PM: Convert wakeup flag accessors to inline functions
[linux-2.6/mini2440.git] / kernel / fork.c
blob9c042f901570e1b789d40fdbda111739c733cdb4
1 /*
2 * linux/kernel/fork.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/mnt_namespace.h>
21 #include <linux/personality.h>
22 #include <linux/mempolicy.h>
23 #include <linux/sem.h>
24 #include <linux/file.h>
25 #include <linux/key.h>
26 #include <linux/binfmts.h>
27 #include <linux/mman.h>
28 #include <linux/fs.h>
29 #include <linux/nsproxy.h>
30 #include <linux/capability.h>
31 #include <linux/cpu.h>
32 #include <linux/cgroup.h>
33 #include <linux/security.h>
34 #include <linux/swap.h>
35 #include <linux/syscalls.h>
36 #include <linux/jiffies.h>
37 #include <linux/futex.h>
38 #include <linux/task_io_accounting_ops.h>
39 #include <linux/rcupdate.h>
40 #include <linux/ptrace.h>
41 #include <linux/mount.h>
42 #include <linux/audit.h>
43 #include <linux/memcontrol.h>
44 #include <linux/profile.h>
45 #include <linux/rmap.h>
46 #include <linux/acct.h>
47 #include <linux/tsacct_kern.h>
48 #include <linux/cn_proc.h>
49 #include <linux/freezer.h>
50 #include <linux/delayacct.h>
51 #include <linux/taskstats_kern.h>
52 #include <linux/random.h>
53 #include <linux/tty.h>
54 #include <linux/proc_fs.h>
55 #include <linux/blkdev.h>
57 #include <asm/pgtable.h>
58 #include <asm/pgalloc.h>
59 #include <asm/uaccess.h>
60 #include <asm/mmu_context.h>
61 #include <asm/cacheflush.h>
62 #include <asm/tlbflush.h>
65 * Protected counters by write_lock_irq(&tasklist_lock)
67 unsigned long total_forks; /* Handle normal Linux uptimes. */
68 int nr_threads; /* The idle threads do not count.. */
70 int max_threads; /* tunable limit on nr_threads */
72 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
74 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
76 int nr_processes(void)
78 int cpu;
79 int total = 0;
81 for_each_online_cpu(cpu)
82 total += per_cpu(process_counts, cpu);
84 return total;
87 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
88 # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
89 # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk))
90 static struct kmem_cache *task_struct_cachep;
91 #endif
93 /* SLAB cache for signal_struct structures (tsk->signal) */
94 static struct kmem_cache *signal_cachep;
96 /* SLAB cache for sighand_struct structures (tsk->sighand) */
97 struct kmem_cache *sighand_cachep;
99 /* SLAB cache for files_struct structures (tsk->files) */
100 struct kmem_cache *files_cachep;
102 /* SLAB cache for fs_struct structures (tsk->fs) */
103 struct kmem_cache *fs_cachep;
105 /* SLAB cache for vm_area_struct structures */
106 struct kmem_cache *vm_area_cachep;
108 /* SLAB cache for mm_struct structures (tsk->mm) */
109 static struct kmem_cache *mm_cachep;
111 void free_task(struct task_struct *tsk)
113 prop_local_destroy_single(&tsk->dirties);
114 free_thread_info(tsk->stack);
115 rt_mutex_debug_task_free(tsk);
116 free_task_struct(tsk);
118 EXPORT_SYMBOL(free_task);
120 void __put_task_struct(struct task_struct *tsk)
122 WARN_ON(!tsk->exit_state);
123 WARN_ON(atomic_read(&tsk->usage));
124 WARN_ON(tsk == current);
126 security_task_free(tsk);
127 free_uid(tsk->user);
128 put_group_info(tsk->group_info);
129 delayacct_tsk_free(tsk);
131 if (!profile_handoff_task(tsk))
132 free_task(tsk);
135 void __init fork_init(unsigned long mempages)
137 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
138 #ifndef ARCH_MIN_TASKALIGN
139 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
140 #endif
141 /* create a slab on which task_structs can be allocated */
142 task_struct_cachep =
143 kmem_cache_create("task_struct", sizeof(struct task_struct),
144 ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL);
145 #endif
148 * The default maximum number of threads is set to a safe
149 * value: the thread structures can take up at most half
150 * of memory.
152 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
155 * we need to allow at least 20 threads to boot a system
157 if(max_threads < 20)
158 max_threads = 20;
160 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
161 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
162 init_task.signal->rlim[RLIMIT_SIGPENDING] =
163 init_task.signal->rlim[RLIMIT_NPROC];
166 static struct task_struct *dup_task_struct(struct task_struct *orig)
168 struct task_struct *tsk;
169 struct thread_info *ti;
170 int err;
172 prepare_to_copy(orig);
174 tsk = alloc_task_struct();
175 if (!tsk)
176 return NULL;
178 ti = alloc_thread_info(tsk);
179 if (!ti) {
180 free_task_struct(tsk);
181 return NULL;
184 *tsk = *orig;
185 tsk->stack = ti;
187 err = prop_local_init_single(&tsk->dirties);
188 if (err) {
189 free_thread_info(ti);
190 free_task_struct(tsk);
191 return NULL;
194 setup_thread_stack(tsk, orig);
196 #ifdef CONFIG_CC_STACKPROTECTOR
197 tsk->stack_canary = get_random_int();
198 #endif
200 /* One for us, one for whoever does the "release_task()" (usually parent) */
201 atomic_set(&tsk->usage,2);
202 atomic_set(&tsk->fs_excl, 0);
203 #ifdef CONFIG_BLK_DEV_IO_TRACE
204 tsk->btrace_seq = 0;
205 #endif
206 tsk->splice_pipe = NULL;
207 return tsk;
210 #ifdef CONFIG_MMU
211 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
213 struct vm_area_struct *mpnt, *tmp, **pprev;
214 struct rb_node **rb_link, *rb_parent;
215 int retval;
216 unsigned long charge;
217 struct mempolicy *pol;
219 down_write(&oldmm->mmap_sem);
220 flush_cache_dup_mm(oldmm);
222 * Not linked in yet - no deadlock potential:
224 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
226 mm->locked_vm = 0;
227 mm->mmap = NULL;
228 mm->mmap_cache = NULL;
229 mm->free_area_cache = oldmm->mmap_base;
230 mm->cached_hole_size = ~0UL;
231 mm->map_count = 0;
232 cpus_clear(mm->cpu_vm_mask);
233 mm->mm_rb = RB_ROOT;
234 rb_link = &mm->mm_rb.rb_node;
235 rb_parent = NULL;
236 pprev = &mm->mmap;
238 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
239 struct file *file;
241 if (mpnt->vm_flags & VM_DONTCOPY) {
242 long pages = vma_pages(mpnt);
243 mm->total_vm -= pages;
244 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
245 -pages);
246 continue;
248 charge = 0;
249 if (mpnt->vm_flags & VM_ACCOUNT) {
250 unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
251 if (security_vm_enough_memory(len))
252 goto fail_nomem;
253 charge = len;
255 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
256 if (!tmp)
257 goto fail_nomem;
258 *tmp = *mpnt;
259 pol = mpol_copy(vma_policy(mpnt));
260 retval = PTR_ERR(pol);
261 if (IS_ERR(pol))
262 goto fail_nomem_policy;
263 vma_set_policy(tmp, pol);
264 tmp->vm_flags &= ~VM_LOCKED;
265 tmp->vm_mm = mm;
266 tmp->vm_next = NULL;
267 anon_vma_link(tmp);
268 file = tmp->vm_file;
269 if (file) {
270 struct inode *inode = file->f_path.dentry->d_inode;
271 get_file(file);
272 if (tmp->vm_flags & VM_DENYWRITE)
273 atomic_dec(&inode->i_writecount);
275 /* insert tmp into the share list, just after mpnt */
276 spin_lock(&file->f_mapping->i_mmap_lock);
277 tmp->vm_truncate_count = mpnt->vm_truncate_count;
278 flush_dcache_mmap_lock(file->f_mapping);
279 vma_prio_tree_add(tmp, mpnt);
280 flush_dcache_mmap_unlock(file->f_mapping);
281 spin_unlock(&file->f_mapping->i_mmap_lock);
285 * Link in the new vma and copy the page table entries.
287 *pprev = tmp;
288 pprev = &tmp->vm_next;
290 __vma_link_rb(mm, tmp, rb_link, rb_parent);
291 rb_link = &tmp->vm_rb.rb_right;
292 rb_parent = &tmp->vm_rb;
294 mm->map_count++;
295 retval = copy_page_range(mm, oldmm, mpnt);
297 if (tmp->vm_ops && tmp->vm_ops->open)
298 tmp->vm_ops->open(tmp);
300 if (retval)
301 goto out;
303 /* a new mm has just been created */
304 arch_dup_mmap(oldmm, mm);
305 retval = 0;
306 out:
307 up_write(&mm->mmap_sem);
308 flush_tlb_mm(oldmm);
309 up_write(&oldmm->mmap_sem);
310 return retval;
311 fail_nomem_policy:
312 kmem_cache_free(vm_area_cachep, tmp);
313 fail_nomem:
314 retval = -ENOMEM;
315 vm_unacct_memory(charge);
316 goto out;
319 static inline int mm_alloc_pgd(struct mm_struct * mm)
321 mm->pgd = pgd_alloc(mm);
322 if (unlikely(!mm->pgd))
323 return -ENOMEM;
324 return 0;
327 static inline void mm_free_pgd(struct mm_struct * mm)
329 pgd_free(mm, mm->pgd);
331 #else
332 #define dup_mmap(mm, oldmm) (0)
333 #define mm_alloc_pgd(mm) (0)
334 #define mm_free_pgd(mm)
335 #endif /* CONFIG_MMU */
337 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
339 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
340 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
342 #include <linux/init_task.h>
344 static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p)
346 atomic_set(&mm->mm_users, 1);
347 atomic_set(&mm->mm_count, 1);
348 init_rwsem(&mm->mmap_sem);
349 INIT_LIST_HEAD(&mm->mmlist);
350 mm->flags = (current->mm) ? current->mm->flags
351 : MMF_DUMP_FILTER_DEFAULT;
352 mm->core_waiters = 0;
353 mm->nr_ptes = 0;
354 set_mm_counter(mm, file_rss, 0);
355 set_mm_counter(mm, anon_rss, 0);
356 spin_lock_init(&mm->page_table_lock);
357 rwlock_init(&mm->ioctx_list_lock);
358 mm->ioctx_list = NULL;
359 mm->free_area_cache = TASK_UNMAPPED_BASE;
360 mm->cached_hole_size = ~0UL;
361 mm_init_cgroup(mm, p);
363 if (likely(!mm_alloc_pgd(mm))) {
364 mm->def_flags = 0;
365 return mm;
368 mm_free_cgroup(mm);
369 free_mm(mm);
370 return NULL;
374 * Allocate and initialize an mm_struct.
376 struct mm_struct * mm_alloc(void)
378 struct mm_struct * mm;
380 mm = allocate_mm();
381 if (mm) {
382 memset(mm, 0, sizeof(*mm));
383 mm = mm_init(mm, current);
385 return mm;
389 * Called when the last reference to the mm
390 * is dropped: either by a lazy thread or by
391 * mmput. Free the page directory and the mm.
393 void __mmdrop(struct mm_struct *mm)
395 BUG_ON(mm == &init_mm);
396 mm_free_pgd(mm);
397 destroy_context(mm);
398 free_mm(mm);
400 EXPORT_SYMBOL_GPL(__mmdrop);
403 * Decrement the use count and release all resources for an mm.
405 void mmput(struct mm_struct *mm)
407 might_sleep();
409 if (atomic_dec_and_test(&mm->mm_users)) {
410 exit_aio(mm);
411 exit_mmap(mm);
412 if (!list_empty(&mm->mmlist)) {
413 spin_lock(&mmlist_lock);
414 list_del(&mm->mmlist);
415 spin_unlock(&mmlist_lock);
417 put_swap_token(mm);
418 mm_free_cgroup(mm);
419 mmdrop(mm);
422 EXPORT_SYMBOL_GPL(mmput);
425 * get_task_mm - acquire a reference to the task's mm
427 * Returns %NULL if the task has no mm. Checks PF_BORROWED_MM (meaning
428 * this kernel workthread has transiently adopted a user mm with use_mm,
429 * to do its AIO) is not set and if so returns a reference to it, after
430 * bumping up the use count. User must release the mm via mmput()
431 * after use. Typically used by /proc and ptrace.
433 struct mm_struct *get_task_mm(struct task_struct *task)
435 struct mm_struct *mm;
437 task_lock(task);
438 mm = task->mm;
439 if (mm) {
440 if (task->flags & PF_BORROWED_MM)
441 mm = NULL;
442 else
443 atomic_inc(&mm->mm_users);
445 task_unlock(task);
446 return mm;
448 EXPORT_SYMBOL_GPL(get_task_mm);
450 /* Please note the differences between mmput and mm_release.
451 * mmput is called whenever we stop holding onto a mm_struct,
452 * error success whatever.
454 * mm_release is called after a mm_struct has been removed
455 * from the current process.
457 * This difference is important for error handling, when we
458 * only half set up a mm_struct for a new process and need to restore
459 * the old one. Because we mmput the new mm_struct before
460 * restoring the old one. . .
461 * Eric Biederman 10 January 1998
463 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
465 struct completion *vfork_done = tsk->vfork_done;
467 /* Get rid of any cached register state */
468 deactivate_mm(tsk, mm);
470 /* notify parent sleeping on vfork() */
471 if (vfork_done) {
472 tsk->vfork_done = NULL;
473 complete(vfork_done);
477 * If we're exiting normally, clear a user-space tid field if
478 * requested. We leave this alone when dying by signal, to leave
479 * the value intact in a core dump, and to save the unnecessary
480 * trouble otherwise. Userland only wants this done for a sys_exit.
482 if (tsk->clear_child_tid
483 && !(tsk->flags & PF_SIGNALED)
484 && atomic_read(&mm->mm_users) > 1) {
485 u32 __user * tidptr = tsk->clear_child_tid;
486 tsk->clear_child_tid = NULL;
489 * We don't check the error code - if userspace has
490 * not set up a proper pointer then tough luck.
492 put_user(0, tidptr);
493 sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
498 * Allocate a new mm structure and copy contents from the
499 * mm structure of the passed in task structure.
501 static struct mm_struct *dup_mm(struct task_struct *tsk)
503 struct mm_struct *mm, *oldmm = current->mm;
504 int err;
506 if (!oldmm)
507 return NULL;
509 mm = allocate_mm();
510 if (!mm)
511 goto fail_nomem;
513 memcpy(mm, oldmm, sizeof(*mm));
515 /* Initializing for Swap token stuff */
516 mm->token_priority = 0;
517 mm->last_interval = 0;
519 if (!mm_init(mm, tsk))
520 goto fail_nomem;
522 if (init_new_context(tsk, mm))
523 goto fail_nocontext;
525 err = dup_mmap(mm, oldmm);
526 if (err)
527 goto free_pt;
529 mm->hiwater_rss = get_mm_rss(mm);
530 mm->hiwater_vm = mm->total_vm;
532 return mm;
534 free_pt:
535 mmput(mm);
537 fail_nomem:
538 return NULL;
540 fail_nocontext:
542 * If init_new_context() failed, we cannot use mmput() to free the mm
543 * because it calls destroy_context()
545 mm_free_pgd(mm);
546 free_mm(mm);
547 return NULL;
550 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
552 struct mm_struct * mm, *oldmm;
553 int retval;
555 tsk->min_flt = tsk->maj_flt = 0;
556 tsk->nvcsw = tsk->nivcsw = 0;
558 tsk->mm = NULL;
559 tsk->active_mm = NULL;
562 * Are we cloning a kernel thread?
564 * We need to steal a active VM for that..
566 oldmm = current->mm;
567 if (!oldmm)
568 return 0;
570 if (clone_flags & CLONE_VM) {
571 atomic_inc(&oldmm->mm_users);
572 mm = oldmm;
573 goto good_mm;
576 retval = -ENOMEM;
577 mm = dup_mm(tsk);
578 if (!mm)
579 goto fail_nomem;
581 good_mm:
582 /* Initializing for Swap token stuff */
583 mm->token_priority = 0;
584 mm->last_interval = 0;
586 tsk->mm = mm;
587 tsk->active_mm = mm;
588 return 0;
590 fail_nomem:
591 return retval;
594 static struct fs_struct *__copy_fs_struct(struct fs_struct *old)
596 struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
597 /* We don't need to lock fs - think why ;-) */
598 if (fs) {
599 atomic_set(&fs->count, 1);
600 rwlock_init(&fs->lock);
601 fs->umask = old->umask;
602 read_lock(&old->lock);
603 fs->root = old->root;
604 path_get(&old->root);
605 fs->pwd = old->pwd;
606 path_get(&old->pwd);
607 if (old->altroot.dentry) {
608 fs->altroot = old->altroot;
609 path_get(&old->altroot);
610 } else {
611 fs->altroot.mnt = NULL;
612 fs->altroot.dentry = NULL;
614 read_unlock(&old->lock);
616 return fs;
619 struct fs_struct *copy_fs_struct(struct fs_struct *old)
621 return __copy_fs_struct(old);
624 EXPORT_SYMBOL_GPL(copy_fs_struct);
626 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
628 if (clone_flags & CLONE_FS) {
629 atomic_inc(&current->fs->count);
630 return 0;
632 tsk->fs = __copy_fs_struct(current->fs);
633 if (!tsk->fs)
634 return -ENOMEM;
635 return 0;
638 static int count_open_files(struct fdtable *fdt)
640 int size = fdt->max_fds;
641 int i;
643 /* Find the last open fd */
644 for (i = size/(8*sizeof(long)); i > 0; ) {
645 if (fdt->open_fds->fds_bits[--i])
646 break;
648 i = (i+1) * 8 * sizeof(long);
649 return i;
652 static struct files_struct *alloc_files(void)
654 struct files_struct *newf;
655 struct fdtable *fdt;
657 newf = kmem_cache_alloc(files_cachep, GFP_KERNEL);
658 if (!newf)
659 goto out;
661 atomic_set(&newf->count, 1);
663 spin_lock_init(&newf->file_lock);
664 newf->next_fd = 0;
665 fdt = &newf->fdtab;
666 fdt->max_fds = NR_OPEN_DEFAULT;
667 fdt->close_on_exec = (fd_set *)&newf->close_on_exec_init;
668 fdt->open_fds = (fd_set *)&newf->open_fds_init;
669 fdt->fd = &newf->fd_array[0];
670 INIT_RCU_HEAD(&fdt->rcu);
671 fdt->next = NULL;
672 rcu_assign_pointer(newf->fdt, fdt);
673 out:
674 return newf;
678 * Allocate a new files structure and copy contents from the
679 * passed in files structure.
680 * errorp will be valid only when the returned files_struct is NULL.
682 static struct files_struct *dup_fd(struct files_struct *oldf, int *errorp)
684 struct files_struct *newf;
685 struct file **old_fds, **new_fds;
686 int open_files, size, i;
687 struct fdtable *old_fdt, *new_fdt;
689 *errorp = -ENOMEM;
690 newf = alloc_files();
691 if (!newf)
692 goto out;
694 spin_lock(&oldf->file_lock);
695 old_fdt = files_fdtable(oldf);
696 new_fdt = files_fdtable(newf);
697 open_files = count_open_files(old_fdt);
700 * Check whether we need to allocate a larger fd array and fd set.
701 * Note: we're not a clone task, so the open count won't change.
703 if (open_files > new_fdt->max_fds) {
704 new_fdt->max_fds = 0;
705 spin_unlock(&oldf->file_lock);
706 spin_lock(&newf->file_lock);
707 *errorp = expand_files(newf, open_files-1);
708 spin_unlock(&newf->file_lock);
709 if (*errorp < 0)
710 goto out_release;
711 new_fdt = files_fdtable(newf);
713 * Reacquire the oldf lock and a pointer to its fd table
714 * who knows it may have a new bigger fd table. We need
715 * the latest pointer.
717 spin_lock(&oldf->file_lock);
718 old_fdt = files_fdtable(oldf);
721 old_fds = old_fdt->fd;
722 new_fds = new_fdt->fd;
724 memcpy(new_fdt->open_fds->fds_bits,
725 old_fdt->open_fds->fds_bits, open_files/8);
726 memcpy(new_fdt->close_on_exec->fds_bits,
727 old_fdt->close_on_exec->fds_bits, open_files/8);
729 for (i = open_files; i != 0; i--) {
730 struct file *f = *old_fds++;
731 if (f) {
732 get_file(f);
733 } else {
735 * The fd may be claimed in the fd bitmap but not yet
736 * instantiated in the files array if a sibling thread
737 * is partway through open(). So make sure that this
738 * fd is available to the new process.
740 FD_CLR(open_files - i, new_fdt->open_fds);
742 rcu_assign_pointer(*new_fds++, f);
744 spin_unlock(&oldf->file_lock);
746 /* compute the remainder to be cleared */
747 size = (new_fdt->max_fds - open_files) * sizeof(struct file *);
749 /* This is long word aligned thus could use a optimized version */
750 memset(new_fds, 0, size);
752 if (new_fdt->max_fds > open_files) {
753 int left = (new_fdt->max_fds-open_files)/8;
754 int start = open_files / (8 * sizeof(unsigned long));
756 memset(&new_fdt->open_fds->fds_bits[start], 0, left);
757 memset(&new_fdt->close_on_exec->fds_bits[start], 0, left);
760 return newf;
762 out_release:
763 kmem_cache_free(files_cachep, newf);
764 out:
765 return NULL;
768 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
770 struct files_struct *oldf, *newf;
771 int error = 0;
774 * A background process may not have any files ...
776 oldf = current->files;
777 if (!oldf)
778 goto out;
780 if (clone_flags & CLONE_FILES) {
781 atomic_inc(&oldf->count);
782 goto out;
786 * Note: we may be using current for both targets (See exec.c)
787 * This works because we cache current->files (old) as oldf. Don't
788 * break this.
790 tsk->files = NULL;
791 newf = dup_fd(oldf, &error);
792 if (!newf)
793 goto out;
795 tsk->files = newf;
796 error = 0;
797 out:
798 return error;
801 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
803 #ifdef CONFIG_BLOCK
804 struct io_context *ioc = current->io_context;
806 if (!ioc)
807 return 0;
809 * Share io context with parent, if CLONE_IO is set
811 if (clone_flags & CLONE_IO) {
812 tsk->io_context = ioc_task_link(ioc);
813 if (unlikely(!tsk->io_context))
814 return -ENOMEM;
815 } else if (ioprio_valid(ioc->ioprio)) {
816 tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
817 if (unlikely(!tsk->io_context))
818 return -ENOMEM;
820 tsk->io_context->ioprio = ioc->ioprio;
822 #endif
823 return 0;
827 * Helper to unshare the files of the current task.
828 * We don't want to expose copy_files internals to
829 * the exec layer of the kernel.
832 int unshare_files(void)
834 struct files_struct *files = current->files;
835 int rc;
837 BUG_ON(!files);
839 /* This can race but the race causes us to copy when we don't
840 need to and drop the copy */
841 if(atomic_read(&files->count) == 1)
843 atomic_inc(&files->count);
844 return 0;
846 rc = copy_files(0, current);
847 if(rc)
848 current->files = files;
849 return rc;
852 EXPORT_SYMBOL(unshare_files);
854 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
856 struct sighand_struct *sig;
858 if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
859 atomic_inc(&current->sighand->count);
860 return 0;
862 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
863 rcu_assign_pointer(tsk->sighand, sig);
864 if (!sig)
865 return -ENOMEM;
866 atomic_set(&sig->count, 1);
867 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
868 return 0;
871 void __cleanup_sighand(struct sighand_struct *sighand)
873 if (atomic_dec_and_test(&sighand->count))
874 kmem_cache_free(sighand_cachep, sighand);
877 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
879 struct signal_struct *sig;
880 int ret;
882 if (clone_flags & CLONE_THREAD) {
883 atomic_inc(&current->signal->count);
884 atomic_inc(&current->signal->live);
885 return 0;
887 sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
888 tsk->signal = sig;
889 if (!sig)
890 return -ENOMEM;
892 ret = copy_thread_group_keys(tsk);
893 if (ret < 0) {
894 kmem_cache_free(signal_cachep, sig);
895 return ret;
898 atomic_set(&sig->count, 1);
899 atomic_set(&sig->live, 1);
900 init_waitqueue_head(&sig->wait_chldexit);
901 sig->flags = 0;
902 sig->group_exit_code = 0;
903 sig->group_exit_task = NULL;
904 sig->group_stop_count = 0;
905 sig->curr_target = NULL;
906 init_sigpending(&sig->shared_pending);
907 INIT_LIST_HEAD(&sig->posix_timers);
909 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
910 sig->it_real_incr.tv64 = 0;
911 sig->real_timer.function = it_real_fn;
913 sig->it_virt_expires = cputime_zero;
914 sig->it_virt_incr = cputime_zero;
915 sig->it_prof_expires = cputime_zero;
916 sig->it_prof_incr = cputime_zero;
918 sig->leader = 0; /* session leadership doesn't inherit */
919 sig->tty_old_pgrp = NULL;
921 sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
922 sig->gtime = cputime_zero;
923 sig->cgtime = cputime_zero;
924 sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
925 sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
926 sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0;
927 sig->sum_sched_runtime = 0;
928 INIT_LIST_HEAD(&sig->cpu_timers[0]);
929 INIT_LIST_HEAD(&sig->cpu_timers[1]);
930 INIT_LIST_HEAD(&sig->cpu_timers[2]);
931 taskstats_tgid_init(sig);
933 task_lock(current->group_leader);
934 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
935 task_unlock(current->group_leader);
937 if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
939 * New sole thread in the process gets an expiry time
940 * of the whole CPU time limit.
942 tsk->it_prof_expires =
943 secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
945 acct_init_pacct(&sig->pacct);
947 tty_audit_fork(sig);
949 return 0;
952 void __cleanup_signal(struct signal_struct *sig)
954 exit_thread_group_keys(sig);
955 kmem_cache_free(signal_cachep, sig);
958 static void cleanup_signal(struct task_struct *tsk)
960 struct signal_struct *sig = tsk->signal;
962 atomic_dec(&sig->live);
964 if (atomic_dec_and_test(&sig->count))
965 __cleanup_signal(sig);
968 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
970 unsigned long new_flags = p->flags;
972 new_flags &= ~PF_SUPERPRIV;
973 new_flags |= PF_FORKNOEXEC;
974 if (!(clone_flags & CLONE_PTRACE))
975 p->ptrace = 0;
976 p->flags = new_flags;
977 clear_freeze_flag(p);
980 asmlinkage long sys_set_tid_address(int __user *tidptr)
982 current->clear_child_tid = tidptr;
984 return task_pid_vnr(current);
987 static void rt_mutex_init_task(struct task_struct *p)
989 spin_lock_init(&p->pi_lock);
990 #ifdef CONFIG_RT_MUTEXES
991 plist_head_init(&p->pi_waiters, &p->pi_lock);
992 p->pi_blocked_on = NULL;
993 #endif
997 * This creates a new process as a copy of the old one,
998 * but does not actually start it yet.
1000 * It copies the registers, and all the appropriate
1001 * parts of the process environment (as per the clone
1002 * flags). The actual kick-off is left to the caller.
1004 static struct task_struct *copy_process(unsigned long clone_flags,
1005 unsigned long stack_start,
1006 struct pt_regs *regs,
1007 unsigned long stack_size,
1008 int __user *child_tidptr,
1009 struct pid *pid)
1011 int retval;
1012 struct task_struct *p;
1013 int cgroup_callbacks_done = 0;
1015 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1016 return ERR_PTR(-EINVAL);
1019 * Thread groups must share signals as well, and detached threads
1020 * can only be started up within the thread group.
1022 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1023 return ERR_PTR(-EINVAL);
1026 * Shared signal handlers imply shared VM. By way of the above,
1027 * thread groups also imply shared VM. Blocking this case allows
1028 * for various simplifications in other code.
1030 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1031 return ERR_PTR(-EINVAL);
1033 retval = security_task_create(clone_flags);
1034 if (retval)
1035 goto fork_out;
1037 retval = -ENOMEM;
1038 p = dup_task_struct(current);
1039 if (!p)
1040 goto fork_out;
1042 rt_mutex_init_task(p);
1044 #ifdef CONFIG_TRACE_IRQFLAGS
1045 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1046 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1047 #endif
1048 retval = -EAGAIN;
1049 if (atomic_read(&p->user->processes) >=
1050 p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
1051 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1052 p->user != current->nsproxy->user_ns->root_user)
1053 goto bad_fork_free;
1056 atomic_inc(&p->user->__count);
1057 atomic_inc(&p->user->processes);
1058 get_group_info(p->group_info);
1061 * If multiple threads are within copy_process(), then this check
1062 * triggers too late. This doesn't hurt, the check is only there
1063 * to stop root fork bombs.
1065 if (nr_threads >= max_threads)
1066 goto bad_fork_cleanup_count;
1068 if (!try_module_get(task_thread_info(p)->exec_domain->module))
1069 goto bad_fork_cleanup_count;
1071 if (p->binfmt && !try_module_get(p->binfmt->module))
1072 goto bad_fork_cleanup_put_domain;
1074 p->did_exec = 0;
1075 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1076 copy_flags(clone_flags, p);
1077 INIT_LIST_HEAD(&p->children);
1078 INIT_LIST_HEAD(&p->sibling);
1079 #ifdef CONFIG_PREEMPT_RCU
1080 p->rcu_read_lock_nesting = 0;
1081 p->rcu_flipctr_idx = 0;
1082 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1083 p->vfork_done = NULL;
1084 spin_lock_init(&p->alloc_lock);
1086 clear_tsk_thread_flag(p, TIF_SIGPENDING);
1087 init_sigpending(&p->pending);
1089 p->utime = cputime_zero;
1090 p->stime = cputime_zero;
1091 p->gtime = cputime_zero;
1092 p->utimescaled = cputime_zero;
1093 p->stimescaled = cputime_zero;
1094 p->prev_utime = cputime_zero;
1095 p->prev_stime = cputime_zero;
1097 #ifdef CONFIG_DETECT_SOFTLOCKUP
1098 p->last_switch_count = 0;
1099 p->last_switch_timestamp = 0;
1100 #endif
1102 #ifdef CONFIG_TASK_XACCT
1103 p->rchar = 0; /* I/O counter: bytes read */
1104 p->wchar = 0; /* I/O counter: bytes written */
1105 p->syscr = 0; /* I/O counter: read syscalls */
1106 p->syscw = 0; /* I/O counter: write syscalls */
1107 #endif
1108 task_io_accounting_init(p);
1109 acct_clear_integrals(p);
1111 p->it_virt_expires = cputime_zero;
1112 p->it_prof_expires = cputime_zero;
1113 p->it_sched_expires = 0;
1114 INIT_LIST_HEAD(&p->cpu_timers[0]);
1115 INIT_LIST_HEAD(&p->cpu_timers[1]);
1116 INIT_LIST_HEAD(&p->cpu_timers[2]);
1118 p->lock_depth = -1; /* -1 = no lock */
1119 do_posix_clock_monotonic_gettime(&p->start_time);
1120 p->real_start_time = p->start_time;
1121 monotonic_to_bootbased(&p->real_start_time);
1122 #ifdef CONFIG_SECURITY
1123 p->security = NULL;
1124 #endif
1125 p->cap_bset = current->cap_bset;
1126 p->io_context = NULL;
1127 p->audit_context = NULL;
1128 cgroup_fork(p);
1129 #ifdef CONFIG_NUMA
1130 p->mempolicy = mpol_copy(p->mempolicy);
1131 if (IS_ERR(p->mempolicy)) {
1132 retval = PTR_ERR(p->mempolicy);
1133 p->mempolicy = NULL;
1134 goto bad_fork_cleanup_cgroup;
1136 mpol_fix_fork_child_flag(p);
1137 #endif
1138 #ifdef CONFIG_TRACE_IRQFLAGS
1139 p->irq_events = 0;
1140 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1141 p->hardirqs_enabled = 1;
1142 #else
1143 p->hardirqs_enabled = 0;
1144 #endif
1145 p->hardirq_enable_ip = 0;
1146 p->hardirq_enable_event = 0;
1147 p->hardirq_disable_ip = _THIS_IP_;
1148 p->hardirq_disable_event = 0;
1149 p->softirqs_enabled = 1;
1150 p->softirq_enable_ip = _THIS_IP_;
1151 p->softirq_enable_event = 0;
1152 p->softirq_disable_ip = 0;
1153 p->softirq_disable_event = 0;
1154 p->hardirq_context = 0;
1155 p->softirq_context = 0;
1156 #endif
1157 #ifdef CONFIG_LOCKDEP
1158 p->lockdep_depth = 0; /* no locks held yet */
1159 p->curr_chain_key = 0;
1160 p->lockdep_recursion = 0;
1161 #endif
1163 #ifdef CONFIG_DEBUG_MUTEXES
1164 p->blocked_on = NULL; /* not blocked yet */
1165 #endif
1167 /* Perform scheduler related setup. Assign this task to a CPU. */
1168 sched_fork(p, clone_flags);
1170 if ((retval = security_task_alloc(p)))
1171 goto bad_fork_cleanup_policy;
1172 if ((retval = audit_alloc(p)))
1173 goto bad_fork_cleanup_security;
1174 /* copy all the process information */
1175 if ((retval = copy_semundo(clone_flags, p)))
1176 goto bad_fork_cleanup_audit;
1177 if ((retval = copy_files(clone_flags, p)))
1178 goto bad_fork_cleanup_semundo;
1179 if ((retval = copy_fs(clone_flags, p)))
1180 goto bad_fork_cleanup_files;
1181 if ((retval = copy_sighand(clone_flags, p)))
1182 goto bad_fork_cleanup_fs;
1183 if ((retval = copy_signal(clone_flags, p)))
1184 goto bad_fork_cleanup_sighand;
1185 if ((retval = copy_mm(clone_flags, p)))
1186 goto bad_fork_cleanup_signal;
1187 if ((retval = copy_keys(clone_flags, p)))
1188 goto bad_fork_cleanup_mm;
1189 if ((retval = copy_namespaces(clone_flags, p)))
1190 goto bad_fork_cleanup_keys;
1191 if ((retval = copy_io(clone_flags, p)))
1192 goto bad_fork_cleanup_namespaces;
1193 retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
1194 if (retval)
1195 goto bad_fork_cleanup_io;
1197 if (pid != &init_struct_pid) {
1198 retval = -ENOMEM;
1199 pid = alloc_pid(task_active_pid_ns(p));
1200 if (!pid)
1201 goto bad_fork_cleanup_io;
1203 if (clone_flags & CLONE_NEWPID) {
1204 retval = pid_ns_prepare_proc(task_active_pid_ns(p));
1205 if (retval < 0)
1206 goto bad_fork_free_pid;
1210 p->pid = pid_nr(pid);
1211 p->tgid = p->pid;
1212 if (clone_flags & CLONE_THREAD)
1213 p->tgid = current->tgid;
1215 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1217 * Clear TID on mm_release()?
1219 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1220 #ifdef CONFIG_FUTEX
1221 p->robust_list = NULL;
1222 #ifdef CONFIG_COMPAT
1223 p->compat_robust_list = NULL;
1224 #endif
1225 INIT_LIST_HEAD(&p->pi_state_list);
1226 p->pi_state_cache = NULL;
1227 #endif
1229 * sigaltstack should be cleared when sharing the same VM
1231 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1232 p->sas_ss_sp = p->sas_ss_size = 0;
1235 * Syscall tracing should be turned off in the child regardless
1236 * of CLONE_PTRACE.
1238 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1239 #ifdef TIF_SYSCALL_EMU
1240 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1241 #endif
1242 clear_all_latency_tracing(p);
1244 /* Our parent execution domain becomes current domain
1245 These must match for thread signalling to apply */
1246 p->parent_exec_id = p->self_exec_id;
1248 /* ok, now we should be set up.. */
1249 p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1250 p->pdeath_signal = 0;
1251 p->exit_state = 0;
1254 * Ok, make it visible to the rest of the system.
1255 * We dont wake it up yet.
1257 p->group_leader = p;
1258 INIT_LIST_HEAD(&p->thread_group);
1259 INIT_LIST_HEAD(&p->ptrace_children);
1260 INIT_LIST_HEAD(&p->ptrace_list);
1262 /* Now that the task is set up, run cgroup callbacks if
1263 * necessary. We need to run them before the task is visible
1264 * on the tasklist. */
1265 cgroup_fork_callbacks(p);
1266 cgroup_callbacks_done = 1;
1268 /* Need tasklist lock for parent etc handling! */
1269 write_lock_irq(&tasklist_lock);
1272 * The task hasn't been attached yet, so its cpus_allowed mask will
1273 * not be changed, nor will its assigned CPU.
1275 * The cpus_allowed mask of the parent may have changed after it was
1276 * copied first time - so re-copy it here, then check the child's CPU
1277 * to ensure it is on a valid CPU (and if not, just force it back to
1278 * parent's CPU). This avoids alot of nasty races.
1280 p->cpus_allowed = current->cpus_allowed;
1281 p->rt.nr_cpus_allowed = current->rt.nr_cpus_allowed;
1282 if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1283 !cpu_online(task_cpu(p))))
1284 set_task_cpu(p, smp_processor_id());
1286 /* CLONE_PARENT re-uses the old parent */
1287 if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
1288 p->real_parent = current->real_parent;
1289 else
1290 p->real_parent = current;
1291 p->parent = p->real_parent;
1293 spin_lock(&current->sighand->siglock);
1296 * Process group and session signals need to be delivered to just the
1297 * parent before the fork or both the parent and the child after the
1298 * fork. Restart if a signal comes in before we add the new process to
1299 * it's process group.
1300 * A fatal signal pending means that current will exit, so the new
1301 * thread can't slip out of an OOM kill (or normal SIGKILL).
1303 recalc_sigpending();
1304 if (signal_pending(current)) {
1305 spin_unlock(&current->sighand->siglock);
1306 write_unlock_irq(&tasklist_lock);
1307 retval = -ERESTARTNOINTR;
1308 goto bad_fork_free_pid;
1311 if (clone_flags & CLONE_THREAD) {
1312 p->group_leader = current->group_leader;
1313 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1315 if (!cputime_eq(current->signal->it_virt_expires,
1316 cputime_zero) ||
1317 !cputime_eq(current->signal->it_prof_expires,
1318 cputime_zero) ||
1319 current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY ||
1320 !list_empty(&current->signal->cpu_timers[0]) ||
1321 !list_empty(&current->signal->cpu_timers[1]) ||
1322 !list_empty(&current->signal->cpu_timers[2])) {
1324 * Have child wake up on its first tick to check
1325 * for process CPU timers.
1327 p->it_prof_expires = jiffies_to_cputime(1);
1331 if (likely(p->pid)) {
1332 add_parent(p);
1333 if (unlikely(p->ptrace & PT_PTRACED))
1334 __ptrace_link(p, current->parent);
1336 if (thread_group_leader(p)) {
1337 if (clone_flags & CLONE_NEWPID)
1338 p->nsproxy->pid_ns->child_reaper = p;
1340 p->signal->leader_pid = pid;
1341 p->signal->tty = current->signal->tty;
1342 set_task_pgrp(p, task_pgrp_nr(current));
1343 set_task_session(p, task_session_nr(current));
1344 attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1345 attach_pid(p, PIDTYPE_SID, task_session(current));
1346 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1347 __get_cpu_var(process_counts)++;
1349 attach_pid(p, PIDTYPE_PID, pid);
1350 nr_threads++;
1353 total_forks++;
1354 spin_unlock(&current->sighand->siglock);
1355 write_unlock_irq(&tasklist_lock);
1356 proc_fork_connector(p);
1357 cgroup_post_fork(p);
1358 return p;
1360 bad_fork_free_pid:
1361 if (pid != &init_struct_pid)
1362 free_pid(pid);
1363 bad_fork_cleanup_io:
1364 put_io_context(p->io_context);
1365 bad_fork_cleanup_namespaces:
1366 exit_task_namespaces(p);
1367 bad_fork_cleanup_keys:
1368 exit_keys(p);
1369 bad_fork_cleanup_mm:
1370 if (p->mm)
1371 mmput(p->mm);
1372 bad_fork_cleanup_signal:
1373 cleanup_signal(p);
1374 bad_fork_cleanup_sighand:
1375 __cleanup_sighand(p->sighand);
1376 bad_fork_cleanup_fs:
1377 exit_fs(p); /* blocking */
1378 bad_fork_cleanup_files:
1379 exit_files(p); /* blocking */
1380 bad_fork_cleanup_semundo:
1381 exit_sem(p);
1382 bad_fork_cleanup_audit:
1383 audit_free(p);
1384 bad_fork_cleanup_security:
1385 security_task_free(p);
1386 bad_fork_cleanup_policy:
1387 #ifdef CONFIG_NUMA
1388 mpol_free(p->mempolicy);
1389 bad_fork_cleanup_cgroup:
1390 #endif
1391 cgroup_exit(p, cgroup_callbacks_done);
1392 delayacct_tsk_free(p);
1393 if (p->binfmt)
1394 module_put(p->binfmt->module);
1395 bad_fork_cleanup_put_domain:
1396 module_put(task_thread_info(p)->exec_domain->module);
1397 bad_fork_cleanup_count:
1398 put_group_info(p->group_info);
1399 atomic_dec(&p->user->processes);
1400 free_uid(p->user);
1401 bad_fork_free:
1402 free_task(p);
1403 fork_out:
1404 return ERR_PTR(retval);
1407 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1409 memset(regs, 0, sizeof(struct pt_regs));
1410 return regs;
1413 struct task_struct * __cpuinit fork_idle(int cpu)
1415 struct task_struct *task;
1416 struct pt_regs regs;
1418 task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1419 &init_struct_pid);
1420 if (!IS_ERR(task))
1421 init_idle(task, cpu);
1423 return task;
1426 static int fork_traceflag(unsigned clone_flags)
1428 if (clone_flags & CLONE_UNTRACED)
1429 return 0;
1430 else if (clone_flags & CLONE_VFORK) {
1431 if (current->ptrace & PT_TRACE_VFORK)
1432 return PTRACE_EVENT_VFORK;
1433 } else if ((clone_flags & CSIGNAL) != SIGCHLD) {
1434 if (current->ptrace & PT_TRACE_CLONE)
1435 return PTRACE_EVENT_CLONE;
1436 } else if (current->ptrace & PT_TRACE_FORK)
1437 return PTRACE_EVENT_FORK;
1439 return 0;
1443 * Ok, this is the main fork-routine.
1445 * It copies the process, and if successful kick-starts
1446 * it and waits for it to finish using the VM if required.
1448 long do_fork(unsigned long clone_flags,
1449 unsigned long stack_start,
1450 struct pt_regs *regs,
1451 unsigned long stack_size,
1452 int __user *parent_tidptr,
1453 int __user *child_tidptr)
1455 struct task_struct *p;
1456 int trace = 0;
1457 long nr;
1460 * We hope to recycle these flags after 2.6.26
1462 if (unlikely(clone_flags & CLONE_STOPPED)) {
1463 static int __read_mostly count = 100;
1465 if (count > 0 && printk_ratelimit()) {
1466 char comm[TASK_COMM_LEN];
1468 count--;
1469 printk(KERN_INFO "fork(): process `%s' used deprecated "
1470 "clone flags 0x%lx\n",
1471 get_task_comm(comm, current),
1472 clone_flags & CLONE_STOPPED);
1476 if (unlikely(current->ptrace)) {
1477 trace = fork_traceflag (clone_flags);
1478 if (trace)
1479 clone_flags |= CLONE_PTRACE;
1482 p = copy_process(clone_flags, stack_start, regs, stack_size,
1483 child_tidptr, NULL);
1485 * Do this prior waking up the new thread - the thread pointer
1486 * might get invalid after that point, if the thread exits quickly.
1488 if (!IS_ERR(p)) {
1489 struct completion vfork;
1491 nr = task_pid_vnr(p);
1493 if (clone_flags & CLONE_PARENT_SETTID)
1494 put_user(nr, parent_tidptr);
1496 if (clone_flags & CLONE_VFORK) {
1497 p->vfork_done = &vfork;
1498 init_completion(&vfork);
1501 if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) {
1503 * We'll start up with an immediate SIGSTOP.
1505 sigaddset(&p->pending.signal, SIGSTOP);
1506 set_tsk_thread_flag(p, TIF_SIGPENDING);
1509 if (!(clone_flags & CLONE_STOPPED))
1510 wake_up_new_task(p, clone_flags);
1511 else
1512 __set_task_state(p, TASK_STOPPED);
1514 if (unlikely (trace)) {
1515 current->ptrace_message = nr;
1516 ptrace_notify ((trace << 8) | SIGTRAP);
1519 if (clone_flags & CLONE_VFORK) {
1520 freezer_do_not_count();
1521 wait_for_completion(&vfork);
1522 freezer_count();
1523 if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE)) {
1524 current->ptrace_message = nr;
1525 ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP);
1528 } else {
1529 nr = PTR_ERR(p);
1531 return nr;
1534 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1535 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1536 #endif
1538 static void sighand_ctor(struct kmem_cache *cachep, void *data)
1540 struct sighand_struct *sighand = data;
1542 spin_lock_init(&sighand->siglock);
1543 init_waitqueue_head(&sighand->signalfd_wqh);
1546 void __init proc_caches_init(void)
1548 sighand_cachep = kmem_cache_create("sighand_cache",
1549 sizeof(struct sighand_struct), 0,
1550 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU,
1551 sighand_ctor);
1552 signal_cachep = kmem_cache_create("signal_cache",
1553 sizeof(struct signal_struct), 0,
1554 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1555 files_cachep = kmem_cache_create("files_cache",
1556 sizeof(struct files_struct), 0,
1557 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1558 fs_cachep = kmem_cache_create("fs_cache",
1559 sizeof(struct fs_struct), 0,
1560 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1561 vm_area_cachep = kmem_cache_create("vm_area_struct",
1562 sizeof(struct vm_area_struct), 0,
1563 SLAB_PANIC, NULL);
1564 mm_cachep = kmem_cache_create("mm_struct",
1565 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1566 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1570 * Check constraints on flags passed to the unshare system call and
1571 * force unsharing of additional process context as appropriate.
1573 static void check_unshare_flags(unsigned long *flags_ptr)
1576 * If unsharing a thread from a thread group, must also
1577 * unshare vm.
1579 if (*flags_ptr & CLONE_THREAD)
1580 *flags_ptr |= CLONE_VM;
1583 * If unsharing vm, must also unshare signal handlers.
1585 if (*flags_ptr & CLONE_VM)
1586 *flags_ptr |= CLONE_SIGHAND;
1589 * If unsharing signal handlers and the task was created
1590 * using CLONE_THREAD, then must unshare the thread
1592 if ((*flags_ptr & CLONE_SIGHAND) &&
1593 (atomic_read(&current->signal->count) > 1))
1594 *flags_ptr |= CLONE_THREAD;
1597 * If unsharing namespace, must also unshare filesystem information.
1599 if (*flags_ptr & CLONE_NEWNS)
1600 *flags_ptr |= CLONE_FS;
1604 * Unsharing of tasks created with CLONE_THREAD is not supported yet
1606 static int unshare_thread(unsigned long unshare_flags)
1608 if (unshare_flags & CLONE_THREAD)
1609 return -EINVAL;
1611 return 0;
1615 * Unshare the filesystem structure if it is being shared
1617 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1619 struct fs_struct *fs = current->fs;
1621 if ((unshare_flags & CLONE_FS) &&
1622 (fs && atomic_read(&fs->count) > 1)) {
1623 *new_fsp = __copy_fs_struct(current->fs);
1624 if (!*new_fsp)
1625 return -ENOMEM;
1628 return 0;
1632 * Unsharing of sighand is not supported yet
1634 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1636 struct sighand_struct *sigh = current->sighand;
1638 if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
1639 return -EINVAL;
1640 else
1641 return 0;
1645 * Unshare vm if it is being shared
1647 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1649 struct mm_struct *mm = current->mm;
1651 if ((unshare_flags & CLONE_VM) &&
1652 (mm && atomic_read(&mm->mm_users) > 1)) {
1653 return -EINVAL;
1656 return 0;
1660 * Unshare file descriptor table if it is being shared
1662 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1664 struct files_struct *fd = current->files;
1665 int error = 0;
1667 if ((unshare_flags & CLONE_FILES) &&
1668 (fd && atomic_read(&fd->count) > 1)) {
1669 *new_fdp = dup_fd(fd, &error);
1670 if (!*new_fdp)
1671 return error;
1674 return 0;
1678 * Unsharing of semundo for tasks created with CLONE_SYSVSEM is not
1679 * supported yet
1681 static int unshare_semundo(unsigned long unshare_flags, struct sem_undo_list **new_ulistp)
1683 if (unshare_flags & CLONE_SYSVSEM)
1684 return -EINVAL;
1686 return 0;
1690 * unshare allows a process to 'unshare' part of the process
1691 * context which was originally shared using clone. copy_*
1692 * functions used by do_fork() cannot be used here directly
1693 * because they modify an inactive task_struct that is being
1694 * constructed. Here we are modifying the current, active,
1695 * task_struct.
1697 asmlinkage long sys_unshare(unsigned long unshare_flags)
1699 int err = 0;
1700 struct fs_struct *fs, *new_fs = NULL;
1701 struct sighand_struct *new_sigh = NULL;
1702 struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1703 struct files_struct *fd, *new_fd = NULL;
1704 struct sem_undo_list *new_ulist = NULL;
1705 struct nsproxy *new_nsproxy = NULL;
1707 check_unshare_flags(&unshare_flags);
1709 /* Return -EINVAL for all unsupported flags */
1710 err = -EINVAL;
1711 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1712 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1713 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWUSER|
1714 CLONE_NEWNET))
1715 goto bad_unshare_out;
1717 if ((err = unshare_thread(unshare_flags)))
1718 goto bad_unshare_out;
1719 if ((err = unshare_fs(unshare_flags, &new_fs)))
1720 goto bad_unshare_cleanup_thread;
1721 if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1722 goto bad_unshare_cleanup_fs;
1723 if ((err = unshare_vm(unshare_flags, &new_mm)))
1724 goto bad_unshare_cleanup_sigh;
1725 if ((err = unshare_fd(unshare_flags, &new_fd)))
1726 goto bad_unshare_cleanup_vm;
1727 if ((err = unshare_semundo(unshare_flags, &new_ulist)))
1728 goto bad_unshare_cleanup_fd;
1729 if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1730 new_fs)))
1731 goto bad_unshare_cleanup_semundo;
1733 if (new_fs || new_mm || new_fd || new_ulist || new_nsproxy) {
1735 if (new_nsproxy) {
1736 switch_task_namespaces(current, new_nsproxy);
1737 new_nsproxy = NULL;
1740 task_lock(current);
1742 if (new_fs) {
1743 fs = current->fs;
1744 current->fs = new_fs;
1745 new_fs = fs;
1748 if (new_mm) {
1749 mm = current->mm;
1750 active_mm = current->active_mm;
1751 current->mm = new_mm;
1752 current->active_mm = new_mm;
1753 activate_mm(active_mm, new_mm);
1754 new_mm = mm;
1757 if (new_fd) {
1758 fd = current->files;
1759 current->files = new_fd;
1760 new_fd = fd;
1763 task_unlock(current);
1766 if (new_nsproxy)
1767 put_nsproxy(new_nsproxy);
1769 bad_unshare_cleanup_semundo:
1770 bad_unshare_cleanup_fd:
1771 if (new_fd)
1772 put_files_struct(new_fd);
1774 bad_unshare_cleanup_vm:
1775 if (new_mm)
1776 mmput(new_mm);
1778 bad_unshare_cleanup_sigh:
1779 if (new_sigh)
1780 if (atomic_dec_and_test(&new_sigh->count))
1781 kmem_cache_free(sighand_cachep, new_sigh);
1783 bad_unshare_cleanup_fs:
1784 if (new_fs)
1785 put_fs_struct(new_fs);
1787 bad_unshare_cleanup_thread:
1788 bad_unshare_out:
1789 return err;