[NET]: Add some acquires/releases sparse annotations.
[linux-2.6/mini2440.git] / net / core / sock.c
blob3d7757ee2fc878f809c6eac0fc49f431b07e70d1
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Generic socket support routines. Memory allocators, socket lock/release
7 * handler for protocols to use and generic option handler.
10 * Version: $Id: sock.c,v 1.117 2002/02/01 22:01:03 davem Exp $
12 * Authors: Ross Biro
13 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
14 * Florian La Roche, <flla@stud.uni-sb.de>
15 * Alan Cox, <A.Cox@swansea.ac.uk>
17 * Fixes:
18 * Alan Cox : Numerous verify_area() problems
19 * Alan Cox : Connecting on a connecting socket
20 * now returns an error for tcp.
21 * Alan Cox : sock->protocol is set correctly.
22 * and is not sometimes left as 0.
23 * Alan Cox : connect handles icmp errors on a
24 * connect properly. Unfortunately there
25 * is a restart syscall nasty there. I
26 * can't match BSD without hacking the C
27 * library. Ideas urgently sought!
28 * Alan Cox : Disallow bind() to addresses that are
29 * not ours - especially broadcast ones!!
30 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
31 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
32 * instead they leave that for the DESTROY timer.
33 * Alan Cox : Clean up error flag in accept
34 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
35 * was buggy. Put a remove_sock() in the handler
36 * for memory when we hit 0. Also altered the timer
37 * code. The ACK stuff can wait and needs major
38 * TCP layer surgery.
39 * Alan Cox : Fixed TCP ack bug, removed remove sock
40 * and fixed timer/inet_bh race.
41 * Alan Cox : Added zapped flag for TCP
42 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
43 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
44 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
45 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
46 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
47 * Rick Sladkey : Relaxed UDP rules for matching packets.
48 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
49 * Pauline Middelink : identd support
50 * Alan Cox : Fixed connect() taking signals I think.
51 * Alan Cox : SO_LINGER supported
52 * Alan Cox : Error reporting fixes
53 * Anonymous : inet_create tidied up (sk->reuse setting)
54 * Alan Cox : inet sockets don't set sk->type!
55 * Alan Cox : Split socket option code
56 * Alan Cox : Callbacks
57 * Alan Cox : Nagle flag for Charles & Johannes stuff
58 * Alex : Removed restriction on inet fioctl
59 * Alan Cox : Splitting INET from NET core
60 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
61 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
62 * Alan Cox : Split IP from generic code
63 * Alan Cox : New kfree_skbmem()
64 * Alan Cox : Make SO_DEBUG superuser only.
65 * Alan Cox : Allow anyone to clear SO_DEBUG
66 * (compatibility fix)
67 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
68 * Alan Cox : Allocator for a socket is settable.
69 * Alan Cox : SO_ERROR includes soft errors.
70 * Alan Cox : Allow NULL arguments on some SO_ opts
71 * Alan Cox : Generic socket allocation to make hooks
72 * easier (suggested by Craig Metz).
73 * Michael Pall : SO_ERROR returns positive errno again
74 * Steve Whitehouse: Added default destructor to free
75 * protocol private data.
76 * Steve Whitehouse: Added various other default routines
77 * common to several socket families.
78 * Chris Evans : Call suser() check last on F_SETOWN
79 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
80 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
81 * Andi Kleen : Fix write_space callback
82 * Chris Evans : Security fixes - signedness again
83 * Arnaldo C. Melo : cleanups, use skb_queue_purge
85 * To Fix:
88 * This program is free software; you can redistribute it and/or
89 * modify it under the terms of the GNU General Public License
90 * as published by the Free Software Foundation; either version
91 * 2 of the License, or (at your option) any later version.
94 #include <linux/capability.h>
95 #include <linux/errno.h>
96 #include <linux/types.h>
97 #include <linux/socket.h>
98 #include <linux/in.h>
99 #include <linux/kernel.h>
100 #include <linux/module.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/sched.h>
104 #include <linux/timer.h>
105 #include <linux/string.h>
106 #include <linux/sockios.h>
107 #include <linux/net.h>
108 #include <linux/mm.h>
109 #include <linux/slab.h>
110 #include <linux/interrupt.h>
111 #include <linux/poll.h>
112 #include <linux/tcp.h>
113 #include <linux/init.h>
114 #include <linux/highmem.h>
116 #include <asm/uaccess.h>
117 #include <asm/system.h>
119 #include <linux/netdevice.h>
120 #include <net/protocol.h>
121 #include <linux/skbuff.h>
122 #include <net/net_namespace.h>
123 #include <net/request_sock.h>
124 #include <net/sock.h>
125 #include <net/xfrm.h>
126 #include <linux/ipsec.h>
128 #include <linux/filter.h>
130 #ifdef CONFIG_INET
131 #include <net/tcp.h>
132 #endif
135 * Each address family might have different locking rules, so we have
136 * one slock key per address family:
138 static struct lock_class_key af_family_keys[AF_MAX];
139 static struct lock_class_key af_family_slock_keys[AF_MAX];
141 #ifdef CONFIG_DEBUG_LOCK_ALLOC
143 * Make lock validator output more readable. (we pre-construct these
144 * strings build-time, so that runtime initialization of socket
145 * locks is fast):
147 static const char *af_family_key_strings[AF_MAX+1] = {
148 "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" ,
149 "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK",
150 "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" ,
151 "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" ,
152 "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" ,
153 "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" ,
154 "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" ,
155 "sk_lock-21" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" ,
156 "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" ,
157 "sk_lock-27" , "sk_lock-28" , "sk_lock-AF_CAN" ,
158 "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" ,
159 "sk_lock-AF_RXRPC" , "sk_lock-AF_MAX"
161 static const char *af_family_slock_key_strings[AF_MAX+1] = {
162 "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" ,
163 "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK",
164 "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" ,
165 "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" ,
166 "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" ,
167 "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" ,
168 "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" ,
169 "slock-21" , "slock-AF_SNA" , "slock-AF_IRDA" ,
170 "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" ,
171 "slock-27" , "slock-28" , "slock-AF_CAN" ,
172 "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" ,
173 "slock-AF_RXRPC" , "slock-AF_MAX"
175 static const char *af_family_clock_key_strings[AF_MAX+1] = {
176 "clock-AF_UNSPEC", "clock-AF_UNIX" , "clock-AF_INET" ,
177 "clock-AF_AX25" , "clock-AF_IPX" , "clock-AF_APPLETALK",
178 "clock-AF_NETROM", "clock-AF_BRIDGE" , "clock-AF_ATMPVC" ,
179 "clock-AF_X25" , "clock-AF_INET6" , "clock-AF_ROSE" ,
180 "clock-AF_DECnet", "clock-AF_NETBEUI" , "clock-AF_SECURITY" ,
181 "clock-AF_KEY" , "clock-AF_NETLINK" , "clock-AF_PACKET" ,
182 "clock-AF_ASH" , "clock-AF_ECONET" , "clock-AF_ATMSVC" ,
183 "clock-21" , "clock-AF_SNA" , "clock-AF_IRDA" ,
184 "clock-AF_PPPOX" , "clock-AF_WANPIPE" , "clock-AF_LLC" ,
185 "clock-27" , "clock-28" , "clock-29" ,
186 "clock-AF_TIPC" , "clock-AF_BLUETOOTH", "clock-AF_IUCV" ,
187 "clock-AF_RXRPC" , "clock-AF_MAX"
189 #endif
192 * sk_callback_lock locking rules are per-address-family,
193 * so split the lock classes by using a per-AF key:
195 static struct lock_class_key af_callback_keys[AF_MAX];
197 /* Take into consideration the size of the struct sk_buff overhead in the
198 * determination of these values, since that is non-constant across
199 * platforms. This makes socket queueing behavior and performance
200 * not depend upon such differences.
202 #define _SK_MEM_PACKETS 256
203 #define _SK_MEM_OVERHEAD (sizeof(struct sk_buff) + 256)
204 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
205 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
207 /* Run time adjustable parameters. */
208 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
209 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
210 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
211 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
213 /* Maximal space eaten by iovec or ancilliary data plus some space */
214 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
216 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
218 struct timeval tv;
220 if (optlen < sizeof(tv))
221 return -EINVAL;
222 if (copy_from_user(&tv, optval, sizeof(tv)))
223 return -EFAULT;
224 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
225 return -EDOM;
227 if (tv.tv_sec < 0) {
228 static int warned __read_mostly;
230 *timeo_p = 0;
231 if (warned < 10 && net_ratelimit())
232 warned++;
233 printk(KERN_INFO "sock_set_timeout: `%s' (pid %d) "
234 "tries to set negative timeout\n",
235 current->comm, task_pid_nr(current));
236 return 0;
238 *timeo_p = MAX_SCHEDULE_TIMEOUT;
239 if (tv.tv_sec == 0 && tv.tv_usec == 0)
240 return 0;
241 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
242 *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
243 return 0;
246 static void sock_warn_obsolete_bsdism(const char *name)
248 static int warned;
249 static char warncomm[TASK_COMM_LEN];
250 if (strcmp(warncomm, current->comm) && warned < 5) {
251 strcpy(warncomm, current->comm);
252 printk(KERN_WARNING "process `%s' is using obsolete "
253 "%s SO_BSDCOMPAT\n", warncomm, name);
254 warned++;
258 static void sock_disable_timestamp(struct sock *sk)
260 if (sock_flag(sk, SOCK_TIMESTAMP)) {
261 sock_reset_flag(sk, SOCK_TIMESTAMP);
262 net_disable_timestamp();
267 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
269 int err = 0;
270 int skb_len;
272 /* Cast skb->rcvbuf to unsigned... It's pointless, but reduces
273 number of warnings when compiling with -W --ANK
275 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
276 (unsigned)sk->sk_rcvbuf) {
277 err = -ENOMEM;
278 goto out;
281 err = sk_filter(sk, skb);
282 if (err)
283 goto out;
285 if (!sk_rmem_schedule(sk, skb->truesize)) {
286 err = -ENOBUFS;
287 goto out;
290 skb->dev = NULL;
291 skb_set_owner_r(skb, sk);
293 /* Cache the SKB length before we tack it onto the receive
294 * queue. Once it is added it no longer belongs to us and
295 * may be freed by other threads of control pulling packets
296 * from the queue.
298 skb_len = skb->len;
300 skb_queue_tail(&sk->sk_receive_queue, skb);
302 if (!sock_flag(sk, SOCK_DEAD))
303 sk->sk_data_ready(sk, skb_len);
304 out:
305 return err;
307 EXPORT_SYMBOL(sock_queue_rcv_skb);
309 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
311 int rc = NET_RX_SUCCESS;
313 if (sk_filter(sk, skb))
314 goto discard_and_relse;
316 skb->dev = NULL;
318 if (nested)
319 bh_lock_sock_nested(sk);
320 else
321 bh_lock_sock(sk);
322 if (!sock_owned_by_user(sk)) {
324 * trylock + unlock semantics:
326 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
328 rc = sk->sk_backlog_rcv(sk, skb);
330 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
331 } else
332 sk_add_backlog(sk, skb);
333 bh_unlock_sock(sk);
334 out:
335 sock_put(sk);
336 return rc;
337 discard_and_relse:
338 kfree_skb(skb);
339 goto out;
341 EXPORT_SYMBOL(sk_receive_skb);
343 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
345 struct dst_entry *dst = sk->sk_dst_cache;
347 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
348 sk->sk_dst_cache = NULL;
349 dst_release(dst);
350 return NULL;
353 return dst;
355 EXPORT_SYMBOL(__sk_dst_check);
357 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
359 struct dst_entry *dst = sk_dst_get(sk);
361 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
362 sk_dst_reset(sk);
363 dst_release(dst);
364 return NULL;
367 return dst;
369 EXPORT_SYMBOL(sk_dst_check);
371 static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
373 int ret = -ENOPROTOOPT;
374 #ifdef CONFIG_NETDEVICES
375 struct net *net = sk->sk_net;
376 char devname[IFNAMSIZ];
377 int index;
379 /* Sorry... */
380 ret = -EPERM;
381 if (!capable(CAP_NET_RAW))
382 goto out;
384 ret = -EINVAL;
385 if (optlen < 0)
386 goto out;
388 /* Bind this socket to a particular device like "eth0",
389 * as specified in the passed interface name. If the
390 * name is "" or the option length is zero the socket
391 * is not bound.
393 if (optlen > IFNAMSIZ - 1)
394 optlen = IFNAMSIZ - 1;
395 memset(devname, 0, sizeof(devname));
397 ret = -EFAULT;
398 if (copy_from_user(devname, optval, optlen))
399 goto out;
401 if (devname[0] == '\0') {
402 index = 0;
403 } else {
404 struct net_device *dev = dev_get_by_name(net, devname);
406 ret = -ENODEV;
407 if (!dev)
408 goto out;
410 index = dev->ifindex;
411 dev_put(dev);
414 lock_sock(sk);
415 sk->sk_bound_dev_if = index;
416 sk_dst_reset(sk);
417 release_sock(sk);
419 ret = 0;
421 out:
422 #endif
424 return ret;
427 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
429 if (valbool)
430 sock_set_flag(sk, bit);
431 else
432 sock_reset_flag(sk, bit);
436 * This is meant for all protocols to use and covers goings on
437 * at the socket level. Everything here is generic.
440 int sock_setsockopt(struct socket *sock, int level, int optname,
441 char __user *optval, int optlen)
443 struct sock *sk=sock->sk;
444 int val;
445 int valbool;
446 struct linger ling;
447 int ret = 0;
450 * Options without arguments
453 #ifdef SO_DONTLINGER /* Compatibility item... */
454 if (optname == SO_DONTLINGER) {
455 lock_sock(sk);
456 sock_reset_flag(sk, SOCK_LINGER);
457 release_sock(sk);
458 return 0;
460 #endif
462 if (optname == SO_BINDTODEVICE)
463 return sock_bindtodevice(sk, optval, optlen);
465 if (optlen < sizeof(int))
466 return -EINVAL;
468 if (get_user(val, (int __user *)optval))
469 return -EFAULT;
471 valbool = val?1:0;
473 lock_sock(sk);
475 switch(optname) {
476 case SO_DEBUG:
477 if (val && !capable(CAP_NET_ADMIN)) {
478 ret = -EACCES;
479 } else
480 sock_valbool_flag(sk, SOCK_DBG, valbool);
481 break;
482 case SO_REUSEADDR:
483 sk->sk_reuse = valbool;
484 break;
485 case SO_TYPE:
486 case SO_ERROR:
487 ret = -ENOPROTOOPT;
488 break;
489 case SO_DONTROUTE:
490 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
491 break;
492 case SO_BROADCAST:
493 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
494 break;
495 case SO_SNDBUF:
496 /* Don't error on this BSD doesn't and if you think
497 about it this is right. Otherwise apps have to
498 play 'guess the biggest size' games. RCVBUF/SNDBUF
499 are treated in BSD as hints */
501 if (val > sysctl_wmem_max)
502 val = sysctl_wmem_max;
503 set_sndbuf:
504 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
505 if ((val * 2) < SOCK_MIN_SNDBUF)
506 sk->sk_sndbuf = SOCK_MIN_SNDBUF;
507 else
508 sk->sk_sndbuf = val * 2;
511 * Wake up sending tasks if we
512 * upped the value.
514 sk->sk_write_space(sk);
515 break;
517 case SO_SNDBUFFORCE:
518 if (!capable(CAP_NET_ADMIN)) {
519 ret = -EPERM;
520 break;
522 goto set_sndbuf;
524 case SO_RCVBUF:
525 /* Don't error on this BSD doesn't and if you think
526 about it this is right. Otherwise apps have to
527 play 'guess the biggest size' games. RCVBUF/SNDBUF
528 are treated in BSD as hints */
530 if (val > sysctl_rmem_max)
531 val = sysctl_rmem_max;
532 set_rcvbuf:
533 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
535 * We double it on the way in to account for
536 * "struct sk_buff" etc. overhead. Applications
537 * assume that the SO_RCVBUF setting they make will
538 * allow that much actual data to be received on that
539 * socket.
541 * Applications are unaware that "struct sk_buff" and
542 * other overheads allocate from the receive buffer
543 * during socket buffer allocation.
545 * And after considering the possible alternatives,
546 * returning the value we actually used in getsockopt
547 * is the most desirable behavior.
549 if ((val * 2) < SOCK_MIN_RCVBUF)
550 sk->sk_rcvbuf = SOCK_MIN_RCVBUF;
551 else
552 sk->sk_rcvbuf = val * 2;
553 break;
555 case SO_RCVBUFFORCE:
556 if (!capable(CAP_NET_ADMIN)) {
557 ret = -EPERM;
558 break;
560 goto set_rcvbuf;
562 case SO_KEEPALIVE:
563 #ifdef CONFIG_INET
564 if (sk->sk_protocol == IPPROTO_TCP)
565 tcp_set_keepalive(sk, valbool);
566 #endif
567 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
568 break;
570 case SO_OOBINLINE:
571 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
572 break;
574 case SO_NO_CHECK:
575 sk->sk_no_check = valbool;
576 break;
578 case SO_PRIORITY:
579 if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
580 sk->sk_priority = val;
581 else
582 ret = -EPERM;
583 break;
585 case SO_LINGER:
586 if (optlen < sizeof(ling)) {
587 ret = -EINVAL; /* 1003.1g */
588 break;
590 if (copy_from_user(&ling,optval,sizeof(ling))) {
591 ret = -EFAULT;
592 break;
594 if (!ling.l_onoff)
595 sock_reset_flag(sk, SOCK_LINGER);
596 else {
597 #if (BITS_PER_LONG == 32)
598 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
599 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
600 else
601 #endif
602 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
603 sock_set_flag(sk, SOCK_LINGER);
605 break;
607 case SO_BSDCOMPAT:
608 sock_warn_obsolete_bsdism("setsockopt");
609 break;
611 case SO_PASSCRED:
612 if (valbool)
613 set_bit(SOCK_PASSCRED, &sock->flags);
614 else
615 clear_bit(SOCK_PASSCRED, &sock->flags);
616 break;
618 case SO_TIMESTAMP:
619 case SO_TIMESTAMPNS:
620 if (valbool) {
621 if (optname == SO_TIMESTAMP)
622 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
623 else
624 sock_set_flag(sk, SOCK_RCVTSTAMPNS);
625 sock_set_flag(sk, SOCK_RCVTSTAMP);
626 sock_enable_timestamp(sk);
627 } else {
628 sock_reset_flag(sk, SOCK_RCVTSTAMP);
629 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
631 break;
633 case SO_RCVLOWAT:
634 if (val < 0)
635 val = INT_MAX;
636 sk->sk_rcvlowat = val ? : 1;
637 break;
639 case SO_RCVTIMEO:
640 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
641 break;
643 case SO_SNDTIMEO:
644 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
645 break;
647 case SO_ATTACH_FILTER:
648 ret = -EINVAL;
649 if (optlen == sizeof(struct sock_fprog)) {
650 struct sock_fprog fprog;
652 ret = -EFAULT;
653 if (copy_from_user(&fprog, optval, sizeof(fprog)))
654 break;
656 ret = sk_attach_filter(&fprog, sk);
658 break;
660 case SO_DETACH_FILTER:
661 ret = sk_detach_filter(sk);
662 break;
664 case SO_PASSSEC:
665 if (valbool)
666 set_bit(SOCK_PASSSEC, &sock->flags);
667 else
668 clear_bit(SOCK_PASSSEC, &sock->flags);
669 break;
671 /* We implement the SO_SNDLOWAT etc to
672 not be settable (1003.1g 5.3) */
673 default:
674 ret = -ENOPROTOOPT;
675 break;
677 release_sock(sk);
678 return ret;
682 int sock_getsockopt(struct socket *sock, int level, int optname,
683 char __user *optval, int __user *optlen)
685 struct sock *sk = sock->sk;
687 union {
688 int val;
689 struct linger ling;
690 struct timeval tm;
691 } v;
693 unsigned int lv = sizeof(int);
694 int len;
696 if (get_user(len, optlen))
697 return -EFAULT;
698 if (len < 0)
699 return -EINVAL;
701 switch(optname) {
702 case SO_DEBUG:
703 v.val = sock_flag(sk, SOCK_DBG);
704 break;
706 case SO_DONTROUTE:
707 v.val = sock_flag(sk, SOCK_LOCALROUTE);
708 break;
710 case SO_BROADCAST:
711 v.val = !!sock_flag(sk, SOCK_BROADCAST);
712 break;
714 case SO_SNDBUF:
715 v.val = sk->sk_sndbuf;
716 break;
718 case SO_RCVBUF:
719 v.val = sk->sk_rcvbuf;
720 break;
722 case SO_REUSEADDR:
723 v.val = sk->sk_reuse;
724 break;
726 case SO_KEEPALIVE:
727 v.val = !!sock_flag(sk, SOCK_KEEPOPEN);
728 break;
730 case SO_TYPE:
731 v.val = sk->sk_type;
732 break;
734 case SO_ERROR:
735 v.val = -sock_error(sk);
736 if (v.val==0)
737 v.val = xchg(&sk->sk_err_soft, 0);
738 break;
740 case SO_OOBINLINE:
741 v.val = !!sock_flag(sk, SOCK_URGINLINE);
742 break;
744 case SO_NO_CHECK:
745 v.val = sk->sk_no_check;
746 break;
748 case SO_PRIORITY:
749 v.val = sk->sk_priority;
750 break;
752 case SO_LINGER:
753 lv = sizeof(v.ling);
754 v.ling.l_onoff = !!sock_flag(sk, SOCK_LINGER);
755 v.ling.l_linger = sk->sk_lingertime / HZ;
756 break;
758 case SO_BSDCOMPAT:
759 sock_warn_obsolete_bsdism("getsockopt");
760 break;
762 case SO_TIMESTAMP:
763 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
764 !sock_flag(sk, SOCK_RCVTSTAMPNS);
765 break;
767 case SO_TIMESTAMPNS:
768 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
769 break;
771 case SO_RCVTIMEO:
772 lv=sizeof(struct timeval);
773 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
774 v.tm.tv_sec = 0;
775 v.tm.tv_usec = 0;
776 } else {
777 v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
778 v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
780 break;
782 case SO_SNDTIMEO:
783 lv=sizeof(struct timeval);
784 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
785 v.tm.tv_sec = 0;
786 v.tm.tv_usec = 0;
787 } else {
788 v.tm.tv_sec = sk->sk_sndtimeo / HZ;
789 v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
791 break;
793 case SO_RCVLOWAT:
794 v.val = sk->sk_rcvlowat;
795 break;
797 case SO_SNDLOWAT:
798 v.val=1;
799 break;
801 case SO_PASSCRED:
802 v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0;
803 break;
805 case SO_PEERCRED:
806 if (len > sizeof(sk->sk_peercred))
807 len = sizeof(sk->sk_peercred);
808 if (copy_to_user(optval, &sk->sk_peercred, len))
809 return -EFAULT;
810 goto lenout;
812 case SO_PEERNAME:
814 char address[128];
816 if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
817 return -ENOTCONN;
818 if (lv < len)
819 return -EINVAL;
820 if (copy_to_user(optval, address, len))
821 return -EFAULT;
822 goto lenout;
825 /* Dubious BSD thing... Probably nobody even uses it, but
826 * the UNIX standard wants it for whatever reason... -DaveM
828 case SO_ACCEPTCONN:
829 v.val = sk->sk_state == TCP_LISTEN;
830 break;
832 case SO_PASSSEC:
833 v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0;
834 break;
836 case SO_PEERSEC:
837 return security_socket_getpeersec_stream(sock, optval, optlen, len);
839 default:
840 return -ENOPROTOOPT;
843 if (len > lv)
844 len = lv;
845 if (copy_to_user(optval, &v, len))
846 return -EFAULT;
847 lenout:
848 if (put_user(len, optlen))
849 return -EFAULT;
850 return 0;
854 * Initialize an sk_lock.
856 * (We also register the sk_lock with the lock validator.)
858 static inline void sock_lock_init(struct sock *sk)
860 sock_lock_init_class_and_name(sk,
861 af_family_slock_key_strings[sk->sk_family],
862 af_family_slock_keys + sk->sk_family,
863 af_family_key_strings[sk->sk_family],
864 af_family_keys + sk->sk_family);
867 static void sock_copy(struct sock *nsk, const struct sock *osk)
869 #ifdef CONFIG_SECURITY_NETWORK
870 void *sptr = nsk->sk_security;
871 #endif
873 memcpy(nsk, osk, osk->sk_prot->obj_size);
874 #ifdef CONFIG_SECURITY_NETWORK
875 nsk->sk_security = sptr;
876 security_sk_clone(osk, nsk);
877 #endif
880 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
881 int family)
883 struct sock *sk;
884 struct kmem_cache *slab;
886 slab = prot->slab;
887 if (slab != NULL)
888 sk = kmem_cache_alloc(slab, priority);
889 else
890 sk = kmalloc(prot->obj_size, priority);
892 if (sk != NULL) {
893 if (security_sk_alloc(sk, family, priority))
894 goto out_free;
896 if (!try_module_get(prot->owner))
897 goto out_free_sec;
900 return sk;
902 out_free_sec:
903 security_sk_free(sk);
904 out_free:
905 if (slab != NULL)
906 kmem_cache_free(slab, sk);
907 else
908 kfree(sk);
909 return NULL;
912 static void sk_prot_free(struct proto *prot, struct sock *sk)
914 struct kmem_cache *slab;
915 struct module *owner;
917 owner = prot->owner;
918 slab = prot->slab;
920 security_sk_free(sk);
921 if (slab != NULL)
922 kmem_cache_free(slab, sk);
923 else
924 kfree(sk);
925 module_put(owner);
929 * sk_alloc - All socket objects are allocated here
930 * @net: the applicable net namespace
931 * @family: protocol family
932 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
933 * @prot: struct proto associated with this new sock instance
934 * @zero_it: if we should zero the newly allocated sock
936 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
937 struct proto *prot)
939 struct sock *sk;
941 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
942 if (sk) {
943 sk->sk_family = family;
945 * See comment in struct sock definition to understand
946 * why we need sk_prot_creator -acme
948 sk->sk_prot = sk->sk_prot_creator = prot;
949 sock_lock_init(sk);
950 sk->sk_net = get_net(net);
953 return sk;
956 void sk_free(struct sock *sk)
958 struct sk_filter *filter;
960 if (sk->sk_destruct)
961 sk->sk_destruct(sk);
963 filter = rcu_dereference(sk->sk_filter);
964 if (filter) {
965 sk_filter_uncharge(sk, filter);
966 rcu_assign_pointer(sk->sk_filter, NULL);
969 sock_disable_timestamp(sk);
971 if (atomic_read(&sk->sk_omem_alloc))
972 printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n",
973 __FUNCTION__, atomic_read(&sk->sk_omem_alloc));
975 put_net(sk->sk_net);
976 sk_prot_free(sk->sk_prot_creator, sk);
979 struct sock *sk_clone(const struct sock *sk, const gfp_t priority)
981 struct sock *newsk;
983 newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
984 if (newsk != NULL) {
985 struct sk_filter *filter;
987 sock_copy(newsk, sk);
989 /* SANITY */
990 get_net(newsk->sk_net);
991 sk_node_init(&newsk->sk_node);
992 sock_lock_init(newsk);
993 bh_lock_sock(newsk);
994 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
996 atomic_set(&newsk->sk_rmem_alloc, 0);
997 atomic_set(&newsk->sk_wmem_alloc, 0);
998 atomic_set(&newsk->sk_omem_alloc, 0);
999 skb_queue_head_init(&newsk->sk_receive_queue);
1000 skb_queue_head_init(&newsk->sk_write_queue);
1001 #ifdef CONFIG_NET_DMA
1002 skb_queue_head_init(&newsk->sk_async_wait_queue);
1003 #endif
1005 rwlock_init(&newsk->sk_dst_lock);
1006 rwlock_init(&newsk->sk_callback_lock);
1007 lockdep_set_class_and_name(&newsk->sk_callback_lock,
1008 af_callback_keys + newsk->sk_family,
1009 af_family_clock_key_strings[newsk->sk_family]);
1011 newsk->sk_dst_cache = NULL;
1012 newsk->sk_wmem_queued = 0;
1013 newsk->sk_forward_alloc = 0;
1014 newsk->sk_send_head = NULL;
1015 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1017 sock_reset_flag(newsk, SOCK_DONE);
1018 skb_queue_head_init(&newsk->sk_error_queue);
1020 filter = newsk->sk_filter;
1021 if (filter != NULL)
1022 sk_filter_charge(newsk, filter);
1024 if (unlikely(xfrm_sk_clone_policy(newsk))) {
1025 /* It is still raw copy of parent, so invalidate
1026 * destructor and make plain sk_free() */
1027 newsk->sk_destruct = NULL;
1028 sk_free(newsk);
1029 newsk = NULL;
1030 goto out;
1033 newsk->sk_err = 0;
1034 newsk->sk_priority = 0;
1035 atomic_set(&newsk->sk_refcnt, 2);
1038 * Increment the counter in the same struct proto as the master
1039 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1040 * is the same as sk->sk_prot->socks, as this field was copied
1041 * with memcpy).
1043 * This _changes_ the previous behaviour, where
1044 * tcp_create_openreq_child always was incrementing the
1045 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1046 * to be taken into account in all callers. -acme
1048 sk_refcnt_debug_inc(newsk);
1049 newsk->sk_socket = NULL;
1050 newsk->sk_sleep = NULL;
1052 if (newsk->sk_prot->sockets_allocated)
1053 atomic_inc(newsk->sk_prot->sockets_allocated);
1055 out:
1056 return newsk;
1059 EXPORT_SYMBOL_GPL(sk_clone);
1061 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1063 __sk_dst_set(sk, dst);
1064 sk->sk_route_caps = dst->dev->features;
1065 if (sk->sk_route_caps & NETIF_F_GSO)
1066 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1067 if (sk_can_gso(sk)) {
1068 if (dst->header_len)
1069 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1070 else
1071 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1074 EXPORT_SYMBOL_GPL(sk_setup_caps);
1076 void __init sk_init(void)
1078 if (num_physpages <= 4096) {
1079 sysctl_wmem_max = 32767;
1080 sysctl_rmem_max = 32767;
1081 sysctl_wmem_default = 32767;
1082 sysctl_rmem_default = 32767;
1083 } else if (num_physpages >= 131072) {
1084 sysctl_wmem_max = 131071;
1085 sysctl_rmem_max = 131071;
1090 * Simple resource managers for sockets.
1095 * Write buffer destructor automatically called from kfree_skb.
1097 void sock_wfree(struct sk_buff *skb)
1099 struct sock *sk = skb->sk;
1101 /* In case it might be waiting for more memory. */
1102 atomic_sub(skb->truesize, &sk->sk_wmem_alloc);
1103 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE))
1104 sk->sk_write_space(sk);
1105 sock_put(sk);
1109 * Read buffer destructor automatically called from kfree_skb.
1111 void sock_rfree(struct sk_buff *skb)
1113 struct sock *sk = skb->sk;
1115 skb_truesize_check(skb);
1116 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1117 sk_mem_uncharge(skb->sk, skb->truesize);
1121 int sock_i_uid(struct sock *sk)
1123 int uid;
1125 read_lock(&sk->sk_callback_lock);
1126 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
1127 read_unlock(&sk->sk_callback_lock);
1128 return uid;
1131 unsigned long sock_i_ino(struct sock *sk)
1133 unsigned long ino;
1135 read_lock(&sk->sk_callback_lock);
1136 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1137 read_unlock(&sk->sk_callback_lock);
1138 return ino;
1142 * Allocate a skb from the socket's send buffer.
1144 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1145 gfp_t priority)
1147 if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1148 struct sk_buff * skb = alloc_skb(size, priority);
1149 if (skb) {
1150 skb_set_owner_w(skb, sk);
1151 return skb;
1154 return NULL;
1158 * Allocate a skb from the socket's receive buffer.
1160 struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1161 gfp_t priority)
1163 if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1164 struct sk_buff *skb = alloc_skb(size, priority);
1165 if (skb) {
1166 skb_set_owner_r(skb, sk);
1167 return skb;
1170 return NULL;
1174 * Allocate a memory block from the socket's option memory buffer.
1176 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1178 if ((unsigned)size <= sysctl_optmem_max &&
1179 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1180 void *mem;
1181 /* First do the add, to avoid the race if kmalloc
1182 * might sleep.
1184 atomic_add(size, &sk->sk_omem_alloc);
1185 mem = kmalloc(size, priority);
1186 if (mem)
1187 return mem;
1188 atomic_sub(size, &sk->sk_omem_alloc);
1190 return NULL;
1194 * Free an option memory block.
1196 void sock_kfree_s(struct sock *sk, void *mem, int size)
1198 kfree(mem);
1199 atomic_sub(size, &sk->sk_omem_alloc);
1202 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1203 I think, these locks should be removed for datagram sockets.
1205 static long sock_wait_for_wmem(struct sock * sk, long timeo)
1207 DEFINE_WAIT(wait);
1209 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1210 for (;;) {
1211 if (!timeo)
1212 break;
1213 if (signal_pending(current))
1214 break;
1215 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1216 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1217 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1218 break;
1219 if (sk->sk_shutdown & SEND_SHUTDOWN)
1220 break;
1221 if (sk->sk_err)
1222 break;
1223 timeo = schedule_timeout(timeo);
1225 finish_wait(sk->sk_sleep, &wait);
1226 return timeo;
1231 * Generic send/receive buffer handlers
1234 static struct sk_buff *sock_alloc_send_pskb(struct sock *sk,
1235 unsigned long header_len,
1236 unsigned long data_len,
1237 int noblock, int *errcode)
1239 struct sk_buff *skb;
1240 gfp_t gfp_mask;
1241 long timeo;
1242 int err;
1244 gfp_mask = sk->sk_allocation;
1245 if (gfp_mask & __GFP_WAIT)
1246 gfp_mask |= __GFP_REPEAT;
1248 timeo = sock_sndtimeo(sk, noblock);
1249 while (1) {
1250 err = sock_error(sk);
1251 if (err != 0)
1252 goto failure;
1254 err = -EPIPE;
1255 if (sk->sk_shutdown & SEND_SHUTDOWN)
1256 goto failure;
1258 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1259 skb = alloc_skb(header_len, gfp_mask);
1260 if (skb) {
1261 int npages;
1262 int i;
1264 /* No pages, we're done... */
1265 if (!data_len)
1266 break;
1268 npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1269 skb->truesize += data_len;
1270 skb_shinfo(skb)->nr_frags = npages;
1271 for (i = 0; i < npages; i++) {
1272 struct page *page;
1273 skb_frag_t *frag;
1275 page = alloc_pages(sk->sk_allocation, 0);
1276 if (!page) {
1277 err = -ENOBUFS;
1278 skb_shinfo(skb)->nr_frags = i;
1279 kfree_skb(skb);
1280 goto failure;
1283 frag = &skb_shinfo(skb)->frags[i];
1284 frag->page = page;
1285 frag->page_offset = 0;
1286 frag->size = (data_len >= PAGE_SIZE ?
1287 PAGE_SIZE :
1288 data_len);
1289 data_len -= PAGE_SIZE;
1292 /* Full success... */
1293 break;
1295 err = -ENOBUFS;
1296 goto failure;
1298 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1299 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1300 err = -EAGAIN;
1301 if (!timeo)
1302 goto failure;
1303 if (signal_pending(current))
1304 goto interrupted;
1305 timeo = sock_wait_for_wmem(sk, timeo);
1308 skb_set_owner_w(skb, sk);
1309 return skb;
1311 interrupted:
1312 err = sock_intr_errno(timeo);
1313 failure:
1314 *errcode = err;
1315 return NULL;
1318 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1319 int noblock, int *errcode)
1321 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1324 static void __lock_sock(struct sock *sk)
1326 DEFINE_WAIT(wait);
1328 for (;;) {
1329 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1330 TASK_UNINTERRUPTIBLE);
1331 spin_unlock_bh(&sk->sk_lock.slock);
1332 schedule();
1333 spin_lock_bh(&sk->sk_lock.slock);
1334 if (!sock_owned_by_user(sk))
1335 break;
1337 finish_wait(&sk->sk_lock.wq, &wait);
1340 static void __release_sock(struct sock *sk)
1342 struct sk_buff *skb = sk->sk_backlog.head;
1344 do {
1345 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1346 bh_unlock_sock(sk);
1348 do {
1349 struct sk_buff *next = skb->next;
1351 skb->next = NULL;
1352 sk->sk_backlog_rcv(sk, skb);
1355 * We are in process context here with softirqs
1356 * disabled, use cond_resched_softirq() to preempt.
1357 * This is safe to do because we've taken the backlog
1358 * queue private:
1360 cond_resched_softirq();
1362 skb = next;
1363 } while (skb != NULL);
1365 bh_lock_sock(sk);
1366 } while ((skb = sk->sk_backlog.head) != NULL);
1370 * sk_wait_data - wait for data to arrive at sk_receive_queue
1371 * @sk: sock to wait on
1372 * @timeo: for how long
1374 * Now socket state including sk->sk_err is changed only under lock,
1375 * hence we may omit checks after joining wait queue.
1376 * We check receive queue before schedule() only as optimization;
1377 * it is very likely that release_sock() added new data.
1379 int sk_wait_data(struct sock *sk, long *timeo)
1381 int rc;
1382 DEFINE_WAIT(wait);
1384 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1385 set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1386 rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1387 clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1388 finish_wait(sk->sk_sleep, &wait);
1389 return rc;
1392 EXPORT_SYMBOL(sk_wait_data);
1395 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1396 * @sk: socket
1397 * @size: memory size to allocate
1398 * @kind: allocation type
1400 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1401 * rmem allocation. This function assumes that protocols which have
1402 * memory_pressure use sk_wmem_queued as write buffer accounting.
1404 int __sk_mem_schedule(struct sock *sk, int size, int kind)
1406 struct proto *prot = sk->sk_prot;
1407 int amt = sk_mem_pages(size);
1408 int allocated;
1410 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
1411 allocated = atomic_add_return(amt, prot->memory_allocated);
1413 /* Under limit. */
1414 if (allocated <= prot->sysctl_mem[0]) {
1415 if (prot->memory_pressure && *prot->memory_pressure)
1416 *prot->memory_pressure = 0;
1417 return 1;
1420 /* Under pressure. */
1421 if (allocated > prot->sysctl_mem[1])
1422 if (prot->enter_memory_pressure)
1423 prot->enter_memory_pressure();
1425 /* Over hard limit. */
1426 if (allocated > prot->sysctl_mem[2])
1427 goto suppress_allocation;
1429 /* guarantee minimum buffer size under pressure */
1430 if (kind == SK_MEM_RECV) {
1431 if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
1432 return 1;
1433 } else { /* SK_MEM_SEND */
1434 if (sk->sk_type == SOCK_STREAM) {
1435 if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
1436 return 1;
1437 } else if (atomic_read(&sk->sk_wmem_alloc) <
1438 prot->sysctl_wmem[0])
1439 return 1;
1442 if (prot->memory_pressure) {
1443 if (!*prot->memory_pressure ||
1444 prot->sysctl_mem[2] > atomic_read(prot->sockets_allocated) *
1445 sk_mem_pages(sk->sk_wmem_queued +
1446 atomic_read(&sk->sk_rmem_alloc) +
1447 sk->sk_forward_alloc))
1448 return 1;
1451 suppress_allocation:
1453 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
1454 sk_stream_moderate_sndbuf(sk);
1456 /* Fail only if socket is _under_ its sndbuf.
1457 * In this case we cannot block, so that we have to fail.
1459 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
1460 return 1;
1463 /* Alas. Undo changes. */
1464 sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
1465 atomic_sub(amt, prot->memory_allocated);
1466 return 0;
1469 EXPORT_SYMBOL(__sk_mem_schedule);
1472 * __sk_reclaim - reclaim memory_allocated
1473 * @sk: socket
1475 void __sk_mem_reclaim(struct sock *sk)
1477 struct proto *prot = sk->sk_prot;
1479 atomic_sub(sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT,
1480 prot->memory_allocated);
1481 sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
1483 if (prot->memory_pressure && *prot->memory_pressure &&
1484 (atomic_read(prot->memory_allocated) < prot->sysctl_mem[0]))
1485 *prot->memory_pressure = 0;
1488 EXPORT_SYMBOL(__sk_mem_reclaim);
1492 * Set of default routines for initialising struct proto_ops when
1493 * the protocol does not support a particular function. In certain
1494 * cases where it makes no sense for a protocol to have a "do nothing"
1495 * function, some default processing is provided.
1498 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1500 return -EOPNOTSUPP;
1503 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1504 int len, int flags)
1506 return -EOPNOTSUPP;
1509 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1511 return -EOPNOTSUPP;
1514 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
1516 return -EOPNOTSUPP;
1519 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1520 int *len, int peer)
1522 return -EOPNOTSUPP;
1525 unsigned int sock_no_poll(struct file * file, struct socket *sock, poll_table *pt)
1527 return 0;
1530 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1532 return -EOPNOTSUPP;
1535 int sock_no_listen(struct socket *sock, int backlog)
1537 return -EOPNOTSUPP;
1540 int sock_no_shutdown(struct socket *sock, int how)
1542 return -EOPNOTSUPP;
1545 int sock_no_setsockopt(struct socket *sock, int level, int optname,
1546 char __user *optval, int optlen)
1548 return -EOPNOTSUPP;
1551 int sock_no_getsockopt(struct socket *sock, int level, int optname,
1552 char __user *optval, int __user *optlen)
1554 return -EOPNOTSUPP;
1557 int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1558 size_t len)
1560 return -EOPNOTSUPP;
1563 int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1564 size_t len, int flags)
1566 return -EOPNOTSUPP;
1569 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
1571 /* Mirror missing mmap method error code */
1572 return -ENODEV;
1575 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
1577 ssize_t res;
1578 struct msghdr msg = {.msg_flags = flags};
1579 struct kvec iov;
1580 char *kaddr = kmap(page);
1581 iov.iov_base = kaddr + offset;
1582 iov.iov_len = size;
1583 res = kernel_sendmsg(sock, &msg, &iov, 1, size);
1584 kunmap(page);
1585 return res;
1589 * Default Socket Callbacks
1592 static void sock_def_wakeup(struct sock *sk)
1594 read_lock(&sk->sk_callback_lock);
1595 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1596 wake_up_interruptible_all(sk->sk_sleep);
1597 read_unlock(&sk->sk_callback_lock);
1600 static void sock_def_error_report(struct sock *sk)
1602 read_lock(&sk->sk_callback_lock);
1603 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1604 wake_up_interruptible(sk->sk_sleep);
1605 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
1606 read_unlock(&sk->sk_callback_lock);
1609 static void sock_def_readable(struct sock *sk, int len)
1611 read_lock(&sk->sk_callback_lock);
1612 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1613 wake_up_interruptible(sk->sk_sleep);
1614 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
1615 read_unlock(&sk->sk_callback_lock);
1618 static void sock_def_write_space(struct sock *sk)
1620 read_lock(&sk->sk_callback_lock);
1622 /* Do not wake up a writer until he can make "significant"
1623 * progress. --DaveM
1625 if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
1626 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1627 wake_up_interruptible(sk->sk_sleep);
1629 /* Should agree with poll, otherwise some programs break */
1630 if (sock_writeable(sk))
1631 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
1634 read_unlock(&sk->sk_callback_lock);
1637 static void sock_def_destruct(struct sock *sk)
1639 kfree(sk->sk_protinfo);
1642 void sk_send_sigurg(struct sock *sk)
1644 if (sk->sk_socket && sk->sk_socket->file)
1645 if (send_sigurg(&sk->sk_socket->file->f_owner))
1646 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
1649 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1650 unsigned long expires)
1652 if (!mod_timer(timer, expires))
1653 sock_hold(sk);
1656 EXPORT_SYMBOL(sk_reset_timer);
1658 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
1660 if (timer_pending(timer) && del_timer(timer))
1661 __sock_put(sk);
1664 EXPORT_SYMBOL(sk_stop_timer);
1666 void sock_init_data(struct socket *sock, struct sock *sk)
1668 skb_queue_head_init(&sk->sk_receive_queue);
1669 skb_queue_head_init(&sk->sk_write_queue);
1670 skb_queue_head_init(&sk->sk_error_queue);
1671 #ifdef CONFIG_NET_DMA
1672 skb_queue_head_init(&sk->sk_async_wait_queue);
1673 #endif
1675 sk->sk_send_head = NULL;
1677 init_timer(&sk->sk_timer);
1679 sk->sk_allocation = GFP_KERNEL;
1680 sk->sk_rcvbuf = sysctl_rmem_default;
1681 sk->sk_sndbuf = sysctl_wmem_default;
1682 sk->sk_state = TCP_CLOSE;
1683 sk->sk_socket = sock;
1685 sock_set_flag(sk, SOCK_ZAPPED);
1687 if (sock) {
1688 sk->sk_type = sock->type;
1689 sk->sk_sleep = &sock->wait;
1690 sock->sk = sk;
1691 } else
1692 sk->sk_sleep = NULL;
1694 rwlock_init(&sk->sk_dst_lock);
1695 rwlock_init(&sk->sk_callback_lock);
1696 lockdep_set_class_and_name(&sk->sk_callback_lock,
1697 af_callback_keys + sk->sk_family,
1698 af_family_clock_key_strings[sk->sk_family]);
1700 sk->sk_state_change = sock_def_wakeup;
1701 sk->sk_data_ready = sock_def_readable;
1702 sk->sk_write_space = sock_def_write_space;
1703 sk->sk_error_report = sock_def_error_report;
1704 sk->sk_destruct = sock_def_destruct;
1706 sk->sk_sndmsg_page = NULL;
1707 sk->sk_sndmsg_off = 0;
1709 sk->sk_peercred.pid = 0;
1710 sk->sk_peercred.uid = -1;
1711 sk->sk_peercred.gid = -1;
1712 sk->sk_write_pending = 0;
1713 sk->sk_rcvlowat = 1;
1714 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
1715 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
1717 sk->sk_stamp = ktime_set(-1L, -1L);
1719 atomic_set(&sk->sk_refcnt, 1);
1720 atomic_set(&sk->sk_drops, 0);
1723 void fastcall lock_sock_nested(struct sock *sk, int subclass)
1725 might_sleep();
1726 spin_lock_bh(&sk->sk_lock.slock);
1727 if (sk->sk_lock.owned)
1728 __lock_sock(sk);
1729 sk->sk_lock.owned = 1;
1730 spin_unlock(&sk->sk_lock.slock);
1732 * The sk_lock has mutex_lock() semantics here:
1734 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
1735 local_bh_enable();
1738 EXPORT_SYMBOL(lock_sock_nested);
1740 void fastcall release_sock(struct sock *sk)
1743 * The sk_lock has mutex_unlock() semantics:
1745 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1747 spin_lock_bh(&sk->sk_lock.slock);
1748 if (sk->sk_backlog.tail)
1749 __release_sock(sk);
1750 sk->sk_lock.owned = 0;
1751 if (waitqueue_active(&sk->sk_lock.wq))
1752 wake_up(&sk->sk_lock.wq);
1753 spin_unlock_bh(&sk->sk_lock.slock);
1755 EXPORT_SYMBOL(release_sock);
1757 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
1759 struct timeval tv;
1760 if (!sock_flag(sk, SOCK_TIMESTAMP))
1761 sock_enable_timestamp(sk);
1762 tv = ktime_to_timeval(sk->sk_stamp);
1763 if (tv.tv_sec == -1)
1764 return -ENOENT;
1765 if (tv.tv_sec == 0) {
1766 sk->sk_stamp = ktime_get_real();
1767 tv = ktime_to_timeval(sk->sk_stamp);
1769 return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
1771 EXPORT_SYMBOL(sock_get_timestamp);
1773 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
1775 struct timespec ts;
1776 if (!sock_flag(sk, SOCK_TIMESTAMP))
1777 sock_enable_timestamp(sk);
1778 ts = ktime_to_timespec(sk->sk_stamp);
1779 if (ts.tv_sec == -1)
1780 return -ENOENT;
1781 if (ts.tv_sec == 0) {
1782 sk->sk_stamp = ktime_get_real();
1783 ts = ktime_to_timespec(sk->sk_stamp);
1785 return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
1787 EXPORT_SYMBOL(sock_get_timestampns);
1789 void sock_enable_timestamp(struct sock *sk)
1791 if (!sock_flag(sk, SOCK_TIMESTAMP)) {
1792 sock_set_flag(sk, SOCK_TIMESTAMP);
1793 net_enable_timestamp();
1798 * Get a socket option on an socket.
1800 * FIX: POSIX 1003.1g is very ambiguous here. It states that
1801 * asynchronous errors should be reported by getsockopt. We assume
1802 * this means if you specify SO_ERROR (otherwise whats the point of it).
1804 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1805 char __user *optval, int __user *optlen)
1807 struct sock *sk = sock->sk;
1809 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
1812 EXPORT_SYMBOL(sock_common_getsockopt);
1814 #ifdef CONFIG_COMPAT
1815 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
1816 char __user *optval, int __user *optlen)
1818 struct sock *sk = sock->sk;
1820 if (sk->sk_prot->compat_getsockopt != NULL)
1821 return sk->sk_prot->compat_getsockopt(sk, level, optname,
1822 optval, optlen);
1823 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
1825 EXPORT_SYMBOL(compat_sock_common_getsockopt);
1826 #endif
1828 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1829 struct msghdr *msg, size_t size, int flags)
1831 struct sock *sk = sock->sk;
1832 int addr_len = 0;
1833 int err;
1835 err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
1836 flags & ~MSG_DONTWAIT, &addr_len);
1837 if (err >= 0)
1838 msg->msg_namelen = addr_len;
1839 return err;
1842 EXPORT_SYMBOL(sock_common_recvmsg);
1845 * Set socket options on an inet socket.
1847 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1848 char __user *optval, int optlen)
1850 struct sock *sk = sock->sk;
1852 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
1855 EXPORT_SYMBOL(sock_common_setsockopt);
1857 #ifdef CONFIG_COMPAT
1858 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
1859 char __user *optval, int optlen)
1861 struct sock *sk = sock->sk;
1863 if (sk->sk_prot->compat_setsockopt != NULL)
1864 return sk->sk_prot->compat_setsockopt(sk, level, optname,
1865 optval, optlen);
1866 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
1868 EXPORT_SYMBOL(compat_sock_common_setsockopt);
1869 #endif
1871 void sk_common_release(struct sock *sk)
1873 if (sk->sk_prot->destroy)
1874 sk->sk_prot->destroy(sk);
1877 * Observation: when sock_common_release is called, processes have
1878 * no access to socket. But net still has.
1879 * Step one, detach it from networking:
1881 * A. Remove from hash tables.
1884 sk->sk_prot->unhash(sk);
1887 * In this point socket cannot receive new packets, but it is possible
1888 * that some packets are in flight because some CPU runs receiver and
1889 * did hash table lookup before we unhashed socket. They will achieve
1890 * receive queue and will be purged by socket destructor.
1892 * Also we still have packets pending on receive queue and probably,
1893 * our own packets waiting in device queues. sock_destroy will drain
1894 * receive queue, but transmitted packets will delay socket destruction
1895 * until the last reference will be released.
1898 sock_orphan(sk);
1900 xfrm_sk_free_policy(sk);
1902 sk_refcnt_debug_release(sk);
1903 sock_put(sk);
1906 EXPORT_SYMBOL(sk_common_release);
1908 static DEFINE_RWLOCK(proto_list_lock);
1909 static LIST_HEAD(proto_list);
1911 int proto_register(struct proto *prot, int alloc_slab)
1913 char *request_sock_slab_name = NULL;
1914 char *timewait_sock_slab_name;
1916 if (pcounter_alloc(&prot->inuse) != 0) {
1917 printk(KERN_CRIT "%s: Can't alloc inuse counters!\n", prot->name);
1918 goto out;
1921 if (alloc_slab) {
1922 prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
1923 SLAB_HWCACHE_ALIGN, NULL);
1925 if (prot->slab == NULL) {
1926 printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n",
1927 prot->name);
1928 goto out_free_inuse;
1931 if (prot->rsk_prot != NULL) {
1932 static const char mask[] = "request_sock_%s";
1934 request_sock_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
1935 if (request_sock_slab_name == NULL)
1936 goto out_free_sock_slab;
1938 sprintf(request_sock_slab_name, mask, prot->name);
1939 prot->rsk_prot->slab = kmem_cache_create(request_sock_slab_name,
1940 prot->rsk_prot->obj_size, 0,
1941 SLAB_HWCACHE_ALIGN, NULL);
1943 if (prot->rsk_prot->slab == NULL) {
1944 printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n",
1945 prot->name);
1946 goto out_free_request_sock_slab_name;
1950 if (prot->twsk_prot != NULL) {
1951 static const char mask[] = "tw_sock_%s";
1953 timewait_sock_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
1955 if (timewait_sock_slab_name == NULL)
1956 goto out_free_request_sock_slab;
1958 sprintf(timewait_sock_slab_name, mask, prot->name);
1959 prot->twsk_prot->twsk_slab =
1960 kmem_cache_create(timewait_sock_slab_name,
1961 prot->twsk_prot->twsk_obj_size,
1962 0, SLAB_HWCACHE_ALIGN,
1963 NULL);
1964 if (prot->twsk_prot->twsk_slab == NULL)
1965 goto out_free_timewait_sock_slab_name;
1969 write_lock(&proto_list_lock);
1970 list_add(&prot->node, &proto_list);
1971 write_unlock(&proto_list_lock);
1972 return 0;
1974 out_free_timewait_sock_slab_name:
1975 kfree(timewait_sock_slab_name);
1976 out_free_request_sock_slab:
1977 if (prot->rsk_prot && prot->rsk_prot->slab) {
1978 kmem_cache_destroy(prot->rsk_prot->slab);
1979 prot->rsk_prot->slab = NULL;
1981 out_free_request_sock_slab_name:
1982 kfree(request_sock_slab_name);
1983 out_free_sock_slab:
1984 kmem_cache_destroy(prot->slab);
1985 prot->slab = NULL;
1986 out_free_inuse:
1987 pcounter_free(&prot->inuse);
1988 out:
1989 return -ENOBUFS;
1992 EXPORT_SYMBOL(proto_register);
1994 void proto_unregister(struct proto *prot)
1996 write_lock(&proto_list_lock);
1997 list_del(&prot->node);
1998 write_unlock(&proto_list_lock);
2000 pcounter_free(&prot->inuse);
2002 if (prot->slab != NULL) {
2003 kmem_cache_destroy(prot->slab);
2004 prot->slab = NULL;
2007 if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2008 const char *name = kmem_cache_name(prot->rsk_prot->slab);
2010 kmem_cache_destroy(prot->rsk_prot->slab);
2011 kfree(name);
2012 prot->rsk_prot->slab = NULL;
2015 if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2016 const char *name = kmem_cache_name(prot->twsk_prot->twsk_slab);
2018 kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2019 kfree(name);
2020 prot->twsk_prot->twsk_slab = NULL;
2024 EXPORT_SYMBOL(proto_unregister);
2026 #ifdef CONFIG_PROC_FS
2027 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2028 __acquires(proto_list_lock)
2030 read_lock(&proto_list_lock);
2031 return seq_list_start_head(&proto_list, *pos);
2034 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2036 return seq_list_next(v, &proto_list, pos);
2039 static void proto_seq_stop(struct seq_file *seq, void *v)
2040 __releases(proto_list_lock)
2042 read_unlock(&proto_list_lock);
2045 static char proto_method_implemented(const void *method)
2047 return method == NULL ? 'n' : 'y';
2050 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2052 seq_printf(seq, "%-9s %4u %6d %6d %-3s %6u %-3s %-10s "
2053 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2054 proto->name,
2055 proto->obj_size,
2056 proto->sockets_allocated != NULL ? atomic_read(proto->sockets_allocated) : -1,
2057 proto->memory_allocated != NULL ? atomic_read(proto->memory_allocated) : -1,
2058 proto->memory_pressure != NULL ? *proto->memory_pressure ? "yes" : "no" : "NI",
2059 proto->max_header,
2060 proto->slab == NULL ? "no" : "yes",
2061 module_name(proto->owner),
2062 proto_method_implemented(proto->close),
2063 proto_method_implemented(proto->connect),
2064 proto_method_implemented(proto->disconnect),
2065 proto_method_implemented(proto->accept),
2066 proto_method_implemented(proto->ioctl),
2067 proto_method_implemented(proto->init),
2068 proto_method_implemented(proto->destroy),
2069 proto_method_implemented(proto->shutdown),
2070 proto_method_implemented(proto->setsockopt),
2071 proto_method_implemented(proto->getsockopt),
2072 proto_method_implemented(proto->sendmsg),
2073 proto_method_implemented(proto->recvmsg),
2074 proto_method_implemented(proto->sendpage),
2075 proto_method_implemented(proto->bind),
2076 proto_method_implemented(proto->backlog_rcv),
2077 proto_method_implemented(proto->hash),
2078 proto_method_implemented(proto->unhash),
2079 proto_method_implemented(proto->get_port),
2080 proto_method_implemented(proto->enter_memory_pressure));
2083 static int proto_seq_show(struct seq_file *seq, void *v)
2085 if (v == &proto_list)
2086 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2087 "protocol",
2088 "size",
2089 "sockets",
2090 "memory",
2091 "press",
2092 "maxhdr",
2093 "slab",
2094 "module",
2095 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2096 else
2097 proto_seq_printf(seq, list_entry(v, struct proto, node));
2098 return 0;
2101 static const struct seq_operations proto_seq_ops = {
2102 .start = proto_seq_start,
2103 .next = proto_seq_next,
2104 .stop = proto_seq_stop,
2105 .show = proto_seq_show,
2108 static int proto_seq_open(struct inode *inode, struct file *file)
2110 return seq_open(file, &proto_seq_ops);
2113 static const struct file_operations proto_seq_fops = {
2114 .owner = THIS_MODULE,
2115 .open = proto_seq_open,
2116 .read = seq_read,
2117 .llseek = seq_lseek,
2118 .release = seq_release,
2121 static int __init proto_init(void)
2123 /* register /proc/net/protocols */
2124 return proc_net_fops_create(&init_net, "protocols", S_IRUGO, &proto_seq_fops) == NULL ? -ENOBUFS : 0;
2127 subsys_initcall(proto_init);
2129 #endif /* PROC_FS */
2131 EXPORT_SYMBOL(sk_alloc);
2132 EXPORT_SYMBOL(sk_free);
2133 EXPORT_SYMBOL(sk_send_sigurg);
2134 EXPORT_SYMBOL(sock_alloc_send_skb);
2135 EXPORT_SYMBOL(sock_init_data);
2136 EXPORT_SYMBOL(sock_kfree_s);
2137 EXPORT_SYMBOL(sock_kmalloc);
2138 EXPORT_SYMBOL(sock_no_accept);
2139 EXPORT_SYMBOL(sock_no_bind);
2140 EXPORT_SYMBOL(sock_no_connect);
2141 EXPORT_SYMBOL(sock_no_getname);
2142 EXPORT_SYMBOL(sock_no_getsockopt);
2143 EXPORT_SYMBOL(sock_no_ioctl);
2144 EXPORT_SYMBOL(sock_no_listen);
2145 EXPORT_SYMBOL(sock_no_mmap);
2146 EXPORT_SYMBOL(sock_no_poll);
2147 EXPORT_SYMBOL(sock_no_recvmsg);
2148 EXPORT_SYMBOL(sock_no_sendmsg);
2149 EXPORT_SYMBOL(sock_no_sendpage);
2150 EXPORT_SYMBOL(sock_no_setsockopt);
2151 EXPORT_SYMBOL(sock_no_shutdown);
2152 EXPORT_SYMBOL(sock_no_socketpair);
2153 EXPORT_SYMBOL(sock_rfree);
2154 EXPORT_SYMBOL(sock_setsockopt);
2155 EXPORT_SYMBOL(sock_wfree);
2156 EXPORT_SYMBOL(sock_wmalloc);
2157 EXPORT_SYMBOL(sock_i_uid);
2158 EXPORT_SYMBOL(sock_i_ino);
2159 EXPORT_SYMBOL(sysctl_optmem_max);