if_broot
, 1,
2406 ifp
->if_broot_bytes
= (int)new_size
;
2407 ASSERT(ifp
->if_broot_bytes
<=
2408 XFS_IFORK_SIZE(ip
, whichfork
) + XFS_BROOT_SIZE_ADJ
);
2409 memmove(np
, op
, cur_max
* (uint
)sizeof(xfs_dfsbno_t
));
2414 * rec_diff is less than 0. In this case, we are shrinking the
2415 * if_broot buffer. It must already exist. If we go to zero
2416 * records, just get rid of the root and clear the status bit.
2418 ASSERT((ifp
->if_broot
!= NULL
) && (ifp
->if_broot_bytes
> 0));
2419 cur_max
= XFS_BMAP_BROOT_MAXRECS(ifp
->if_broot_bytes
);
2420 new_max
= cur_max
+ rec_diff
;
2421 ASSERT(new_max
>= 0);
2423 new_size
= (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max
);
2427 new_broot
= (xfs_bmbt_block_t
*)kmem_alloc(new_size
, KM_SLEEP
);
2429 * First copy over the btree block header.
2431 memcpy(new_broot
, ifp
->if_broot
, sizeof(xfs_bmbt_block_t
));
2434 ifp
->if_flags
&= ~XFS_IFBROOT
;
2438 * Only copy the records and pointers if there are any.
2442 * First copy the records.
2444 op
= (char *)XFS_BMAP_BROOT_REC_ADDR(ifp
->if_broot
, 1,
2445 ifp
->if_broot_bytes
);
2446 np
= (char *)XFS_BMAP_BROOT_REC_ADDR(new_broot
, 1,
2448 memcpy(np
, op
, new_max
* (uint
)sizeof(xfs_bmbt_rec_t
));
2451 * Then copy the pointers.
2453 op
= (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp
->if_broot
, 1,
2454 ifp
->if_broot_bytes
);
2455 np
= (char *)XFS_BMAP_BROOT_PTR_ADDR(new_broot
, 1,
2457 memcpy(np
, op
, new_max
* (uint
)sizeof(xfs_dfsbno_t
));
2459 kmem_free(ifp
->if_broot
, ifp
->if_broot_bytes
);
2460 ifp
->if_broot
= new_broot
;
2461 ifp
->if_broot_bytes
= (int)new_size
;
2462 ASSERT(ifp
->if_broot_bytes
<=
2463 XFS_IFORK_SIZE(ip
, whichfork
) + XFS_BROOT_SIZE_ADJ
);
2469 * This is called when the amount of space needed for if_extents
2470 * is increased or decreased. The change in size is indicated by
2471 * the number of extents that need to be added or deleted in the
2472 * ext_diff parameter.
2474 * If the amount of space needed has decreased below the size of the
2475 * inline buffer, then switch to using the inline buffer. Otherwise,
2476 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2477 * to what is needed.
2479 * ip -- the inode whose if_extents area is changing
2480 * ext_diff -- the change in the number of extents, positive or negative,
2481 * requested for the if_extents array.
2494 if (ext_diff
== 0) {
2498 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2499 byte_diff
= ext_diff
* (uint
)sizeof(xfs_bmbt_rec_t
);
2500 new_size
= (int)ifp
->if_bytes
+ byte_diff
;
2501 ASSERT(new_size
>= 0);
2503 if (new_size
== 0) {
2504 if (ifp
->if_u1
.if_extents
!= ifp
->if_u2
.if_inline_ext
) {
2505 ASSERT(ifp
->if_real_bytes
!= 0);
2506 kmem_free(ifp
->if_u1
.if_extents
, ifp
->if_real_bytes
);
2508 ifp
->if_u1
.if_extents
= NULL
;
2510 } else if (new_size
<= sizeof(ifp
->if_u2
.if_inline_ext
)) {
2512 * If the valid extents can fit in if_inline_ext,
2513 * copy them from the malloc'd vector and free it.
2515 if (ifp
->if_u1
.if_extents
!= ifp
->if_u2
.if_inline_ext
) {
2517 * For now, empty files are format EXTENTS,
2518 * so the if_extents pointer is null.
2520 if (ifp
->if_u1
.if_extents
) {
2521 memcpy(ifp
->if_u2
.if_inline_ext
,
2522 ifp
->if_u1
.if_extents
, new_size
);
2523 kmem_free(ifp
->if_u1
.if_extents
,
2524 ifp
->if_real_bytes
);
2526 ifp
->if_u1
.if_extents
= ifp
->if_u2
.if_inline_ext
;
2530 rnew_size
= new_size
;
2531 if ((rnew_size
& (rnew_size
- 1)) != 0)
2532 rnew_size
= xfs_iroundup(rnew_size
);
2534 * Stuck with malloc/realloc.
2536 if (ifp
->if_u1
.if_extents
== ifp
->if_u2
.if_inline_ext
) {
2537 ifp
->if_u1
.if_extents
= (xfs_bmbt_rec_t
*)
2538 kmem_alloc(rnew_size
, KM_SLEEP
);
2539 memcpy(ifp
->if_u1
.if_extents
, ifp
->if_u2
.if_inline_ext
,
2540 sizeof(ifp
->if_u2
.if_inline_ext
));
2541 } else if (rnew_size
!= ifp
->if_real_bytes
) {
2542 ifp
->if_u1
.if_extents
= (xfs_bmbt_rec_t
*)
2543 kmem_realloc(ifp
->if_u1
.if_extents
,
2549 ifp
->if_real_bytes
= rnew_size
;
2550 ifp
->if_bytes
= new_size
;
2555 * This is called when the amount of space needed for if_data
2556 * is increased or decreased. The change in size is indicated by
2557 * the number of bytes that need to be added or deleted in the
2558 * byte_diff parameter.
2560 * If the amount of space needed has decreased below the size of the
2561 * inline buffer, then switch to using the inline buffer. Otherwise,
2562 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2563 * to what is needed.
2565 * ip -- the inode whose if_data area is changing
2566 * byte_diff -- the change in the number of bytes, positive or negative,
2567 * requested for the if_data array.
2579 if (byte_diff
== 0) {
2583 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2584 new_size
= (int)ifp
->if_bytes
+ byte_diff
;
2585 ASSERT(new_size
>= 0);
2587 if (new_size
== 0) {
2588 if (ifp
->if_u1
.if_data
!= ifp
->if_u2
.if_inline_data
) {
2589 kmem_free(ifp
->if_u1
.if_data
, ifp
->if_real_bytes
);
2591 ifp
->if_u1
.if_data
= NULL
;
2593 } else if (new_size
<= sizeof(ifp
->if_u2
.if_inline_data
)) {
2595 * If the valid extents/data can fit in if_inline_ext/data,
2596 * copy them from the malloc'd vector and free it.
2598 if (ifp
->if_u1
.if_data
== NULL
) {
2599 ifp
->if_u1
.if_data
= ifp
->if_u2
.if_inline_data
;
2600 } else if (ifp
->if_u1
.if_data
!= ifp
->if_u2
.if_inline_data
) {
2601 ASSERT(ifp
->if_real_bytes
!= 0);
2602 memcpy(ifp
->if_u2
.if_inline_data
, ifp
->if_u1
.if_data
,
2604 kmem_free(ifp
->if_u1
.if_data
, ifp
->if_real_bytes
);
2605 ifp
->if_u1
.if_data
= ifp
->if_u2
.if_inline_data
;
2610 * Stuck with malloc/realloc.
2611 * For inline data, the underlying buffer must be
2612 * a multiple of 4 bytes in size so that it can be
2613 * logged and stay on word boundaries. We enforce
2616 real_size
= roundup(new_size
, 4);
2617 if (ifp
->if_u1
.if_data
== NULL
) {
2618 ASSERT(ifp
->if_real_bytes
== 0);
2619 ifp
->if_u1
.if_data
= kmem_alloc(real_size
, KM_SLEEP
);
2620 } else if (ifp
->if_u1
.if_data
!= ifp
->if_u2
.if_inline_data
) {
2622 * Only do the realloc if the underlying size
2623 * is really changing.
2625 if (ifp
->if_real_bytes
!= real_size
) {
2626 ifp
->if_u1
.if_data
=
2627 kmem_realloc(ifp
->if_u1
.if_data
,
2633 ASSERT(ifp
->if_real_bytes
== 0);
2634 ifp
->if_u1
.if_data
= kmem_alloc(real_size
, KM_SLEEP
);
2635 memcpy(ifp
->if_u1
.if_data
, ifp
->if_u2
.if_inline_data
,
2639 ifp
->if_real_bytes
= real_size
;
2640 ifp
->if_bytes
= new_size
;
2641 ASSERT(ifp
->if_bytes
<= XFS_IFORK_SIZE(ip
, whichfork
));
2648 * Map inode to disk block and offset.
2650 * mp -- the mount point structure for the current file system
2651 * tp -- the current transaction
2652 * ino -- the inode number of the inode to be located
2653 * imap -- this structure is filled in with the information necessary
2654 * to retrieve the given inode from disk
2655 * flags -- flags to pass to xfs_dilocate indicating whether or not
2656 * lookups in the inode btree were OK or not
2666 xfs_fsblock_t fsbno
;
2671 fsbno
= imap
->im_blkno
?
2672 XFS_DADDR_TO_FSB(mp
, imap
->im_blkno
) : NULLFSBLOCK
;
2673 error
= xfs_dilocate(mp
, tp
, ino
, &fsbno
, &len
, &off
, flags
);
2677 imap
->im_blkno
= XFS_FSB_TO_DADDR(mp
, fsbno
);
2678 imap
->im_len
= XFS_FSB_TO_BB(mp
, len
);
2679 imap
->im_agblkno
= XFS_FSB_TO_AGBNO(mp
, fsbno
);
2680 imap
->im_ioffset
= (ushort
)off
;
2681 imap
->im_boffset
= (ushort
)(off
<< mp
->m_sb
.sb_inodelog
);
2692 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2693 if (ifp
->if_broot
!= NULL
) {
2694 kmem_free(ifp
->if_broot
, ifp
->if_broot_bytes
);
2695 ifp
->if_broot
= NULL
;
2699 * If the format is local, then we can't have an extents
2700 * array so just look for an inline data array. If we're
2701 * not local then we may or may not have an extents list,
2702 * so check and free it up if we do.
2704 if (XFS_IFORK_FORMAT(ip
, whichfork
) == XFS_DINODE_FMT_LOCAL
) {
2705 if ((ifp
->if_u1
.if_data
!= ifp
->if_u2
.if_inline_data
) &&
2706 (ifp
->if_u1
.if_data
!= NULL
)) {
2707 ASSERT(ifp
->if_real_bytes
!= 0);
2708 kmem_free(ifp
->if_u1
.if_data
, ifp
->if_real_bytes
);
2709 ifp
->if_u1
.if_data
= NULL
;
2710 ifp
->if_real_bytes
= 0;
2712 } else if ((ifp
->if_flags
& XFS_IFEXTENTS
) &&
2713 (ifp
->if_u1
.if_extents
!= NULL
) &&
2714 (ifp
->if_u1
.if_extents
!= ifp
->if_u2
.if_inline_ext
)) {
2715 ASSERT(ifp
->if_real_bytes
!= 0);
2716 kmem_free(ifp
->if_u1
.if_extents
, ifp
->if_real_bytes
);
2717 ifp
->if_u1
.if_extents
= NULL
;
2718 ifp
->if_real_bytes
= 0;
2720 ASSERT(ifp
->if_u1
.if_extents
== NULL
||
2721 ifp
->if_u1
.if_extents
== ifp
->if_u2
.if_inline_ext
);
2722 ASSERT(ifp
->if_real_bytes
== 0);
2723 if (whichfork
== XFS_ATTR_FORK
) {
2724 kmem_zone_free(xfs_ifork_zone
, ip
->i_afp
);
2730 * This is called free all the memory associated with an inode.
2731 * It must free the inode itself and any buffers allocated for
2732 * if_extents/if_data and if_broot. It must also free the lock
2733 * associated with the inode.
2740 switch (ip
->i_d
.di_mode
& S_IFMT
) {
2744 xfs_idestroy_fork(ip
, XFS_DATA_FORK
);
2748 xfs_idestroy_fork(ip
, XFS_ATTR_FORK
);
2749 mrfree(&ip
->i_lock
);
2750 mrfree(&ip
->i_iolock
);
2751 freesema(&ip
->i_flock
);
2752 #ifdef XFS_BMAP_TRACE
2753 ktrace_free(ip
->i_xtrace
);
2755 #ifdef XFS_BMBT_TRACE
2756 ktrace_free(ip
->i_btrace
);
2759 ktrace_free(ip
->i_rwtrace
);
2761 #ifdef XFS_ILOCK_TRACE
2762 ktrace_free(ip
->i_lock_trace
);
2764 #ifdef XFS_DIR2_TRACE
2765 ktrace_free(ip
->i_dir_trace
);
2768 /* XXXdpd should be able to assert this but shutdown
2769 * is leaving the AIL behind. */
2770 ASSERT(((ip
->i_itemp
->ili_item
.li_flags
& XFS_LI_IN_AIL
) == 0) ||
2771 XFS_FORCED_SHUTDOWN(ip
->i_mount
));
2772 xfs_inode_item_destroy(ip
);
2774 kmem_zone_free(xfs_inode_zone
, ip
);
2779 * Increment the pin count of the given buffer.
2780 * This value is protected by ipinlock spinlock in the mount structure.
2786 ASSERT(ismrlocked(&ip
->i_lock
, MR_UPDATE
));
2788 atomic_inc(&ip
->i_pincount
);
2792 * Decrement the pin count of the given inode, and wake up
2793 * anyone in xfs_iwait_unpin() if the count goes to 0. The
2794 * inode must have been previoulsy pinned with a call to xfs_ipin().
2800 ASSERT(atomic_read(&ip
->i_pincount
) > 0);
2802 if (atomic_dec_and_test(&ip
->i_pincount
)) {
2803 vnode_t
*vp
= XFS_ITOV_NULL(ip
);
2805 /* make sync come back and flush this inode */
2807 struct inode
*inode
= LINVFS_GET_IP(vp
);
2809 if (!(inode
->i_state
& I_NEW
))
2810 mark_inode_dirty_sync(inode
);
2813 wake_up(&ip
->i_ipin_wait
);
2818 * This is called to wait for the given inode to be unpinned.
2819 * It will sleep until this happens. The caller must have the
2820 * inode locked in at least shared mode so that the buffer cannot
2821 * be subsequently pinned once someone is waiting for it to be
2828 xfs_inode_log_item_t
*iip
;
2831 ASSERT(ismrlocked(&ip
->i_lock
, MR_UPDATE
| MR_ACCESS
));
2833 if (atomic_read(&ip
->i_pincount
) == 0) {
2838 if (iip
&& iip
->ili_last_lsn
) {
2839 lsn
= iip
->ili_last_lsn
;
2845 * Give the log a push so we don't wait here too long.
2847 xfs_log_force(ip
->i_mount
, lsn
, XFS_LOG_FORCE
);
2849 wait_event(ip
->i_ipin_wait
, (atomic_read(&ip
->i_pincount
) == 0));
2854 * xfs_iextents_copy()
2856 * This is called to copy the REAL extents (as opposed to the delayed
2857 * allocation extents) from the inode into the given buffer. It
2858 * returns the number of bytes copied into the buffer.
2860 * If there are no delayed allocation extents, then we can just
2861 * memcpy() the extents into the buffer. Otherwise, we need to
2862 * examine each extent in turn and skip those which are delayed.
2867 xfs_bmbt_rec_t
*buffer
,
2871 xfs_bmbt_rec_t
*dest_ep
;
2873 #ifdef XFS_BMAP_TRACE
2874 static char fname
[] = "xfs_iextents_copy";
2879 xfs_fsblock_t start_block
;
2881 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2882 ASSERT(ismrlocked(&ip
->i_lock
, MR_UPDATE
|MR_ACCESS
));
2883 ASSERT(ifp
->if_bytes
> 0);
2885 nrecs
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
2886 xfs_bmap_trace_exlist(fname
, ip
, nrecs
, whichfork
);
2890 * There are some delayed allocation extents in the
2891 * inode, so copy the extents one at a time and skip
2892 * the delayed ones. There must be at least one
2893 * non-delayed extent.
2895 ep
= ifp
->if_u1
.if_extents
;
2898 for (i
= 0; i
< nrecs
; i
++) {
2899 start_block
= xfs_bmbt_get_startblock(ep
);
2900 if (ISNULLSTARTBLOCK(start_block
)) {
2902 * It's a delayed allocation extent, so skip it.
2908 /* Translate to on disk format */
2909 put_unaligned(INT_GET(ep
->l0
, ARCH_CONVERT
),
2910 (__uint64_t
*)&dest_ep
->l0
);
2911 put_unaligned(INT_GET(ep
->l1
, ARCH_CONVERT
),
2912 (__uint64_t
*)&dest_ep
->l1
);
2917 ASSERT(copied
!= 0);
2918 xfs_validate_extents(buffer
, copied
, 1, XFS_EXTFMT_INODE(ip
));
2920 return (copied
* (uint
)sizeof(xfs_bmbt_rec_t
));
2924 * Each of the following cases stores data into the same region
2925 * of the on-disk inode, so only one of them can be valid at
2926 * any given time. While it is possible to have conflicting formats
2927 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2928 * in EXTENTS format, this can only happen when the fork has
2929 * changed formats after being modified but before being flushed.
2930 * In these cases, the format always takes precedence, because the
2931 * format indicates the current state of the fork.
2938 xfs_inode_log_item_t
*iip
,
2945 #ifdef XFS_TRANS_DEBUG
2948 static const short brootflag
[2] =
2949 { XFS_ILOG_DBROOT
, XFS_ILOG_ABROOT
};
2950 static const short dataflag
[2] =
2951 { XFS_ILOG_DDATA
, XFS_ILOG_ADATA
};
2952 static const short extflag
[2] =
2953 { XFS_ILOG_DEXT
, XFS_ILOG_AEXT
};
2957 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2959 * This can happen if we gave up in iformat in an error path,
2960 * for the attribute fork.
2963 ASSERT(whichfork
== XFS_ATTR_FORK
);
2966 cp
= XFS_DFORK_PTR(dip
, whichfork
);
2968 switch (XFS_IFORK_FORMAT(ip
, whichfork
)) {
2969 case XFS_DINODE_FMT_LOCAL
:
2970 if ((iip
->ili_format
.ilf_fields
& dataflag
[whichfork
]) &&
2971 (ifp
->if_bytes
> 0)) {
2972 ASSERT(ifp
->if_u1
.if_data
!= NULL
);
2973 ASSERT(ifp
->if_bytes
<= XFS_IFORK_SIZE(ip
, whichfork
));
2974 memcpy(cp
, ifp
->if_u1
.if_data
, ifp
->if_bytes
);
2976 if (whichfork
== XFS_DATA_FORK
) {
2977 if (unlikely(XFS_DIR_SHORTFORM_VALIDATE_ONDISK(mp
, dip
))) {
2978 XFS_ERROR_REPORT("xfs_iflush_fork",
2979 XFS_ERRLEVEL_LOW
, mp
);
2980 return XFS_ERROR(EFSCORRUPTED
);
2985 case XFS_DINODE_FMT_EXTENTS
:
2986 ASSERT((ifp
->if_flags
& XFS_IFEXTENTS
) ||
2987 !(iip
->ili_format
.ilf_fields
& extflag
[whichfork
]));
2988 ASSERT((ifp
->if_u1
.if_extents
!= NULL
) || (ifp
->if_bytes
== 0));
2989 ASSERT((ifp
->if_u1
.if_extents
== NULL
) || (ifp
->if_bytes
> 0));
2990 if ((iip
->ili_format
.ilf_fields
& extflag
[whichfork
]) &&
2991 (ifp
->if_bytes
> 0)) {
2992 ASSERT(XFS_IFORK_NEXTENTS(ip
, whichfork
) > 0);
2993 (void)xfs_iextents_copy(ip
, (xfs_bmbt_rec_t
*)cp
,
2998 case XFS_DINODE_FMT_BTREE
:
2999 if ((iip
->ili_format
.ilf_fields
& brootflag
[whichfork
]) &&
3000 (ifp
->if_broot_bytes
> 0)) {
3001 ASSERT(ifp
->if_broot
!= NULL
);
3002 ASSERT(ifp
->if_broot_bytes
<=
3003 (XFS_IFORK_SIZE(ip
, whichfork
) +
3004 XFS_BROOT_SIZE_ADJ
));
3005 xfs_bmbt_to_bmdr(ifp
->if_broot
, ifp
->if_broot_bytes
,
3006 (xfs_bmdr_block_t
*)cp
,
3007 XFS_DFORK_SIZE(dip
, mp
, whichfork
));
3011 case XFS_DINODE_FMT_DEV
:
3012 if (iip
->ili_format
.ilf_fields
& XFS_ILOG_DEV
) {
3013 ASSERT(whichfork
== XFS_DATA_FORK
);
3014 INT_SET(dip
->di_u
.di_dev
, ARCH_CONVERT
, ip
->i_df
.if_u2
.if_rdev
);
3018 case XFS_DINODE_FMT_UUID
:
3019 if (iip
->ili_format
.ilf_fields
& XFS_ILOG_UUID
) {
3020 ASSERT(whichfork
== XFS_DATA_FORK
);
3021 memcpy(&dip
->di_u
.di_muuid
, &ip
->i_df
.if_u2
.if_uuid
,
3035 * xfs_iflush() will write a modified inode's changes out to the
3036 * inode's on disk home. The caller must have the inode lock held
3037 * in at least shared mode and the inode flush semaphore must be
3038 * held as well. The inode lock will still be held upon return from
3039 * the call and the caller is free to unlock it.
3040 * The inode flush lock will be unlocked when the inode reaches the disk.
3041 * The flags indicate how the inode's buffer should be written out.
3048 xfs_inode_log_item_t
*iip
;
3056 int clcount
; /* count of inodes clustered */
3058 enum { INT_DELWRI
= (1 << 0), INT_ASYNC
= (1 << 1) };
3061 XFS_STATS_INC(xs_iflush_count
);
3063 ASSERT(ismrlocked(&ip
->i_lock
, MR_UPDATE
|MR_ACCESS
));
3064 ASSERT(valusema(&ip
->i_flock
) <= 0);
3065 ASSERT(ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
||
3066 ip
->i_d
.di_nextents
> ip
->i_df
.if_ext_max
);
3072 * If the inode isn't dirty, then just release the inode
3073 * flush lock and do nothing.
3075 if ((ip
->i_update_core
== 0) &&
3076 ((iip
== NULL
) || !(iip
->ili_format
.ilf_fields
& XFS_ILOG_ALL
))) {
3077 ASSERT((iip
!= NULL
) ?
3078 !(iip
->ili_item
.li_flags
& XFS_LI_IN_AIL
) : 1);
3084 * We can't flush the inode until it is unpinned, so
3085 * wait for it. We know noone new can pin it, because
3086 * we are holding the inode lock shared and you need
3087 * to hold it exclusively to pin the inode.
3089 xfs_iunpin_wait(ip
);
3092 * This may have been unpinned because the filesystem is shutting
3093 * down forcibly. If that's the case we must not write this inode
3094 * to disk, because the log record didn't make it to disk!
3096 if (XFS_FORCED_SHUTDOWN(mp
)) {
3097 ip
->i_update_core
= 0;
3099 iip
->ili_format
.ilf_fields
= 0;
3101 return XFS_ERROR(EIO
);
3105 * Get the buffer containing the on-disk inode.
3107 error
= xfs_itobp(mp
, NULL
, ip
, &dip
, &bp
, 0);
3114 * Decide how buffer will be flushed out. This is done before
3115 * the call to xfs_iflush_int because this field is zeroed by it.
3117 if (iip
!= NULL
&& iip
->ili_format
.ilf_fields
!= 0) {
3119 * Flush out the inode buffer according to the directions
3120 * of the caller. In the cases where the caller has given
3121 * us a choice choose the non-delwri case. This is because
3122 * the inode is in the AIL and we need to get it out soon.
3125 case XFS_IFLUSH_SYNC
:
3126 case XFS_IFLUSH_DELWRI_ELSE_SYNC
:
3129 case XFS_IFLUSH_ASYNC
:
3130 case XFS_IFLUSH_DELWRI_ELSE_ASYNC
:
3133 case XFS_IFLUSH_DELWRI
:
3143 case XFS_IFLUSH_DELWRI_ELSE_SYNC
:
3144 case XFS_IFLUSH_DELWRI_ELSE_ASYNC
:
3145 case XFS_IFLUSH_DELWRI
:
3148 case XFS_IFLUSH_ASYNC
:
3151 case XFS_IFLUSH_SYNC
:
3162 * First flush out the inode that xfs_iflush was called with.
3164 error
= xfs_iflush_int(ip
, bp
);
3171 * see if other inodes can be gathered into this write
3174 ip
->i_chash
->chl_buf
= bp
;
3176 ch
= XFS_CHASH(mp
, ip
->i_blkno
);
3177 s
= mutex_spinlock(&ch
->ch_lock
);
3180 for (iq
= ip
->i_cnext
; iq
!= ip
; iq
= iq
->i_cnext
) {
3182 * Do an un-protected check to see if the inode is dirty and
3183 * is a candidate for flushing. These checks will be repeated
3184 * later after the appropriate locks are acquired.
3187 if ((iq
->i_update_core
== 0) &&
3189 !(iip
->ili_format
.ilf_fields
& XFS_ILOG_ALL
)) &&
3190 xfs_ipincount(iq
) == 0) {
3195 * Try to get locks. If any are unavailable,
3196 * then this inode cannot be flushed and is skipped.
3199 /* get inode locks (just i_lock) */
3200 if (xfs_ilock_nowait(iq
, XFS_ILOCK_SHARED
)) {
3201 /* get inode flush lock */
3202 if (xfs_iflock_nowait(iq
)) {
3203 /* check if pinned */
3204 if (xfs_ipincount(iq
) == 0) {
3205 /* arriving here means that
3206 * this inode can be flushed.
3207 * first re-check that it's
3211 if ((iq
->i_update_core
!= 0)||
3213 (iip
->ili_format
.ilf_fields
& XFS_ILOG_ALL
))) {
3215 error
= xfs_iflush_int(iq
, bp
);
3219 goto cluster_corrupt_out
;
3228 xfs_iunlock(iq
, XFS_ILOCK_SHARED
);
3231 mutex_spinunlock(&ch
->ch_lock
, s
);
3234 XFS_STATS_INC(xs_icluster_flushcnt
);
3235 XFS_STATS_ADD(xs_icluster_flushinode
, clcount
);
3239 * If the buffer is pinned then push on the log so we won't
3240 * get stuck waiting in the write for too long.
3242 if (XFS_BUF_ISPINNED(bp
)){
3243 xfs_log_force(mp
, (xfs_lsn_t
)0, XFS_LOG_FORCE
);
3246 if (flags
& INT_DELWRI
) {
3247 xfs_bdwrite(mp
, bp
);
3248 } else if (flags
& INT_ASYNC
) {
3249 xfs_bawrite(mp
, bp
);
3251 error
= xfs_bwrite(mp
, bp
);
3257 xfs_force_shutdown(mp
, XFS_CORRUPT_INCORE
);
3258 xfs_iflush_abort(ip
);
3260 * Unlocks the flush lock
3262 return XFS_ERROR(EFSCORRUPTED
);
3264 cluster_corrupt_out
:
3265 /* Corruption detected in the clustering loop. Invalidate the
3266 * inode buffer and shut down the filesystem.
3268 mutex_spinunlock(&ch
->ch_lock
, s
);
3271 * Clean up the buffer. If it was B_DELWRI, just release it --
3272 * brelse can handle it with no problems. If not, shut down the
3273 * filesystem before releasing the buffer.
3275 if ((bufwasdelwri
= XFS_BUF_ISDELAYWRITE(bp
))) {
3279 xfs_force_shutdown(mp
, XFS_CORRUPT_INCORE
);
3283 * Just like incore_relse: if we have b_iodone functions,
3284 * mark the buffer as an error and call them. Otherwise
3285 * mark it as stale and brelse.
3287 if (XFS_BUF_IODONE_FUNC(bp
)) {
3288 XFS_BUF_CLR_BDSTRAT_FUNC(bp
);
3292 XFS_BUF_ERROR(bp
,EIO
);
3300 xfs_iflush_abort(iq
);
3302 * Unlocks the flush lock
3304 return XFS_ERROR(EFSCORRUPTED
);
3313 xfs_inode_log_item_t
*iip
;
3316 #ifdef XFS_TRANS_DEBUG
3321 ASSERT(ismrlocked(&ip
->i_lock
, MR_UPDATE
|MR_ACCESS
));
3322 ASSERT(valusema(&ip
->i_flock
) <= 0);
3323 ASSERT(ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
||
3324 ip
->i_d
.di_nextents
> ip
->i_df
.if_ext_max
);
3331 * If the inode isn't dirty, then just release the inode
3332 * flush lock and do nothing.
3334 if ((ip
->i_update_core
== 0) &&
3335 ((iip
== NULL
) || !(iip
->ili_format
.ilf_fields
& XFS_ILOG_ALL
))) {
3340 /* set *dip = inode's place in the buffer */
3341 dip
= (xfs_dinode_t
*)xfs_buf_offset(bp
, ip
->i_boffset
);
3344 * Clear i_update_core before copying out the data.
3345 * This is for coordination with our timestamp updates
3346 * that don't hold the inode lock. They will always
3347 * update the timestamps BEFORE setting i_update_core,
3348 * so if we clear i_update_core after they set it we
3349 * are guaranteed to see their updates to the timestamps.
3350 * I believe that this depends on strongly ordered memory
3351 * semantics, but we have that. We use the SYNCHRONIZE
3352 * macro to make sure that the compiler does not reorder
3353 * the i_update_core access below the data copy below.
3355 ip
->i_update_core
= 0;
3358 if (XFS_TEST_ERROR(INT_GET(dip
->di_core
.di_magic
,ARCH_CONVERT
) != XFS_DINODE_MAGIC
,
3359 mp
, XFS_ERRTAG_IFLUSH_1
, XFS_RANDOM_IFLUSH_1
)) {
3360 xfs_cmn_err(XFS_PTAG_IFLUSH
, CE_ALERT
, mp
,
3361 "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3362 ip
->i_ino
, (int) INT_GET(dip
->di_core
.di_magic
, ARCH_CONVERT
), dip
);
3365 if (XFS_TEST_ERROR(ip
->i_d
.di_magic
!= XFS_DINODE_MAGIC
,
3366 mp
, XFS_ERRTAG_IFLUSH_2
, XFS_RANDOM_IFLUSH_2
)) {
3367 xfs_cmn_err(XFS_PTAG_IFLUSH
, CE_ALERT
, mp
,
3368 "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3369 ip
->i_ino
, ip
, ip
->i_d
.di_magic
);
3372 if ((ip
->i_d
.di_mode
& S_IFMT
) == S_IFREG
) {
3374 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_EXTENTS
) &&
3375 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
),
3376 mp
, XFS_ERRTAG_IFLUSH_3
, XFS_RANDOM_IFLUSH_3
)) {
3377 xfs_cmn_err(XFS_PTAG_IFLUSH
, CE_ALERT
, mp
,
3378 "xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
3382 } else if ((ip
->i_d
.di_mode
& S_IFMT
) == S_IFDIR
) {
3384 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_EXTENTS
) &&
3385 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
) &&
3386 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_LOCAL
),
3387 mp
, XFS_ERRTAG_IFLUSH_4
, XFS_RANDOM_IFLUSH_4
)) {
3388 xfs_cmn_err(XFS_PTAG_IFLUSH
, CE_ALERT
, mp
,
3389 "xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
3394 if (XFS_TEST_ERROR(ip
->i_d
.di_nextents
+ ip
->i_d
.di_anextents
>
3395 ip
->i_d
.di_nblocks
, mp
, XFS_ERRTAG_IFLUSH_5
,
3396 XFS_RANDOM_IFLUSH_5
)) {
3397 xfs_cmn_err(XFS_PTAG_IFLUSH
, CE_ALERT
, mp
,
3398 "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
3400 ip
->i_d
.di_nextents
+ ip
->i_d
.di_anextents
,
3405 if (XFS_TEST_ERROR(ip
->i_d
.di_forkoff
> mp
->m_sb
.sb_inodesize
,
3406 mp
, XFS_ERRTAG_IFLUSH_6
, XFS_RANDOM_IFLUSH_6
)) {
3407 xfs_cmn_err(XFS_PTAG_IFLUSH
, CE_ALERT
, mp
,
3408 "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3409 ip
->i_ino
, ip
->i_d
.di_forkoff
, ip
);
3413 * bump the flush iteration count, used to detect flushes which
3414 * postdate a log record during recovery.
3417 ip
->i_d
.di_flushiter
++;
3420 * Copy the dirty parts of the inode into the on-disk
3421 * inode. We always copy out the core of the inode,
3422 * because if the inode is dirty at all the core must
3425 xfs_xlate_dinode_core((xfs_caddr_t
)&(dip
->di_core
), &(ip
->i_d
), -1);
3427 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3428 if (ip
->i_d
.di_flushiter
== DI_MAX_FLUSH
)
3429 ip
->i_d
.di_flushiter
= 0;
3432 * If this is really an old format inode and the superblock version
3433 * has not been updated to support only new format inodes, then
3434 * convert back to the old inode format. If the superblock version
3435 * has been updated, then make the conversion permanent.
3437 ASSERT(ip
->i_d
.di_version
== XFS_DINODE_VERSION_1
||
3438 XFS_SB_VERSION_HASNLINK(&mp
->m_sb
));
3439 if (ip
->i_d
.di_version
== XFS_DINODE_VERSION_1
) {
3440 if (!XFS_SB_VERSION_HASNLINK(&mp
->m_sb
)) {
3444 ASSERT(ip
->i_d
.di_nlink
<= XFS_MAXLINK_1
);
3445 INT_SET(dip
->di_core
.di_onlink
, ARCH_CONVERT
, ip
->i_d
.di_nlink
);
3448 * The superblock version has already been bumped,
3449 * so just make the conversion to the new inode
3452 ip
->i_d
.di_version
= XFS_DINODE_VERSION_2
;
3453 INT_SET(dip
->di_core
.di_version
, ARCH_CONVERT
, XFS_DINODE_VERSION_2
);
3454 ip
->i_d
.di_onlink
= 0;
3455 dip
->di_core
.di_onlink
= 0;
3456 memset(&(ip
->i_d
.di_pad
[0]), 0, sizeof(ip
->i_d
.di_pad
));
3457 memset(&(dip
->di_core
.di_pad
[0]), 0,
3458 sizeof(dip
->di_core
.di_pad
));
3459 ASSERT(ip
->i_d
.di_projid
== 0);
3463 if (xfs_iflush_fork(ip
, dip
, iip
, XFS_DATA_FORK
, bp
) == EFSCORRUPTED
) {
3467 if (XFS_IFORK_Q(ip
)) {
3469 * The only error from xfs_iflush_fork is on the data fork.
3471 (void) xfs_iflush_fork(ip
, dip
, iip
, XFS_ATTR_FORK
, bp
);
3473 xfs_inobp_check(mp
, bp
);
3476 * We've recorded everything logged in the inode, so we'd
3477 * like to clear the ilf_fields bits so we don't log and
3478 * flush things unnecessarily. However, we can't stop
3479 * logging all this information until the data we've copied
3480 * into the disk buffer is written to disk. If we did we might
3481 * overwrite the copy of the inode in the log with all the
3482 * data after re-logging only part of it, and in the face of
3483 * a crash we wouldn't have all the data we need to recover.
3485 * What we do is move the bits to the ili_last_fields field.
3486 * When logging the inode, these bits are moved back to the
3487 * ilf_fields field. In the xfs_iflush_done() routine we
3488 * clear ili_last_fields, since we know that the information
3489 * those bits represent is permanently on disk. As long as
3490 * the flush completes before the inode is logged again, then
3491 * both ilf_fields and ili_last_fields will be cleared.
3493 * We can play with the ilf_fields bits here, because the inode
3494 * lock must be held exclusively in order to set bits there
3495 * and the flush lock protects the ili_last_fields bits.
3496 * Set ili_logged so the flush done
3497 * routine can tell whether or not to look in the AIL.
3498 * Also, store the current LSN of the inode so that we can tell
3499 * whether the item has moved in the AIL from xfs_iflush_done().
3500 * In order to read the lsn we need the AIL lock, because
3501 * it is a 64 bit value that cannot be read atomically.
3503 if (iip
!= NULL
&& iip
->ili_format
.ilf_fields
!= 0) {
3504 iip
->ili_last_fields
= iip
->ili_format
.ilf_fields
;
3505 iip
->ili_format
.ilf_fields
= 0;
3506 iip
->ili_logged
= 1;
3508 ASSERT(sizeof(xfs_lsn_t
) == 8); /* don't lock if it shrinks */
3510 iip
->ili_flush_lsn
= iip
->ili_item
.li_lsn
;
3514 * Attach the function xfs_iflush_done to the inode's
3515 * buffer. This will remove the inode from the AIL
3516 * and unlock the inode's flush lock when the inode is
3517 * completely written to disk.
3519 xfs_buf_attach_iodone(bp
, (void(*)(xfs_buf_t
*,xfs_log_item_t
*))
3520 xfs_iflush_done
, (xfs_log_item_t
*)iip
);
3522 ASSERT(XFS_BUF_FSPRIVATE(bp
, void *) != NULL
);
3523 ASSERT(XFS_BUF_IODONE_FUNC(bp
) != NULL
);
3526 * We're flushing an inode which is not in the AIL and has
3527 * not been logged but has i_update_core set. For this
3528 * case we can use a B_DELWRI flush and immediately drop
3529 * the inode flush lock because we can avoid the whole
3530 * AIL state thing. It's OK to drop the flush lock now,
3531 * because we've already locked the buffer and to do anything
3532 * you really need both.
3535 ASSERT(iip
->ili_logged
== 0);
3536 ASSERT(iip
->ili_last_fields
== 0);
3537 ASSERT((iip
->ili_item
.li_flags
& XFS_LI_IN_AIL
) == 0);
3545 return XFS_ERROR(EFSCORRUPTED
);
3550 * Flush all inactive inodes in mp.
3560 XFS_MOUNT_ILOCK(mp
);
3566 /* Make sure we skip markers inserted by sync */
3567 if (ip
->i_mount
== NULL
) {
3572 vp
= XFS_ITOV_NULL(ip
);
3574 XFS_MOUNT_IUNLOCK(mp
);
3575 xfs_finish_reclaim(ip
, 0, XFS_IFLUSH_ASYNC
);
3579 ASSERT(vn_count(vp
) == 0);
3582 } while (ip
!= mp
->m_inodes
);
3584 XFS_MOUNT_IUNLOCK(mp
);
3588 * xfs_iaccess: check accessibility of inode for mode.
3597 mode_t orgmode
= mode
;
3598 struct inode
*inode
= LINVFS_GET_IP(XFS_ITOV(ip
));
3600 if (mode
& S_IWUSR
) {
3601 umode_t imode
= inode
->i_mode
;
3603 if (IS_RDONLY(inode
) &&
3604 (S_ISREG(imode
) || S_ISDIR(imode
) || S_ISLNK(imode
)))
3605 return XFS_ERROR(EROFS
);
3607 if (IS_IMMUTABLE(inode
))
3608 return XFS_ERROR(EACCES
);
3612 * If there's an Access Control List it's used instead of
3615 if ((error
= _ACL_XFS_IACCESS(ip
, mode
, cr
)) != -1)
3616 return error
? XFS_ERROR(error
) : 0;
3618 if (current_fsuid(cr
) != ip
->i_d
.di_uid
) {
3620 if (!in_group_p((gid_t
)ip
->i_d
.di_gid
))
3625 * If the DACs are ok we don't need any capability check.
3627 if ((ip
->i_d
.di_mode
& mode
) == mode
)
3630 * Read/write DACs are always overridable.
3631 * Executable DACs are overridable if at least one exec bit is set.
3633 if (!(orgmode
& S_IXUSR
) ||
3634 (inode
->i_mode
& S_IXUGO
) || S_ISDIR(inode
->i_mode
))
3635 if (capable_cred(cr
, CAP_DAC_OVERRIDE
))
3638 if ((orgmode
== S_IRUSR
) ||
3639 (S_ISDIR(inode
->i_mode
) && (!(orgmode
& S_IWUSR
)))) {
3640 if (capable_cred(cr
, CAP_DAC_READ_SEARCH
))
3643 cmn_err(CE_NOTE
, "Ick: mode=%o, orgmode=%o", mode
, orgmode
);
3645 return XFS_ERROR(EACCES
);
3647 return XFS_ERROR(EACCES
);
3651 * xfs_iroundup: round up argument to next power of two
3660 if ((v
& (v
- 1)) == 0)
3662 ASSERT((v
& 0x80000000) == 0);
3663 if ((v
& (v
+ 1)) == 0)
3665 for (i
= 0, m
= 1; i
< 31; i
++, m
<<= 1) {
3669 if ((v
& (v
+ 1)) == 0)
3676 #ifdef XFS_ILOCK_TRACE
3677 ktrace_t
*xfs_ilock_trace_buf
;
3680 xfs_ilock_trace(xfs_inode_t
*ip
, int lock
, unsigned int lockflags
, inst_t
*ra
)
3682 ktrace_enter(ip
->i_lock_trace
,
3684 (void *)(unsigned long)lock
, /* 1 = LOCK, 3=UNLOCK, etc */
3685 (void *)(unsigned long)lockflags
, /* XFS_ILOCK_EXCL etc */
3686 (void *)ra
, /* caller of ilock */
3687 (void *)(unsigned long)current_cpu(),
3688 (void *)(unsigned long)current_pid(),
3689 NULL
,NULL
,NULL
,NULL
,NULL
,NULL
,NULL
,NULL
,NULL
,NULL
);