PM: Convert wakeup flag accessors to inline functions
[linux-2.6/mini2440.git] / kernel / auditsc.c
blob56e56ed594a840e9061aac32b7aedfab076d81e9
1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
7 * All Rights Reserved.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
45 #include <linux/init.h>
46 #include <asm/types.h>
47 #include <asm/atomic.h>
48 #include <linux/fs.h>
49 #include <linux/namei.h>
50 #include <linux/mm.h>
51 #include <linux/module.h>
52 #include <linux/mount.h>
53 #include <linux/socket.h>
54 #include <linux/mqueue.h>
55 #include <linux/audit.h>
56 #include <linux/personality.h>
57 #include <linux/time.h>
58 #include <linux/netlink.h>
59 #include <linux/compiler.h>
60 #include <asm/unistd.h>
61 #include <linux/security.h>
62 #include <linux/list.h>
63 #include <linux/tty.h>
64 #include <linux/binfmts.h>
65 #include <linux/highmem.h>
66 #include <linux/syscalls.h>
67 #include <linux/inotify.h>
69 #include "audit.h"
71 extern struct list_head audit_filter_list[];
72 extern int audit_ever_enabled;
74 /* AUDIT_NAMES is the number of slots we reserve in the audit_context
75 * for saving names from getname(). */
76 #define AUDIT_NAMES 20
78 /* Indicates that audit should log the full pathname. */
79 #define AUDIT_NAME_FULL -1
81 /* no execve audit message should be longer than this (userspace limits) */
82 #define MAX_EXECVE_AUDIT_LEN 7500
84 /* number of audit rules */
85 int audit_n_rules;
87 /* determines whether we collect data for signals sent */
88 int audit_signals;
90 /* When fs/namei.c:getname() is called, we store the pointer in name and
91 * we don't let putname() free it (instead we free all of the saved
92 * pointers at syscall exit time).
94 * Further, in fs/namei.c:path_lookup() we store the inode and device. */
95 struct audit_names {
96 const char *name;
97 int name_len; /* number of name's characters to log */
98 unsigned name_put; /* call __putname() for this name */
99 unsigned long ino;
100 dev_t dev;
101 umode_t mode;
102 uid_t uid;
103 gid_t gid;
104 dev_t rdev;
105 u32 osid;
108 struct audit_aux_data {
109 struct audit_aux_data *next;
110 int type;
113 #define AUDIT_AUX_IPCPERM 0
115 /* Number of target pids per aux struct. */
116 #define AUDIT_AUX_PIDS 16
118 struct audit_aux_data_mq_open {
119 struct audit_aux_data d;
120 int oflag;
121 mode_t mode;
122 struct mq_attr attr;
125 struct audit_aux_data_mq_sendrecv {
126 struct audit_aux_data d;
127 mqd_t mqdes;
128 size_t msg_len;
129 unsigned int msg_prio;
130 struct timespec abs_timeout;
133 struct audit_aux_data_mq_notify {
134 struct audit_aux_data d;
135 mqd_t mqdes;
136 struct sigevent notification;
139 struct audit_aux_data_mq_getsetattr {
140 struct audit_aux_data d;
141 mqd_t mqdes;
142 struct mq_attr mqstat;
145 struct audit_aux_data_ipcctl {
146 struct audit_aux_data d;
147 struct ipc_perm p;
148 unsigned long qbytes;
149 uid_t uid;
150 gid_t gid;
151 mode_t mode;
152 u32 osid;
155 struct audit_aux_data_execve {
156 struct audit_aux_data d;
157 int argc;
158 int envc;
159 struct mm_struct *mm;
162 struct audit_aux_data_socketcall {
163 struct audit_aux_data d;
164 int nargs;
165 unsigned long args[0];
168 struct audit_aux_data_sockaddr {
169 struct audit_aux_data d;
170 int len;
171 char a[0];
174 struct audit_aux_data_fd_pair {
175 struct audit_aux_data d;
176 int fd[2];
179 struct audit_aux_data_pids {
180 struct audit_aux_data d;
181 pid_t target_pid[AUDIT_AUX_PIDS];
182 uid_t target_auid[AUDIT_AUX_PIDS];
183 uid_t target_uid[AUDIT_AUX_PIDS];
184 unsigned int target_sessionid[AUDIT_AUX_PIDS];
185 u32 target_sid[AUDIT_AUX_PIDS];
186 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
187 int pid_count;
190 struct audit_tree_refs {
191 struct audit_tree_refs *next;
192 struct audit_chunk *c[31];
195 /* The per-task audit context. */
196 struct audit_context {
197 int dummy; /* must be the first element */
198 int in_syscall; /* 1 if task is in a syscall */
199 enum audit_state state;
200 unsigned int serial; /* serial number for record */
201 struct timespec ctime; /* time of syscall entry */
202 int major; /* syscall number */
203 unsigned long argv[4]; /* syscall arguments */
204 int return_valid; /* return code is valid */
205 long return_code;/* syscall return code */
206 int auditable; /* 1 if record should be written */
207 int name_count;
208 struct audit_names names[AUDIT_NAMES];
209 char * filterkey; /* key for rule that triggered record */
210 struct path pwd;
211 struct audit_context *previous; /* For nested syscalls */
212 struct audit_aux_data *aux;
213 struct audit_aux_data *aux_pids;
215 /* Save things to print about task_struct */
216 pid_t pid, ppid;
217 uid_t uid, euid, suid, fsuid;
218 gid_t gid, egid, sgid, fsgid;
219 unsigned long personality;
220 int arch;
222 pid_t target_pid;
223 uid_t target_auid;
224 uid_t target_uid;
225 unsigned int target_sessionid;
226 u32 target_sid;
227 char target_comm[TASK_COMM_LEN];
229 struct audit_tree_refs *trees, *first_trees;
230 int tree_count;
232 #if AUDIT_DEBUG
233 int put_count;
234 int ino_count;
235 #endif
238 #define ACC_MODE(x) ("\004\002\006\006"[(x)&O_ACCMODE])
239 static inline int open_arg(int flags, int mask)
241 int n = ACC_MODE(flags);
242 if (flags & (O_TRUNC | O_CREAT))
243 n |= AUDIT_PERM_WRITE;
244 return n & mask;
247 static int audit_match_perm(struct audit_context *ctx, int mask)
249 unsigned n = ctx->major;
250 switch (audit_classify_syscall(ctx->arch, n)) {
251 case 0: /* native */
252 if ((mask & AUDIT_PERM_WRITE) &&
253 audit_match_class(AUDIT_CLASS_WRITE, n))
254 return 1;
255 if ((mask & AUDIT_PERM_READ) &&
256 audit_match_class(AUDIT_CLASS_READ, n))
257 return 1;
258 if ((mask & AUDIT_PERM_ATTR) &&
259 audit_match_class(AUDIT_CLASS_CHATTR, n))
260 return 1;
261 return 0;
262 case 1: /* 32bit on biarch */
263 if ((mask & AUDIT_PERM_WRITE) &&
264 audit_match_class(AUDIT_CLASS_WRITE_32, n))
265 return 1;
266 if ((mask & AUDIT_PERM_READ) &&
267 audit_match_class(AUDIT_CLASS_READ_32, n))
268 return 1;
269 if ((mask & AUDIT_PERM_ATTR) &&
270 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
271 return 1;
272 return 0;
273 case 2: /* open */
274 return mask & ACC_MODE(ctx->argv[1]);
275 case 3: /* openat */
276 return mask & ACC_MODE(ctx->argv[2]);
277 case 4: /* socketcall */
278 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
279 case 5: /* execve */
280 return mask & AUDIT_PERM_EXEC;
281 default:
282 return 0;
287 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
288 * ->first_trees points to its beginning, ->trees - to the current end of data.
289 * ->tree_count is the number of free entries in array pointed to by ->trees.
290 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
291 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
292 * it's going to remain 1-element for almost any setup) until we free context itself.
293 * References in it _are_ dropped - at the same time we free/drop aux stuff.
296 #ifdef CONFIG_AUDIT_TREE
297 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
299 struct audit_tree_refs *p = ctx->trees;
300 int left = ctx->tree_count;
301 if (likely(left)) {
302 p->c[--left] = chunk;
303 ctx->tree_count = left;
304 return 1;
306 if (!p)
307 return 0;
308 p = p->next;
309 if (p) {
310 p->c[30] = chunk;
311 ctx->trees = p;
312 ctx->tree_count = 30;
313 return 1;
315 return 0;
318 static int grow_tree_refs(struct audit_context *ctx)
320 struct audit_tree_refs *p = ctx->trees;
321 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
322 if (!ctx->trees) {
323 ctx->trees = p;
324 return 0;
326 if (p)
327 p->next = ctx->trees;
328 else
329 ctx->first_trees = ctx->trees;
330 ctx->tree_count = 31;
331 return 1;
333 #endif
335 static void unroll_tree_refs(struct audit_context *ctx,
336 struct audit_tree_refs *p, int count)
338 #ifdef CONFIG_AUDIT_TREE
339 struct audit_tree_refs *q;
340 int n;
341 if (!p) {
342 /* we started with empty chain */
343 p = ctx->first_trees;
344 count = 31;
345 /* if the very first allocation has failed, nothing to do */
346 if (!p)
347 return;
349 n = count;
350 for (q = p; q != ctx->trees; q = q->next, n = 31) {
351 while (n--) {
352 audit_put_chunk(q->c[n]);
353 q->c[n] = NULL;
356 while (n-- > ctx->tree_count) {
357 audit_put_chunk(q->c[n]);
358 q->c[n] = NULL;
360 ctx->trees = p;
361 ctx->tree_count = count;
362 #endif
365 static void free_tree_refs(struct audit_context *ctx)
367 struct audit_tree_refs *p, *q;
368 for (p = ctx->first_trees; p; p = q) {
369 q = p->next;
370 kfree(p);
374 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
376 #ifdef CONFIG_AUDIT_TREE
377 struct audit_tree_refs *p;
378 int n;
379 if (!tree)
380 return 0;
381 /* full ones */
382 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
383 for (n = 0; n < 31; n++)
384 if (audit_tree_match(p->c[n], tree))
385 return 1;
387 /* partial */
388 if (p) {
389 for (n = ctx->tree_count; n < 31; n++)
390 if (audit_tree_match(p->c[n], tree))
391 return 1;
393 #endif
394 return 0;
397 /* Determine if any context name data matches a rule's watch data */
398 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
399 * otherwise. */
400 static int audit_filter_rules(struct task_struct *tsk,
401 struct audit_krule *rule,
402 struct audit_context *ctx,
403 struct audit_names *name,
404 enum audit_state *state)
406 int i, j, need_sid = 1;
407 u32 sid;
409 for (i = 0; i < rule->field_count; i++) {
410 struct audit_field *f = &rule->fields[i];
411 int result = 0;
413 switch (f->type) {
414 case AUDIT_PID:
415 result = audit_comparator(tsk->pid, f->op, f->val);
416 break;
417 case AUDIT_PPID:
418 if (ctx) {
419 if (!ctx->ppid)
420 ctx->ppid = sys_getppid();
421 result = audit_comparator(ctx->ppid, f->op, f->val);
423 break;
424 case AUDIT_UID:
425 result = audit_comparator(tsk->uid, f->op, f->val);
426 break;
427 case AUDIT_EUID:
428 result = audit_comparator(tsk->euid, f->op, f->val);
429 break;
430 case AUDIT_SUID:
431 result = audit_comparator(tsk->suid, f->op, f->val);
432 break;
433 case AUDIT_FSUID:
434 result = audit_comparator(tsk->fsuid, f->op, f->val);
435 break;
436 case AUDIT_GID:
437 result = audit_comparator(tsk->gid, f->op, f->val);
438 break;
439 case AUDIT_EGID:
440 result = audit_comparator(tsk->egid, f->op, f->val);
441 break;
442 case AUDIT_SGID:
443 result = audit_comparator(tsk->sgid, f->op, f->val);
444 break;
445 case AUDIT_FSGID:
446 result = audit_comparator(tsk->fsgid, f->op, f->val);
447 break;
448 case AUDIT_PERS:
449 result = audit_comparator(tsk->personality, f->op, f->val);
450 break;
451 case AUDIT_ARCH:
452 if (ctx)
453 result = audit_comparator(ctx->arch, f->op, f->val);
454 break;
456 case AUDIT_EXIT:
457 if (ctx && ctx->return_valid)
458 result = audit_comparator(ctx->return_code, f->op, f->val);
459 break;
460 case AUDIT_SUCCESS:
461 if (ctx && ctx->return_valid) {
462 if (f->val)
463 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
464 else
465 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
467 break;
468 case AUDIT_DEVMAJOR:
469 if (name)
470 result = audit_comparator(MAJOR(name->dev),
471 f->op, f->val);
472 else if (ctx) {
473 for (j = 0; j < ctx->name_count; j++) {
474 if (audit_comparator(MAJOR(ctx->names[j].dev), f->op, f->val)) {
475 ++result;
476 break;
480 break;
481 case AUDIT_DEVMINOR:
482 if (name)
483 result = audit_comparator(MINOR(name->dev),
484 f->op, f->val);
485 else if (ctx) {
486 for (j = 0; j < ctx->name_count; j++) {
487 if (audit_comparator(MINOR(ctx->names[j].dev), f->op, f->val)) {
488 ++result;
489 break;
493 break;
494 case AUDIT_INODE:
495 if (name)
496 result = (name->ino == f->val);
497 else if (ctx) {
498 for (j = 0; j < ctx->name_count; j++) {
499 if (audit_comparator(ctx->names[j].ino, f->op, f->val)) {
500 ++result;
501 break;
505 break;
506 case AUDIT_WATCH:
507 if (name && rule->watch->ino != (unsigned long)-1)
508 result = (name->dev == rule->watch->dev &&
509 name->ino == rule->watch->ino);
510 break;
511 case AUDIT_DIR:
512 if (ctx)
513 result = match_tree_refs(ctx, rule->tree);
514 break;
515 case AUDIT_LOGINUID:
516 result = 0;
517 if (ctx)
518 result = audit_comparator(tsk->loginuid, f->op, f->val);
519 break;
520 case AUDIT_SUBJ_USER:
521 case AUDIT_SUBJ_ROLE:
522 case AUDIT_SUBJ_TYPE:
523 case AUDIT_SUBJ_SEN:
524 case AUDIT_SUBJ_CLR:
525 /* NOTE: this may return negative values indicating
526 a temporary error. We simply treat this as a
527 match for now to avoid losing information that
528 may be wanted. An error message will also be
529 logged upon error */
530 if (f->lsm_rule) {
531 if (need_sid) {
532 security_task_getsecid(tsk, &sid);
533 need_sid = 0;
535 result = security_audit_rule_match(sid, f->type,
536 f->op,
537 f->lsm_rule,
538 ctx);
540 break;
541 case AUDIT_OBJ_USER:
542 case AUDIT_OBJ_ROLE:
543 case AUDIT_OBJ_TYPE:
544 case AUDIT_OBJ_LEV_LOW:
545 case AUDIT_OBJ_LEV_HIGH:
546 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
547 also applies here */
548 if (f->lsm_rule) {
549 /* Find files that match */
550 if (name) {
551 result = security_audit_rule_match(
552 name->osid, f->type, f->op,
553 f->lsm_rule, ctx);
554 } else if (ctx) {
555 for (j = 0; j < ctx->name_count; j++) {
556 if (security_audit_rule_match(
557 ctx->names[j].osid,
558 f->type, f->op,
559 f->lsm_rule, ctx)) {
560 ++result;
561 break;
565 /* Find ipc objects that match */
566 if (ctx) {
567 struct audit_aux_data *aux;
568 for (aux = ctx->aux; aux;
569 aux = aux->next) {
570 if (aux->type == AUDIT_IPC) {
571 struct audit_aux_data_ipcctl *axi = (void *)aux;
572 if (security_audit_rule_match(axi->osid, f->type, f->op, f->lsm_rule, ctx)) {
573 ++result;
574 break;
580 break;
581 case AUDIT_ARG0:
582 case AUDIT_ARG1:
583 case AUDIT_ARG2:
584 case AUDIT_ARG3:
585 if (ctx)
586 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
587 break;
588 case AUDIT_FILTERKEY:
589 /* ignore this field for filtering */
590 result = 1;
591 break;
592 case AUDIT_PERM:
593 result = audit_match_perm(ctx, f->val);
594 break;
597 if (!result)
598 return 0;
600 if (rule->filterkey)
601 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
602 switch (rule->action) {
603 case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
604 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
606 return 1;
609 /* At process creation time, we can determine if system-call auditing is
610 * completely disabled for this task. Since we only have the task
611 * structure at this point, we can only check uid and gid.
613 static enum audit_state audit_filter_task(struct task_struct *tsk)
615 struct audit_entry *e;
616 enum audit_state state;
618 rcu_read_lock();
619 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
620 if (audit_filter_rules(tsk, &e->rule, NULL, NULL, &state)) {
621 rcu_read_unlock();
622 return state;
625 rcu_read_unlock();
626 return AUDIT_BUILD_CONTEXT;
629 /* At syscall entry and exit time, this filter is called if the
630 * audit_state is not low enough that auditing cannot take place, but is
631 * also not high enough that we already know we have to write an audit
632 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
634 static enum audit_state audit_filter_syscall(struct task_struct *tsk,
635 struct audit_context *ctx,
636 struct list_head *list)
638 struct audit_entry *e;
639 enum audit_state state;
641 if (audit_pid && tsk->tgid == audit_pid)
642 return AUDIT_DISABLED;
644 rcu_read_lock();
645 if (!list_empty(list)) {
646 int word = AUDIT_WORD(ctx->major);
647 int bit = AUDIT_BIT(ctx->major);
649 list_for_each_entry_rcu(e, list, list) {
650 if ((e->rule.mask[word] & bit) == bit &&
651 audit_filter_rules(tsk, &e->rule, ctx, NULL,
652 &state)) {
653 rcu_read_unlock();
654 return state;
658 rcu_read_unlock();
659 return AUDIT_BUILD_CONTEXT;
662 /* At syscall exit time, this filter is called if any audit_names[] have been
663 * collected during syscall processing. We only check rules in sublists at hash
664 * buckets applicable to the inode numbers in audit_names[].
665 * Regarding audit_state, same rules apply as for audit_filter_syscall().
667 enum audit_state audit_filter_inodes(struct task_struct *tsk,
668 struct audit_context *ctx)
670 int i;
671 struct audit_entry *e;
672 enum audit_state state;
674 if (audit_pid && tsk->tgid == audit_pid)
675 return AUDIT_DISABLED;
677 rcu_read_lock();
678 for (i = 0; i < ctx->name_count; i++) {
679 int word = AUDIT_WORD(ctx->major);
680 int bit = AUDIT_BIT(ctx->major);
681 struct audit_names *n = &ctx->names[i];
682 int h = audit_hash_ino((u32)n->ino);
683 struct list_head *list = &audit_inode_hash[h];
685 if (list_empty(list))
686 continue;
688 list_for_each_entry_rcu(e, list, list) {
689 if ((e->rule.mask[word] & bit) == bit &&
690 audit_filter_rules(tsk, &e->rule, ctx, n, &state)) {
691 rcu_read_unlock();
692 return state;
696 rcu_read_unlock();
697 return AUDIT_BUILD_CONTEXT;
700 void audit_set_auditable(struct audit_context *ctx)
702 ctx->auditable = 1;
705 static inline struct audit_context *audit_get_context(struct task_struct *tsk,
706 int return_valid,
707 int return_code)
709 struct audit_context *context = tsk->audit_context;
711 if (likely(!context))
712 return NULL;
713 context->return_valid = return_valid;
716 * we need to fix up the return code in the audit logs if the actual
717 * return codes are later going to be fixed up by the arch specific
718 * signal handlers
720 * This is actually a test for:
721 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
722 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
724 * but is faster than a bunch of ||
726 if (unlikely(return_code <= -ERESTARTSYS) &&
727 (return_code >= -ERESTART_RESTARTBLOCK) &&
728 (return_code != -ENOIOCTLCMD))
729 context->return_code = -EINTR;
730 else
731 context->return_code = return_code;
733 if (context->in_syscall && !context->dummy && !context->auditable) {
734 enum audit_state state;
736 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
737 if (state == AUDIT_RECORD_CONTEXT) {
738 context->auditable = 1;
739 goto get_context;
742 state = audit_filter_inodes(tsk, context);
743 if (state == AUDIT_RECORD_CONTEXT)
744 context->auditable = 1;
748 get_context:
750 tsk->audit_context = NULL;
751 return context;
754 static inline void audit_free_names(struct audit_context *context)
756 int i;
758 #if AUDIT_DEBUG == 2
759 if (context->auditable
760 ||context->put_count + context->ino_count != context->name_count) {
761 printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
762 " name_count=%d put_count=%d"
763 " ino_count=%d [NOT freeing]\n",
764 __FILE__, __LINE__,
765 context->serial, context->major, context->in_syscall,
766 context->name_count, context->put_count,
767 context->ino_count);
768 for (i = 0; i < context->name_count; i++) {
769 printk(KERN_ERR "names[%d] = %p = %s\n", i,
770 context->names[i].name,
771 context->names[i].name ?: "(null)");
773 dump_stack();
774 return;
776 #endif
777 #if AUDIT_DEBUG
778 context->put_count = 0;
779 context->ino_count = 0;
780 #endif
782 for (i = 0; i < context->name_count; i++) {
783 if (context->names[i].name && context->names[i].name_put)
784 __putname(context->names[i].name);
786 context->name_count = 0;
787 path_put(&context->pwd);
788 context->pwd.dentry = NULL;
789 context->pwd.mnt = NULL;
792 static inline void audit_free_aux(struct audit_context *context)
794 struct audit_aux_data *aux;
796 while ((aux = context->aux)) {
797 context->aux = aux->next;
798 kfree(aux);
800 while ((aux = context->aux_pids)) {
801 context->aux_pids = aux->next;
802 kfree(aux);
806 static inline void audit_zero_context(struct audit_context *context,
807 enum audit_state state)
809 memset(context, 0, sizeof(*context));
810 context->state = state;
813 static inline struct audit_context *audit_alloc_context(enum audit_state state)
815 struct audit_context *context;
817 if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
818 return NULL;
819 audit_zero_context(context, state);
820 return context;
824 * audit_alloc - allocate an audit context block for a task
825 * @tsk: task
827 * Filter on the task information and allocate a per-task audit context
828 * if necessary. Doing so turns on system call auditing for the
829 * specified task. This is called from copy_process, so no lock is
830 * needed.
832 int audit_alloc(struct task_struct *tsk)
834 struct audit_context *context;
835 enum audit_state state;
837 if (likely(!audit_ever_enabled))
838 return 0; /* Return if not auditing. */
840 state = audit_filter_task(tsk);
841 if (likely(state == AUDIT_DISABLED))
842 return 0;
844 if (!(context = audit_alloc_context(state))) {
845 audit_log_lost("out of memory in audit_alloc");
846 return -ENOMEM;
849 tsk->audit_context = context;
850 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
851 return 0;
854 static inline void audit_free_context(struct audit_context *context)
856 struct audit_context *previous;
857 int count = 0;
859 do {
860 previous = context->previous;
861 if (previous || (count && count < 10)) {
862 ++count;
863 printk(KERN_ERR "audit(:%d): major=%d name_count=%d:"
864 " freeing multiple contexts (%d)\n",
865 context->serial, context->major,
866 context->name_count, count);
868 audit_free_names(context);
869 unroll_tree_refs(context, NULL, 0);
870 free_tree_refs(context);
871 audit_free_aux(context);
872 kfree(context->filterkey);
873 kfree(context);
874 context = previous;
875 } while (context);
876 if (count >= 10)
877 printk(KERN_ERR "audit: freed %d contexts\n", count);
880 void audit_log_task_context(struct audit_buffer *ab)
882 char *ctx = NULL;
883 unsigned len;
884 int error;
885 u32 sid;
887 security_task_getsecid(current, &sid);
888 if (!sid)
889 return;
891 error = security_secid_to_secctx(sid, &ctx, &len);
892 if (error) {
893 if (error != -EINVAL)
894 goto error_path;
895 return;
898 audit_log_format(ab, " subj=%s", ctx);
899 security_release_secctx(ctx, len);
900 return;
902 error_path:
903 audit_panic("error in audit_log_task_context");
904 return;
907 EXPORT_SYMBOL(audit_log_task_context);
909 static void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
911 char name[sizeof(tsk->comm)];
912 struct mm_struct *mm = tsk->mm;
913 struct vm_area_struct *vma;
915 /* tsk == current */
917 get_task_comm(name, tsk);
918 audit_log_format(ab, " comm=");
919 audit_log_untrustedstring(ab, name);
921 if (mm) {
922 down_read(&mm->mmap_sem);
923 vma = mm->mmap;
924 while (vma) {
925 if ((vma->vm_flags & VM_EXECUTABLE) &&
926 vma->vm_file) {
927 audit_log_d_path(ab, "exe=",
928 &vma->vm_file->f_path);
929 break;
931 vma = vma->vm_next;
933 up_read(&mm->mmap_sem);
935 audit_log_task_context(ab);
938 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
939 uid_t auid, uid_t uid, unsigned int sessionid,
940 u32 sid, char *comm)
942 struct audit_buffer *ab;
943 char *ctx = NULL;
944 u32 len;
945 int rc = 0;
947 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
948 if (!ab)
949 return rc;
951 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, auid,
952 uid, sessionid);
953 if (security_secid_to_secctx(sid, &ctx, &len)) {
954 audit_log_format(ab, " obj=(none)");
955 rc = 1;
956 } else {
957 audit_log_format(ab, " obj=%s", ctx);
958 security_release_secctx(ctx, len);
960 audit_log_format(ab, " ocomm=");
961 audit_log_untrustedstring(ab, comm);
962 audit_log_end(ab);
964 return rc;
968 * to_send and len_sent accounting are very loose estimates. We aren't
969 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
970 * within about 500 bytes (next page boundry)
972 * why snprintf? an int is up to 12 digits long. if we just assumed when
973 * logging that a[%d]= was going to be 16 characters long we would be wasting
974 * space in every audit message. In one 7500 byte message we can log up to
975 * about 1000 min size arguments. That comes down to about 50% waste of space
976 * if we didn't do the snprintf to find out how long arg_num_len was.
978 static int audit_log_single_execve_arg(struct audit_context *context,
979 struct audit_buffer **ab,
980 int arg_num,
981 size_t *len_sent,
982 const char __user *p,
983 char *buf)
985 char arg_num_len_buf[12];
986 const char __user *tmp_p = p;
987 /* how many digits are in arg_num? 3 is the length of a=\n */
988 size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 3;
989 size_t len, len_left, to_send;
990 size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
991 unsigned int i, has_cntl = 0, too_long = 0;
992 int ret;
994 /* strnlen_user includes the null we don't want to send */
995 len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
998 * We just created this mm, if we can't find the strings
999 * we just copied into it something is _very_ wrong. Similar
1000 * for strings that are too long, we should not have created
1001 * any.
1003 if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
1004 WARN_ON(1);
1005 send_sig(SIGKILL, current, 0);
1006 return -1;
1009 /* walk the whole argument looking for non-ascii chars */
1010 do {
1011 if (len_left > MAX_EXECVE_AUDIT_LEN)
1012 to_send = MAX_EXECVE_AUDIT_LEN;
1013 else
1014 to_send = len_left;
1015 ret = copy_from_user(buf, tmp_p, to_send);
1017 * There is no reason for this copy to be short. We just
1018 * copied them here, and the mm hasn't been exposed to user-
1019 * space yet.
1021 if (ret) {
1022 WARN_ON(1);
1023 send_sig(SIGKILL, current, 0);
1024 return -1;
1026 buf[to_send] = '\0';
1027 has_cntl = audit_string_contains_control(buf, to_send);
1028 if (has_cntl) {
1030 * hex messages get logged as 2 bytes, so we can only
1031 * send half as much in each message
1033 max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
1034 break;
1036 len_left -= to_send;
1037 tmp_p += to_send;
1038 } while (len_left > 0);
1040 len_left = len;
1042 if (len > max_execve_audit_len)
1043 too_long = 1;
1045 /* rewalk the argument actually logging the message */
1046 for (i = 0; len_left > 0; i++) {
1047 int room_left;
1049 if (len_left > max_execve_audit_len)
1050 to_send = max_execve_audit_len;
1051 else
1052 to_send = len_left;
1054 /* do we have space left to send this argument in this ab? */
1055 room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1056 if (has_cntl)
1057 room_left -= (to_send * 2);
1058 else
1059 room_left -= to_send;
1060 if (room_left < 0) {
1061 *len_sent = 0;
1062 audit_log_end(*ab);
1063 *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1064 if (!*ab)
1065 return 0;
1069 * first record needs to say how long the original string was
1070 * so we can be sure nothing was lost.
1072 if ((i == 0) && (too_long))
1073 audit_log_format(*ab, "a%d_len=%zu ", arg_num,
1074 has_cntl ? 2*len : len);
1077 * normally arguments are small enough to fit and we already
1078 * filled buf above when we checked for control characters
1079 * so don't bother with another copy_from_user
1081 if (len >= max_execve_audit_len)
1082 ret = copy_from_user(buf, p, to_send);
1083 else
1084 ret = 0;
1085 if (ret) {
1086 WARN_ON(1);
1087 send_sig(SIGKILL, current, 0);
1088 return -1;
1090 buf[to_send] = '\0';
1092 /* actually log it */
1093 audit_log_format(*ab, "a%d", arg_num);
1094 if (too_long)
1095 audit_log_format(*ab, "[%d]", i);
1096 audit_log_format(*ab, "=");
1097 if (has_cntl)
1098 audit_log_hex(*ab, buf, to_send);
1099 else
1100 audit_log_format(*ab, "\"%s\"", buf);
1101 audit_log_format(*ab, "\n");
1103 p += to_send;
1104 len_left -= to_send;
1105 *len_sent += arg_num_len;
1106 if (has_cntl)
1107 *len_sent += to_send * 2;
1108 else
1109 *len_sent += to_send;
1111 /* include the null we didn't log */
1112 return len + 1;
1115 static void audit_log_execve_info(struct audit_context *context,
1116 struct audit_buffer **ab,
1117 struct audit_aux_data_execve *axi)
1119 int i;
1120 size_t len, len_sent = 0;
1121 const char __user *p;
1122 char *buf;
1124 if (axi->mm != current->mm)
1125 return; /* execve failed, no additional info */
1127 p = (const char __user *)axi->mm->arg_start;
1129 audit_log_format(*ab, "argc=%d ", axi->argc);
1132 * we need some kernel buffer to hold the userspace args. Just
1133 * allocate one big one rather than allocating one of the right size
1134 * for every single argument inside audit_log_single_execve_arg()
1135 * should be <8k allocation so should be pretty safe.
1137 buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1138 if (!buf) {
1139 audit_panic("out of memory for argv string\n");
1140 return;
1143 for (i = 0; i < axi->argc; i++) {
1144 len = audit_log_single_execve_arg(context, ab, i,
1145 &len_sent, p, buf);
1146 if (len <= 0)
1147 break;
1148 p += len;
1150 kfree(buf);
1153 static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1155 int i, call_panic = 0;
1156 struct audit_buffer *ab;
1157 struct audit_aux_data *aux;
1158 const char *tty;
1160 /* tsk == current */
1161 context->pid = tsk->pid;
1162 if (!context->ppid)
1163 context->ppid = sys_getppid();
1164 context->uid = tsk->uid;
1165 context->gid = tsk->gid;
1166 context->euid = tsk->euid;
1167 context->suid = tsk->suid;
1168 context->fsuid = tsk->fsuid;
1169 context->egid = tsk->egid;
1170 context->sgid = tsk->sgid;
1171 context->fsgid = tsk->fsgid;
1172 context->personality = tsk->personality;
1174 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1175 if (!ab)
1176 return; /* audit_panic has been called */
1177 audit_log_format(ab, "arch=%x syscall=%d",
1178 context->arch, context->major);
1179 if (context->personality != PER_LINUX)
1180 audit_log_format(ab, " per=%lx", context->personality);
1181 if (context->return_valid)
1182 audit_log_format(ab, " success=%s exit=%ld",
1183 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1184 context->return_code);
1186 mutex_lock(&tty_mutex);
1187 read_lock(&tasklist_lock);
1188 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1189 tty = tsk->signal->tty->name;
1190 else
1191 tty = "(none)";
1192 read_unlock(&tasklist_lock);
1193 audit_log_format(ab,
1194 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
1195 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
1196 " euid=%u suid=%u fsuid=%u"
1197 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1198 context->argv[0],
1199 context->argv[1],
1200 context->argv[2],
1201 context->argv[3],
1202 context->name_count,
1203 context->ppid,
1204 context->pid,
1205 tsk->loginuid,
1206 context->uid,
1207 context->gid,
1208 context->euid, context->suid, context->fsuid,
1209 context->egid, context->sgid, context->fsgid, tty,
1210 tsk->sessionid);
1212 mutex_unlock(&tty_mutex);
1214 audit_log_task_info(ab, tsk);
1215 if (context->filterkey) {
1216 audit_log_format(ab, " key=");
1217 audit_log_untrustedstring(ab, context->filterkey);
1218 } else
1219 audit_log_format(ab, " key=(null)");
1220 audit_log_end(ab);
1222 for (aux = context->aux; aux; aux = aux->next) {
1224 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1225 if (!ab)
1226 continue; /* audit_panic has been called */
1228 switch (aux->type) {
1229 case AUDIT_MQ_OPEN: {
1230 struct audit_aux_data_mq_open *axi = (void *)aux;
1231 audit_log_format(ab,
1232 "oflag=0x%x mode=%#o mq_flags=0x%lx mq_maxmsg=%ld "
1233 "mq_msgsize=%ld mq_curmsgs=%ld",
1234 axi->oflag, axi->mode, axi->attr.mq_flags,
1235 axi->attr.mq_maxmsg, axi->attr.mq_msgsize,
1236 axi->attr.mq_curmsgs);
1237 break; }
1239 case AUDIT_MQ_SENDRECV: {
1240 struct audit_aux_data_mq_sendrecv *axi = (void *)aux;
1241 audit_log_format(ab,
1242 "mqdes=%d msg_len=%zd msg_prio=%u "
1243 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1244 axi->mqdes, axi->msg_len, axi->msg_prio,
1245 axi->abs_timeout.tv_sec, axi->abs_timeout.tv_nsec);
1246 break; }
1248 case AUDIT_MQ_NOTIFY: {
1249 struct audit_aux_data_mq_notify *axi = (void *)aux;
1250 audit_log_format(ab,
1251 "mqdes=%d sigev_signo=%d",
1252 axi->mqdes,
1253 axi->notification.sigev_signo);
1254 break; }
1256 case AUDIT_MQ_GETSETATTR: {
1257 struct audit_aux_data_mq_getsetattr *axi = (void *)aux;
1258 audit_log_format(ab,
1259 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1260 "mq_curmsgs=%ld ",
1261 axi->mqdes,
1262 axi->mqstat.mq_flags, axi->mqstat.mq_maxmsg,
1263 axi->mqstat.mq_msgsize, axi->mqstat.mq_curmsgs);
1264 break; }
1266 case AUDIT_IPC: {
1267 struct audit_aux_data_ipcctl *axi = (void *)aux;
1268 audit_log_format(ab,
1269 "ouid=%u ogid=%u mode=%#o",
1270 axi->uid, axi->gid, axi->mode);
1271 if (axi->osid != 0) {
1272 char *ctx = NULL;
1273 u32 len;
1274 if (security_secid_to_secctx(
1275 axi->osid, &ctx, &len)) {
1276 audit_log_format(ab, " osid=%u",
1277 axi->osid);
1278 call_panic = 1;
1279 } else {
1280 audit_log_format(ab, " obj=%s", ctx);
1281 security_release_secctx(ctx, len);
1284 break; }
1286 case AUDIT_IPC_SET_PERM: {
1287 struct audit_aux_data_ipcctl *axi = (void *)aux;
1288 audit_log_format(ab,
1289 "qbytes=%lx ouid=%u ogid=%u mode=%#o",
1290 axi->qbytes, axi->uid, axi->gid, axi->mode);
1291 break; }
1293 case AUDIT_EXECVE: {
1294 struct audit_aux_data_execve *axi = (void *)aux;
1295 audit_log_execve_info(context, &ab, axi);
1296 break; }
1298 case AUDIT_SOCKETCALL: {
1299 int i;
1300 struct audit_aux_data_socketcall *axs = (void *)aux;
1301 audit_log_format(ab, "nargs=%d", axs->nargs);
1302 for (i=0; i<axs->nargs; i++)
1303 audit_log_format(ab, " a%d=%lx", i, axs->args[i]);
1304 break; }
1306 case AUDIT_SOCKADDR: {
1307 struct audit_aux_data_sockaddr *axs = (void *)aux;
1309 audit_log_format(ab, "saddr=");
1310 audit_log_hex(ab, axs->a, axs->len);
1311 break; }
1313 case AUDIT_FD_PAIR: {
1314 struct audit_aux_data_fd_pair *axs = (void *)aux;
1315 audit_log_format(ab, "fd0=%d fd1=%d", axs->fd[0], axs->fd[1]);
1316 break; }
1319 audit_log_end(ab);
1322 for (aux = context->aux_pids; aux; aux = aux->next) {
1323 struct audit_aux_data_pids *axs = (void *)aux;
1324 int i;
1326 for (i = 0; i < axs->pid_count; i++)
1327 if (audit_log_pid_context(context, axs->target_pid[i],
1328 axs->target_auid[i],
1329 axs->target_uid[i],
1330 axs->target_sessionid[i],
1331 axs->target_sid[i],
1332 axs->target_comm[i]))
1333 call_panic = 1;
1336 if (context->target_pid &&
1337 audit_log_pid_context(context, context->target_pid,
1338 context->target_auid, context->target_uid,
1339 context->target_sessionid,
1340 context->target_sid, context->target_comm))
1341 call_panic = 1;
1343 if (context->pwd.dentry && context->pwd.mnt) {
1344 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1345 if (ab) {
1346 audit_log_d_path(ab, "cwd=", &context->pwd);
1347 audit_log_end(ab);
1350 for (i = 0; i < context->name_count; i++) {
1351 struct audit_names *n = &context->names[i];
1353 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1354 if (!ab)
1355 continue; /* audit_panic has been called */
1357 audit_log_format(ab, "item=%d", i);
1359 if (n->name) {
1360 switch(n->name_len) {
1361 case AUDIT_NAME_FULL:
1362 /* log the full path */
1363 audit_log_format(ab, " name=");
1364 audit_log_untrustedstring(ab, n->name);
1365 break;
1366 case 0:
1367 /* name was specified as a relative path and the
1368 * directory component is the cwd */
1369 audit_log_d_path(ab, " name=", &context->pwd);
1370 break;
1371 default:
1372 /* log the name's directory component */
1373 audit_log_format(ab, " name=");
1374 audit_log_n_untrustedstring(ab, n->name_len,
1375 n->name);
1377 } else
1378 audit_log_format(ab, " name=(null)");
1380 if (n->ino != (unsigned long)-1) {
1381 audit_log_format(ab, " inode=%lu"
1382 " dev=%02x:%02x mode=%#o"
1383 " ouid=%u ogid=%u rdev=%02x:%02x",
1384 n->ino,
1385 MAJOR(n->dev),
1386 MINOR(n->dev),
1387 n->mode,
1388 n->uid,
1389 n->gid,
1390 MAJOR(n->rdev),
1391 MINOR(n->rdev));
1393 if (n->osid != 0) {
1394 char *ctx = NULL;
1395 u32 len;
1396 if (security_secid_to_secctx(
1397 n->osid, &ctx, &len)) {
1398 audit_log_format(ab, " osid=%u", n->osid);
1399 call_panic = 2;
1400 } else {
1401 audit_log_format(ab, " obj=%s", ctx);
1402 security_release_secctx(ctx, len);
1406 audit_log_end(ab);
1409 /* Send end of event record to help user space know we are finished */
1410 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1411 if (ab)
1412 audit_log_end(ab);
1413 if (call_panic)
1414 audit_panic("error converting sid to string");
1418 * audit_free - free a per-task audit context
1419 * @tsk: task whose audit context block to free
1421 * Called from copy_process and do_exit
1423 void audit_free(struct task_struct *tsk)
1425 struct audit_context *context;
1427 context = audit_get_context(tsk, 0, 0);
1428 if (likely(!context))
1429 return;
1431 /* Check for system calls that do not go through the exit
1432 * function (e.g., exit_group), then free context block.
1433 * We use GFP_ATOMIC here because we might be doing this
1434 * in the context of the idle thread */
1435 /* that can happen only if we are called from do_exit() */
1436 if (context->in_syscall && context->auditable)
1437 audit_log_exit(context, tsk);
1439 audit_free_context(context);
1443 * audit_syscall_entry - fill in an audit record at syscall entry
1444 * @tsk: task being audited
1445 * @arch: architecture type
1446 * @major: major syscall type (function)
1447 * @a1: additional syscall register 1
1448 * @a2: additional syscall register 2
1449 * @a3: additional syscall register 3
1450 * @a4: additional syscall register 4
1452 * Fill in audit context at syscall entry. This only happens if the
1453 * audit context was created when the task was created and the state or
1454 * filters demand the audit context be built. If the state from the
1455 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1456 * then the record will be written at syscall exit time (otherwise, it
1457 * will only be written if another part of the kernel requests that it
1458 * be written).
1460 void audit_syscall_entry(int arch, int major,
1461 unsigned long a1, unsigned long a2,
1462 unsigned long a3, unsigned long a4)
1464 struct task_struct *tsk = current;
1465 struct audit_context *context = tsk->audit_context;
1466 enum audit_state state;
1468 BUG_ON(!context);
1471 * This happens only on certain architectures that make system
1472 * calls in kernel_thread via the entry.S interface, instead of
1473 * with direct calls. (If you are porting to a new
1474 * architecture, hitting this condition can indicate that you
1475 * got the _exit/_leave calls backward in entry.S.)
1477 * i386 no
1478 * x86_64 no
1479 * ppc64 yes (see arch/powerpc/platforms/iseries/misc.S)
1481 * This also happens with vm86 emulation in a non-nested manner
1482 * (entries without exits), so this case must be caught.
1484 if (context->in_syscall) {
1485 struct audit_context *newctx;
1487 #if AUDIT_DEBUG
1488 printk(KERN_ERR
1489 "audit(:%d) pid=%d in syscall=%d;"
1490 " entering syscall=%d\n",
1491 context->serial, tsk->pid, context->major, major);
1492 #endif
1493 newctx = audit_alloc_context(context->state);
1494 if (newctx) {
1495 newctx->previous = context;
1496 context = newctx;
1497 tsk->audit_context = newctx;
1498 } else {
1499 /* If we can't alloc a new context, the best we
1500 * can do is to leak memory (any pending putname
1501 * will be lost). The only other alternative is
1502 * to abandon auditing. */
1503 audit_zero_context(context, context->state);
1506 BUG_ON(context->in_syscall || context->name_count);
1508 if (!audit_enabled)
1509 return;
1511 context->arch = arch;
1512 context->major = major;
1513 context->argv[0] = a1;
1514 context->argv[1] = a2;
1515 context->argv[2] = a3;
1516 context->argv[3] = a4;
1518 state = context->state;
1519 context->dummy = !audit_n_rules;
1520 if (!context->dummy && (state == AUDIT_SETUP_CONTEXT || state == AUDIT_BUILD_CONTEXT))
1521 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1522 if (likely(state == AUDIT_DISABLED))
1523 return;
1525 context->serial = 0;
1526 context->ctime = CURRENT_TIME;
1527 context->in_syscall = 1;
1528 context->auditable = !!(state == AUDIT_RECORD_CONTEXT);
1529 context->ppid = 0;
1533 * audit_syscall_exit - deallocate audit context after a system call
1534 * @tsk: task being audited
1535 * @valid: success/failure flag
1536 * @return_code: syscall return value
1538 * Tear down after system call. If the audit context has been marked as
1539 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1540 * filtering, or because some other part of the kernel write an audit
1541 * message), then write out the syscall information. In call cases,
1542 * free the names stored from getname().
1544 void audit_syscall_exit(int valid, long return_code)
1546 struct task_struct *tsk = current;
1547 struct audit_context *context;
1549 context = audit_get_context(tsk, valid, return_code);
1551 if (likely(!context))
1552 return;
1554 if (context->in_syscall && context->auditable)
1555 audit_log_exit(context, tsk);
1557 context->in_syscall = 0;
1558 context->auditable = 0;
1560 if (context->previous) {
1561 struct audit_context *new_context = context->previous;
1562 context->previous = NULL;
1563 audit_free_context(context);
1564 tsk->audit_context = new_context;
1565 } else {
1566 audit_free_names(context);
1567 unroll_tree_refs(context, NULL, 0);
1568 audit_free_aux(context);
1569 context->aux = NULL;
1570 context->aux_pids = NULL;
1571 context->target_pid = 0;
1572 context->target_sid = 0;
1573 kfree(context->filterkey);
1574 context->filterkey = NULL;
1575 tsk->audit_context = context;
1579 static inline void handle_one(const struct inode *inode)
1581 #ifdef CONFIG_AUDIT_TREE
1582 struct audit_context *context;
1583 struct audit_tree_refs *p;
1584 struct audit_chunk *chunk;
1585 int count;
1586 if (likely(list_empty(&inode->inotify_watches)))
1587 return;
1588 context = current->audit_context;
1589 p = context->trees;
1590 count = context->tree_count;
1591 rcu_read_lock();
1592 chunk = audit_tree_lookup(inode);
1593 rcu_read_unlock();
1594 if (!chunk)
1595 return;
1596 if (likely(put_tree_ref(context, chunk)))
1597 return;
1598 if (unlikely(!grow_tree_refs(context))) {
1599 printk(KERN_WARNING "out of memory, audit has lost a tree reference");
1600 audit_set_auditable(context);
1601 audit_put_chunk(chunk);
1602 unroll_tree_refs(context, p, count);
1603 return;
1605 put_tree_ref(context, chunk);
1606 #endif
1609 static void handle_path(const struct dentry *dentry)
1611 #ifdef CONFIG_AUDIT_TREE
1612 struct audit_context *context;
1613 struct audit_tree_refs *p;
1614 const struct dentry *d, *parent;
1615 struct audit_chunk *drop;
1616 unsigned long seq;
1617 int count;
1619 context = current->audit_context;
1620 p = context->trees;
1621 count = context->tree_count;
1622 retry:
1623 drop = NULL;
1624 d = dentry;
1625 rcu_read_lock();
1626 seq = read_seqbegin(&rename_lock);
1627 for(;;) {
1628 struct inode *inode = d->d_inode;
1629 if (inode && unlikely(!list_empty(&inode->inotify_watches))) {
1630 struct audit_chunk *chunk;
1631 chunk = audit_tree_lookup(inode);
1632 if (chunk) {
1633 if (unlikely(!put_tree_ref(context, chunk))) {
1634 drop = chunk;
1635 break;
1639 parent = d->d_parent;
1640 if (parent == d)
1641 break;
1642 d = parent;
1644 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1645 rcu_read_unlock();
1646 if (!drop) {
1647 /* just a race with rename */
1648 unroll_tree_refs(context, p, count);
1649 goto retry;
1651 audit_put_chunk(drop);
1652 if (grow_tree_refs(context)) {
1653 /* OK, got more space */
1654 unroll_tree_refs(context, p, count);
1655 goto retry;
1657 /* too bad */
1658 printk(KERN_WARNING
1659 "out of memory, audit has lost a tree reference");
1660 unroll_tree_refs(context, p, count);
1661 audit_set_auditable(context);
1662 return;
1664 rcu_read_unlock();
1665 #endif
1669 * audit_getname - add a name to the list
1670 * @name: name to add
1672 * Add a name to the list of audit names for this context.
1673 * Called from fs/namei.c:getname().
1675 void __audit_getname(const char *name)
1677 struct audit_context *context = current->audit_context;
1679 if (IS_ERR(name) || !name)
1680 return;
1682 if (!context->in_syscall) {
1683 #if AUDIT_DEBUG == 2
1684 printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
1685 __FILE__, __LINE__, context->serial, name);
1686 dump_stack();
1687 #endif
1688 return;
1690 BUG_ON(context->name_count >= AUDIT_NAMES);
1691 context->names[context->name_count].name = name;
1692 context->names[context->name_count].name_len = AUDIT_NAME_FULL;
1693 context->names[context->name_count].name_put = 1;
1694 context->names[context->name_count].ino = (unsigned long)-1;
1695 context->names[context->name_count].osid = 0;
1696 ++context->name_count;
1697 if (!context->pwd.dentry) {
1698 read_lock(&current->fs->lock);
1699 context->pwd = current->fs->pwd;
1700 path_get(&current->fs->pwd);
1701 read_unlock(&current->fs->lock);
1706 /* audit_putname - intercept a putname request
1707 * @name: name to intercept and delay for putname
1709 * If we have stored the name from getname in the audit context,
1710 * then we delay the putname until syscall exit.
1711 * Called from include/linux/fs.h:putname().
1713 void audit_putname(const char *name)
1715 struct audit_context *context = current->audit_context;
1717 BUG_ON(!context);
1718 if (!context->in_syscall) {
1719 #if AUDIT_DEBUG == 2
1720 printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
1721 __FILE__, __LINE__, context->serial, name);
1722 if (context->name_count) {
1723 int i;
1724 for (i = 0; i < context->name_count; i++)
1725 printk(KERN_ERR "name[%d] = %p = %s\n", i,
1726 context->names[i].name,
1727 context->names[i].name ?: "(null)");
1729 #endif
1730 __putname(name);
1732 #if AUDIT_DEBUG
1733 else {
1734 ++context->put_count;
1735 if (context->put_count > context->name_count) {
1736 printk(KERN_ERR "%s:%d(:%d): major=%d"
1737 " in_syscall=%d putname(%p) name_count=%d"
1738 " put_count=%d\n",
1739 __FILE__, __LINE__,
1740 context->serial, context->major,
1741 context->in_syscall, name, context->name_count,
1742 context->put_count);
1743 dump_stack();
1746 #endif
1749 static int audit_inc_name_count(struct audit_context *context,
1750 const struct inode *inode)
1752 if (context->name_count >= AUDIT_NAMES) {
1753 if (inode)
1754 printk(KERN_DEBUG "name_count maxed, losing inode data: "
1755 "dev=%02x:%02x, inode=%lu",
1756 MAJOR(inode->i_sb->s_dev),
1757 MINOR(inode->i_sb->s_dev),
1758 inode->i_ino);
1760 else
1761 printk(KERN_DEBUG "name_count maxed, losing inode data");
1762 return 1;
1764 context->name_count++;
1765 #if AUDIT_DEBUG
1766 context->ino_count++;
1767 #endif
1768 return 0;
1771 /* Copy inode data into an audit_names. */
1772 static void audit_copy_inode(struct audit_names *name, const struct inode *inode)
1774 name->ino = inode->i_ino;
1775 name->dev = inode->i_sb->s_dev;
1776 name->mode = inode->i_mode;
1777 name->uid = inode->i_uid;
1778 name->gid = inode->i_gid;
1779 name->rdev = inode->i_rdev;
1780 security_inode_getsecid(inode, &name->osid);
1784 * audit_inode - store the inode and device from a lookup
1785 * @name: name being audited
1786 * @dentry: dentry being audited
1788 * Called from fs/namei.c:path_lookup().
1790 void __audit_inode(const char *name, const struct dentry *dentry)
1792 int idx;
1793 struct audit_context *context = current->audit_context;
1794 const struct inode *inode = dentry->d_inode;
1796 if (!context->in_syscall)
1797 return;
1798 if (context->name_count
1799 && context->names[context->name_count-1].name
1800 && context->names[context->name_count-1].name == name)
1801 idx = context->name_count - 1;
1802 else if (context->name_count > 1
1803 && context->names[context->name_count-2].name
1804 && context->names[context->name_count-2].name == name)
1805 idx = context->name_count - 2;
1806 else {
1807 /* FIXME: how much do we care about inodes that have no
1808 * associated name? */
1809 if (audit_inc_name_count(context, inode))
1810 return;
1811 idx = context->name_count - 1;
1812 context->names[idx].name = NULL;
1814 handle_path(dentry);
1815 audit_copy_inode(&context->names[idx], inode);
1819 * audit_inode_child - collect inode info for created/removed objects
1820 * @dname: inode's dentry name
1821 * @dentry: dentry being audited
1822 * @parent: inode of dentry parent
1824 * For syscalls that create or remove filesystem objects, audit_inode
1825 * can only collect information for the filesystem object's parent.
1826 * This call updates the audit context with the child's information.
1827 * Syscalls that create a new filesystem object must be hooked after
1828 * the object is created. Syscalls that remove a filesystem object
1829 * must be hooked prior, in order to capture the target inode during
1830 * unsuccessful attempts.
1832 void __audit_inode_child(const char *dname, const struct dentry *dentry,
1833 const struct inode *parent)
1835 int idx;
1836 struct audit_context *context = current->audit_context;
1837 const char *found_parent = NULL, *found_child = NULL;
1838 const struct inode *inode = dentry->d_inode;
1839 int dirlen = 0;
1841 if (!context->in_syscall)
1842 return;
1844 if (inode)
1845 handle_one(inode);
1846 /* determine matching parent */
1847 if (!dname)
1848 goto add_names;
1850 /* parent is more likely, look for it first */
1851 for (idx = 0; idx < context->name_count; idx++) {
1852 struct audit_names *n = &context->names[idx];
1854 if (!n->name)
1855 continue;
1857 if (n->ino == parent->i_ino &&
1858 !audit_compare_dname_path(dname, n->name, &dirlen)) {
1859 n->name_len = dirlen; /* update parent data in place */
1860 found_parent = n->name;
1861 goto add_names;
1865 /* no matching parent, look for matching child */
1866 for (idx = 0; idx < context->name_count; idx++) {
1867 struct audit_names *n = &context->names[idx];
1869 if (!n->name)
1870 continue;
1872 /* strcmp() is the more likely scenario */
1873 if (!strcmp(dname, n->name) ||
1874 !audit_compare_dname_path(dname, n->name, &dirlen)) {
1875 if (inode)
1876 audit_copy_inode(n, inode);
1877 else
1878 n->ino = (unsigned long)-1;
1879 found_child = n->name;
1880 goto add_names;
1884 add_names:
1885 if (!found_parent) {
1886 if (audit_inc_name_count(context, parent))
1887 return;
1888 idx = context->name_count - 1;
1889 context->names[idx].name = NULL;
1890 audit_copy_inode(&context->names[idx], parent);
1893 if (!found_child) {
1894 if (audit_inc_name_count(context, inode))
1895 return;
1896 idx = context->name_count - 1;
1898 /* Re-use the name belonging to the slot for a matching parent
1899 * directory. All names for this context are relinquished in
1900 * audit_free_names() */
1901 if (found_parent) {
1902 context->names[idx].name = found_parent;
1903 context->names[idx].name_len = AUDIT_NAME_FULL;
1904 /* don't call __putname() */
1905 context->names[idx].name_put = 0;
1906 } else {
1907 context->names[idx].name = NULL;
1910 if (inode)
1911 audit_copy_inode(&context->names[idx], inode);
1912 else
1913 context->names[idx].ino = (unsigned long)-1;
1916 EXPORT_SYMBOL_GPL(__audit_inode_child);
1919 * auditsc_get_stamp - get local copies of audit_context values
1920 * @ctx: audit_context for the task
1921 * @t: timespec to store time recorded in the audit_context
1922 * @serial: serial value that is recorded in the audit_context
1924 * Also sets the context as auditable.
1926 void auditsc_get_stamp(struct audit_context *ctx,
1927 struct timespec *t, unsigned int *serial)
1929 if (!ctx->serial)
1930 ctx->serial = audit_serial();
1931 t->tv_sec = ctx->ctime.tv_sec;
1932 t->tv_nsec = ctx->ctime.tv_nsec;
1933 *serial = ctx->serial;
1934 ctx->auditable = 1;
1937 /* global counter which is incremented every time something logs in */
1938 static atomic_t session_id = ATOMIC_INIT(0);
1941 * audit_set_loginuid - set a task's audit_context loginuid
1942 * @task: task whose audit context is being modified
1943 * @loginuid: loginuid value
1945 * Returns 0.
1947 * Called (set) from fs/proc/base.c::proc_loginuid_write().
1949 int audit_set_loginuid(struct task_struct *task, uid_t loginuid)
1951 unsigned int sessionid = atomic_inc_return(&session_id);
1952 struct audit_context *context = task->audit_context;
1954 if (context && context->in_syscall) {
1955 struct audit_buffer *ab;
1957 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
1958 if (ab) {
1959 audit_log_format(ab, "login pid=%d uid=%u "
1960 "old auid=%u new auid=%u"
1961 " old ses=%u new ses=%u",
1962 task->pid, task->uid,
1963 task->loginuid, loginuid,
1964 task->sessionid, sessionid);
1965 audit_log_end(ab);
1968 task->sessionid = sessionid;
1969 task->loginuid = loginuid;
1970 return 0;
1974 * __audit_mq_open - record audit data for a POSIX MQ open
1975 * @oflag: open flag
1976 * @mode: mode bits
1977 * @u_attr: queue attributes
1979 * Returns 0 for success or NULL context or < 0 on error.
1981 int __audit_mq_open(int oflag, mode_t mode, struct mq_attr __user *u_attr)
1983 struct audit_aux_data_mq_open *ax;
1984 struct audit_context *context = current->audit_context;
1986 if (!audit_enabled)
1987 return 0;
1989 if (likely(!context))
1990 return 0;
1992 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1993 if (!ax)
1994 return -ENOMEM;
1996 if (u_attr != NULL) {
1997 if (copy_from_user(&ax->attr, u_attr, sizeof(ax->attr))) {
1998 kfree(ax);
1999 return -EFAULT;
2001 } else
2002 memset(&ax->attr, 0, sizeof(ax->attr));
2004 ax->oflag = oflag;
2005 ax->mode = mode;
2007 ax->d.type = AUDIT_MQ_OPEN;
2008 ax->d.next = context->aux;
2009 context->aux = (void *)ax;
2010 return 0;
2014 * __audit_mq_timedsend - record audit data for a POSIX MQ timed send
2015 * @mqdes: MQ descriptor
2016 * @msg_len: Message length
2017 * @msg_prio: Message priority
2018 * @u_abs_timeout: Message timeout in absolute time
2020 * Returns 0 for success or NULL context or < 0 on error.
2022 int __audit_mq_timedsend(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2023 const struct timespec __user *u_abs_timeout)
2025 struct audit_aux_data_mq_sendrecv *ax;
2026 struct audit_context *context = current->audit_context;
2028 if (!audit_enabled)
2029 return 0;
2031 if (likely(!context))
2032 return 0;
2034 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2035 if (!ax)
2036 return -ENOMEM;
2038 if (u_abs_timeout != NULL) {
2039 if (copy_from_user(&ax->abs_timeout, u_abs_timeout, sizeof(ax->abs_timeout))) {
2040 kfree(ax);
2041 return -EFAULT;
2043 } else
2044 memset(&ax->abs_timeout, 0, sizeof(ax->abs_timeout));
2046 ax->mqdes = mqdes;
2047 ax->msg_len = msg_len;
2048 ax->msg_prio = msg_prio;
2050 ax->d.type = AUDIT_MQ_SENDRECV;
2051 ax->d.next = context->aux;
2052 context->aux = (void *)ax;
2053 return 0;
2057 * __audit_mq_timedreceive - record audit data for a POSIX MQ timed receive
2058 * @mqdes: MQ descriptor
2059 * @msg_len: Message length
2060 * @u_msg_prio: Message priority
2061 * @u_abs_timeout: Message timeout in absolute time
2063 * Returns 0 for success or NULL context or < 0 on error.
2065 int __audit_mq_timedreceive(mqd_t mqdes, size_t msg_len,
2066 unsigned int __user *u_msg_prio,
2067 const struct timespec __user *u_abs_timeout)
2069 struct audit_aux_data_mq_sendrecv *ax;
2070 struct audit_context *context = current->audit_context;
2072 if (!audit_enabled)
2073 return 0;
2075 if (likely(!context))
2076 return 0;
2078 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2079 if (!ax)
2080 return -ENOMEM;
2082 if (u_msg_prio != NULL) {
2083 if (get_user(ax->msg_prio, u_msg_prio)) {
2084 kfree(ax);
2085 return -EFAULT;
2087 } else
2088 ax->msg_prio = 0;
2090 if (u_abs_timeout != NULL) {
2091 if (copy_from_user(&ax->abs_timeout, u_abs_timeout, sizeof(ax->abs_timeout))) {
2092 kfree(ax);
2093 return -EFAULT;
2095 } else
2096 memset(&ax->abs_timeout, 0, sizeof(ax->abs_timeout));
2098 ax->mqdes = mqdes;
2099 ax->msg_len = msg_len;
2101 ax->d.type = AUDIT_MQ_SENDRECV;
2102 ax->d.next = context->aux;
2103 context->aux = (void *)ax;
2104 return 0;
2108 * __audit_mq_notify - record audit data for a POSIX MQ notify
2109 * @mqdes: MQ descriptor
2110 * @u_notification: Notification event
2112 * Returns 0 for success or NULL context or < 0 on error.
2115 int __audit_mq_notify(mqd_t mqdes, const struct sigevent __user *u_notification)
2117 struct audit_aux_data_mq_notify *ax;
2118 struct audit_context *context = current->audit_context;
2120 if (!audit_enabled)
2121 return 0;
2123 if (likely(!context))
2124 return 0;
2126 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2127 if (!ax)
2128 return -ENOMEM;
2130 if (u_notification != NULL) {
2131 if (copy_from_user(&ax->notification, u_notification, sizeof(ax->notification))) {
2132 kfree(ax);
2133 return -EFAULT;
2135 } else
2136 memset(&ax->notification, 0, sizeof(ax->notification));
2138 ax->mqdes = mqdes;
2140 ax->d.type = AUDIT_MQ_NOTIFY;
2141 ax->d.next = context->aux;
2142 context->aux = (void *)ax;
2143 return 0;
2147 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2148 * @mqdes: MQ descriptor
2149 * @mqstat: MQ flags
2151 * Returns 0 for success or NULL context or < 0 on error.
2153 int __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2155 struct audit_aux_data_mq_getsetattr *ax;
2156 struct audit_context *context = current->audit_context;
2158 if (!audit_enabled)
2159 return 0;
2161 if (likely(!context))
2162 return 0;
2164 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2165 if (!ax)
2166 return -ENOMEM;
2168 ax->mqdes = mqdes;
2169 ax->mqstat = *mqstat;
2171 ax->d.type = AUDIT_MQ_GETSETATTR;
2172 ax->d.next = context->aux;
2173 context->aux = (void *)ax;
2174 return 0;
2178 * audit_ipc_obj - record audit data for ipc object
2179 * @ipcp: ipc permissions
2181 * Returns 0 for success or NULL context or < 0 on error.
2183 int __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2185 struct audit_aux_data_ipcctl *ax;
2186 struct audit_context *context = current->audit_context;
2188 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2189 if (!ax)
2190 return -ENOMEM;
2192 ax->uid = ipcp->uid;
2193 ax->gid = ipcp->gid;
2194 ax->mode = ipcp->mode;
2195 security_ipc_getsecid(ipcp, &ax->osid);
2196 ax->d.type = AUDIT_IPC;
2197 ax->d.next = context->aux;
2198 context->aux = (void *)ax;
2199 return 0;
2203 * audit_ipc_set_perm - record audit data for new ipc permissions
2204 * @qbytes: msgq bytes
2205 * @uid: msgq user id
2206 * @gid: msgq group id
2207 * @mode: msgq mode (permissions)
2209 * Returns 0 for success or NULL context or < 0 on error.
2211 int __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, mode_t mode)
2213 struct audit_aux_data_ipcctl *ax;
2214 struct audit_context *context = current->audit_context;
2216 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2217 if (!ax)
2218 return -ENOMEM;
2220 ax->qbytes = qbytes;
2221 ax->uid = uid;
2222 ax->gid = gid;
2223 ax->mode = mode;
2225 ax->d.type = AUDIT_IPC_SET_PERM;
2226 ax->d.next = context->aux;
2227 context->aux = (void *)ax;
2228 return 0;
2231 int audit_bprm(struct linux_binprm *bprm)
2233 struct audit_aux_data_execve *ax;
2234 struct audit_context *context = current->audit_context;
2236 if (likely(!audit_enabled || !context || context->dummy))
2237 return 0;
2239 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2240 if (!ax)
2241 return -ENOMEM;
2243 ax->argc = bprm->argc;
2244 ax->envc = bprm->envc;
2245 ax->mm = bprm->mm;
2246 ax->d.type = AUDIT_EXECVE;
2247 ax->d.next = context->aux;
2248 context->aux = (void *)ax;
2249 return 0;
2254 * audit_socketcall - record audit data for sys_socketcall
2255 * @nargs: number of args
2256 * @args: args array
2258 * Returns 0 for success or NULL context or < 0 on error.
2260 int audit_socketcall(int nargs, unsigned long *args)
2262 struct audit_aux_data_socketcall *ax;
2263 struct audit_context *context = current->audit_context;
2265 if (likely(!context || context->dummy))
2266 return 0;
2268 ax = kmalloc(sizeof(*ax) + nargs * sizeof(unsigned long), GFP_KERNEL);
2269 if (!ax)
2270 return -ENOMEM;
2272 ax->nargs = nargs;
2273 memcpy(ax->args, args, nargs * sizeof(unsigned long));
2275 ax->d.type = AUDIT_SOCKETCALL;
2276 ax->d.next = context->aux;
2277 context->aux = (void *)ax;
2278 return 0;
2282 * __audit_fd_pair - record audit data for pipe and socketpair
2283 * @fd1: the first file descriptor
2284 * @fd2: the second file descriptor
2286 * Returns 0 for success or NULL context or < 0 on error.
2288 int __audit_fd_pair(int fd1, int fd2)
2290 struct audit_context *context = current->audit_context;
2291 struct audit_aux_data_fd_pair *ax;
2293 if (likely(!context)) {
2294 return 0;
2297 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2298 if (!ax) {
2299 return -ENOMEM;
2302 ax->fd[0] = fd1;
2303 ax->fd[1] = fd2;
2305 ax->d.type = AUDIT_FD_PAIR;
2306 ax->d.next = context->aux;
2307 context->aux = (void *)ax;
2308 return 0;
2312 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2313 * @len: data length in user space
2314 * @a: data address in kernel space
2316 * Returns 0 for success or NULL context or < 0 on error.
2318 int audit_sockaddr(int len, void *a)
2320 struct audit_aux_data_sockaddr *ax;
2321 struct audit_context *context = current->audit_context;
2323 if (likely(!context || context->dummy))
2324 return 0;
2326 ax = kmalloc(sizeof(*ax) + len, GFP_KERNEL);
2327 if (!ax)
2328 return -ENOMEM;
2330 ax->len = len;
2331 memcpy(ax->a, a, len);
2333 ax->d.type = AUDIT_SOCKADDR;
2334 ax->d.next = context->aux;
2335 context->aux = (void *)ax;
2336 return 0;
2339 void __audit_ptrace(struct task_struct *t)
2341 struct audit_context *context = current->audit_context;
2343 context->target_pid = t->pid;
2344 context->target_auid = audit_get_loginuid(t);
2345 context->target_uid = t->uid;
2346 context->target_sessionid = audit_get_sessionid(t);
2347 security_task_getsecid(t, &context->target_sid);
2348 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2352 * audit_signal_info - record signal info for shutting down audit subsystem
2353 * @sig: signal value
2354 * @t: task being signaled
2356 * If the audit subsystem is being terminated, record the task (pid)
2357 * and uid that is doing that.
2359 int __audit_signal_info(int sig, struct task_struct *t)
2361 struct audit_aux_data_pids *axp;
2362 struct task_struct *tsk = current;
2363 struct audit_context *ctx = tsk->audit_context;
2364 extern pid_t audit_sig_pid;
2365 extern uid_t audit_sig_uid;
2366 extern u32 audit_sig_sid;
2368 if (audit_pid && t->tgid == audit_pid) {
2369 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1) {
2370 audit_sig_pid = tsk->pid;
2371 if (tsk->loginuid != -1)
2372 audit_sig_uid = tsk->loginuid;
2373 else
2374 audit_sig_uid = tsk->uid;
2375 security_task_getsecid(tsk, &audit_sig_sid);
2377 if (!audit_signals || audit_dummy_context())
2378 return 0;
2381 /* optimize the common case by putting first signal recipient directly
2382 * in audit_context */
2383 if (!ctx->target_pid) {
2384 ctx->target_pid = t->tgid;
2385 ctx->target_auid = audit_get_loginuid(t);
2386 ctx->target_uid = t->uid;
2387 ctx->target_sessionid = audit_get_sessionid(t);
2388 security_task_getsecid(t, &ctx->target_sid);
2389 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2390 return 0;
2393 axp = (void *)ctx->aux_pids;
2394 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2395 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2396 if (!axp)
2397 return -ENOMEM;
2399 axp->d.type = AUDIT_OBJ_PID;
2400 axp->d.next = ctx->aux_pids;
2401 ctx->aux_pids = (void *)axp;
2403 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2405 axp->target_pid[axp->pid_count] = t->tgid;
2406 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2407 axp->target_uid[axp->pid_count] = t->uid;
2408 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2409 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2410 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2411 axp->pid_count++;
2413 return 0;
2417 * audit_core_dumps - record information about processes that end abnormally
2418 * @signr: signal value
2420 * If a process ends with a core dump, something fishy is going on and we
2421 * should record the event for investigation.
2423 void audit_core_dumps(long signr)
2425 struct audit_buffer *ab;
2426 u32 sid;
2427 uid_t auid = audit_get_loginuid(current);
2428 unsigned int sessionid = audit_get_sessionid(current);
2430 if (!audit_enabled)
2431 return;
2433 if (signr == SIGQUIT) /* don't care for those */
2434 return;
2436 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2437 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2438 auid, current->uid, current->gid, sessionid);
2439 security_task_getsecid(current, &sid);
2440 if (sid) {
2441 char *ctx = NULL;
2442 u32 len;
2444 if (security_secid_to_secctx(sid, &ctx, &len))
2445 audit_log_format(ab, " ssid=%u", sid);
2446 else {
2447 audit_log_format(ab, " subj=%s", ctx);
2448 security_release_secctx(ctx, len);
2451 audit_log_format(ab, " pid=%d comm=", current->pid);
2452 audit_log_untrustedstring(ab, current->comm);
2453 audit_log_format(ab, " sig=%ld", signr);
2454 audit_log_end(ab);