[PATCH] USB: Remove USB private semaphore
[linux-2.6/mini2440.git] / fs / xfs / xfs_inode.c
blobdf0d4572d70a8a7b18fdfbbd62d4bfb2caccfc32
1 /*
2 * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_imap.h"
25 #include "xfs_trans.h"
26 #include "xfs_trans_priv.h"
27 #include "xfs_sb.h"
28 #include "xfs_ag.h"
29 #include "xfs_dir.h"
30 #include "xfs_dir2.h"
31 #include "xfs_dmapi.h"
32 #include "xfs_mount.h"
33 #include "xfs_bmap_btree.h"
34 #include "xfs_alloc_btree.h"
35 #include "xfs_ialloc_btree.h"
36 #include "xfs_dir_sf.h"
37 #include "xfs_dir2_sf.h"
38 #include "xfs_attr_sf.h"
39 #include "xfs_dinode.h"
40 #include "xfs_inode.h"
41 #include "xfs_buf_item.h"
42 #include "xfs_inode_item.h"
43 #include "xfs_btree.h"
44 #include "xfs_alloc.h"
45 #include "xfs_ialloc.h"
46 #include "xfs_bmap.h"
47 #include "xfs_rw.h"
48 #include "xfs_error.h"
49 #include "xfs_utils.h"
50 #include "xfs_dir2_trace.h"
51 #include "xfs_quota.h"
52 #include "xfs_mac.h"
53 #include "xfs_acl.h"
56 kmem_zone_t *xfs_ifork_zone;
57 kmem_zone_t *xfs_inode_zone;
58 kmem_zone_t *xfs_chashlist_zone;
61 * Used in xfs_itruncate(). This is the maximum number of extents
62 * freed from a file in a single transaction.
64 #define XFS_ITRUNC_MAX_EXTENTS 2
66 STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
67 STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
68 STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
69 STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
72 #ifdef DEBUG
74 * Make sure that the extents in the given memory buffer
75 * are valid.
77 STATIC void
78 xfs_validate_extents(
79 xfs_bmbt_rec_t *ep,
80 int nrecs,
81 int disk,
82 xfs_exntfmt_t fmt)
84 xfs_bmbt_irec_t irec;
85 xfs_bmbt_rec_t rec;
86 int i;
88 for (i = 0; i < nrecs; i++) {
89 rec.l0 = get_unaligned((__uint64_t*)&ep->l0);
90 rec.l1 = get_unaligned((__uint64_t*)&ep->l1);
91 if (disk)
92 xfs_bmbt_disk_get_all(&rec, &irec);
93 else
94 xfs_bmbt_get_all(&rec, &irec);
95 if (fmt == XFS_EXTFMT_NOSTATE)
96 ASSERT(irec.br_state == XFS_EXT_NORM);
97 ep++;
100 #else /* DEBUG */
101 #define xfs_validate_extents(ep, nrecs, disk, fmt)
102 #endif /* DEBUG */
105 * Check that none of the inode's in the buffer have a next
106 * unlinked field of 0.
108 #if defined(DEBUG)
109 void
110 xfs_inobp_check(
111 xfs_mount_t *mp,
112 xfs_buf_t *bp)
114 int i;
115 int j;
116 xfs_dinode_t *dip;
118 j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
120 for (i = 0; i < j; i++) {
121 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
122 i * mp->m_sb.sb_inodesize);
123 if (!dip->di_next_unlinked) {
124 xfs_fs_cmn_err(CE_ALERT, mp,
125 "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.",
126 bp);
127 ASSERT(dip->di_next_unlinked);
131 #endif
134 * This routine is called to map an inode number within a file
135 * system to the buffer containing the on-disk version of the
136 * inode. It returns a pointer to the buffer containing the
137 * on-disk inode in the bpp parameter, and in the dip parameter
138 * it returns a pointer to the on-disk inode within that buffer.
140 * If a non-zero error is returned, then the contents of bpp and
141 * dipp are undefined.
143 * Use xfs_imap() to determine the size and location of the
144 * buffer to read from disk.
146 STATIC int
147 xfs_inotobp(
148 xfs_mount_t *mp,
149 xfs_trans_t *tp,
150 xfs_ino_t ino,
151 xfs_dinode_t **dipp,
152 xfs_buf_t **bpp,
153 int *offset)
155 int di_ok;
156 xfs_imap_t imap;
157 xfs_buf_t *bp;
158 int error;
159 xfs_dinode_t *dip;
162 * Call the space managment code to find the location of the
163 * inode on disk.
165 imap.im_blkno = 0;
166 error = xfs_imap(mp, tp, ino, &imap, XFS_IMAP_LOOKUP);
167 if (error != 0) {
168 cmn_err(CE_WARN,
169 "xfs_inotobp: xfs_imap() returned an "
170 "error %d on %s. Returning error.", error, mp->m_fsname);
171 return error;
175 * If the inode number maps to a block outside the bounds of the
176 * file system then return NULL rather than calling read_buf
177 * and panicing when we get an error from the driver.
179 if ((imap.im_blkno + imap.im_len) >
180 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
181 cmn_err(CE_WARN,
182 "xfs_inotobp: inode number (%llu + %d) maps to a block outside the bounds "
183 "of the file system %s. Returning EINVAL.",
184 (unsigned long long)imap.im_blkno,
185 imap.im_len, mp->m_fsname);
186 return XFS_ERROR(EINVAL);
190 * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
191 * default to just a read_buf() call.
193 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
194 (int)imap.im_len, XFS_BUF_LOCK, &bp);
196 if (error) {
197 cmn_err(CE_WARN,
198 "xfs_inotobp: xfs_trans_read_buf() returned an "
199 "error %d on %s. Returning error.", error, mp->m_fsname);
200 return error;
202 dip = (xfs_dinode_t *)xfs_buf_offset(bp, 0);
203 di_ok =
204 INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC &&
205 XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT));
206 if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP,
207 XFS_RANDOM_ITOBP_INOTOBP))) {
208 XFS_CORRUPTION_ERROR("xfs_inotobp", XFS_ERRLEVEL_LOW, mp, dip);
209 xfs_trans_brelse(tp, bp);
210 cmn_err(CE_WARN,
211 "xfs_inotobp: XFS_TEST_ERROR() returned an "
212 "error on %s. Returning EFSCORRUPTED.", mp->m_fsname);
213 return XFS_ERROR(EFSCORRUPTED);
216 xfs_inobp_check(mp, bp);
219 * Set *dipp to point to the on-disk inode in the buffer.
221 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
222 *bpp = bp;
223 *offset = imap.im_boffset;
224 return 0;
229 * This routine is called to map an inode to the buffer containing
230 * the on-disk version of the inode. It returns a pointer to the
231 * buffer containing the on-disk inode in the bpp parameter, and in
232 * the dip parameter it returns a pointer to the on-disk inode within
233 * that buffer.
235 * If a non-zero error is returned, then the contents of bpp and
236 * dipp are undefined.
238 * If the inode is new and has not yet been initialized, use xfs_imap()
239 * to determine the size and location of the buffer to read from disk.
240 * If the inode has already been mapped to its buffer and read in once,
241 * then use the mapping information stored in the inode rather than
242 * calling xfs_imap(). This allows us to avoid the overhead of looking
243 * at the inode btree for small block file systems (see xfs_dilocate()).
244 * We can tell whether the inode has been mapped in before by comparing
245 * its disk block address to 0. Only uninitialized inodes will have
246 * 0 for the disk block address.
249 xfs_itobp(
250 xfs_mount_t *mp,
251 xfs_trans_t *tp,
252 xfs_inode_t *ip,
253 xfs_dinode_t **dipp,
254 xfs_buf_t **bpp,
255 xfs_daddr_t bno)
257 xfs_buf_t *bp;
258 int error;
259 xfs_imap_t imap;
260 #ifdef __KERNEL__
261 int i;
262 int ni;
263 #endif
265 if (ip->i_blkno == (xfs_daddr_t)0) {
267 * Call the space management code to find the location of the
268 * inode on disk.
270 imap.im_blkno = bno;
271 error = xfs_imap(mp, tp, ip->i_ino, &imap, XFS_IMAP_LOOKUP);
272 if (error != 0) {
273 return error;
277 * If the inode number maps to a block outside the bounds
278 * of the file system then return NULL rather than calling
279 * read_buf and panicing when we get an error from the
280 * driver.
282 if ((imap.im_blkno + imap.im_len) >
283 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
284 #ifdef DEBUG
285 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
286 "(imap.im_blkno (0x%llx) "
287 "+ imap.im_len (0x%llx)) > "
288 " XFS_FSB_TO_BB(mp, "
289 "mp->m_sb.sb_dblocks) (0x%llx)",
290 (unsigned long long) imap.im_blkno,
291 (unsigned long long) imap.im_len,
292 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
293 #endif /* DEBUG */
294 return XFS_ERROR(EINVAL);
298 * Fill in the fields in the inode that will be used to
299 * map the inode to its buffer from now on.
301 ip->i_blkno = imap.im_blkno;
302 ip->i_len = imap.im_len;
303 ip->i_boffset = imap.im_boffset;
304 } else {
306 * We've already mapped the inode once, so just use the
307 * mapping that we saved the first time.
309 imap.im_blkno = ip->i_blkno;
310 imap.im_len = ip->i_len;
311 imap.im_boffset = ip->i_boffset;
313 ASSERT(bno == 0 || bno == imap.im_blkno);
316 * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
317 * default to just a read_buf() call.
319 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
320 (int)imap.im_len, XFS_BUF_LOCK, &bp);
322 if (error) {
323 #ifdef DEBUG
324 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
325 "xfs_trans_read_buf() returned error %d, "
326 "imap.im_blkno 0x%llx, imap.im_len 0x%llx",
327 error, (unsigned long long) imap.im_blkno,
328 (unsigned long long) imap.im_len);
329 #endif /* DEBUG */
330 return error;
332 #ifdef __KERNEL__
334 * Validate the magic number and version of every inode in the buffer
335 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
337 #ifdef DEBUG
338 ni = BBTOB(imap.im_len) >> mp->m_sb.sb_inodelog;
339 #else
340 ni = 1;
341 #endif
342 for (i = 0; i < ni; i++) {
343 int di_ok;
344 xfs_dinode_t *dip;
346 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
347 (i << mp->m_sb.sb_inodelog));
348 di_ok = INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC &&
349 XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT));
350 if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP,
351 XFS_RANDOM_ITOBP_INOTOBP))) {
352 #ifdef DEBUG
353 prdev("bad inode magic/vsn daddr %lld #%d (magic=%x)",
354 mp->m_ddev_targp,
355 (unsigned long long)imap.im_blkno, i,
356 INT_GET(dip->di_core.di_magic, ARCH_CONVERT));
357 #endif
358 XFS_CORRUPTION_ERROR("xfs_itobp", XFS_ERRLEVEL_HIGH,
359 mp, dip);
360 xfs_trans_brelse(tp, bp);
361 return XFS_ERROR(EFSCORRUPTED);
364 #endif /* __KERNEL__ */
366 xfs_inobp_check(mp, bp);
369 * Mark the buffer as an inode buffer now that it looks good
371 XFS_BUF_SET_VTYPE(bp, B_FS_INO);
374 * Set *dipp to point to the on-disk inode in the buffer.
376 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
377 *bpp = bp;
378 return 0;
382 * Move inode type and inode format specific information from the
383 * on-disk inode to the in-core inode. For fifos, devs, and sockets
384 * this means set if_rdev to the proper value. For files, directories,
385 * and symlinks this means to bring in the in-line data or extent
386 * pointers. For a file in B-tree format, only the root is immediately
387 * brought in-core. The rest will be in-lined in if_extents when it
388 * is first referenced (see xfs_iread_extents()).
390 STATIC int
391 xfs_iformat(
392 xfs_inode_t *ip,
393 xfs_dinode_t *dip)
395 xfs_attr_shortform_t *atp;
396 int size;
397 int error;
398 xfs_fsize_t di_size;
399 ip->i_df.if_ext_max =
400 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
401 error = 0;
403 if (unlikely(
404 INT_GET(dip->di_core.di_nextents, ARCH_CONVERT) +
405 INT_GET(dip->di_core.di_anextents, ARCH_CONVERT) >
406 INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT))) {
407 xfs_fs_cmn_err(CE_WARN, ip->i_mount,
408 "corrupt dinode %Lu, extent total = %d, nblocks = %Lu."
409 " Unmount and run xfs_repair.",
410 (unsigned long long)ip->i_ino,
411 (int)(INT_GET(dip->di_core.di_nextents, ARCH_CONVERT)
412 + INT_GET(dip->di_core.di_anextents, ARCH_CONVERT)),
413 (unsigned long long)
414 INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT));
415 XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
416 ip->i_mount, dip);
417 return XFS_ERROR(EFSCORRUPTED);
420 if (unlikely(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT) > ip->i_mount->m_sb.sb_inodesize)) {
421 xfs_fs_cmn_err(CE_WARN, ip->i_mount,
422 "corrupt dinode %Lu, forkoff = 0x%x."
423 " Unmount and run xfs_repair.",
424 (unsigned long long)ip->i_ino,
425 (int)(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT)));
426 XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
427 ip->i_mount, dip);
428 return XFS_ERROR(EFSCORRUPTED);
431 switch (ip->i_d.di_mode & S_IFMT) {
432 case S_IFIFO:
433 case S_IFCHR:
434 case S_IFBLK:
435 case S_IFSOCK:
436 if (unlikely(INT_GET(dip->di_core.di_format, ARCH_CONVERT) != XFS_DINODE_FMT_DEV)) {
437 XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
438 ip->i_mount, dip);
439 return XFS_ERROR(EFSCORRUPTED);
441 ip->i_d.di_size = 0;
442 ip->i_df.if_u2.if_rdev = INT_GET(dip->di_u.di_dev, ARCH_CONVERT);
443 break;
445 case S_IFREG:
446 case S_IFLNK:
447 case S_IFDIR:
448 switch (INT_GET(dip->di_core.di_format, ARCH_CONVERT)) {
449 case XFS_DINODE_FMT_LOCAL:
451 * no local regular files yet
453 if (unlikely((INT_GET(dip->di_core.di_mode, ARCH_CONVERT) & S_IFMT) == S_IFREG)) {
454 xfs_fs_cmn_err(CE_WARN, ip->i_mount,
455 "corrupt inode (local format for regular file) %Lu. Unmount and run xfs_repair.",
456 (unsigned long long) ip->i_ino);
457 XFS_CORRUPTION_ERROR("xfs_iformat(4)",
458 XFS_ERRLEVEL_LOW,
459 ip->i_mount, dip);
460 return XFS_ERROR(EFSCORRUPTED);
463 di_size = INT_GET(dip->di_core.di_size, ARCH_CONVERT);
464 if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
465 xfs_fs_cmn_err(CE_WARN, ip->i_mount,
466 "corrupt inode %Lu (bad size %Ld for local inode). Unmount and run xfs_repair.",
467 (unsigned long long) ip->i_ino,
468 (long long) di_size);
469 XFS_CORRUPTION_ERROR("xfs_iformat(5)",
470 XFS_ERRLEVEL_LOW,
471 ip->i_mount, dip);
472 return XFS_ERROR(EFSCORRUPTED);
475 size = (int)di_size;
476 error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
477 break;
478 case XFS_DINODE_FMT_EXTENTS:
479 error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
480 break;
481 case XFS_DINODE_FMT_BTREE:
482 error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
483 break;
484 default:
485 XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
486 ip->i_mount);
487 return XFS_ERROR(EFSCORRUPTED);
489 break;
491 default:
492 XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
493 return XFS_ERROR(EFSCORRUPTED);
495 if (error) {
496 return error;
498 if (!XFS_DFORK_Q(dip))
499 return 0;
500 ASSERT(ip->i_afp == NULL);
501 ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP);
502 ip->i_afp->if_ext_max =
503 XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
504 switch (INT_GET(dip->di_core.di_aformat, ARCH_CONVERT)) {
505 case XFS_DINODE_FMT_LOCAL:
506 atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
507 size = (int)INT_GET(atp->hdr.totsize, ARCH_CONVERT);
508 error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
509 break;
510 case XFS_DINODE_FMT_EXTENTS:
511 error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
512 break;
513 case XFS_DINODE_FMT_BTREE:
514 error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
515 break;
516 default:
517 error = XFS_ERROR(EFSCORRUPTED);
518 break;
520 if (error) {
521 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
522 ip->i_afp = NULL;
523 xfs_idestroy_fork(ip, XFS_DATA_FORK);
525 return error;
529 * The file is in-lined in the on-disk inode.
530 * If it fits into if_inline_data, then copy
531 * it there, otherwise allocate a buffer for it
532 * and copy the data there. Either way, set
533 * if_data to point at the data.
534 * If we allocate a buffer for the data, make
535 * sure that its size is a multiple of 4 and
536 * record the real size in i_real_bytes.
538 STATIC int
539 xfs_iformat_local(
540 xfs_inode_t *ip,
541 xfs_dinode_t *dip,
542 int whichfork,
543 int size)
545 xfs_ifork_t *ifp;
546 int real_size;
549 * If the size is unreasonable, then something
550 * is wrong and we just bail out rather than crash in
551 * kmem_alloc() or memcpy() below.
553 if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
554 xfs_fs_cmn_err(CE_WARN, ip->i_mount,
555 "corrupt inode %Lu (bad size %d for local fork, size = %d). Unmount and run xfs_repair.",
556 (unsigned long long) ip->i_ino, size,
557 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
558 XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
559 ip->i_mount, dip);
560 return XFS_ERROR(EFSCORRUPTED);
562 ifp = XFS_IFORK_PTR(ip, whichfork);
563 real_size = 0;
564 if (size == 0)
565 ifp->if_u1.if_data = NULL;
566 else if (size <= sizeof(ifp->if_u2.if_inline_data))
567 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
568 else {
569 real_size = roundup(size, 4);
570 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
572 ifp->if_bytes = size;
573 ifp->if_real_bytes = real_size;
574 if (size)
575 memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
576 ifp->if_flags &= ~XFS_IFEXTENTS;
577 ifp->if_flags |= XFS_IFINLINE;
578 return 0;
582 * The file consists of a set of extents all
583 * of which fit into the on-disk inode.
584 * If there are few enough extents to fit into
585 * the if_inline_ext, then copy them there.
586 * Otherwise allocate a buffer for them and copy
587 * them into it. Either way, set if_extents
588 * to point at the extents.
590 STATIC int
591 xfs_iformat_extents(
592 xfs_inode_t *ip,
593 xfs_dinode_t *dip,
594 int whichfork)
596 xfs_bmbt_rec_t *ep, *dp;
597 xfs_ifork_t *ifp;
598 int nex;
599 int real_size;
600 int size;
601 int i;
603 ifp = XFS_IFORK_PTR(ip, whichfork);
604 nex = XFS_DFORK_NEXTENTS(dip, whichfork);
605 size = nex * (uint)sizeof(xfs_bmbt_rec_t);
608 * If the number of extents is unreasonable, then something
609 * is wrong and we just bail out rather than crash in
610 * kmem_alloc() or memcpy() below.
612 if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
613 xfs_fs_cmn_err(CE_WARN, ip->i_mount,
614 "corrupt inode %Lu ((a)extents = %d). Unmount and run xfs_repair.",
615 (unsigned long long) ip->i_ino, nex);
616 XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
617 ip->i_mount, dip);
618 return XFS_ERROR(EFSCORRUPTED);
621 real_size = 0;
622 if (nex == 0)
623 ifp->if_u1.if_extents = NULL;
624 else if (nex <= XFS_INLINE_EXTS)
625 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
626 else {
627 ifp->if_u1.if_extents = kmem_alloc(size, KM_SLEEP);
628 ASSERT(ifp->if_u1.if_extents != NULL);
629 real_size = size;
631 ifp->if_bytes = size;
632 ifp->if_real_bytes = real_size;
633 if (size) {
634 dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
635 xfs_validate_extents(dp, nex, 1, XFS_EXTFMT_INODE(ip));
636 ep = ifp->if_u1.if_extents;
637 for (i = 0; i < nex; i++, ep++, dp++) {
638 ep->l0 = INT_GET(get_unaligned((__uint64_t*)&dp->l0),
639 ARCH_CONVERT);
640 ep->l1 = INT_GET(get_unaligned((__uint64_t*)&dp->l1),
641 ARCH_CONVERT);
643 xfs_bmap_trace_exlist("xfs_iformat_extents", ip, nex,
644 whichfork);
645 if (whichfork != XFS_DATA_FORK ||
646 XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
647 if (unlikely(xfs_check_nostate_extents(
648 ifp->if_u1.if_extents, nex))) {
649 XFS_ERROR_REPORT("xfs_iformat_extents(2)",
650 XFS_ERRLEVEL_LOW,
651 ip->i_mount);
652 return XFS_ERROR(EFSCORRUPTED);
655 ifp->if_flags |= XFS_IFEXTENTS;
656 return 0;
660 * The file has too many extents to fit into
661 * the inode, so they are in B-tree format.
662 * Allocate a buffer for the root of the B-tree
663 * and copy the root into it. The i_extents
664 * field will remain NULL until all of the
665 * extents are read in (when they are needed).
667 STATIC int
668 xfs_iformat_btree(
669 xfs_inode_t *ip,
670 xfs_dinode_t *dip,
671 int whichfork)
673 xfs_bmdr_block_t *dfp;
674 xfs_ifork_t *ifp;
675 /* REFERENCED */
676 int nrecs;
677 int size;
679 ifp = XFS_IFORK_PTR(ip, whichfork);
680 dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
681 size = XFS_BMAP_BROOT_SPACE(dfp);
682 nrecs = XFS_BMAP_BROOT_NUMRECS(dfp);
685 * blow out if -- fork has less extents than can fit in
686 * fork (fork shouldn't be a btree format), root btree
687 * block has more records than can fit into the fork,
688 * or the number of extents is greater than the number of
689 * blocks.
691 if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
692 || XFS_BMDR_SPACE_CALC(nrecs) >
693 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
694 || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
695 xfs_fs_cmn_err(CE_WARN, ip->i_mount,
696 "corrupt inode %Lu (btree). Unmount and run xfs_repair.",
697 (unsigned long long) ip->i_ino);
698 XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
699 ip->i_mount);
700 return XFS_ERROR(EFSCORRUPTED);
703 ifp->if_broot_bytes = size;
704 ifp->if_broot = kmem_alloc(size, KM_SLEEP);
705 ASSERT(ifp->if_broot != NULL);
707 * Copy and convert from the on-disk structure
708 * to the in-memory structure.
710 xfs_bmdr_to_bmbt(dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
711 ifp->if_broot, size);
712 ifp->if_flags &= ~XFS_IFEXTENTS;
713 ifp->if_flags |= XFS_IFBROOT;
715 return 0;
719 * xfs_xlate_dinode_core - translate an xfs_inode_core_t between ondisk
720 * and native format
722 * buf = on-disk representation
723 * dip = native representation
724 * dir = direction - +ve -> disk to native
725 * -ve -> native to disk
727 void
728 xfs_xlate_dinode_core(
729 xfs_caddr_t buf,
730 xfs_dinode_core_t *dip,
731 int dir)
733 xfs_dinode_core_t *buf_core = (xfs_dinode_core_t *)buf;
734 xfs_dinode_core_t *mem_core = (xfs_dinode_core_t *)dip;
735 xfs_arch_t arch = ARCH_CONVERT;
737 ASSERT(dir);
739 INT_XLATE(buf_core->di_magic, mem_core->di_magic, dir, arch);
740 INT_XLATE(buf_core->di_mode, mem_core->di_mode, dir, arch);
741 INT_XLATE(buf_core->di_version, mem_core->di_version, dir, arch);
742 INT_XLATE(buf_core->di_format, mem_core->di_format, dir, arch);
743 INT_XLATE(buf_core->di_onlink, mem_core->di_onlink, dir, arch);
744 INT_XLATE(buf_core->di_uid, mem_core->di_uid, dir, arch);
745 INT_XLATE(buf_core->di_gid, mem_core->di_gid, dir, arch);
746 INT_XLATE(buf_core->di_nlink, mem_core->di_nlink, dir, arch);
747 INT_XLATE(buf_core->di_projid, mem_core->di_projid, dir, arch);
749 if (dir > 0) {
750 memcpy(mem_core->di_pad, buf_core->di_pad,
751 sizeof(buf_core->di_pad));
752 } else {
753 memcpy(buf_core->di_pad, mem_core->di_pad,
754 sizeof(buf_core->di_pad));
757 INT_XLATE(buf_core->di_flushiter, mem_core->di_flushiter, dir, arch);
759 INT_XLATE(buf_core->di_atime.t_sec, mem_core->di_atime.t_sec,
760 dir, arch);
761 INT_XLATE(buf_core->di_atime.t_nsec, mem_core->di_atime.t_nsec,
762 dir, arch);
763 INT_XLATE(buf_core->di_mtime.t_sec, mem_core->di_mtime.t_sec,
764 dir, arch);
765 INT_XLATE(buf_core->di_mtime.t_nsec, mem_core->di_mtime.t_nsec,
766 dir, arch);
767 INT_XLATE(buf_core->di_ctime.t_sec, mem_core->di_ctime.t_sec,
768 dir, arch);
769 INT_XLATE(buf_core->di_ctime.t_nsec, mem_core->di_ctime.t_nsec,
770 dir, arch);
771 INT_XLATE(buf_core->di_size, mem_core->di_size, dir, arch);
772 INT_XLATE(buf_core->di_nblocks, mem_core->di_nblocks, dir, arch);
773 INT_XLATE(buf_core->di_extsize, mem_core->di_extsize, dir, arch);
774 INT_XLATE(buf_core->di_nextents, mem_core->di_nextents, dir, arch);
775 INT_XLATE(buf_core->di_anextents, mem_core->di_anextents, dir, arch);
776 INT_XLATE(buf_core->di_forkoff, mem_core->di_forkoff, dir, arch);
777 INT_XLATE(buf_core->di_aformat, mem_core->di_aformat, dir, arch);
778 INT_XLATE(buf_core->di_dmevmask, mem_core->di_dmevmask, dir, arch);
779 INT_XLATE(buf_core->di_dmstate, mem_core->di_dmstate, dir, arch);
780 INT_XLATE(buf_core->di_flags, mem_core->di_flags, dir, arch);
781 INT_XLATE(buf_core->di_gen, mem_core->di_gen, dir, arch);
784 STATIC uint
785 _xfs_dic2xflags(
786 xfs_dinode_core_t *dic,
787 __uint16_t di_flags)
789 uint flags = 0;
791 if (di_flags & XFS_DIFLAG_ANY) {
792 if (di_flags & XFS_DIFLAG_REALTIME)
793 flags |= XFS_XFLAG_REALTIME;
794 if (di_flags & XFS_DIFLAG_PREALLOC)
795 flags |= XFS_XFLAG_PREALLOC;
796 if (di_flags & XFS_DIFLAG_IMMUTABLE)
797 flags |= XFS_XFLAG_IMMUTABLE;
798 if (di_flags & XFS_DIFLAG_APPEND)
799 flags |= XFS_XFLAG_APPEND;
800 if (di_flags & XFS_DIFLAG_SYNC)
801 flags |= XFS_XFLAG_SYNC;
802 if (di_flags & XFS_DIFLAG_NOATIME)
803 flags |= XFS_XFLAG_NOATIME;
804 if (di_flags & XFS_DIFLAG_NODUMP)
805 flags |= XFS_XFLAG_NODUMP;
806 if (di_flags & XFS_DIFLAG_RTINHERIT)
807 flags |= XFS_XFLAG_RTINHERIT;
808 if (di_flags & XFS_DIFLAG_PROJINHERIT)
809 flags |= XFS_XFLAG_PROJINHERIT;
810 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
811 flags |= XFS_XFLAG_NOSYMLINKS;
814 return flags;
817 uint
818 xfs_ip2xflags(
819 xfs_inode_t *ip)
821 xfs_dinode_core_t *dic = &ip->i_d;
823 return _xfs_dic2xflags(dic, dic->di_flags) |
824 (XFS_CFORK_Q(dic) ? XFS_XFLAG_HASATTR : 0);
827 uint
828 xfs_dic2xflags(
829 xfs_dinode_core_t *dic)
831 return _xfs_dic2xflags(dic, INT_GET(dic->di_flags, ARCH_CONVERT)) |
832 (XFS_CFORK_Q_DISK(dic) ? XFS_XFLAG_HASATTR : 0);
836 * Given a mount structure and an inode number, return a pointer
837 * to a newly allocated in-core inode coresponding to the given
838 * inode number.
840 * Initialize the inode's attributes and extent pointers if it
841 * already has them (it will not if the inode has no links).
844 xfs_iread(
845 xfs_mount_t *mp,
846 xfs_trans_t *tp,
847 xfs_ino_t ino,
848 xfs_inode_t **ipp,
849 xfs_daddr_t bno)
851 xfs_buf_t *bp;
852 xfs_dinode_t *dip;
853 xfs_inode_t *ip;
854 int error;
856 ASSERT(xfs_inode_zone != NULL);
858 ip = kmem_zone_zalloc(xfs_inode_zone, KM_SLEEP);
859 ip->i_ino = ino;
860 ip->i_mount = mp;
863 * Get pointer's to the on-disk inode and the buffer containing it.
864 * If the inode number refers to a block outside the file system
865 * then xfs_itobp() will return NULL. In this case we should
866 * return NULL as well. Set i_blkno to 0 so that xfs_itobp() will
867 * know that this is a new incore inode.
869 error = xfs_itobp(mp, tp, ip, &dip, &bp, bno);
871 if (error != 0) {
872 kmem_zone_free(xfs_inode_zone, ip);
873 return error;
877 * Initialize inode's trace buffers.
878 * Do this before xfs_iformat in case it adds entries.
880 #ifdef XFS_BMAP_TRACE
881 ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_SLEEP);
882 #endif
883 #ifdef XFS_BMBT_TRACE
884 ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_SLEEP);
885 #endif
886 #ifdef XFS_RW_TRACE
887 ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_SLEEP);
888 #endif
889 #ifdef XFS_ILOCK_TRACE
890 ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_SLEEP);
891 #endif
892 #ifdef XFS_DIR2_TRACE
893 ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_SLEEP);
894 #endif
897 * If we got something that isn't an inode it means someone
898 * (nfs or dmi) has a stale handle.
900 if (INT_GET(dip->di_core.di_magic, ARCH_CONVERT) != XFS_DINODE_MAGIC) {
901 kmem_zone_free(xfs_inode_zone, ip);
902 xfs_trans_brelse(tp, bp);
903 #ifdef DEBUG
904 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
905 "dip->di_core.di_magic (0x%x) != "
906 "XFS_DINODE_MAGIC (0x%x)",
907 INT_GET(dip->di_core.di_magic, ARCH_CONVERT),
908 XFS_DINODE_MAGIC);
909 #endif /* DEBUG */
910 return XFS_ERROR(EINVAL);
914 * If the on-disk inode is already linked to a directory
915 * entry, copy all of the inode into the in-core inode.
916 * xfs_iformat() handles copying in the inode format
917 * specific information.
918 * Otherwise, just get the truly permanent information.
920 if (dip->di_core.di_mode) {
921 xfs_xlate_dinode_core((xfs_caddr_t)&dip->di_core,
922 &(ip->i_d), 1);
923 error = xfs_iformat(ip, dip);
924 if (error) {
925 kmem_zone_free(xfs_inode_zone, ip);
926 xfs_trans_brelse(tp, bp);
927 #ifdef DEBUG
928 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
929 "xfs_iformat() returned error %d",
930 error);
931 #endif /* DEBUG */
932 return error;
934 } else {
935 ip->i_d.di_magic = INT_GET(dip->di_core.di_magic, ARCH_CONVERT);
936 ip->i_d.di_version = INT_GET(dip->di_core.di_version, ARCH_CONVERT);
937 ip->i_d.di_gen = INT_GET(dip->di_core.di_gen, ARCH_CONVERT);
938 ip->i_d.di_flushiter = INT_GET(dip->di_core.di_flushiter, ARCH_CONVERT);
940 * Make sure to pull in the mode here as well in
941 * case the inode is released without being used.
942 * This ensures that xfs_inactive() will see that
943 * the inode is already free and not try to mess
944 * with the uninitialized part of it.
946 ip->i_d.di_mode = 0;
948 * Initialize the per-fork minima and maxima for a new
949 * inode here. xfs_iformat will do it for old inodes.
951 ip->i_df.if_ext_max =
952 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
955 INIT_LIST_HEAD(&ip->i_reclaim);
958 * The inode format changed when we moved the link count and
959 * made it 32 bits long. If this is an old format inode,
960 * convert it in memory to look like a new one. If it gets
961 * flushed to disk we will convert back before flushing or
962 * logging it. We zero out the new projid field and the old link
963 * count field. We'll handle clearing the pad field (the remains
964 * of the old uuid field) when we actually convert the inode to
965 * the new format. We don't change the version number so that we
966 * can distinguish this from a real new format inode.
968 if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
969 ip->i_d.di_nlink = ip->i_d.di_onlink;
970 ip->i_d.di_onlink = 0;
971 ip->i_d.di_projid = 0;
974 ip->i_delayed_blks = 0;
977 * Mark the buffer containing the inode as something to keep
978 * around for a while. This helps to keep recently accessed
979 * meta-data in-core longer.
981 XFS_BUF_SET_REF(bp, XFS_INO_REF);
984 * Use xfs_trans_brelse() to release the buffer containing the
985 * on-disk inode, because it was acquired with xfs_trans_read_buf()
986 * in xfs_itobp() above. If tp is NULL, this is just a normal
987 * brelse(). If we're within a transaction, then xfs_trans_brelse()
988 * will only release the buffer if it is not dirty within the
989 * transaction. It will be OK to release the buffer in this case,
990 * because inodes on disk are never destroyed and we will be
991 * locking the new in-core inode before putting it in the hash
992 * table where other processes can find it. Thus we don't have
993 * to worry about the inode being changed just because we released
994 * the buffer.
996 xfs_trans_brelse(tp, bp);
997 *ipp = ip;
998 return 0;
1002 * Read in extents from a btree-format inode.
1003 * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
1006 xfs_iread_extents(
1007 xfs_trans_t *tp,
1008 xfs_inode_t *ip,
1009 int whichfork)
1011 int error;
1012 xfs_ifork_t *ifp;
1013 size_t size;
1015 if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
1016 XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
1017 ip->i_mount);
1018 return XFS_ERROR(EFSCORRUPTED);
1020 size = XFS_IFORK_NEXTENTS(ip, whichfork) * (uint)sizeof(xfs_bmbt_rec_t);
1021 ifp = XFS_IFORK_PTR(ip, whichfork);
1023 * We know that the size is valid (it's checked in iformat_btree)
1025 ifp->if_u1.if_extents = kmem_alloc(size, KM_SLEEP);
1026 ASSERT(ifp->if_u1.if_extents != NULL);
1027 ifp->if_lastex = NULLEXTNUM;
1028 ifp->if_bytes = ifp->if_real_bytes = (int)size;
1029 ifp->if_flags |= XFS_IFEXTENTS;
1030 error = xfs_bmap_read_extents(tp, ip, whichfork);
1031 if (error) {
1032 kmem_free(ifp->if_u1.if_extents, size);
1033 ifp->if_u1.if_extents = NULL;
1034 ifp->if_bytes = ifp->if_real_bytes = 0;
1035 ifp->if_flags &= ~XFS_IFEXTENTS;
1036 return error;
1038 xfs_validate_extents((xfs_bmbt_rec_t *)ifp->if_u1.if_extents,
1039 XFS_IFORK_NEXTENTS(ip, whichfork), 0, XFS_EXTFMT_INODE(ip));
1040 return 0;
1044 * Allocate an inode on disk and return a copy of its in-core version.
1045 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
1046 * appropriately within the inode. The uid and gid for the inode are
1047 * set according to the contents of the given cred structure.
1049 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
1050 * has a free inode available, call xfs_iget()
1051 * to obtain the in-core version of the allocated inode. Finally,
1052 * fill in the inode and log its initial contents. In this case,
1053 * ialloc_context would be set to NULL and call_again set to false.
1055 * If xfs_dialloc() does not have an available inode,
1056 * it will replenish its supply by doing an allocation. Since we can
1057 * only do one allocation within a transaction without deadlocks, we
1058 * must commit the current transaction before returning the inode itself.
1059 * In this case, therefore, we will set call_again to true and return.
1060 * The caller should then commit the current transaction, start a new
1061 * transaction, and call xfs_ialloc() again to actually get the inode.
1063 * To ensure that some other process does not grab the inode that
1064 * was allocated during the first call to xfs_ialloc(), this routine
1065 * also returns the [locked] bp pointing to the head of the freelist
1066 * as ialloc_context. The caller should hold this buffer across
1067 * the commit and pass it back into this routine on the second call.
1070 xfs_ialloc(
1071 xfs_trans_t *tp,
1072 xfs_inode_t *pip,
1073 mode_t mode,
1074 xfs_nlink_t nlink,
1075 xfs_dev_t rdev,
1076 cred_t *cr,
1077 xfs_prid_t prid,
1078 int okalloc,
1079 xfs_buf_t **ialloc_context,
1080 boolean_t *call_again,
1081 xfs_inode_t **ipp)
1083 xfs_ino_t ino;
1084 xfs_inode_t *ip;
1085 vnode_t *vp;
1086 uint flags;
1087 int error;
1090 * Call the space management code to pick
1091 * the on-disk inode to be allocated.
1093 error = xfs_dialloc(tp, pip->i_ino, mode, okalloc,
1094 ialloc_context, call_again, &ino);
1095 if (error != 0) {
1096 return error;
1098 if (*call_again || ino == NULLFSINO) {
1099 *ipp = NULL;
1100 return 0;
1102 ASSERT(*ialloc_context == NULL);
1105 * Get the in-core inode with the lock held exclusively.
1106 * This is because we're setting fields here we need
1107 * to prevent others from looking at until we're done.
1109 error = xfs_trans_iget(tp->t_mountp, tp, ino,
1110 IGET_CREATE, XFS_ILOCK_EXCL, &ip);
1111 if (error != 0) {
1112 return error;
1114 ASSERT(ip != NULL);
1116 vp = XFS_ITOV(ip);
1117 ip->i_d.di_mode = (__uint16_t)mode;
1118 ip->i_d.di_onlink = 0;
1119 ip->i_d.di_nlink = nlink;
1120 ASSERT(ip->i_d.di_nlink == nlink);
1121 ip->i_d.di_uid = current_fsuid(cr);
1122 ip->i_d.di_gid = current_fsgid(cr);
1123 ip->i_d.di_projid = prid;
1124 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1127 * If the superblock version is up to where we support new format
1128 * inodes and this is currently an old format inode, then change
1129 * the inode version number now. This way we only do the conversion
1130 * here rather than here and in the flush/logging code.
1132 if (XFS_SB_VERSION_HASNLINK(&tp->t_mountp->m_sb) &&
1133 ip->i_d.di_version == XFS_DINODE_VERSION_1) {
1134 ip->i_d.di_version = XFS_DINODE_VERSION_2;
1136 * We've already zeroed the old link count, the projid field,
1137 * and the pad field.
1142 * Project ids won't be stored on disk if we are using a version 1 inode.
1144 if ( (prid != 0) && (ip->i_d.di_version == XFS_DINODE_VERSION_1))
1145 xfs_bump_ino_vers2(tp, ip);
1147 if (XFS_INHERIT_GID(pip, vp->v_vfsp)) {
1148 ip->i_d.di_gid = pip->i_d.di_gid;
1149 if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
1150 ip->i_d.di_mode |= S_ISGID;
1155 * If the group ID of the new file does not match the effective group
1156 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1157 * (and only if the irix_sgid_inherit compatibility variable is set).
1159 if ((irix_sgid_inherit) &&
1160 (ip->i_d.di_mode & S_ISGID) &&
1161 (!in_group_p((gid_t)ip->i_d.di_gid))) {
1162 ip->i_d.di_mode &= ~S_ISGID;
1165 ip->i_d.di_size = 0;
1166 ip->i_d.di_nextents = 0;
1167 ASSERT(ip->i_d.di_nblocks == 0);
1168 xfs_ichgtime(ip, XFS_ICHGTIME_CHG|XFS_ICHGTIME_ACC|XFS_ICHGTIME_MOD);
1170 * di_gen will have been taken care of in xfs_iread.
1172 ip->i_d.di_extsize = 0;
1173 ip->i_d.di_dmevmask = 0;
1174 ip->i_d.di_dmstate = 0;
1175 ip->i_d.di_flags = 0;
1176 flags = XFS_ILOG_CORE;
1177 switch (mode & S_IFMT) {
1178 case S_IFIFO:
1179 case S_IFCHR:
1180 case S_IFBLK:
1181 case S_IFSOCK:
1182 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
1183 ip->i_df.if_u2.if_rdev = rdev;
1184 ip->i_df.if_flags = 0;
1185 flags |= XFS_ILOG_DEV;
1186 break;
1187 case S_IFREG:
1188 case S_IFDIR:
1189 if (unlikely(pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
1190 uint di_flags = 0;
1192 if ((mode & S_IFMT) == S_IFDIR) {
1193 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1194 di_flags |= XFS_DIFLAG_RTINHERIT;
1195 } else {
1196 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) {
1197 di_flags |= XFS_DIFLAG_REALTIME;
1198 ip->i_iocore.io_flags |= XFS_IOCORE_RT;
1201 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
1202 xfs_inherit_noatime)
1203 di_flags |= XFS_DIFLAG_NOATIME;
1204 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
1205 xfs_inherit_nodump)
1206 di_flags |= XFS_DIFLAG_NODUMP;
1207 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
1208 xfs_inherit_sync)
1209 di_flags |= XFS_DIFLAG_SYNC;
1210 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
1211 xfs_inherit_nosymlinks)
1212 di_flags |= XFS_DIFLAG_NOSYMLINKS;
1213 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1214 di_flags |= XFS_DIFLAG_PROJINHERIT;
1215 ip->i_d.di_flags |= di_flags;
1217 /* FALLTHROUGH */
1218 case S_IFLNK:
1219 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1220 ip->i_df.if_flags = XFS_IFEXTENTS;
1221 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
1222 ip->i_df.if_u1.if_extents = NULL;
1223 break;
1224 default:
1225 ASSERT(0);
1228 * Attribute fork settings for new inode.
1230 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1231 ip->i_d.di_anextents = 0;
1234 * Log the new values stuffed into the inode.
1236 xfs_trans_log_inode(tp, ip, flags);
1238 /* now that we have an i_mode we can set Linux inode ops (& unlock) */
1239 VFS_INIT_VNODE(XFS_MTOVFS(tp->t_mountp), vp, XFS_ITOBHV(ip), 1);
1241 *ipp = ip;
1242 return 0;
1246 * Check to make sure that there are no blocks allocated to the
1247 * file beyond the size of the file. We don't check this for
1248 * files with fixed size extents or real time extents, but we
1249 * at least do it for regular files.
1251 #ifdef DEBUG
1252 void
1253 xfs_isize_check(
1254 xfs_mount_t *mp,
1255 xfs_inode_t *ip,
1256 xfs_fsize_t isize)
1258 xfs_fileoff_t map_first;
1259 int nimaps;
1260 xfs_bmbt_irec_t imaps[2];
1262 if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
1263 return;
1265 if ( ip->i_d.di_flags & XFS_DIFLAG_REALTIME )
1266 return;
1268 nimaps = 2;
1269 map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
1271 * The filesystem could be shutting down, so bmapi may return
1272 * an error.
1274 if (xfs_bmapi(NULL, ip, map_first,
1275 (XFS_B_TO_FSB(mp,
1276 (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
1277 map_first),
1278 XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
1279 NULL))
1280 return;
1281 ASSERT(nimaps == 1);
1282 ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
1284 #endif /* DEBUG */
1287 * Calculate the last possible buffered byte in a file. This must
1288 * include data that was buffered beyond the EOF by the write code.
1289 * This also needs to deal with overflowing the xfs_fsize_t type
1290 * which can happen for sizes near the limit.
1292 * We also need to take into account any blocks beyond the EOF. It
1293 * may be the case that they were buffered by a write which failed.
1294 * In that case the pages will still be in memory, but the inode size
1295 * will never have been updated.
1297 xfs_fsize_t
1298 xfs_file_last_byte(
1299 xfs_inode_t *ip)
1301 xfs_mount_t *mp;
1302 xfs_fsize_t last_byte;
1303 xfs_fileoff_t last_block;
1304 xfs_fileoff_t size_last_block;
1305 int error;
1307 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE | MR_ACCESS));
1309 mp = ip->i_mount;
1311 * Only check for blocks beyond the EOF if the extents have
1312 * been read in. This eliminates the need for the inode lock,
1313 * and it also saves us from looking when it really isn't
1314 * necessary.
1316 if (ip->i_df.if_flags & XFS_IFEXTENTS) {
1317 error = xfs_bmap_last_offset(NULL, ip, &last_block,
1318 XFS_DATA_FORK);
1319 if (error) {
1320 last_block = 0;
1322 } else {
1323 last_block = 0;
1325 size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_d.di_size);
1326 last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
1328 last_byte = XFS_FSB_TO_B(mp, last_block);
1329 if (last_byte < 0) {
1330 return XFS_MAXIOFFSET(mp);
1332 last_byte += (1 << mp->m_writeio_log);
1333 if (last_byte < 0) {
1334 return XFS_MAXIOFFSET(mp);
1336 return last_byte;
1339 #if defined(XFS_RW_TRACE)
1340 STATIC void
1341 xfs_itrunc_trace(
1342 int tag,
1343 xfs_inode_t *ip,
1344 int flag,
1345 xfs_fsize_t new_size,
1346 xfs_off_t toss_start,
1347 xfs_off_t toss_finish)
1349 if (ip->i_rwtrace == NULL) {
1350 return;
1353 ktrace_enter(ip->i_rwtrace,
1354 (void*)((long)tag),
1355 (void*)ip,
1356 (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff),
1357 (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff),
1358 (void*)((long)flag),
1359 (void*)(unsigned long)((new_size >> 32) & 0xffffffff),
1360 (void*)(unsigned long)(new_size & 0xffffffff),
1361 (void*)(unsigned long)((toss_start >> 32) & 0xffffffff),
1362 (void*)(unsigned long)(toss_start & 0xffffffff),
1363 (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff),
1364 (void*)(unsigned long)(toss_finish & 0xffffffff),
1365 (void*)(unsigned long)current_cpu(),
1366 (void*)0,
1367 (void*)0,
1368 (void*)0,
1369 (void*)0);
1371 #else
1372 #define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
1373 #endif
1376 * Start the truncation of the file to new_size. The new size
1377 * must be smaller than the current size. This routine will
1378 * clear the buffer and page caches of file data in the removed
1379 * range, and xfs_itruncate_finish() will remove the underlying
1380 * disk blocks.
1382 * The inode must have its I/O lock locked EXCLUSIVELY, and it
1383 * must NOT have the inode lock held at all. This is because we're
1384 * calling into the buffer/page cache code and we can't hold the
1385 * inode lock when we do so.
1387 * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
1388 * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
1389 * in the case that the caller is locking things out of order and
1390 * may not be able to call xfs_itruncate_finish() with the inode lock
1391 * held without dropping the I/O lock. If the caller must drop the
1392 * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
1393 * must be called again with all the same restrictions as the initial
1394 * call.
1396 void
1397 xfs_itruncate_start(
1398 xfs_inode_t *ip,
1399 uint flags,
1400 xfs_fsize_t new_size)
1402 xfs_fsize_t last_byte;
1403 xfs_off_t toss_start;
1404 xfs_mount_t *mp;
1405 vnode_t *vp;
1407 ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
1408 ASSERT((new_size == 0) || (new_size <= ip->i_d.di_size));
1409 ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
1410 (flags == XFS_ITRUNC_MAYBE));
1412 mp = ip->i_mount;
1413 vp = XFS_ITOV(ip);
1415 * Call VOP_TOSS_PAGES() or VOP_FLUSHINVAL_PAGES() to get rid of pages and buffers
1416 * overlapping the region being removed. We have to use
1417 * the less efficient VOP_FLUSHINVAL_PAGES() in the case that the
1418 * caller may not be able to finish the truncate without
1419 * dropping the inode's I/O lock. Make sure
1420 * to catch any pages brought in by buffers overlapping
1421 * the EOF by searching out beyond the isize by our
1422 * block size. We round new_size up to a block boundary
1423 * so that we don't toss things on the same block as
1424 * new_size but before it.
1426 * Before calling VOP_TOSS_PAGES() or VOP_FLUSHINVAL_PAGES(), make sure to
1427 * call remapf() over the same region if the file is mapped.
1428 * This frees up mapped file references to the pages in the
1429 * given range and for the VOP_FLUSHINVAL_PAGES() case it ensures
1430 * that we get the latest mapped changes flushed out.
1432 toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1433 toss_start = XFS_FSB_TO_B(mp, toss_start);
1434 if (toss_start < 0) {
1436 * The place to start tossing is beyond our maximum
1437 * file size, so there is no way that the data extended
1438 * out there.
1440 return;
1442 last_byte = xfs_file_last_byte(ip);
1443 xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start,
1444 last_byte);
1445 if (last_byte > toss_start) {
1446 if (flags & XFS_ITRUNC_DEFINITE) {
1447 VOP_TOSS_PAGES(vp, toss_start, -1, FI_REMAPF_LOCKED);
1448 } else {
1449 VOP_FLUSHINVAL_PAGES(vp, toss_start, -1, FI_REMAPF_LOCKED);
1453 #ifdef DEBUG
1454 if (new_size == 0) {
1455 ASSERT(VN_CACHED(vp) == 0);
1457 #endif
1461 * Shrink the file to the given new_size. The new
1462 * size must be smaller than the current size.
1463 * This will free up the underlying blocks
1464 * in the removed range after a call to xfs_itruncate_start()
1465 * or xfs_atruncate_start().
1467 * The transaction passed to this routine must have made
1468 * a permanent log reservation of at least XFS_ITRUNCATE_LOG_RES.
1469 * This routine may commit the given transaction and
1470 * start new ones, so make sure everything involved in
1471 * the transaction is tidy before calling here.
1472 * Some transaction will be returned to the caller to be
1473 * committed. The incoming transaction must already include
1474 * the inode, and both inode locks must be held exclusively.
1475 * The inode must also be "held" within the transaction. On
1476 * return the inode will be "held" within the returned transaction.
1477 * This routine does NOT require any disk space to be reserved
1478 * for it within the transaction.
1480 * The fork parameter must be either xfs_attr_fork or xfs_data_fork,
1481 * and it indicates the fork which is to be truncated. For the
1482 * attribute fork we only support truncation to size 0.
1484 * We use the sync parameter to indicate whether or not the first
1485 * transaction we perform might have to be synchronous. For the attr fork,
1486 * it needs to be so if the unlink of the inode is not yet known to be
1487 * permanent in the log. This keeps us from freeing and reusing the
1488 * blocks of the attribute fork before the unlink of the inode becomes
1489 * permanent.
1491 * For the data fork, we normally have to run synchronously if we're
1492 * being called out of the inactive path or we're being called
1493 * out of the create path where we're truncating an existing file.
1494 * Either way, the truncate needs to be sync so blocks don't reappear
1495 * in the file with altered data in case of a crash. wsync filesystems
1496 * can run the first case async because anything that shrinks the inode
1497 * has to run sync so by the time we're called here from inactive, the
1498 * inode size is permanently set to 0.
1500 * Calls from the truncate path always need to be sync unless we're
1501 * in a wsync filesystem and the file has already been unlinked.
1503 * The caller is responsible for correctly setting the sync parameter.
1504 * It gets too hard for us to guess here which path we're being called
1505 * out of just based on inode state.
1508 xfs_itruncate_finish(
1509 xfs_trans_t **tp,
1510 xfs_inode_t *ip,
1511 xfs_fsize_t new_size,
1512 int fork,
1513 int sync)
1515 xfs_fsblock_t first_block;
1516 xfs_fileoff_t first_unmap_block;
1517 xfs_fileoff_t last_block;
1518 xfs_filblks_t unmap_len=0;
1519 xfs_mount_t *mp;
1520 xfs_trans_t *ntp;
1521 int done;
1522 int committed;
1523 xfs_bmap_free_t free_list;
1524 int error;
1526 ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
1527 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE) != 0);
1528 ASSERT((new_size == 0) || (new_size <= ip->i_d.di_size));
1529 ASSERT(*tp != NULL);
1530 ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
1531 ASSERT(ip->i_transp == *tp);
1532 ASSERT(ip->i_itemp != NULL);
1533 ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD);
1536 ntp = *tp;
1537 mp = (ntp)->t_mountp;
1538 ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
1541 * We only support truncating the entire attribute fork.
1543 if (fork == XFS_ATTR_FORK) {
1544 new_size = 0LL;
1546 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1547 xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0);
1549 * The first thing we do is set the size to new_size permanently
1550 * on disk. This way we don't have to worry about anyone ever
1551 * being able to look at the data being freed even in the face
1552 * of a crash. What we're getting around here is the case where
1553 * we free a block, it is allocated to another file, it is written
1554 * to, and then we crash. If the new data gets written to the
1555 * file but the log buffers containing the free and reallocation
1556 * don't, then we'd end up with garbage in the blocks being freed.
1557 * As long as we make the new_size permanent before actually
1558 * freeing any blocks it doesn't matter if they get writtten to.
1560 * The callers must signal into us whether or not the size
1561 * setting here must be synchronous. There are a few cases
1562 * where it doesn't have to be synchronous. Those cases
1563 * occur if the file is unlinked and we know the unlink is
1564 * permanent or if the blocks being truncated are guaranteed
1565 * to be beyond the inode eof (regardless of the link count)
1566 * and the eof value is permanent. Both of these cases occur
1567 * only on wsync-mounted filesystems. In those cases, we're
1568 * guaranteed that no user will ever see the data in the blocks
1569 * that are being truncated so the truncate can run async.
1570 * In the free beyond eof case, the file may wind up with
1571 * more blocks allocated to it than it needs if we crash
1572 * and that won't get fixed until the next time the file
1573 * is re-opened and closed but that's ok as that shouldn't
1574 * be too many blocks.
1576 * However, we can't just make all wsync xactions run async
1577 * because there's one call out of the create path that needs
1578 * to run sync where it's truncating an existing file to size
1579 * 0 whose size is > 0.
1581 * It's probably possible to come up with a test in this
1582 * routine that would correctly distinguish all the above
1583 * cases from the values of the function parameters and the
1584 * inode state but for sanity's sake, I've decided to let the
1585 * layers above just tell us. It's simpler to correctly figure
1586 * out in the layer above exactly under what conditions we
1587 * can run async and I think it's easier for others read and
1588 * follow the logic in case something has to be changed.
1589 * cscope is your friend -- rcc.
1591 * The attribute fork is much simpler.
1593 * For the attribute fork we allow the caller to tell us whether
1594 * the unlink of the inode that led to this call is yet permanent
1595 * in the on disk log. If it is not and we will be freeing extents
1596 * in this inode then we make the first transaction synchronous
1597 * to make sure that the unlink is permanent by the time we free
1598 * the blocks.
1600 if (fork == XFS_DATA_FORK) {
1601 if (ip->i_d.di_nextents > 0) {
1602 ip->i_d.di_size = new_size;
1603 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1605 } else if (sync) {
1606 ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
1607 if (ip->i_d.di_anextents > 0)
1608 xfs_trans_set_sync(ntp);
1610 ASSERT(fork == XFS_DATA_FORK ||
1611 (fork == XFS_ATTR_FORK &&
1612 ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
1613 (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
1616 * Since it is possible for space to become allocated beyond
1617 * the end of the file (in a crash where the space is allocated
1618 * but the inode size is not yet updated), simply remove any
1619 * blocks which show up between the new EOF and the maximum
1620 * possible file size. If the first block to be removed is
1621 * beyond the maximum file size (ie it is the same as last_block),
1622 * then there is nothing to do.
1624 last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
1625 ASSERT(first_unmap_block <= last_block);
1626 done = 0;
1627 if (last_block == first_unmap_block) {
1628 done = 1;
1629 } else {
1630 unmap_len = last_block - first_unmap_block + 1;
1632 while (!done) {
1634 * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
1635 * will tell us whether it freed the entire range or
1636 * not. If this is a synchronous mount (wsync),
1637 * then we can tell bunmapi to keep all the
1638 * transactions asynchronous since the unlink
1639 * transaction that made this inode inactive has
1640 * already hit the disk. There's no danger of
1641 * the freed blocks being reused, there being a
1642 * crash, and the reused blocks suddenly reappearing
1643 * in this file with garbage in them once recovery
1644 * runs.
1646 XFS_BMAP_INIT(&free_list, &first_block);
1647 error = xfs_bunmapi(ntp, ip, first_unmap_block,
1648 unmap_len,
1649 XFS_BMAPI_AFLAG(fork) |
1650 (sync ? 0 : XFS_BMAPI_ASYNC),
1651 XFS_ITRUNC_MAX_EXTENTS,
1652 &first_block, &free_list, &done);
1653 if (error) {
1655 * If the bunmapi call encounters an error,
1656 * return to the caller where the transaction
1657 * can be properly aborted. We just need to
1658 * make sure we're not holding any resources
1659 * that we were not when we came in.
1661 xfs_bmap_cancel(&free_list);
1662 return error;
1666 * Duplicate the transaction that has the permanent
1667 * reservation and commit the old transaction.
1669 error = xfs_bmap_finish(tp, &free_list, first_block,
1670 &committed);
1671 ntp = *tp;
1672 if (error) {
1674 * If the bmap finish call encounters an error,
1675 * return to the caller where the transaction
1676 * can be properly aborted. We just need to
1677 * make sure we're not holding any resources
1678 * that we were not when we came in.
1680 * Aborting from this point might lose some
1681 * blocks in the file system, but oh well.
1683 xfs_bmap_cancel(&free_list);
1684 if (committed) {
1686 * If the passed in transaction committed
1687 * in xfs_bmap_finish(), then we want to
1688 * add the inode to this one before returning.
1689 * This keeps things simple for the higher
1690 * level code, because it always knows that
1691 * the inode is locked and held in the
1692 * transaction that returns to it whether
1693 * errors occur or not. We don't mark the
1694 * inode dirty so that this transaction can
1695 * be easily aborted if possible.
1697 xfs_trans_ijoin(ntp, ip,
1698 XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1699 xfs_trans_ihold(ntp, ip);
1701 return error;
1704 if (committed) {
1706 * The first xact was committed,
1707 * so add the inode to the new one.
1708 * Mark it dirty so it will be logged
1709 * and moved forward in the log as
1710 * part of every commit.
1712 xfs_trans_ijoin(ntp, ip,
1713 XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1714 xfs_trans_ihold(ntp, ip);
1715 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1717 ntp = xfs_trans_dup(ntp);
1718 (void) xfs_trans_commit(*tp, 0, NULL);
1719 *tp = ntp;
1720 error = xfs_trans_reserve(ntp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0,
1721 XFS_TRANS_PERM_LOG_RES,
1722 XFS_ITRUNCATE_LOG_COUNT);
1724 * Add the inode being truncated to the next chained
1725 * transaction.
1727 xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1728 xfs_trans_ihold(ntp, ip);
1729 if (error)
1730 return (error);
1733 * Only update the size in the case of the data fork, but
1734 * always re-log the inode so that our permanent transaction
1735 * can keep on rolling it forward in the log.
1737 if (fork == XFS_DATA_FORK) {
1738 xfs_isize_check(mp, ip, new_size);
1739 ip->i_d.di_size = new_size;
1741 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1742 ASSERT((new_size != 0) ||
1743 (fork == XFS_ATTR_FORK) ||
1744 (ip->i_delayed_blks == 0));
1745 ASSERT((new_size != 0) ||
1746 (fork == XFS_ATTR_FORK) ||
1747 (ip->i_d.di_nextents == 0));
1748 xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0);
1749 return 0;
1754 * xfs_igrow_start
1756 * Do the first part of growing a file: zero any data in the last
1757 * block that is beyond the old EOF. We need to do this before
1758 * the inode is joined to the transaction to modify the i_size.
1759 * That way we can drop the inode lock and call into the buffer
1760 * cache to get the buffer mapping the EOF.
1763 xfs_igrow_start(
1764 xfs_inode_t *ip,
1765 xfs_fsize_t new_size,
1766 cred_t *credp)
1768 xfs_fsize_t isize;
1769 int error;
1771 ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
1772 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
1773 ASSERT(new_size > ip->i_d.di_size);
1775 error = 0;
1776 isize = ip->i_d.di_size;
1778 * Zero any pages that may have been created by
1779 * xfs_write_file() beyond the end of the file
1780 * and any blocks between the old and new file sizes.
1782 error = xfs_zero_eof(XFS_ITOV(ip), &ip->i_iocore, new_size, isize,
1783 new_size);
1784 return error;
1788 * xfs_igrow_finish
1790 * This routine is called to extend the size of a file.
1791 * The inode must have both the iolock and the ilock locked
1792 * for update and it must be a part of the current transaction.
1793 * The xfs_igrow_start() function must have been called previously.
1794 * If the change_flag is not zero, the inode change timestamp will
1795 * be updated.
1797 void
1798 xfs_igrow_finish(
1799 xfs_trans_t *tp,
1800 xfs_inode_t *ip,
1801 xfs_fsize_t new_size,
1802 int change_flag)
1804 ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
1805 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
1806 ASSERT(ip->i_transp == tp);
1807 ASSERT(new_size > ip->i_d.di_size);
1810 * Update the file size. Update the inode change timestamp
1811 * if change_flag set.
1813 ip->i_d.di_size = new_size;
1814 if (change_flag)
1815 xfs_ichgtime(ip, XFS_ICHGTIME_CHG);
1816 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1822 * This is called when the inode's link count goes to 0.
1823 * We place the on-disk inode on a list in the AGI. It
1824 * will be pulled from this list when the inode is freed.
1827 xfs_iunlink(
1828 xfs_trans_t *tp,
1829 xfs_inode_t *ip)
1831 xfs_mount_t *mp;
1832 xfs_agi_t *agi;
1833 xfs_dinode_t *dip;
1834 xfs_buf_t *agibp;
1835 xfs_buf_t *ibp;
1836 xfs_agnumber_t agno;
1837 xfs_daddr_t agdaddr;
1838 xfs_agino_t agino;
1839 short bucket_index;
1840 int offset;
1841 int error;
1842 int agi_ok;
1844 ASSERT(ip->i_d.di_nlink == 0);
1845 ASSERT(ip->i_d.di_mode != 0);
1846 ASSERT(ip->i_transp == tp);
1848 mp = tp->t_mountp;
1850 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1851 agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
1854 * Get the agi buffer first. It ensures lock ordering
1855 * on the list.
1857 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
1858 XFS_FSS_TO_BB(mp, 1), 0, &agibp);
1859 if (error) {
1860 return error;
1863 * Validate the magic number of the agi block.
1865 agi = XFS_BUF_TO_AGI(agibp);
1866 agi_ok =
1867 be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
1868 XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
1869 if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK,
1870 XFS_RANDOM_IUNLINK))) {
1871 XFS_CORRUPTION_ERROR("xfs_iunlink", XFS_ERRLEVEL_LOW, mp, agi);
1872 xfs_trans_brelse(tp, agibp);
1873 return XFS_ERROR(EFSCORRUPTED);
1876 * Get the index into the agi hash table for the
1877 * list this inode will go on.
1879 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1880 ASSERT(agino != 0);
1881 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1882 ASSERT(agi->agi_unlinked[bucket_index]);
1883 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1885 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
1887 * There is already another inode in the bucket we need
1888 * to add ourselves to. Add us at the front of the list.
1889 * Here we put the head pointer into our next pointer,
1890 * and then we fall through to point the head at us.
1892 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0);
1893 if (error) {
1894 return error;
1896 ASSERT(INT_GET(dip->di_next_unlinked, ARCH_CONVERT) == NULLAGINO);
1897 ASSERT(dip->di_next_unlinked);
1898 /* both on-disk, don't endian flip twice */
1899 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1900 offset = ip->i_boffset +
1901 offsetof(xfs_dinode_t, di_next_unlinked);
1902 xfs_trans_inode_buf(tp, ibp);
1903 xfs_trans_log_buf(tp, ibp, offset,
1904 (offset + sizeof(xfs_agino_t) - 1));
1905 xfs_inobp_check(mp, ibp);
1909 * Point the bucket head pointer at the inode being inserted.
1911 ASSERT(agino != 0);
1912 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1913 offset = offsetof(xfs_agi_t, agi_unlinked) +
1914 (sizeof(xfs_agino_t) * bucket_index);
1915 xfs_trans_log_buf(tp, agibp, offset,
1916 (offset + sizeof(xfs_agino_t) - 1));
1917 return 0;
1921 * Pull the on-disk inode from the AGI unlinked list.
1923 STATIC int
1924 xfs_iunlink_remove(
1925 xfs_trans_t *tp,
1926 xfs_inode_t *ip)
1928 xfs_ino_t next_ino;
1929 xfs_mount_t *mp;
1930 xfs_agi_t *agi;
1931 xfs_dinode_t *dip;
1932 xfs_buf_t *agibp;
1933 xfs_buf_t *ibp;
1934 xfs_agnumber_t agno;
1935 xfs_daddr_t agdaddr;
1936 xfs_agino_t agino;
1937 xfs_agino_t next_agino;
1938 xfs_buf_t *last_ibp;
1939 xfs_dinode_t *last_dip;
1940 short bucket_index;
1941 int offset, last_offset;
1942 int error;
1943 int agi_ok;
1946 * First pull the on-disk inode from the AGI unlinked list.
1948 mp = tp->t_mountp;
1950 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1951 agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
1954 * Get the agi buffer first. It ensures lock ordering
1955 * on the list.
1957 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
1958 XFS_FSS_TO_BB(mp, 1), 0, &agibp);
1959 if (error) {
1960 cmn_err(CE_WARN,
1961 "xfs_iunlink_remove: xfs_trans_read_buf() returned an error %d on %s. Returning error.",
1962 error, mp->m_fsname);
1963 return error;
1966 * Validate the magic number of the agi block.
1968 agi = XFS_BUF_TO_AGI(agibp);
1969 agi_ok =
1970 be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
1971 XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
1972 if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK_REMOVE,
1973 XFS_RANDOM_IUNLINK_REMOVE))) {
1974 XFS_CORRUPTION_ERROR("xfs_iunlink_remove", XFS_ERRLEVEL_LOW,
1975 mp, agi);
1976 xfs_trans_brelse(tp, agibp);
1977 cmn_err(CE_WARN,
1978 "xfs_iunlink_remove: XFS_TEST_ERROR() returned an error on %s. Returning EFSCORRUPTED.",
1979 mp->m_fsname);
1980 return XFS_ERROR(EFSCORRUPTED);
1983 * Get the index into the agi hash table for the
1984 * list this inode will go on.
1986 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1987 ASSERT(agino != 0);
1988 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1989 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
1990 ASSERT(agi->agi_unlinked[bucket_index]);
1992 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
1994 * We're at the head of the list. Get the inode's
1995 * on-disk buffer to see if there is anyone after us
1996 * on the list. Only modify our next pointer if it
1997 * is not already NULLAGINO. This saves us the overhead
1998 * of dealing with the buffer when there is no need to
1999 * change it.
2001 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0);
2002 if (error) {
2003 cmn_err(CE_WARN,
2004 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
2005 error, mp->m_fsname);
2006 return error;
2008 next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT);
2009 ASSERT(next_agino != 0);
2010 if (next_agino != NULLAGINO) {
2011 INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO);
2012 offset = ip->i_boffset +
2013 offsetof(xfs_dinode_t, di_next_unlinked);
2014 xfs_trans_inode_buf(tp, ibp);
2015 xfs_trans_log_buf(tp, ibp, offset,
2016 (offset + sizeof(xfs_agino_t) - 1));
2017 xfs_inobp_check(mp, ibp);
2018 } else {
2019 xfs_trans_brelse(tp, ibp);
2022 * Point the bucket head pointer at the next inode.
2024 ASSERT(next_agino != 0);
2025 ASSERT(next_agino != agino);
2026 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
2027 offset = offsetof(xfs_agi_t, agi_unlinked) +
2028 (sizeof(xfs_agino_t) * bucket_index);
2029 xfs_trans_log_buf(tp, agibp, offset,
2030 (offset + sizeof(xfs_agino_t) - 1));
2031 } else {
2033 * We need to search the list for the inode being freed.
2035 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2036 last_ibp = NULL;
2037 while (next_agino != agino) {
2039 * If the last inode wasn't the one pointing to
2040 * us, then release its buffer since we're not
2041 * going to do anything with it.
2043 if (last_ibp != NULL) {
2044 xfs_trans_brelse(tp, last_ibp);
2046 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
2047 error = xfs_inotobp(mp, tp, next_ino, &last_dip,
2048 &last_ibp, &last_offset);
2049 if (error) {
2050 cmn_err(CE_WARN,
2051 "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.",
2052 error, mp->m_fsname);
2053 return error;
2055 next_agino = INT_GET(last_dip->di_next_unlinked, ARCH_CONVERT);
2056 ASSERT(next_agino != NULLAGINO);
2057 ASSERT(next_agino != 0);
2060 * Now last_ibp points to the buffer previous to us on
2061 * the unlinked list. Pull us from the list.
2063 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0);
2064 if (error) {
2065 cmn_err(CE_WARN,
2066 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
2067 error, mp->m_fsname);
2068 return error;
2070 next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT);
2071 ASSERT(next_agino != 0);
2072 ASSERT(next_agino != agino);
2073 if (next_agino != NULLAGINO) {
2074 INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO);
2075 offset = ip->i_boffset +
2076 offsetof(xfs_dinode_t, di_next_unlinked);
2077 xfs_trans_inode_buf(tp, ibp);
2078 xfs_trans_log_buf(tp, ibp, offset,
2079 (offset + sizeof(xfs_agino_t) - 1));
2080 xfs_inobp_check(mp, ibp);
2081 } else {
2082 xfs_trans_brelse(tp, ibp);
2085 * Point the previous inode on the list to the next inode.
2087 INT_SET(last_dip->di_next_unlinked, ARCH_CONVERT, next_agino);
2088 ASSERT(next_agino != 0);
2089 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2090 xfs_trans_inode_buf(tp, last_ibp);
2091 xfs_trans_log_buf(tp, last_ibp, offset,
2092 (offset + sizeof(xfs_agino_t) - 1));
2093 xfs_inobp_check(mp, last_ibp);
2095 return 0;
2098 static __inline__ int xfs_inode_clean(xfs_inode_t *ip)
2100 return (((ip->i_itemp == NULL) ||
2101 !(ip->i_itemp->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
2102 (ip->i_update_core == 0));
2105 STATIC void
2106 xfs_ifree_cluster(
2107 xfs_inode_t *free_ip,
2108 xfs_trans_t *tp,
2109 xfs_ino_t inum)
2111 xfs_mount_t *mp = free_ip->i_mount;
2112 int blks_per_cluster;
2113 int nbufs;
2114 int ninodes;
2115 int i, j, found, pre_flushed;
2116 xfs_daddr_t blkno;
2117 xfs_buf_t *bp;
2118 xfs_ihash_t *ih;
2119 xfs_inode_t *ip, **ip_found;
2120 xfs_inode_log_item_t *iip;
2121 xfs_log_item_t *lip;
2122 SPLDECL(s);
2124 if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
2125 blks_per_cluster = 1;
2126 ninodes = mp->m_sb.sb_inopblock;
2127 nbufs = XFS_IALLOC_BLOCKS(mp);
2128 } else {
2129 blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
2130 mp->m_sb.sb_blocksize;
2131 ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
2132 nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
2135 ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS);
2137 for (j = 0; j < nbufs; j++, inum += ninodes) {
2138 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2139 XFS_INO_TO_AGBNO(mp, inum));
2143 * Look for each inode in memory and attempt to lock it,
2144 * we can be racing with flush and tail pushing here.
2145 * any inode we get the locks on, add to an array of
2146 * inode items to process later.
2148 * The get the buffer lock, we could beat a flush
2149 * or tail pushing thread to the lock here, in which
2150 * case they will go looking for the inode buffer
2151 * and fail, we need some other form of interlock
2152 * here.
2154 found = 0;
2155 for (i = 0; i < ninodes; i++) {
2156 ih = XFS_IHASH(mp, inum + i);
2157 read_lock(&ih->ih_lock);
2158 for (ip = ih->ih_next; ip != NULL; ip = ip->i_next) {
2159 if (ip->i_ino == inum + i)
2160 break;
2163 /* Inode not in memory or we found it already,
2164 * nothing to do
2166 if (!ip || (ip->i_flags & XFS_ISTALE)) {
2167 read_unlock(&ih->ih_lock);
2168 continue;
2171 if (xfs_inode_clean(ip)) {
2172 read_unlock(&ih->ih_lock);
2173 continue;
2176 /* If we can get the locks then add it to the
2177 * list, otherwise by the time we get the bp lock
2178 * below it will already be attached to the
2179 * inode buffer.
2182 /* This inode will already be locked - by us, lets
2183 * keep it that way.
2186 if (ip == free_ip) {
2187 if (xfs_iflock_nowait(ip)) {
2188 ip->i_flags |= XFS_ISTALE;
2190 if (xfs_inode_clean(ip)) {
2191 xfs_ifunlock(ip);
2192 } else {
2193 ip_found[found++] = ip;
2196 read_unlock(&ih->ih_lock);
2197 continue;
2200 if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2201 if (xfs_iflock_nowait(ip)) {
2202 ip->i_flags |= XFS_ISTALE;
2204 if (xfs_inode_clean(ip)) {
2205 xfs_ifunlock(ip);
2206 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2207 } else {
2208 ip_found[found++] = ip;
2210 } else {
2211 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2215 read_unlock(&ih->ih_lock);
2218 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2219 mp->m_bsize * blks_per_cluster,
2220 XFS_BUF_LOCK);
2222 pre_flushed = 0;
2223 lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
2224 while (lip) {
2225 if (lip->li_type == XFS_LI_INODE) {
2226 iip = (xfs_inode_log_item_t *)lip;
2227 ASSERT(iip->ili_logged == 1);
2228 lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done;
2229 AIL_LOCK(mp,s);
2230 iip->ili_flush_lsn = iip->ili_item.li_lsn;
2231 AIL_UNLOCK(mp, s);
2232 iip->ili_inode->i_flags |= XFS_ISTALE;
2233 pre_flushed++;
2235 lip = lip->li_bio_list;
2238 for (i = 0; i < found; i++) {
2239 ip = ip_found[i];
2240 iip = ip->i_itemp;
2242 if (!iip) {
2243 ip->i_update_core = 0;
2244 xfs_ifunlock(ip);
2245 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2246 continue;
2249 iip->ili_last_fields = iip->ili_format.ilf_fields;
2250 iip->ili_format.ilf_fields = 0;
2251 iip->ili_logged = 1;
2252 AIL_LOCK(mp,s);
2253 iip->ili_flush_lsn = iip->ili_item.li_lsn;
2254 AIL_UNLOCK(mp, s);
2256 xfs_buf_attach_iodone(bp,
2257 (void(*)(xfs_buf_t*,xfs_log_item_t*))
2258 xfs_istale_done, (xfs_log_item_t *)iip);
2259 if (ip != free_ip) {
2260 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2264 if (found || pre_flushed)
2265 xfs_trans_stale_inode_buf(tp, bp);
2266 xfs_trans_binval(tp, bp);
2269 kmem_free(ip_found, ninodes * sizeof(xfs_inode_t *));
2273 * This is called to return an inode to the inode free list.
2274 * The inode should already be truncated to 0 length and have
2275 * no pages associated with it. This routine also assumes that
2276 * the inode is already a part of the transaction.
2278 * The on-disk copy of the inode will have been added to the list
2279 * of unlinked inodes in the AGI. We need to remove the inode from
2280 * that list atomically with respect to freeing it here.
2283 xfs_ifree(
2284 xfs_trans_t *tp,
2285 xfs_inode_t *ip,
2286 xfs_bmap_free_t *flist)
2288 int error;
2289 int delete;
2290 xfs_ino_t first_ino;
2292 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
2293 ASSERT(ip->i_transp == tp);
2294 ASSERT(ip->i_d.di_nlink == 0);
2295 ASSERT(ip->i_d.di_nextents == 0);
2296 ASSERT(ip->i_d.di_anextents == 0);
2297 ASSERT((ip->i_d.di_size == 0) ||
2298 ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
2299 ASSERT(ip->i_d.di_nblocks == 0);
2302 * Pull the on-disk inode from the AGI unlinked list.
2304 error = xfs_iunlink_remove(tp, ip);
2305 if (error != 0) {
2306 return error;
2309 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
2310 if (error != 0) {
2311 return error;
2313 ip->i_d.di_mode = 0; /* mark incore inode as free */
2314 ip->i_d.di_flags = 0;
2315 ip->i_d.di_dmevmask = 0;
2316 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
2317 ip->i_df.if_ext_max =
2318 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
2319 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2320 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2322 * Bump the generation count so no one will be confused
2323 * by reincarnations of this inode.
2325 ip->i_d.di_gen++;
2326 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2328 if (delete) {
2329 xfs_ifree_cluster(ip, tp, first_ino);
2332 return 0;
2336 * Reallocate the space for if_broot based on the number of records
2337 * being added or deleted as indicated in rec_diff. Move the records
2338 * and pointers in if_broot to fit the new size. When shrinking this
2339 * will eliminate holes between the records and pointers created by
2340 * the caller. When growing this will create holes to be filled in
2341 * by the caller.
2343 * The caller must not request to add more records than would fit in
2344 * the on-disk inode root. If the if_broot is currently NULL, then
2345 * if we adding records one will be allocated. The caller must also
2346 * not request that the number of records go below zero, although
2347 * it can go to zero.
2349 * ip -- the inode whose if_broot area is changing
2350 * ext_diff -- the change in the number of records, positive or negative,
2351 * requested for the if_broot array.
2353 void
2354 xfs_iroot_realloc(
2355 xfs_inode_t *ip,
2356 int rec_diff,
2357 int whichfork)
2359 int cur_max;
2360 xfs_ifork_t *ifp;
2361 xfs_bmbt_block_t *new_broot;
2362 int new_max;
2363 size_t new_size;
2364 char *np;
2365 char *op;
2368 * Handle the degenerate case quietly.
2370 if (rec_diff == 0) {
2371 return;
2374 ifp = XFS_IFORK_PTR(ip, whichfork);
2375 if (rec_diff > 0) {
2377 * If there wasn't any memory allocated before, just
2378 * allocate it now and get out.
2380 if (ifp->if_broot_bytes == 0) {
2381 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
2382 ifp->if_broot = (xfs_bmbt_block_t*)kmem_alloc(new_size,
2383 KM_SLEEP);
2384 ifp->if_broot_bytes = (int)new_size;
2385 return;
2389 * If there is already an existing if_broot, then we need
2390 * to realloc() it and shift the pointers to their new
2391 * location. The records don't change location because
2392 * they are kept butted up against the btree block header.
2394 cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
2395 new_max = cur_max + rec_diff;
2396 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2397 ifp->if_broot = (xfs_bmbt_block_t *)
2398 kmem_realloc(ifp->if_broot,
2399 new_size,
2400 (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
2401 KM_SLEEP);
2402 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2403 ifp->if_broot_bytes);
2404 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2405 (int)new_size);
2406 ifp->if_broot_bytes = (int)new_size;
2407 ASSERT(ifp->if_broot_bytes <=
2408 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2409 memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
2410 return;
2414 * rec_diff is less than 0. In this case, we are shrinking the
2415 * if_broot buffer. It must already exist. If we go to zero
2416 * records, just get rid of the root and clear the status bit.
2418 ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
2419 cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
2420 new_max = cur_max + rec_diff;
2421 ASSERT(new_max >= 0);
2422 if (new_max > 0)
2423 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2424 else
2425 new_size = 0;
2426 if (new_size > 0) {
2427 new_broot = (xfs_bmbt_block_t *)kmem_alloc(new_size, KM_SLEEP);
2429 * First copy over the btree block header.
2431 memcpy(new_broot, ifp->if_broot, sizeof(xfs_bmbt_block_t));
2432 } else {
2433 new_broot = NULL;
2434 ifp->if_flags &= ~XFS_IFBROOT;
2438 * Only copy the records and pointers if there are any.
2440 if (new_max > 0) {
2442 * First copy the records.
2444 op = (char *)XFS_BMAP_BROOT_REC_ADDR(ifp->if_broot, 1,
2445 ifp->if_broot_bytes);
2446 np = (char *)XFS_BMAP_BROOT_REC_ADDR(new_broot, 1,
2447 (int)new_size);
2448 memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
2451 * Then copy the pointers.
2453 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2454 ifp->if_broot_bytes);
2455 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(new_broot, 1,
2456 (int)new_size);
2457 memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
2459 kmem_free(ifp->if_broot, ifp->if_broot_bytes);
2460 ifp->if_broot = new_broot;
2461 ifp->if_broot_bytes = (int)new_size;
2462 ASSERT(ifp->if_broot_bytes <=
2463 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2464 return;
2469 * This is called when the amount of space needed for if_extents
2470 * is increased or decreased. The change in size is indicated by
2471 * the number of extents that need to be added or deleted in the
2472 * ext_diff parameter.
2474 * If the amount of space needed has decreased below the size of the
2475 * inline buffer, then switch to using the inline buffer. Otherwise,
2476 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2477 * to what is needed.
2479 * ip -- the inode whose if_extents area is changing
2480 * ext_diff -- the change in the number of extents, positive or negative,
2481 * requested for the if_extents array.
2483 void
2484 xfs_iext_realloc(
2485 xfs_inode_t *ip,
2486 int ext_diff,
2487 int whichfork)
2489 int byte_diff;
2490 xfs_ifork_t *ifp;
2491 int new_size;
2492 uint rnew_size;
2494 if (ext_diff == 0) {
2495 return;
2498 ifp = XFS_IFORK_PTR(ip, whichfork);
2499 byte_diff = ext_diff * (uint)sizeof(xfs_bmbt_rec_t);
2500 new_size = (int)ifp->if_bytes + byte_diff;
2501 ASSERT(new_size >= 0);
2503 if (new_size == 0) {
2504 if (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext) {
2505 ASSERT(ifp->if_real_bytes != 0);
2506 kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
2508 ifp->if_u1.if_extents = NULL;
2509 rnew_size = 0;
2510 } else if (new_size <= sizeof(ifp->if_u2.if_inline_ext)) {
2512 * If the valid extents can fit in if_inline_ext,
2513 * copy them from the malloc'd vector and free it.
2515 if (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext) {
2517 * For now, empty files are format EXTENTS,
2518 * so the if_extents pointer is null.
2520 if (ifp->if_u1.if_extents) {
2521 memcpy(ifp->if_u2.if_inline_ext,
2522 ifp->if_u1.if_extents, new_size);
2523 kmem_free(ifp->if_u1.if_extents,
2524 ifp->if_real_bytes);
2526 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
2528 rnew_size = 0;
2529 } else {
2530 rnew_size = new_size;
2531 if ((rnew_size & (rnew_size - 1)) != 0)
2532 rnew_size = xfs_iroundup(rnew_size);
2534 * Stuck with malloc/realloc.
2536 if (ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext) {
2537 ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
2538 kmem_alloc(rnew_size, KM_SLEEP);
2539 memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
2540 sizeof(ifp->if_u2.if_inline_ext));
2541 } else if (rnew_size != ifp->if_real_bytes) {
2542 ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
2543 kmem_realloc(ifp->if_u1.if_extents,
2544 rnew_size,
2545 ifp->if_real_bytes,
2546 KM_NOFS);
2549 ifp->if_real_bytes = rnew_size;
2550 ifp->if_bytes = new_size;
2555 * This is called when the amount of space needed for if_data
2556 * is increased or decreased. The change in size is indicated by
2557 * the number of bytes that need to be added or deleted in the
2558 * byte_diff parameter.
2560 * If the amount of space needed has decreased below the size of the
2561 * inline buffer, then switch to using the inline buffer. Otherwise,
2562 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2563 * to what is needed.
2565 * ip -- the inode whose if_data area is changing
2566 * byte_diff -- the change in the number of bytes, positive or negative,
2567 * requested for the if_data array.
2569 void
2570 xfs_idata_realloc(
2571 xfs_inode_t *ip,
2572 int byte_diff,
2573 int whichfork)
2575 xfs_ifork_t *ifp;
2576 int new_size;
2577 int real_size;
2579 if (byte_diff == 0) {
2580 return;
2583 ifp = XFS_IFORK_PTR(ip, whichfork);
2584 new_size = (int)ifp->if_bytes + byte_diff;
2585 ASSERT(new_size >= 0);
2587 if (new_size == 0) {
2588 if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2589 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2591 ifp->if_u1.if_data = NULL;
2592 real_size = 0;
2593 } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
2595 * If the valid extents/data can fit in if_inline_ext/data,
2596 * copy them from the malloc'd vector and free it.
2598 if (ifp->if_u1.if_data == NULL) {
2599 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2600 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2601 ASSERT(ifp->if_real_bytes != 0);
2602 memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
2603 new_size);
2604 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2605 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2607 real_size = 0;
2608 } else {
2610 * Stuck with malloc/realloc.
2611 * For inline data, the underlying buffer must be
2612 * a multiple of 4 bytes in size so that it can be
2613 * logged and stay on word boundaries. We enforce
2614 * that here.
2616 real_size = roundup(new_size, 4);
2617 if (ifp->if_u1.if_data == NULL) {
2618 ASSERT(ifp->if_real_bytes == 0);
2619 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2620 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2622 * Only do the realloc if the underlying size
2623 * is really changing.
2625 if (ifp->if_real_bytes != real_size) {
2626 ifp->if_u1.if_data =
2627 kmem_realloc(ifp->if_u1.if_data,
2628 real_size,
2629 ifp->if_real_bytes,
2630 KM_SLEEP);
2632 } else {
2633 ASSERT(ifp->if_real_bytes == 0);
2634 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2635 memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
2636 ifp->if_bytes);
2639 ifp->if_real_bytes = real_size;
2640 ifp->if_bytes = new_size;
2641 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2648 * Map inode to disk block and offset.
2650 * mp -- the mount point structure for the current file system
2651 * tp -- the current transaction
2652 * ino -- the inode number of the inode to be located
2653 * imap -- this structure is filled in with the information necessary
2654 * to retrieve the given inode from disk
2655 * flags -- flags to pass to xfs_dilocate indicating whether or not
2656 * lookups in the inode btree were OK or not
2659 xfs_imap(
2660 xfs_mount_t *mp,
2661 xfs_trans_t *tp,
2662 xfs_ino_t ino,
2663 xfs_imap_t *imap,
2664 uint flags)
2666 xfs_fsblock_t fsbno;
2667 int len;
2668 int off;
2669 int error;
2671 fsbno = imap->im_blkno ?
2672 XFS_DADDR_TO_FSB(mp, imap->im_blkno) : NULLFSBLOCK;
2673 error = xfs_dilocate(mp, tp, ino, &fsbno, &len, &off, flags);
2674 if (error != 0) {
2675 return error;
2677 imap->im_blkno = XFS_FSB_TO_DADDR(mp, fsbno);
2678 imap->im_len = XFS_FSB_TO_BB(mp, len);
2679 imap->im_agblkno = XFS_FSB_TO_AGBNO(mp, fsbno);
2680 imap->im_ioffset = (ushort)off;
2681 imap->im_boffset = (ushort)(off << mp->m_sb.sb_inodelog);
2682 return 0;
2685 void
2686 xfs_idestroy_fork(
2687 xfs_inode_t *ip,
2688 int whichfork)
2690 xfs_ifork_t *ifp;
2692 ifp = XFS_IFORK_PTR(ip, whichfork);
2693 if (ifp->if_broot != NULL) {
2694 kmem_free(ifp->if_broot, ifp->if_broot_bytes);
2695 ifp->if_broot = NULL;
2699 * If the format is local, then we can't have an extents
2700 * array so just look for an inline data array. If we're
2701 * not local then we may or may not have an extents list,
2702 * so check and free it up if we do.
2704 if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
2705 if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
2706 (ifp->if_u1.if_data != NULL)) {
2707 ASSERT(ifp->if_real_bytes != 0);
2708 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2709 ifp->if_u1.if_data = NULL;
2710 ifp->if_real_bytes = 0;
2712 } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
2713 (ifp->if_u1.if_extents != NULL) &&
2714 (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)) {
2715 ASSERT(ifp->if_real_bytes != 0);
2716 kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
2717 ifp->if_u1.if_extents = NULL;
2718 ifp->if_real_bytes = 0;
2720 ASSERT(ifp->if_u1.if_extents == NULL ||
2721 ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
2722 ASSERT(ifp->if_real_bytes == 0);
2723 if (whichfork == XFS_ATTR_FORK) {
2724 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
2725 ip->i_afp = NULL;
2730 * This is called free all the memory associated with an inode.
2731 * It must free the inode itself and any buffers allocated for
2732 * if_extents/if_data and if_broot. It must also free the lock
2733 * associated with the inode.
2735 void
2736 xfs_idestroy(
2737 xfs_inode_t *ip)
2740 switch (ip->i_d.di_mode & S_IFMT) {
2741 case S_IFREG:
2742 case S_IFDIR:
2743 case S_IFLNK:
2744 xfs_idestroy_fork(ip, XFS_DATA_FORK);
2745 break;
2747 if (ip->i_afp)
2748 xfs_idestroy_fork(ip, XFS_ATTR_FORK);
2749 mrfree(&ip->i_lock);
2750 mrfree(&ip->i_iolock);
2751 freesema(&ip->i_flock);
2752 #ifdef XFS_BMAP_TRACE
2753 ktrace_free(ip->i_xtrace);
2754 #endif
2755 #ifdef XFS_BMBT_TRACE
2756 ktrace_free(ip->i_btrace);
2757 #endif
2758 #ifdef XFS_RW_TRACE
2759 ktrace_free(ip->i_rwtrace);
2760 #endif
2761 #ifdef XFS_ILOCK_TRACE
2762 ktrace_free(ip->i_lock_trace);
2763 #endif
2764 #ifdef XFS_DIR2_TRACE
2765 ktrace_free(ip->i_dir_trace);
2766 #endif
2767 if (ip->i_itemp) {
2768 /* XXXdpd should be able to assert this but shutdown
2769 * is leaving the AIL behind. */
2770 ASSERT(((ip->i_itemp->ili_item.li_flags & XFS_LI_IN_AIL) == 0) ||
2771 XFS_FORCED_SHUTDOWN(ip->i_mount));
2772 xfs_inode_item_destroy(ip);
2774 kmem_zone_free(xfs_inode_zone, ip);
2779 * Increment the pin count of the given buffer.
2780 * This value is protected by ipinlock spinlock in the mount structure.
2782 void
2783 xfs_ipin(
2784 xfs_inode_t *ip)
2786 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
2788 atomic_inc(&ip->i_pincount);
2792 * Decrement the pin count of the given inode, and wake up
2793 * anyone in xfs_iwait_unpin() if the count goes to 0. The
2794 * inode must have been previoulsy pinned with a call to xfs_ipin().
2796 void
2797 xfs_iunpin(
2798 xfs_inode_t *ip)
2800 ASSERT(atomic_read(&ip->i_pincount) > 0);
2802 if (atomic_dec_and_test(&ip->i_pincount)) {
2803 vnode_t *vp = XFS_ITOV_NULL(ip);
2805 /* make sync come back and flush this inode */
2806 if (vp) {
2807 struct inode *inode = LINVFS_GET_IP(vp);
2809 if (!(inode->i_state & I_NEW))
2810 mark_inode_dirty_sync(inode);
2813 wake_up(&ip->i_ipin_wait);
2818 * This is called to wait for the given inode to be unpinned.
2819 * It will sleep until this happens. The caller must have the
2820 * inode locked in at least shared mode so that the buffer cannot
2821 * be subsequently pinned once someone is waiting for it to be
2822 * unpinned.
2824 STATIC void
2825 xfs_iunpin_wait(
2826 xfs_inode_t *ip)
2828 xfs_inode_log_item_t *iip;
2829 xfs_lsn_t lsn;
2831 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE | MR_ACCESS));
2833 if (atomic_read(&ip->i_pincount) == 0) {
2834 return;
2837 iip = ip->i_itemp;
2838 if (iip && iip->ili_last_lsn) {
2839 lsn = iip->ili_last_lsn;
2840 } else {
2841 lsn = (xfs_lsn_t)0;
2845 * Give the log a push so we don't wait here too long.
2847 xfs_log_force(ip->i_mount, lsn, XFS_LOG_FORCE);
2849 wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0));
2854 * xfs_iextents_copy()
2856 * This is called to copy the REAL extents (as opposed to the delayed
2857 * allocation extents) from the inode into the given buffer. It
2858 * returns the number of bytes copied into the buffer.
2860 * If there are no delayed allocation extents, then we can just
2861 * memcpy() the extents into the buffer. Otherwise, we need to
2862 * examine each extent in turn and skip those which are delayed.
2865 xfs_iextents_copy(
2866 xfs_inode_t *ip,
2867 xfs_bmbt_rec_t *buffer,
2868 int whichfork)
2870 int copied;
2871 xfs_bmbt_rec_t *dest_ep;
2872 xfs_bmbt_rec_t *ep;
2873 #ifdef XFS_BMAP_TRACE
2874 static char fname[] = "xfs_iextents_copy";
2875 #endif
2876 int i;
2877 xfs_ifork_t *ifp;
2878 int nrecs;
2879 xfs_fsblock_t start_block;
2881 ifp = XFS_IFORK_PTR(ip, whichfork);
2882 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
2883 ASSERT(ifp->if_bytes > 0);
2885 nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2886 xfs_bmap_trace_exlist(fname, ip, nrecs, whichfork);
2887 ASSERT(nrecs > 0);
2890 * There are some delayed allocation extents in the
2891 * inode, so copy the extents one at a time and skip
2892 * the delayed ones. There must be at least one
2893 * non-delayed extent.
2895 ep = ifp->if_u1.if_extents;
2896 dest_ep = buffer;
2897 copied = 0;
2898 for (i = 0; i < nrecs; i++) {
2899 start_block = xfs_bmbt_get_startblock(ep);
2900 if (ISNULLSTARTBLOCK(start_block)) {
2902 * It's a delayed allocation extent, so skip it.
2904 ep++;
2905 continue;
2908 /* Translate to on disk format */
2909 put_unaligned(INT_GET(ep->l0, ARCH_CONVERT),
2910 (__uint64_t*)&dest_ep->l0);
2911 put_unaligned(INT_GET(ep->l1, ARCH_CONVERT),
2912 (__uint64_t*)&dest_ep->l1);
2913 dest_ep++;
2914 ep++;
2915 copied++;
2917 ASSERT(copied != 0);
2918 xfs_validate_extents(buffer, copied, 1, XFS_EXTFMT_INODE(ip));
2920 return (copied * (uint)sizeof(xfs_bmbt_rec_t));
2924 * Each of the following cases stores data into the same region
2925 * of the on-disk inode, so only one of them can be valid at
2926 * any given time. While it is possible to have conflicting formats
2927 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2928 * in EXTENTS format, this can only happen when the fork has
2929 * changed formats after being modified but before being flushed.
2930 * In these cases, the format always takes precedence, because the
2931 * format indicates the current state of the fork.
2933 /*ARGSUSED*/
2934 STATIC int
2935 xfs_iflush_fork(
2936 xfs_inode_t *ip,
2937 xfs_dinode_t *dip,
2938 xfs_inode_log_item_t *iip,
2939 int whichfork,
2940 xfs_buf_t *bp)
2942 char *cp;
2943 xfs_ifork_t *ifp;
2944 xfs_mount_t *mp;
2945 #ifdef XFS_TRANS_DEBUG
2946 int first;
2947 #endif
2948 static const short brootflag[2] =
2949 { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
2950 static const short dataflag[2] =
2951 { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
2952 static const short extflag[2] =
2953 { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
2955 if (iip == NULL)
2956 return 0;
2957 ifp = XFS_IFORK_PTR(ip, whichfork);
2959 * This can happen if we gave up in iformat in an error path,
2960 * for the attribute fork.
2962 if (ifp == NULL) {
2963 ASSERT(whichfork == XFS_ATTR_FORK);
2964 return 0;
2966 cp = XFS_DFORK_PTR(dip, whichfork);
2967 mp = ip->i_mount;
2968 switch (XFS_IFORK_FORMAT(ip, whichfork)) {
2969 case XFS_DINODE_FMT_LOCAL:
2970 if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
2971 (ifp->if_bytes > 0)) {
2972 ASSERT(ifp->if_u1.if_data != NULL);
2973 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2974 memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
2976 if (whichfork == XFS_DATA_FORK) {
2977 if (unlikely(XFS_DIR_SHORTFORM_VALIDATE_ONDISK(mp, dip))) {
2978 XFS_ERROR_REPORT("xfs_iflush_fork",
2979 XFS_ERRLEVEL_LOW, mp);
2980 return XFS_ERROR(EFSCORRUPTED);
2983 break;
2985 case XFS_DINODE_FMT_EXTENTS:
2986 ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
2987 !(iip->ili_format.ilf_fields & extflag[whichfork]));
2988 ASSERT((ifp->if_u1.if_extents != NULL) || (ifp->if_bytes == 0));
2989 ASSERT((ifp->if_u1.if_extents == NULL) || (ifp->if_bytes > 0));
2990 if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
2991 (ifp->if_bytes > 0)) {
2992 ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
2993 (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
2994 whichfork);
2996 break;
2998 case XFS_DINODE_FMT_BTREE:
2999 if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
3000 (ifp->if_broot_bytes > 0)) {
3001 ASSERT(ifp->if_broot != NULL);
3002 ASSERT(ifp->if_broot_bytes <=
3003 (XFS_IFORK_SIZE(ip, whichfork) +
3004 XFS_BROOT_SIZE_ADJ));
3005 xfs_bmbt_to_bmdr(ifp->if_broot, ifp->if_broot_bytes,
3006 (xfs_bmdr_block_t *)cp,
3007 XFS_DFORK_SIZE(dip, mp, whichfork));
3009 break;
3011 case XFS_DINODE_FMT_DEV:
3012 if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
3013 ASSERT(whichfork == XFS_DATA_FORK);
3014 INT_SET(dip->di_u.di_dev, ARCH_CONVERT, ip->i_df.if_u2.if_rdev);
3016 break;
3018 case XFS_DINODE_FMT_UUID:
3019 if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
3020 ASSERT(whichfork == XFS_DATA_FORK);
3021 memcpy(&dip->di_u.di_muuid, &ip->i_df.if_u2.if_uuid,
3022 sizeof(uuid_t));
3024 break;
3026 default:
3027 ASSERT(0);
3028 break;
3031 return 0;
3035 * xfs_iflush() will write a modified inode's changes out to the
3036 * inode's on disk home. The caller must have the inode lock held
3037 * in at least shared mode and the inode flush semaphore must be
3038 * held as well. The inode lock will still be held upon return from
3039 * the call and the caller is free to unlock it.
3040 * The inode flush lock will be unlocked when the inode reaches the disk.
3041 * The flags indicate how the inode's buffer should be written out.
3044 xfs_iflush(
3045 xfs_inode_t *ip,
3046 uint flags)
3048 xfs_inode_log_item_t *iip;
3049 xfs_buf_t *bp;
3050 xfs_dinode_t *dip;
3051 xfs_mount_t *mp;
3052 int error;
3053 /* REFERENCED */
3054 xfs_chash_t *ch;
3055 xfs_inode_t *iq;
3056 int clcount; /* count of inodes clustered */
3057 int bufwasdelwri;
3058 enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) };
3059 SPLDECL(s);
3061 XFS_STATS_INC(xs_iflush_count);
3063 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
3064 ASSERT(valusema(&ip->i_flock) <= 0);
3065 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3066 ip->i_d.di_nextents > ip->i_df.if_ext_max);
3068 iip = ip->i_itemp;
3069 mp = ip->i_mount;
3072 * If the inode isn't dirty, then just release the inode
3073 * flush lock and do nothing.
3075 if ((ip->i_update_core == 0) &&
3076 ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3077 ASSERT((iip != NULL) ?
3078 !(iip->ili_item.li_flags & XFS_LI_IN_AIL) : 1);
3079 xfs_ifunlock(ip);
3080 return 0;
3084 * We can't flush the inode until it is unpinned, so
3085 * wait for it. We know noone new can pin it, because
3086 * we are holding the inode lock shared and you need
3087 * to hold it exclusively to pin the inode.
3089 xfs_iunpin_wait(ip);
3092 * This may have been unpinned because the filesystem is shutting
3093 * down forcibly. If that's the case we must not write this inode
3094 * to disk, because the log record didn't make it to disk!
3096 if (XFS_FORCED_SHUTDOWN(mp)) {
3097 ip->i_update_core = 0;
3098 if (iip)
3099 iip->ili_format.ilf_fields = 0;
3100 xfs_ifunlock(ip);
3101 return XFS_ERROR(EIO);
3105 * Get the buffer containing the on-disk inode.
3107 error = xfs_itobp(mp, NULL, ip, &dip, &bp, 0);
3108 if (error != 0) {
3109 xfs_ifunlock(ip);
3110 return error;
3114 * Decide how buffer will be flushed out. This is done before
3115 * the call to xfs_iflush_int because this field is zeroed by it.
3117 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3119 * Flush out the inode buffer according to the directions
3120 * of the caller. In the cases where the caller has given
3121 * us a choice choose the non-delwri case. This is because
3122 * the inode is in the AIL and we need to get it out soon.
3124 switch (flags) {
3125 case XFS_IFLUSH_SYNC:
3126 case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3127 flags = 0;
3128 break;
3129 case XFS_IFLUSH_ASYNC:
3130 case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3131 flags = INT_ASYNC;
3132 break;
3133 case XFS_IFLUSH_DELWRI:
3134 flags = INT_DELWRI;
3135 break;
3136 default:
3137 ASSERT(0);
3138 flags = 0;
3139 break;
3141 } else {
3142 switch (flags) {
3143 case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3144 case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3145 case XFS_IFLUSH_DELWRI:
3146 flags = INT_DELWRI;
3147 break;
3148 case XFS_IFLUSH_ASYNC:
3149 flags = INT_ASYNC;
3150 break;
3151 case XFS_IFLUSH_SYNC:
3152 flags = 0;
3153 break;
3154 default:
3155 ASSERT(0);
3156 flags = 0;
3157 break;
3162 * First flush out the inode that xfs_iflush was called with.
3164 error = xfs_iflush_int(ip, bp);
3165 if (error) {
3166 goto corrupt_out;
3170 * inode clustering:
3171 * see if other inodes can be gathered into this write
3174 ip->i_chash->chl_buf = bp;
3176 ch = XFS_CHASH(mp, ip->i_blkno);
3177 s = mutex_spinlock(&ch->ch_lock);
3179 clcount = 0;
3180 for (iq = ip->i_cnext; iq != ip; iq = iq->i_cnext) {
3182 * Do an un-protected check to see if the inode is dirty and
3183 * is a candidate for flushing. These checks will be repeated
3184 * later after the appropriate locks are acquired.
3186 iip = iq->i_itemp;
3187 if ((iq->i_update_core == 0) &&
3188 ((iip == NULL) ||
3189 !(iip->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
3190 xfs_ipincount(iq) == 0) {
3191 continue;
3195 * Try to get locks. If any are unavailable,
3196 * then this inode cannot be flushed and is skipped.
3199 /* get inode locks (just i_lock) */
3200 if (xfs_ilock_nowait(iq, XFS_ILOCK_SHARED)) {
3201 /* get inode flush lock */
3202 if (xfs_iflock_nowait(iq)) {
3203 /* check if pinned */
3204 if (xfs_ipincount(iq) == 0) {
3205 /* arriving here means that
3206 * this inode can be flushed.
3207 * first re-check that it's
3208 * dirty
3210 iip = iq->i_itemp;
3211 if ((iq->i_update_core != 0)||
3212 ((iip != NULL) &&
3213 (iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3214 clcount++;
3215 error = xfs_iflush_int(iq, bp);
3216 if (error) {
3217 xfs_iunlock(iq,
3218 XFS_ILOCK_SHARED);
3219 goto cluster_corrupt_out;
3221 } else {
3222 xfs_ifunlock(iq);
3224 } else {
3225 xfs_ifunlock(iq);
3228 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3231 mutex_spinunlock(&ch->ch_lock, s);
3233 if (clcount) {
3234 XFS_STATS_INC(xs_icluster_flushcnt);
3235 XFS_STATS_ADD(xs_icluster_flushinode, clcount);
3239 * If the buffer is pinned then push on the log so we won't
3240 * get stuck waiting in the write for too long.
3242 if (XFS_BUF_ISPINNED(bp)){
3243 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
3246 if (flags & INT_DELWRI) {
3247 xfs_bdwrite(mp, bp);
3248 } else if (flags & INT_ASYNC) {
3249 xfs_bawrite(mp, bp);
3250 } else {
3251 error = xfs_bwrite(mp, bp);
3253 return error;
3255 corrupt_out:
3256 xfs_buf_relse(bp);
3257 xfs_force_shutdown(mp, XFS_CORRUPT_INCORE);
3258 xfs_iflush_abort(ip);
3260 * Unlocks the flush lock
3262 return XFS_ERROR(EFSCORRUPTED);
3264 cluster_corrupt_out:
3265 /* Corruption detected in the clustering loop. Invalidate the
3266 * inode buffer and shut down the filesystem.
3268 mutex_spinunlock(&ch->ch_lock, s);
3271 * Clean up the buffer. If it was B_DELWRI, just release it --
3272 * brelse can handle it with no problems. If not, shut down the
3273 * filesystem before releasing the buffer.
3275 if ((bufwasdelwri= XFS_BUF_ISDELAYWRITE(bp))) {
3276 xfs_buf_relse(bp);
3279 xfs_force_shutdown(mp, XFS_CORRUPT_INCORE);
3281 if(!bufwasdelwri) {
3283 * Just like incore_relse: if we have b_iodone functions,
3284 * mark the buffer as an error and call them. Otherwise
3285 * mark it as stale and brelse.
3287 if (XFS_BUF_IODONE_FUNC(bp)) {
3288 XFS_BUF_CLR_BDSTRAT_FUNC(bp);
3289 XFS_BUF_UNDONE(bp);
3290 XFS_BUF_STALE(bp);
3291 XFS_BUF_SHUT(bp);
3292 XFS_BUF_ERROR(bp,EIO);
3293 xfs_biodone(bp);
3294 } else {
3295 XFS_BUF_STALE(bp);
3296 xfs_buf_relse(bp);
3300 xfs_iflush_abort(iq);
3302 * Unlocks the flush lock
3304 return XFS_ERROR(EFSCORRUPTED);
3308 STATIC int
3309 xfs_iflush_int(
3310 xfs_inode_t *ip,
3311 xfs_buf_t *bp)
3313 xfs_inode_log_item_t *iip;
3314 xfs_dinode_t *dip;
3315 xfs_mount_t *mp;
3316 #ifdef XFS_TRANS_DEBUG
3317 int first;
3318 #endif
3319 SPLDECL(s);
3321 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
3322 ASSERT(valusema(&ip->i_flock) <= 0);
3323 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3324 ip->i_d.di_nextents > ip->i_df.if_ext_max);
3326 iip = ip->i_itemp;
3327 mp = ip->i_mount;
3331 * If the inode isn't dirty, then just release the inode
3332 * flush lock and do nothing.
3334 if ((ip->i_update_core == 0) &&
3335 ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3336 xfs_ifunlock(ip);
3337 return 0;
3340 /* set *dip = inode's place in the buffer */
3341 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_boffset);
3344 * Clear i_update_core before copying out the data.
3345 * This is for coordination with our timestamp updates
3346 * that don't hold the inode lock. They will always
3347 * update the timestamps BEFORE setting i_update_core,
3348 * so if we clear i_update_core after they set it we
3349 * are guaranteed to see their updates to the timestamps.
3350 * I believe that this depends on strongly ordered memory
3351 * semantics, but we have that. We use the SYNCHRONIZE
3352 * macro to make sure that the compiler does not reorder
3353 * the i_update_core access below the data copy below.
3355 ip->i_update_core = 0;
3356 SYNCHRONIZE();
3358 if (XFS_TEST_ERROR(INT_GET(dip->di_core.di_magic,ARCH_CONVERT) != XFS_DINODE_MAGIC,
3359 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
3360 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3361 "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3362 ip->i_ino, (int) INT_GET(dip->di_core.di_magic, ARCH_CONVERT), dip);
3363 goto corrupt_out;
3365 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
3366 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
3367 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3368 "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3369 ip->i_ino, ip, ip->i_d.di_magic);
3370 goto corrupt_out;
3372 if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
3373 if (XFS_TEST_ERROR(
3374 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3375 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3376 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
3377 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3378 "xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
3379 ip->i_ino, ip);
3380 goto corrupt_out;
3382 } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
3383 if (XFS_TEST_ERROR(
3384 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3385 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3386 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3387 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
3388 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3389 "xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
3390 ip->i_ino, ip);
3391 goto corrupt_out;
3394 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3395 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3396 XFS_RANDOM_IFLUSH_5)) {
3397 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3398 "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
3399 ip->i_ino,
3400 ip->i_d.di_nextents + ip->i_d.di_anextents,
3401 ip->i_d.di_nblocks,
3402 ip);
3403 goto corrupt_out;
3405 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3406 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
3407 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3408 "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3409 ip->i_ino, ip->i_d.di_forkoff, ip);
3410 goto corrupt_out;
3413 * bump the flush iteration count, used to detect flushes which
3414 * postdate a log record during recovery.
3417 ip->i_d.di_flushiter++;
3420 * Copy the dirty parts of the inode into the on-disk
3421 * inode. We always copy out the core of the inode,
3422 * because if the inode is dirty at all the core must
3423 * be.
3425 xfs_xlate_dinode_core((xfs_caddr_t)&(dip->di_core), &(ip->i_d), -1);
3427 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3428 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3429 ip->i_d.di_flushiter = 0;
3432 * If this is really an old format inode and the superblock version
3433 * has not been updated to support only new format inodes, then
3434 * convert back to the old inode format. If the superblock version
3435 * has been updated, then make the conversion permanent.
3437 ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 ||
3438 XFS_SB_VERSION_HASNLINK(&mp->m_sb));
3439 if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
3440 if (!XFS_SB_VERSION_HASNLINK(&mp->m_sb)) {
3442 * Convert it back.
3444 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
3445 INT_SET(dip->di_core.di_onlink, ARCH_CONVERT, ip->i_d.di_nlink);
3446 } else {
3448 * The superblock version has already been bumped,
3449 * so just make the conversion to the new inode
3450 * format permanent.
3452 ip->i_d.di_version = XFS_DINODE_VERSION_2;
3453 INT_SET(dip->di_core.di_version, ARCH_CONVERT, XFS_DINODE_VERSION_2);
3454 ip->i_d.di_onlink = 0;
3455 dip->di_core.di_onlink = 0;
3456 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
3457 memset(&(dip->di_core.di_pad[0]), 0,
3458 sizeof(dip->di_core.di_pad));
3459 ASSERT(ip->i_d.di_projid == 0);
3463 if (xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp) == EFSCORRUPTED) {
3464 goto corrupt_out;
3467 if (XFS_IFORK_Q(ip)) {
3469 * The only error from xfs_iflush_fork is on the data fork.
3471 (void) xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
3473 xfs_inobp_check(mp, bp);
3476 * We've recorded everything logged in the inode, so we'd
3477 * like to clear the ilf_fields bits so we don't log and
3478 * flush things unnecessarily. However, we can't stop
3479 * logging all this information until the data we've copied
3480 * into the disk buffer is written to disk. If we did we might
3481 * overwrite the copy of the inode in the log with all the
3482 * data after re-logging only part of it, and in the face of
3483 * a crash we wouldn't have all the data we need to recover.
3485 * What we do is move the bits to the ili_last_fields field.
3486 * When logging the inode, these bits are moved back to the
3487 * ilf_fields field. In the xfs_iflush_done() routine we
3488 * clear ili_last_fields, since we know that the information
3489 * those bits represent is permanently on disk. As long as
3490 * the flush completes before the inode is logged again, then
3491 * both ilf_fields and ili_last_fields will be cleared.
3493 * We can play with the ilf_fields bits here, because the inode
3494 * lock must be held exclusively in order to set bits there
3495 * and the flush lock protects the ili_last_fields bits.
3496 * Set ili_logged so the flush done
3497 * routine can tell whether or not to look in the AIL.
3498 * Also, store the current LSN of the inode so that we can tell
3499 * whether the item has moved in the AIL from xfs_iflush_done().
3500 * In order to read the lsn we need the AIL lock, because
3501 * it is a 64 bit value that cannot be read atomically.
3503 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3504 iip->ili_last_fields = iip->ili_format.ilf_fields;
3505 iip->ili_format.ilf_fields = 0;
3506 iip->ili_logged = 1;
3508 ASSERT(sizeof(xfs_lsn_t) == 8); /* don't lock if it shrinks */
3509 AIL_LOCK(mp,s);
3510 iip->ili_flush_lsn = iip->ili_item.li_lsn;
3511 AIL_UNLOCK(mp, s);
3514 * Attach the function xfs_iflush_done to the inode's
3515 * buffer. This will remove the inode from the AIL
3516 * and unlock the inode's flush lock when the inode is
3517 * completely written to disk.
3519 xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*))
3520 xfs_iflush_done, (xfs_log_item_t *)iip);
3522 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
3523 ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
3524 } else {
3526 * We're flushing an inode which is not in the AIL and has
3527 * not been logged but has i_update_core set. For this
3528 * case we can use a B_DELWRI flush and immediately drop
3529 * the inode flush lock because we can avoid the whole
3530 * AIL state thing. It's OK to drop the flush lock now,
3531 * because we've already locked the buffer and to do anything
3532 * you really need both.
3534 if (iip != NULL) {
3535 ASSERT(iip->ili_logged == 0);
3536 ASSERT(iip->ili_last_fields == 0);
3537 ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
3539 xfs_ifunlock(ip);
3542 return 0;
3544 corrupt_out:
3545 return XFS_ERROR(EFSCORRUPTED);
3550 * Flush all inactive inodes in mp.
3552 void
3553 xfs_iflush_all(
3554 xfs_mount_t *mp)
3556 xfs_inode_t *ip;
3557 vnode_t *vp;
3559 again:
3560 XFS_MOUNT_ILOCK(mp);
3561 ip = mp->m_inodes;
3562 if (ip == NULL)
3563 goto out;
3565 do {
3566 /* Make sure we skip markers inserted by sync */
3567 if (ip->i_mount == NULL) {
3568 ip = ip->i_mnext;
3569 continue;
3572 vp = XFS_ITOV_NULL(ip);
3573 if (!vp) {
3574 XFS_MOUNT_IUNLOCK(mp);
3575 xfs_finish_reclaim(ip, 0, XFS_IFLUSH_ASYNC);
3576 goto again;
3579 ASSERT(vn_count(vp) == 0);
3581 ip = ip->i_mnext;
3582 } while (ip != mp->m_inodes);
3583 out:
3584 XFS_MOUNT_IUNLOCK(mp);
3588 * xfs_iaccess: check accessibility of inode for mode.
3591 xfs_iaccess(
3592 xfs_inode_t *ip,
3593 mode_t mode,
3594 cred_t *cr)
3596 int error;
3597 mode_t orgmode = mode;
3598 struct inode *inode = LINVFS_GET_IP(XFS_ITOV(ip));
3600 if (mode & S_IWUSR) {
3601 umode_t imode = inode->i_mode;
3603 if (IS_RDONLY(inode) &&
3604 (S_ISREG(imode) || S_ISDIR(imode) || S_ISLNK(imode)))
3605 return XFS_ERROR(EROFS);
3607 if (IS_IMMUTABLE(inode))
3608 return XFS_ERROR(EACCES);
3612 * If there's an Access Control List it's used instead of
3613 * the mode bits.
3615 if ((error = _ACL_XFS_IACCESS(ip, mode, cr)) != -1)
3616 return error ? XFS_ERROR(error) : 0;
3618 if (current_fsuid(cr) != ip->i_d.di_uid) {
3619 mode >>= 3;
3620 if (!in_group_p((gid_t)ip->i_d.di_gid))
3621 mode >>= 3;
3625 * If the DACs are ok we don't need any capability check.
3627 if ((ip->i_d.di_mode & mode) == mode)
3628 return 0;
3630 * Read/write DACs are always overridable.
3631 * Executable DACs are overridable if at least one exec bit is set.
3633 if (!(orgmode & S_IXUSR) ||
3634 (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode))
3635 if (capable_cred(cr, CAP_DAC_OVERRIDE))
3636 return 0;
3638 if ((orgmode == S_IRUSR) ||
3639 (S_ISDIR(inode->i_mode) && (!(orgmode & S_IWUSR)))) {
3640 if (capable_cred(cr, CAP_DAC_READ_SEARCH))
3641 return 0;
3642 #ifdef NOISE
3643 cmn_err(CE_NOTE, "Ick: mode=%o, orgmode=%o", mode, orgmode);
3644 #endif /* NOISE */
3645 return XFS_ERROR(EACCES);
3647 return XFS_ERROR(EACCES);
3651 * xfs_iroundup: round up argument to next power of two
3653 uint
3654 xfs_iroundup(
3655 uint v)
3657 int i;
3658 uint m;
3660 if ((v & (v - 1)) == 0)
3661 return v;
3662 ASSERT((v & 0x80000000) == 0);
3663 if ((v & (v + 1)) == 0)
3664 return v + 1;
3665 for (i = 0, m = 1; i < 31; i++, m <<= 1) {
3666 if (v & m)
3667 continue;
3668 v |= m;
3669 if ((v & (v + 1)) == 0)
3670 return v + 1;
3672 ASSERT(0);
3673 return( 0 );
3676 #ifdef XFS_ILOCK_TRACE
3677 ktrace_t *xfs_ilock_trace_buf;
3679 void
3680 xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra)
3682 ktrace_enter(ip->i_lock_trace,
3683 (void *)ip,
3684 (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */
3685 (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */
3686 (void *)ra, /* caller of ilock */
3687 (void *)(unsigned long)current_cpu(),
3688 (void *)(unsigned long)current_pid(),
3689 NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL);
3691 #endif