net: Partially allow skb destructors to be used on receive path
[linux-2.6/mini2440.git] / net / core / dev.c
blob3337cf98f2311b8811c57c9e14f701fa90dce093
1 /*
2 * NET3 Protocol independent device support routines.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/sched.h>
83 #include <linux/mutex.h>
84 #include <linux/string.h>
85 #include <linux/mm.h>
86 #include <linux/socket.h>
87 #include <linux/sockios.h>
88 #include <linux/errno.h>
89 #include <linux/interrupt.h>
90 #include <linux/if_ether.h>
91 #include <linux/netdevice.h>
92 #include <linux/etherdevice.h>
93 #include <linux/ethtool.h>
94 #include <linux/notifier.h>
95 #include <linux/skbuff.h>
96 #include <net/net_namespace.h>
97 #include <net/sock.h>
98 #include <linux/rtnetlink.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/stat.h>
102 #include <linux/if_bridge.h>
103 #include <linux/if_macvlan.h>
104 #include <net/dst.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/kmod.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/wext.h>
115 #include <net/iw_handler.h>
116 #include <asm/current.h>
117 #include <linux/audit.h>
118 #include <linux/dmaengine.h>
119 #include <linux/err.h>
120 #include <linux/ctype.h>
121 #include <linux/if_arp.h>
122 #include <linux/if_vlan.h>
123 #include <linux/ip.h>
124 #include <net/ip.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
130 #include "net-sysfs.h"
132 /* Instead of increasing this, you should create a hash table. */
133 #define MAX_GRO_SKBS 8
135 /* This should be increased if a protocol with a bigger head is added. */
136 #define GRO_MAX_HEAD (MAX_HEADER + 128)
138 enum {
139 GRO_MERGED,
140 GRO_MERGED_FREE,
141 GRO_HELD,
142 GRO_NORMAL,
143 GRO_DROP,
147 * The list of packet types we will receive (as opposed to discard)
148 * and the routines to invoke.
150 * Why 16. Because with 16 the only overlap we get on a hash of the
151 * low nibble of the protocol value is RARP/SNAP/X.25.
153 * NOTE: That is no longer true with the addition of VLAN tags. Not
154 * sure which should go first, but I bet it won't make much
155 * difference if we are running VLANs. The good news is that
156 * this protocol won't be in the list unless compiled in, so
157 * the average user (w/out VLANs) will not be adversely affected.
158 * --BLG
160 * 0800 IP
161 * 8100 802.1Q VLAN
162 * 0001 802.3
163 * 0002 AX.25
164 * 0004 802.2
165 * 8035 RARP
166 * 0005 SNAP
167 * 0805 X.25
168 * 0806 ARP
169 * 8137 IPX
170 * 0009 Localtalk
171 * 86DD IPv6
174 #define PTYPE_HASH_SIZE (16)
175 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
177 static DEFINE_SPINLOCK(ptype_lock);
178 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
179 static struct list_head ptype_all __read_mostly; /* Taps */
182 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
183 * semaphore.
185 * Pure readers hold dev_base_lock for reading.
187 * Writers must hold the rtnl semaphore while they loop through the
188 * dev_base_head list, and hold dev_base_lock for writing when they do the
189 * actual updates. This allows pure readers to access the list even
190 * while a writer is preparing to update it.
192 * To put it another way, dev_base_lock is held for writing only to
193 * protect against pure readers; the rtnl semaphore provides the
194 * protection against other writers.
196 * See, for example usages, register_netdevice() and
197 * unregister_netdevice(), which must be called with the rtnl
198 * semaphore held.
200 DEFINE_RWLOCK(dev_base_lock);
202 EXPORT_SYMBOL(dev_base_lock);
204 #define NETDEV_HASHBITS 8
205 #define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS)
207 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
209 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
210 return &net->dev_name_head[hash & ((1 << NETDEV_HASHBITS) - 1)];
213 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
215 return &net->dev_index_head[ifindex & ((1 << NETDEV_HASHBITS) - 1)];
218 static inline void *skb_gro_mac_header(struct sk_buff *skb)
220 return skb_mac_header(skb) < skb->data ? skb_mac_header(skb) :
221 page_address(skb_shinfo(skb)->frags[0].page) +
222 skb_shinfo(skb)->frags[0].page_offset;
225 /* Device list insertion */
226 static int list_netdevice(struct net_device *dev)
228 struct net *net = dev_net(dev);
230 ASSERT_RTNL();
232 write_lock_bh(&dev_base_lock);
233 list_add_tail(&dev->dev_list, &net->dev_base_head);
234 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
235 hlist_add_head(&dev->index_hlist, dev_index_hash(net, dev->ifindex));
236 write_unlock_bh(&dev_base_lock);
237 return 0;
240 /* Device list removal */
241 static void unlist_netdevice(struct net_device *dev)
243 ASSERT_RTNL();
245 /* Unlink dev from the device chain */
246 write_lock_bh(&dev_base_lock);
247 list_del(&dev->dev_list);
248 hlist_del(&dev->name_hlist);
249 hlist_del(&dev->index_hlist);
250 write_unlock_bh(&dev_base_lock);
254 * Our notifier list
257 static RAW_NOTIFIER_HEAD(netdev_chain);
260 * Device drivers call our routines to queue packets here. We empty the
261 * queue in the local softnet handler.
264 DEFINE_PER_CPU(struct softnet_data, softnet_data);
266 #ifdef CONFIG_LOCKDEP
268 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
269 * according to dev->type
271 static const unsigned short netdev_lock_type[] =
272 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
273 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
274 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
275 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
276 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
277 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
278 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
279 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
280 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
281 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
282 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
283 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
284 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
285 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
286 ARPHRD_PHONET_PIPE, ARPHRD_VOID, ARPHRD_NONE};
288 static const char *netdev_lock_name[] =
289 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
290 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
291 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
292 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
293 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
294 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
295 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
296 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
297 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
298 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
299 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
300 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
301 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
302 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
303 "_xmit_PHONET_PIPE", "_xmit_VOID", "_xmit_NONE"};
305 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
306 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
308 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
310 int i;
312 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
313 if (netdev_lock_type[i] == dev_type)
314 return i;
315 /* the last key is used by default */
316 return ARRAY_SIZE(netdev_lock_type) - 1;
319 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
320 unsigned short dev_type)
322 int i;
324 i = netdev_lock_pos(dev_type);
325 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
326 netdev_lock_name[i]);
329 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
331 int i;
333 i = netdev_lock_pos(dev->type);
334 lockdep_set_class_and_name(&dev->addr_list_lock,
335 &netdev_addr_lock_key[i],
336 netdev_lock_name[i]);
338 #else
339 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
340 unsigned short dev_type)
343 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
346 #endif
348 /*******************************************************************************
350 Protocol management and registration routines
352 *******************************************************************************/
355 * Add a protocol ID to the list. Now that the input handler is
356 * smarter we can dispense with all the messy stuff that used to be
357 * here.
359 * BEWARE!!! Protocol handlers, mangling input packets,
360 * MUST BE last in hash buckets and checking protocol handlers
361 * MUST start from promiscuous ptype_all chain in net_bh.
362 * It is true now, do not change it.
363 * Explanation follows: if protocol handler, mangling packet, will
364 * be the first on list, it is not able to sense, that packet
365 * is cloned and should be copied-on-write, so that it will
366 * change it and subsequent readers will get broken packet.
367 * --ANK (980803)
371 * dev_add_pack - add packet handler
372 * @pt: packet type declaration
374 * Add a protocol handler to the networking stack. The passed &packet_type
375 * is linked into kernel lists and may not be freed until it has been
376 * removed from the kernel lists.
378 * This call does not sleep therefore it can not
379 * guarantee all CPU's that are in middle of receiving packets
380 * will see the new packet type (until the next received packet).
383 void dev_add_pack(struct packet_type *pt)
385 int hash;
387 spin_lock_bh(&ptype_lock);
388 if (pt->type == htons(ETH_P_ALL))
389 list_add_rcu(&pt->list, &ptype_all);
390 else {
391 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
392 list_add_rcu(&pt->list, &ptype_base[hash]);
394 spin_unlock_bh(&ptype_lock);
398 * __dev_remove_pack - remove packet handler
399 * @pt: packet type declaration
401 * Remove a protocol handler that was previously added to the kernel
402 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
403 * from the kernel lists and can be freed or reused once this function
404 * returns.
406 * The packet type might still be in use by receivers
407 * and must not be freed until after all the CPU's have gone
408 * through a quiescent state.
410 void __dev_remove_pack(struct packet_type *pt)
412 struct list_head *head;
413 struct packet_type *pt1;
415 spin_lock_bh(&ptype_lock);
417 if (pt->type == htons(ETH_P_ALL))
418 head = &ptype_all;
419 else
420 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
422 list_for_each_entry(pt1, head, list) {
423 if (pt == pt1) {
424 list_del_rcu(&pt->list);
425 goto out;
429 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
430 out:
431 spin_unlock_bh(&ptype_lock);
434 * dev_remove_pack - remove packet handler
435 * @pt: packet type declaration
437 * Remove a protocol handler that was previously added to the kernel
438 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
439 * from the kernel lists and can be freed or reused once this function
440 * returns.
442 * This call sleeps to guarantee that no CPU is looking at the packet
443 * type after return.
445 void dev_remove_pack(struct packet_type *pt)
447 __dev_remove_pack(pt);
449 synchronize_net();
452 /******************************************************************************
454 Device Boot-time Settings Routines
456 *******************************************************************************/
458 /* Boot time configuration table */
459 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
462 * netdev_boot_setup_add - add new setup entry
463 * @name: name of the device
464 * @map: configured settings for the device
466 * Adds new setup entry to the dev_boot_setup list. The function
467 * returns 0 on error and 1 on success. This is a generic routine to
468 * all netdevices.
470 static int netdev_boot_setup_add(char *name, struct ifmap *map)
472 struct netdev_boot_setup *s;
473 int i;
475 s = dev_boot_setup;
476 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
477 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
478 memset(s[i].name, 0, sizeof(s[i].name));
479 strlcpy(s[i].name, name, IFNAMSIZ);
480 memcpy(&s[i].map, map, sizeof(s[i].map));
481 break;
485 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
489 * netdev_boot_setup_check - check boot time settings
490 * @dev: the netdevice
492 * Check boot time settings for the device.
493 * The found settings are set for the device to be used
494 * later in the device probing.
495 * Returns 0 if no settings found, 1 if they are.
497 int netdev_boot_setup_check(struct net_device *dev)
499 struct netdev_boot_setup *s = dev_boot_setup;
500 int i;
502 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
503 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
504 !strcmp(dev->name, s[i].name)) {
505 dev->irq = s[i].map.irq;
506 dev->base_addr = s[i].map.base_addr;
507 dev->mem_start = s[i].map.mem_start;
508 dev->mem_end = s[i].map.mem_end;
509 return 1;
512 return 0;
517 * netdev_boot_base - get address from boot time settings
518 * @prefix: prefix for network device
519 * @unit: id for network device
521 * Check boot time settings for the base address of device.
522 * The found settings are set for the device to be used
523 * later in the device probing.
524 * Returns 0 if no settings found.
526 unsigned long netdev_boot_base(const char *prefix, int unit)
528 const struct netdev_boot_setup *s = dev_boot_setup;
529 char name[IFNAMSIZ];
530 int i;
532 sprintf(name, "%s%d", prefix, unit);
535 * If device already registered then return base of 1
536 * to indicate not to probe for this interface
538 if (__dev_get_by_name(&init_net, name))
539 return 1;
541 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
542 if (!strcmp(name, s[i].name))
543 return s[i].map.base_addr;
544 return 0;
548 * Saves at boot time configured settings for any netdevice.
550 int __init netdev_boot_setup(char *str)
552 int ints[5];
553 struct ifmap map;
555 str = get_options(str, ARRAY_SIZE(ints), ints);
556 if (!str || !*str)
557 return 0;
559 /* Save settings */
560 memset(&map, 0, sizeof(map));
561 if (ints[0] > 0)
562 map.irq = ints[1];
563 if (ints[0] > 1)
564 map.base_addr = ints[2];
565 if (ints[0] > 2)
566 map.mem_start = ints[3];
567 if (ints[0] > 3)
568 map.mem_end = ints[4];
570 /* Add new entry to the list */
571 return netdev_boot_setup_add(str, &map);
574 __setup("netdev=", netdev_boot_setup);
576 /*******************************************************************************
578 Device Interface Subroutines
580 *******************************************************************************/
583 * __dev_get_by_name - find a device by its name
584 * @net: the applicable net namespace
585 * @name: name to find
587 * Find an interface by name. Must be called under RTNL semaphore
588 * or @dev_base_lock. If the name is found a pointer to the device
589 * is returned. If the name is not found then %NULL is returned. The
590 * reference counters are not incremented so the caller must be
591 * careful with locks.
594 struct net_device *__dev_get_by_name(struct net *net, const char *name)
596 struct hlist_node *p;
598 hlist_for_each(p, dev_name_hash(net, name)) {
599 struct net_device *dev
600 = hlist_entry(p, struct net_device, name_hlist);
601 if (!strncmp(dev->name, name, IFNAMSIZ))
602 return dev;
604 return NULL;
608 * dev_get_by_name - find a device by its name
609 * @net: the applicable net namespace
610 * @name: name to find
612 * Find an interface by name. This can be called from any
613 * context and does its own locking. The returned handle has
614 * the usage count incremented and the caller must use dev_put() to
615 * release it when it is no longer needed. %NULL is returned if no
616 * matching device is found.
619 struct net_device *dev_get_by_name(struct net *net, const char *name)
621 struct net_device *dev;
623 read_lock(&dev_base_lock);
624 dev = __dev_get_by_name(net, name);
625 if (dev)
626 dev_hold(dev);
627 read_unlock(&dev_base_lock);
628 return dev;
632 * __dev_get_by_index - find a device by its ifindex
633 * @net: the applicable net namespace
634 * @ifindex: index of device
636 * Search for an interface by index. Returns %NULL if the device
637 * is not found or a pointer to the device. The device has not
638 * had its reference counter increased so the caller must be careful
639 * about locking. The caller must hold either the RTNL semaphore
640 * or @dev_base_lock.
643 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
645 struct hlist_node *p;
647 hlist_for_each(p, dev_index_hash(net, ifindex)) {
648 struct net_device *dev
649 = hlist_entry(p, struct net_device, index_hlist);
650 if (dev->ifindex == ifindex)
651 return dev;
653 return NULL;
658 * dev_get_by_index - find a device by its ifindex
659 * @net: the applicable net namespace
660 * @ifindex: index of device
662 * Search for an interface by index. Returns NULL if the device
663 * is not found or a pointer to the device. The device returned has
664 * had a reference added and the pointer is safe until the user calls
665 * dev_put to indicate they have finished with it.
668 struct net_device *dev_get_by_index(struct net *net, int ifindex)
670 struct net_device *dev;
672 read_lock(&dev_base_lock);
673 dev = __dev_get_by_index(net, ifindex);
674 if (dev)
675 dev_hold(dev);
676 read_unlock(&dev_base_lock);
677 return dev;
681 * dev_getbyhwaddr - find a device by its hardware address
682 * @net: the applicable net namespace
683 * @type: media type of device
684 * @ha: hardware address
686 * Search for an interface by MAC address. Returns NULL if the device
687 * is not found or a pointer to the device. The caller must hold the
688 * rtnl semaphore. The returned device has not had its ref count increased
689 * and the caller must therefore be careful about locking
691 * BUGS:
692 * If the API was consistent this would be __dev_get_by_hwaddr
695 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
697 struct net_device *dev;
699 ASSERT_RTNL();
701 for_each_netdev(net, dev)
702 if (dev->type == type &&
703 !memcmp(dev->dev_addr, ha, dev->addr_len))
704 return dev;
706 return NULL;
709 EXPORT_SYMBOL(dev_getbyhwaddr);
711 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
713 struct net_device *dev;
715 ASSERT_RTNL();
716 for_each_netdev(net, dev)
717 if (dev->type == type)
718 return dev;
720 return NULL;
723 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
725 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
727 struct net_device *dev;
729 rtnl_lock();
730 dev = __dev_getfirstbyhwtype(net, type);
731 if (dev)
732 dev_hold(dev);
733 rtnl_unlock();
734 return dev;
737 EXPORT_SYMBOL(dev_getfirstbyhwtype);
740 * dev_get_by_flags - find any device with given flags
741 * @net: the applicable net namespace
742 * @if_flags: IFF_* values
743 * @mask: bitmask of bits in if_flags to check
745 * Search for any interface with the given flags. Returns NULL if a device
746 * is not found or a pointer to the device. The device returned has
747 * had a reference added and the pointer is safe until the user calls
748 * dev_put to indicate they have finished with it.
751 struct net_device * dev_get_by_flags(struct net *net, unsigned short if_flags, unsigned short mask)
753 struct net_device *dev, *ret;
755 ret = NULL;
756 read_lock(&dev_base_lock);
757 for_each_netdev(net, dev) {
758 if (((dev->flags ^ if_flags) & mask) == 0) {
759 dev_hold(dev);
760 ret = dev;
761 break;
764 read_unlock(&dev_base_lock);
765 return ret;
769 * dev_valid_name - check if name is okay for network device
770 * @name: name string
772 * Network device names need to be valid file names to
773 * to allow sysfs to work. We also disallow any kind of
774 * whitespace.
776 int dev_valid_name(const char *name)
778 if (*name == '\0')
779 return 0;
780 if (strlen(name) >= IFNAMSIZ)
781 return 0;
782 if (!strcmp(name, ".") || !strcmp(name, ".."))
783 return 0;
785 while (*name) {
786 if (*name == '/' || isspace(*name))
787 return 0;
788 name++;
790 return 1;
794 * __dev_alloc_name - allocate a name for a device
795 * @net: network namespace to allocate the device name in
796 * @name: name format string
797 * @buf: scratch buffer and result name string
799 * Passed a format string - eg "lt%d" it will try and find a suitable
800 * id. It scans list of devices to build up a free map, then chooses
801 * the first empty slot. The caller must hold the dev_base or rtnl lock
802 * while allocating the name and adding the device in order to avoid
803 * duplicates.
804 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
805 * Returns the number of the unit assigned or a negative errno code.
808 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
810 int i = 0;
811 const char *p;
812 const int max_netdevices = 8*PAGE_SIZE;
813 unsigned long *inuse;
814 struct net_device *d;
816 p = strnchr(name, IFNAMSIZ-1, '%');
817 if (p) {
819 * Verify the string as this thing may have come from
820 * the user. There must be either one "%d" and no other "%"
821 * characters.
823 if (p[1] != 'd' || strchr(p + 2, '%'))
824 return -EINVAL;
826 /* Use one page as a bit array of possible slots */
827 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
828 if (!inuse)
829 return -ENOMEM;
831 for_each_netdev(net, d) {
832 if (!sscanf(d->name, name, &i))
833 continue;
834 if (i < 0 || i >= max_netdevices)
835 continue;
837 /* avoid cases where sscanf is not exact inverse of printf */
838 snprintf(buf, IFNAMSIZ, name, i);
839 if (!strncmp(buf, d->name, IFNAMSIZ))
840 set_bit(i, inuse);
843 i = find_first_zero_bit(inuse, max_netdevices);
844 free_page((unsigned long) inuse);
847 snprintf(buf, IFNAMSIZ, name, i);
848 if (!__dev_get_by_name(net, buf))
849 return i;
851 /* It is possible to run out of possible slots
852 * when the name is long and there isn't enough space left
853 * for the digits, or if all bits are used.
855 return -ENFILE;
859 * dev_alloc_name - allocate a name for a device
860 * @dev: device
861 * @name: name format string
863 * Passed a format string - eg "lt%d" it will try and find a suitable
864 * id. It scans list of devices to build up a free map, then chooses
865 * the first empty slot. The caller must hold the dev_base or rtnl lock
866 * while allocating the name and adding the device in order to avoid
867 * duplicates.
868 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
869 * Returns the number of the unit assigned or a negative errno code.
872 int dev_alloc_name(struct net_device *dev, const char *name)
874 char buf[IFNAMSIZ];
875 struct net *net;
876 int ret;
878 BUG_ON(!dev_net(dev));
879 net = dev_net(dev);
880 ret = __dev_alloc_name(net, name, buf);
881 if (ret >= 0)
882 strlcpy(dev->name, buf, IFNAMSIZ);
883 return ret;
888 * dev_change_name - change name of a device
889 * @dev: device
890 * @newname: name (or format string) must be at least IFNAMSIZ
892 * Change name of a device, can pass format strings "eth%d".
893 * for wildcarding.
895 int dev_change_name(struct net_device *dev, const char *newname)
897 char oldname[IFNAMSIZ];
898 int err = 0;
899 int ret;
900 struct net *net;
902 ASSERT_RTNL();
903 BUG_ON(!dev_net(dev));
905 net = dev_net(dev);
906 if (dev->flags & IFF_UP)
907 return -EBUSY;
909 if (!dev_valid_name(newname))
910 return -EINVAL;
912 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
913 return 0;
915 memcpy(oldname, dev->name, IFNAMSIZ);
917 if (strchr(newname, '%')) {
918 err = dev_alloc_name(dev, newname);
919 if (err < 0)
920 return err;
922 else if (__dev_get_by_name(net, newname))
923 return -EEXIST;
924 else
925 strlcpy(dev->name, newname, IFNAMSIZ);
927 rollback:
928 /* For now only devices in the initial network namespace
929 * are in sysfs.
931 if (net == &init_net) {
932 ret = device_rename(&dev->dev, dev->name);
933 if (ret) {
934 memcpy(dev->name, oldname, IFNAMSIZ);
935 return ret;
939 write_lock_bh(&dev_base_lock);
940 hlist_del(&dev->name_hlist);
941 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
942 write_unlock_bh(&dev_base_lock);
944 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
945 ret = notifier_to_errno(ret);
947 if (ret) {
948 if (err) {
949 printk(KERN_ERR
950 "%s: name change rollback failed: %d.\n",
951 dev->name, ret);
952 } else {
953 err = ret;
954 memcpy(dev->name, oldname, IFNAMSIZ);
955 goto rollback;
959 return err;
963 * dev_set_alias - change ifalias of a device
964 * @dev: device
965 * @alias: name up to IFALIASZ
966 * @len: limit of bytes to copy from info
968 * Set ifalias for a device,
970 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
972 ASSERT_RTNL();
974 if (len >= IFALIASZ)
975 return -EINVAL;
977 if (!len) {
978 if (dev->ifalias) {
979 kfree(dev->ifalias);
980 dev->ifalias = NULL;
982 return 0;
985 dev->ifalias = krealloc(dev->ifalias, len+1, GFP_KERNEL);
986 if (!dev->ifalias)
987 return -ENOMEM;
989 strlcpy(dev->ifalias, alias, len+1);
990 return len;
995 * netdev_features_change - device changes features
996 * @dev: device to cause notification
998 * Called to indicate a device has changed features.
1000 void netdev_features_change(struct net_device *dev)
1002 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1004 EXPORT_SYMBOL(netdev_features_change);
1007 * netdev_state_change - device changes state
1008 * @dev: device to cause notification
1010 * Called to indicate a device has changed state. This function calls
1011 * the notifier chains for netdev_chain and sends a NEWLINK message
1012 * to the routing socket.
1014 void netdev_state_change(struct net_device *dev)
1016 if (dev->flags & IFF_UP) {
1017 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1018 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1022 void netdev_bonding_change(struct net_device *dev)
1024 call_netdevice_notifiers(NETDEV_BONDING_FAILOVER, dev);
1026 EXPORT_SYMBOL(netdev_bonding_change);
1029 * dev_load - load a network module
1030 * @net: the applicable net namespace
1031 * @name: name of interface
1033 * If a network interface is not present and the process has suitable
1034 * privileges this function loads the module. If module loading is not
1035 * available in this kernel then it becomes a nop.
1038 void dev_load(struct net *net, const char *name)
1040 struct net_device *dev;
1042 read_lock(&dev_base_lock);
1043 dev = __dev_get_by_name(net, name);
1044 read_unlock(&dev_base_lock);
1046 if (!dev && capable(CAP_SYS_MODULE))
1047 request_module("%s", name);
1051 * dev_open - prepare an interface for use.
1052 * @dev: device to open
1054 * Takes a device from down to up state. The device's private open
1055 * function is invoked and then the multicast lists are loaded. Finally
1056 * the device is moved into the up state and a %NETDEV_UP message is
1057 * sent to the netdev notifier chain.
1059 * Calling this function on an active interface is a nop. On a failure
1060 * a negative errno code is returned.
1062 int dev_open(struct net_device *dev)
1064 const struct net_device_ops *ops = dev->netdev_ops;
1065 int ret = 0;
1067 ASSERT_RTNL();
1070 * Is it already up?
1073 if (dev->flags & IFF_UP)
1074 return 0;
1077 * Is it even present?
1079 if (!netif_device_present(dev))
1080 return -ENODEV;
1083 * Call device private open method
1085 set_bit(__LINK_STATE_START, &dev->state);
1087 if (ops->ndo_validate_addr)
1088 ret = ops->ndo_validate_addr(dev);
1090 if (!ret && ops->ndo_open)
1091 ret = ops->ndo_open(dev);
1094 * If it went open OK then:
1097 if (ret)
1098 clear_bit(__LINK_STATE_START, &dev->state);
1099 else {
1101 * Set the flags.
1103 dev->flags |= IFF_UP;
1106 * Enable NET_DMA
1108 dmaengine_get();
1111 * Initialize multicasting status
1113 dev_set_rx_mode(dev);
1116 * Wakeup transmit queue engine
1118 dev_activate(dev);
1121 * ... and announce new interface.
1123 call_netdevice_notifiers(NETDEV_UP, dev);
1126 return ret;
1130 * dev_close - shutdown an interface.
1131 * @dev: device to shutdown
1133 * This function moves an active device into down state. A
1134 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1135 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1136 * chain.
1138 int dev_close(struct net_device *dev)
1140 const struct net_device_ops *ops = dev->netdev_ops;
1141 ASSERT_RTNL();
1143 might_sleep();
1145 if (!(dev->flags & IFF_UP))
1146 return 0;
1149 * Tell people we are going down, so that they can
1150 * prepare to death, when device is still operating.
1152 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1154 clear_bit(__LINK_STATE_START, &dev->state);
1156 /* Synchronize to scheduled poll. We cannot touch poll list,
1157 * it can be even on different cpu. So just clear netif_running().
1159 * dev->stop() will invoke napi_disable() on all of it's
1160 * napi_struct instances on this device.
1162 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1164 dev_deactivate(dev);
1167 * Call the device specific close. This cannot fail.
1168 * Only if device is UP
1170 * We allow it to be called even after a DETACH hot-plug
1171 * event.
1173 if (ops->ndo_stop)
1174 ops->ndo_stop(dev);
1177 * Device is now down.
1180 dev->flags &= ~IFF_UP;
1183 * Tell people we are down
1185 call_netdevice_notifiers(NETDEV_DOWN, dev);
1188 * Shutdown NET_DMA
1190 dmaengine_put();
1192 return 0;
1197 * dev_disable_lro - disable Large Receive Offload on a device
1198 * @dev: device
1200 * Disable Large Receive Offload (LRO) on a net device. Must be
1201 * called under RTNL. This is needed if received packets may be
1202 * forwarded to another interface.
1204 void dev_disable_lro(struct net_device *dev)
1206 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1207 dev->ethtool_ops->set_flags) {
1208 u32 flags = dev->ethtool_ops->get_flags(dev);
1209 if (flags & ETH_FLAG_LRO) {
1210 flags &= ~ETH_FLAG_LRO;
1211 dev->ethtool_ops->set_flags(dev, flags);
1214 WARN_ON(dev->features & NETIF_F_LRO);
1216 EXPORT_SYMBOL(dev_disable_lro);
1219 static int dev_boot_phase = 1;
1222 * Device change register/unregister. These are not inline or static
1223 * as we export them to the world.
1227 * register_netdevice_notifier - register a network notifier block
1228 * @nb: notifier
1230 * Register a notifier to be called when network device events occur.
1231 * The notifier passed is linked into the kernel structures and must
1232 * not be reused until it has been unregistered. A negative errno code
1233 * is returned on a failure.
1235 * When registered all registration and up events are replayed
1236 * to the new notifier to allow device to have a race free
1237 * view of the network device list.
1240 int register_netdevice_notifier(struct notifier_block *nb)
1242 struct net_device *dev;
1243 struct net_device *last;
1244 struct net *net;
1245 int err;
1247 rtnl_lock();
1248 err = raw_notifier_chain_register(&netdev_chain, nb);
1249 if (err)
1250 goto unlock;
1251 if (dev_boot_phase)
1252 goto unlock;
1253 for_each_net(net) {
1254 for_each_netdev(net, dev) {
1255 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1256 err = notifier_to_errno(err);
1257 if (err)
1258 goto rollback;
1260 if (!(dev->flags & IFF_UP))
1261 continue;
1263 nb->notifier_call(nb, NETDEV_UP, dev);
1267 unlock:
1268 rtnl_unlock();
1269 return err;
1271 rollback:
1272 last = dev;
1273 for_each_net(net) {
1274 for_each_netdev(net, dev) {
1275 if (dev == last)
1276 break;
1278 if (dev->flags & IFF_UP) {
1279 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1280 nb->notifier_call(nb, NETDEV_DOWN, dev);
1282 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1286 raw_notifier_chain_unregister(&netdev_chain, nb);
1287 goto unlock;
1291 * unregister_netdevice_notifier - unregister a network notifier block
1292 * @nb: notifier
1294 * Unregister a notifier previously registered by
1295 * register_netdevice_notifier(). The notifier is unlinked into the
1296 * kernel structures and may then be reused. A negative errno code
1297 * is returned on a failure.
1300 int unregister_netdevice_notifier(struct notifier_block *nb)
1302 int err;
1304 rtnl_lock();
1305 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1306 rtnl_unlock();
1307 return err;
1311 * call_netdevice_notifiers - call all network notifier blocks
1312 * @val: value passed unmodified to notifier function
1313 * @dev: net_device pointer passed unmodified to notifier function
1315 * Call all network notifier blocks. Parameters and return value
1316 * are as for raw_notifier_call_chain().
1319 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1321 return raw_notifier_call_chain(&netdev_chain, val, dev);
1324 /* When > 0 there are consumers of rx skb time stamps */
1325 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1327 void net_enable_timestamp(void)
1329 atomic_inc(&netstamp_needed);
1332 void net_disable_timestamp(void)
1334 atomic_dec(&netstamp_needed);
1337 static inline void net_timestamp(struct sk_buff *skb)
1339 if (atomic_read(&netstamp_needed))
1340 __net_timestamp(skb);
1341 else
1342 skb->tstamp.tv64 = 0;
1346 * Support routine. Sends outgoing frames to any network
1347 * taps currently in use.
1350 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1352 struct packet_type *ptype;
1354 net_timestamp(skb);
1356 rcu_read_lock();
1357 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1358 /* Never send packets back to the socket
1359 * they originated from - MvS (miquels@drinkel.ow.org)
1361 if ((ptype->dev == dev || !ptype->dev) &&
1362 (ptype->af_packet_priv == NULL ||
1363 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1364 struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC);
1365 if (!skb2)
1366 break;
1368 /* skb->nh should be correctly
1369 set by sender, so that the second statement is
1370 just protection against buggy protocols.
1372 skb_reset_mac_header(skb2);
1374 if (skb_network_header(skb2) < skb2->data ||
1375 skb2->network_header > skb2->tail) {
1376 if (net_ratelimit())
1377 printk(KERN_CRIT "protocol %04x is "
1378 "buggy, dev %s\n",
1379 skb2->protocol, dev->name);
1380 skb_reset_network_header(skb2);
1383 skb2->transport_header = skb2->network_header;
1384 skb2->pkt_type = PACKET_OUTGOING;
1385 ptype->func(skb2, skb->dev, ptype, skb->dev);
1388 rcu_read_unlock();
1392 static inline void __netif_reschedule(struct Qdisc *q)
1394 struct softnet_data *sd;
1395 unsigned long flags;
1397 local_irq_save(flags);
1398 sd = &__get_cpu_var(softnet_data);
1399 q->next_sched = sd->output_queue;
1400 sd->output_queue = q;
1401 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1402 local_irq_restore(flags);
1405 void __netif_schedule(struct Qdisc *q)
1407 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1408 __netif_reschedule(q);
1410 EXPORT_SYMBOL(__netif_schedule);
1412 void dev_kfree_skb_irq(struct sk_buff *skb)
1414 if (atomic_dec_and_test(&skb->users)) {
1415 struct softnet_data *sd;
1416 unsigned long flags;
1418 local_irq_save(flags);
1419 sd = &__get_cpu_var(softnet_data);
1420 skb->next = sd->completion_queue;
1421 sd->completion_queue = skb;
1422 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1423 local_irq_restore(flags);
1426 EXPORT_SYMBOL(dev_kfree_skb_irq);
1428 void dev_kfree_skb_any(struct sk_buff *skb)
1430 if (in_irq() || irqs_disabled())
1431 dev_kfree_skb_irq(skb);
1432 else
1433 dev_kfree_skb(skb);
1435 EXPORT_SYMBOL(dev_kfree_skb_any);
1439 * netif_device_detach - mark device as removed
1440 * @dev: network device
1442 * Mark device as removed from system and therefore no longer available.
1444 void netif_device_detach(struct net_device *dev)
1446 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1447 netif_running(dev)) {
1448 netif_stop_queue(dev);
1451 EXPORT_SYMBOL(netif_device_detach);
1454 * netif_device_attach - mark device as attached
1455 * @dev: network device
1457 * Mark device as attached from system and restart if needed.
1459 void netif_device_attach(struct net_device *dev)
1461 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1462 netif_running(dev)) {
1463 netif_wake_queue(dev);
1464 __netdev_watchdog_up(dev);
1467 EXPORT_SYMBOL(netif_device_attach);
1469 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1471 return ((features & NETIF_F_GEN_CSUM) ||
1472 ((features & NETIF_F_IP_CSUM) &&
1473 protocol == htons(ETH_P_IP)) ||
1474 ((features & NETIF_F_IPV6_CSUM) &&
1475 protocol == htons(ETH_P_IPV6)));
1478 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1480 if (can_checksum_protocol(dev->features, skb->protocol))
1481 return true;
1483 if (skb->protocol == htons(ETH_P_8021Q)) {
1484 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1485 if (can_checksum_protocol(dev->features & dev->vlan_features,
1486 veh->h_vlan_encapsulated_proto))
1487 return true;
1490 return false;
1494 * Invalidate hardware checksum when packet is to be mangled, and
1495 * complete checksum manually on outgoing path.
1497 int skb_checksum_help(struct sk_buff *skb)
1499 __wsum csum;
1500 int ret = 0, offset;
1502 if (skb->ip_summed == CHECKSUM_COMPLETE)
1503 goto out_set_summed;
1505 if (unlikely(skb_shinfo(skb)->gso_size)) {
1506 /* Let GSO fix up the checksum. */
1507 goto out_set_summed;
1510 offset = skb->csum_start - skb_headroom(skb);
1511 BUG_ON(offset >= skb_headlen(skb));
1512 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1514 offset += skb->csum_offset;
1515 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1517 if (skb_cloned(skb) &&
1518 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1519 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1520 if (ret)
1521 goto out;
1524 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1525 out_set_summed:
1526 skb->ip_summed = CHECKSUM_NONE;
1527 out:
1528 return ret;
1532 * skb_gso_segment - Perform segmentation on skb.
1533 * @skb: buffer to segment
1534 * @features: features for the output path (see dev->features)
1536 * This function segments the given skb and returns a list of segments.
1538 * It may return NULL if the skb requires no segmentation. This is
1539 * only possible when GSO is used for verifying header integrity.
1541 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1543 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1544 struct packet_type *ptype;
1545 __be16 type = skb->protocol;
1546 int err;
1548 skb_reset_mac_header(skb);
1549 skb->mac_len = skb->network_header - skb->mac_header;
1550 __skb_pull(skb, skb->mac_len);
1552 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1553 struct net_device *dev = skb->dev;
1554 struct ethtool_drvinfo info = {};
1556 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1557 dev->ethtool_ops->get_drvinfo(dev, &info);
1559 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d "
1560 "ip_summed=%d",
1561 info.driver, dev ? dev->features : 0L,
1562 skb->sk ? skb->sk->sk_route_caps : 0L,
1563 skb->len, skb->data_len, skb->ip_summed);
1565 if (skb_header_cloned(skb) &&
1566 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1567 return ERR_PTR(err);
1570 rcu_read_lock();
1571 list_for_each_entry_rcu(ptype,
1572 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1573 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1574 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1575 err = ptype->gso_send_check(skb);
1576 segs = ERR_PTR(err);
1577 if (err || skb_gso_ok(skb, features))
1578 break;
1579 __skb_push(skb, (skb->data -
1580 skb_network_header(skb)));
1582 segs = ptype->gso_segment(skb, features);
1583 break;
1586 rcu_read_unlock();
1588 __skb_push(skb, skb->data - skb_mac_header(skb));
1590 return segs;
1593 EXPORT_SYMBOL(skb_gso_segment);
1595 /* Take action when hardware reception checksum errors are detected. */
1596 #ifdef CONFIG_BUG
1597 void netdev_rx_csum_fault(struct net_device *dev)
1599 if (net_ratelimit()) {
1600 printk(KERN_ERR "%s: hw csum failure.\n",
1601 dev ? dev->name : "<unknown>");
1602 dump_stack();
1605 EXPORT_SYMBOL(netdev_rx_csum_fault);
1606 #endif
1608 /* Actually, we should eliminate this check as soon as we know, that:
1609 * 1. IOMMU is present and allows to map all the memory.
1610 * 2. No high memory really exists on this machine.
1613 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1615 #ifdef CONFIG_HIGHMEM
1616 int i;
1618 if (dev->features & NETIF_F_HIGHDMA)
1619 return 0;
1621 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1622 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1623 return 1;
1625 #endif
1626 return 0;
1629 struct dev_gso_cb {
1630 void (*destructor)(struct sk_buff *skb);
1633 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1635 static void dev_gso_skb_destructor(struct sk_buff *skb)
1637 struct dev_gso_cb *cb;
1639 do {
1640 struct sk_buff *nskb = skb->next;
1642 skb->next = nskb->next;
1643 nskb->next = NULL;
1644 kfree_skb(nskb);
1645 } while (skb->next);
1647 cb = DEV_GSO_CB(skb);
1648 if (cb->destructor)
1649 cb->destructor(skb);
1653 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1654 * @skb: buffer to segment
1656 * This function segments the given skb and stores the list of segments
1657 * in skb->next.
1659 static int dev_gso_segment(struct sk_buff *skb)
1661 struct net_device *dev = skb->dev;
1662 struct sk_buff *segs;
1663 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1664 NETIF_F_SG : 0);
1666 segs = skb_gso_segment(skb, features);
1668 /* Verifying header integrity only. */
1669 if (!segs)
1670 return 0;
1672 if (IS_ERR(segs))
1673 return PTR_ERR(segs);
1675 skb->next = segs;
1676 DEV_GSO_CB(skb)->destructor = skb->destructor;
1677 skb->destructor = dev_gso_skb_destructor;
1679 return 0;
1682 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1683 struct netdev_queue *txq)
1685 const struct net_device_ops *ops = dev->netdev_ops;
1687 prefetch(&dev->netdev_ops->ndo_start_xmit);
1688 if (likely(!skb->next)) {
1689 if (!list_empty(&ptype_all))
1690 dev_queue_xmit_nit(skb, dev);
1692 if (netif_needs_gso(dev, skb)) {
1693 if (unlikely(dev_gso_segment(skb)))
1694 goto out_kfree_skb;
1695 if (skb->next)
1696 goto gso;
1699 return ops->ndo_start_xmit(skb, dev);
1702 gso:
1703 do {
1704 struct sk_buff *nskb = skb->next;
1705 int rc;
1707 skb->next = nskb->next;
1708 nskb->next = NULL;
1709 rc = ops->ndo_start_xmit(nskb, dev);
1710 if (unlikely(rc)) {
1711 nskb->next = skb->next;
1712 skb->next = nskb;
1713 return rc;
1715 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
1716 return NETDEV_TX_BUSY;
1717 } while (skb->next);
1719 skb->destructor = DEV_GSO_CB(skb)->destructor;
1721 out_kfree_skb:
1722 kfree_skb(skb);
1723 return 0;
1726 static u32 skb_tx_hashrnd;
1727 static int skb_tx_hashrnd_initialized = 0;
1729 static u16 skb_tx_hash(struct net_device *dev, struct sk_buff *skb)
1731 u32 hash;
1733 if (unlikely(!skb_tx_hashrnd_initialized)) {
1734 get_random_bytes(&skb_tx_hashrnd, 4);
1735 skb_tx_hashrnd_initialized = 1;
1738 if (skb_rx_queue_recorded(skb)) {
1739 hash = skb_get_rx_queue(skb);
1740 } else if (skb->sk && skb->sk->sk_hash) {
1741 hash = skb->sk->sk_hash;
1742 } else
1743 hash = skb->protocol;
1745 hash = jhash_1word(hash, skb_tx_hashrnd);
1747 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
1750 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
1751 struct sk_buff *skb)
1753 const struct net_device_ops *ops = dev->netdev_ops;
1754 u16 queue_index = 0;
1756 if (ops->ndo_select_queue)
1757 queue_index = ops->ndo_select_queue(dev, skb);
1758 else if (dev->real_num_tx_queues > 1)
1759 queue_index = skb_tx_hash(dev, skb);
1761 skb_set_queue_mapping(skb, queue_index);
1762 return netdev_get_tx_queue(dev, queue_index);
1766 * dev_queue_xmit - transmit a buffer
1767 * @skb: buffer to transmit
1769 * Queue a buffer for transmission to a network device. The caller must
1770 * have set the device and priority and built the buffer before calling
1771 * this function. The function can be called from an interrupt.
1773 * A negative errno code is returned on a failure. A success does not
1774 * guarantee the frame will be transmitted as it may be dropped due
1775 * to congestion or traffic shaping.
1777 * -----------------------------------------------------------------------------------
1778 * I notice this method can also return errors from the queue disciplines,
1779 * including NET_XMIT_DROP, which is a positive value. So, errors can also
1780 * be positive.
1782 * Regardless of the return value, the skb is consumed, so it is currently
1783 * difficult to retry a send to this method. (You can bump the ref count
1784 * before sending to hold a reference for retry if you are careful.)
1786 * When calling this method, interrupts MUST be enabled. This is because
1787 * the BH enable code must have IRQs enabled so that it will not deadlock.
1788 * --BLG
1790 int dev_queue_xmit(struct sk_buff *skb)
1792 struct net_device *dev = skb->dev;
1793 struct netdev_queue *txq;
1794 struct Qdisc *q;
1795 int rc = -ENOMEM;
1797 /* GSO will handle the following emulations directly. */
1798 if (netif_needs_gso(dev, skb))
1799 goto gso;
1801 if (skb_shinfo(skb)->frag_list &&
1802 !(dev->features & NETIF_F_FRAGLIST) &&
1803 __skb_linearize(skb))
1804 goto out_kfree_skb;
1806 /* Fragmented skb is linearized if device does not support SG,
1807 * or if at least one of fragments is in highmem and device
1808 * does not support DMA from it.
1810 if (skb_shinfo(skb)->nr_frags &&
1811 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) &&
1812 __skb_linearize(skb))
1813 goto out_kfree_skb;
1815 /* If packet is not checksummed and device does not support
1816 * checksumming for this protocol, complete checksumming here.
1818 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1819 skb_set_transport_header(skb, skb->csum_start -
1820 skb_headroom(skb));
1821 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb))
1822 goto out_kfree_skb;
1825 gso:
1826 /* Disable soft irqs for various locks below. Also
1827 * stops preemption for RCU.
1829 rcu_read_lock_bh();
1831 txq = dev_pick_tx(dev, skb);
1832 q = rcu_dereference(txq->qdisc);
1834 #ifdef CONFIG_NET_CLS_ACT
1835 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS);
1836 #endif
1837 if (q->enqueue) {
1838 spinlock_t *root_lock = qdisc_lock(q);
1840 spin_lock(root_lock);
1842 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
1843 kfree_skb(skb);
1844 rc = NET_XMIT_DROP;
1845 } else {
1846 rc = qdisc_enqueue_root(skb, q);
1847 qdisc_run(q);
1849 spin_unlock(root_lock);
1851 goto out;
1854 /* The device has no queue. Common case for software devices:
1855 loopback, all the sorts of tunnels...
1857 Really, it is unlikely that netif_tx_lock protection is necessary
1858 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1859 counters.)
1860 However, it is possible, that they rely on protection
1861 made by us here.
1863 Check this and shot the lock. It is not prone from deadlocks.
1864 Either shot noqueue qdisc, it is even simpler 8)
1866 if (dev->flags & IFF_UP) {
1867 int cpu = smp_processor_id(); /* ok because BHs are off */
1869 if (txq->xmit_lock_owner != cpu) {
1871 HARD_TX_LOCK(dev, txq, cpu);
1873 if (!netif_tx_queue_stopped(txq)) {
1874 rc = 0;
1875 if (!dev_hard_start_xmit(skb, dev, txq)) {
1876 HARD_TX_UNLOCK(dev, txq);
1877 goto out;
1880 HARD_TX_UNLOCK(dev, txq);
1881 if (net_ratelimit())
1882 printk(KERN_CRIT "Virtual device %s asks to "
1883 "queue packet!\n", dev->name);
1884 } else {
1885 /* Recursion is detected! It is possible,
1886 * unfortunately */
1887 if (net_ratelimit())
1888 printk(KERN_CRIT "Dead loop on virtual device "
1889 "%s, fix it urgently!\n", dev->name);
1893 rc = -ENETDOWN;
1894 rcu_read_unlock_bh();
1896 out_kfree_skb:
1897 kfree_skb(skb);
1898 return rc;
1899 out:
1900 rcu_read_unlock_bh();
1901 return rc;
1905 /*=======================================================================
1906 Receiver routines
1907 =======================================================================*/
1909 int netdev_max_backlog __read_mostly = 1000;
1910 int netdev_budget __read_mostly = 300;
1911 int weight_p __read_mostly = 64; /* old backlog weight */
1913 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
1917 * netif_rx - post buffer to the network code
1918 * @skb: buffer to post
1920 * This function receives a packet from a device driver and queues it for
1921 * the upper (protocol) levels to process. It always succeeds. The buffer
1922 * may be dropped during processing for congestion control or by the
1923 * protocol layers.
1925 * return values:
1926 * NET_RX_SUCCESS (no congestion)
1927 * NET_RX_DROP (packet was dropped)
1931 int netif_rx(struct sk_buff *skb)
1933 struct softnet_data *queue;
1934 unsigned long flags;
1936 /* if netpoll wants it, pretend we never saw it */
1937 if (netpoll_rx(skb))
1938 return NET_RX_DROP;
1940 if (!skb->tstamp.tv64)
1941 net_timestamp(skb);
1944 * The code is rearranged so that the path is the most
1945 * short when CPU is congested, but is still operating.
1947 local_irq_save(flags);
1948 queue = &__get_cpu_var(softnet_data);
1950 __get_cpu_var(netdev_rx_stat).total++;
1951 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
1952 if (queue->input_pkt_queue.qlen) {
1953 enqueue:
1954 __skb_queue_tail(&queue->input_pkt_queue, skb);
1955 local_irq_restore(flags);
1956 return NET_RX_SUCCESS;
1959 napi_schedule(&queue->backlog);
1960 goto enqueue;
1963 __get_cpu_var(netdev_rx_stat).dropped++;
1964 local_irq_restore(flags);
1966 kfree_skb(skb);
1967 return NET_RX_DROP;
1970 int netif_rx_ni(struct sk_buff *skb)
1972 int err;
1974 preempt_disable();
1975 err = netif_rx(skb);
1976 if (local_softirq_pending())
1977 do_softirq();
1978 preempt_enable();
1980 return err;
1983 EXPORT_SYMBOL(netif_rx_ni);
1985 static void net_tx_action(struct softirq_action *h)
1987 struct softnet_data *sd = &__get_cpu_var(softnet_data);
1989 if (sd->completion_queue) {
1990 struct sk_buff *clist;
1992 local_irq_disable();
1993 clist = sd->completion_queue;
1994 sd->completion_queue = NULL;
1995 local_irq_enable();
1997 while (clist) {
1998 struct sk_buff *skb = clist;
1999 clist = clist->next;
2001 WARN_ON(atomic_read(&skb->users));
2002 __kfree_skb(skb);
2006 if (sd->output_queue) {
2007 struct Qdisc *head;
2009 local_irq_disable();
2010 head = sd->output_queue;
2011 sd->output_queue = NULL;
2012 local_irq_enable();
2014 while (head) {
2015 struct Qdisc *q = head;
2016 spinlock_t *root_lock;
2018 head = head->next_sched;
2020 root_lock = qdisc_lock(q);
2021 if (spin_trylock(root_lock)) {
2022 smp_mb__before_clear_bit();
2023 clear_bit(__QDISC_STATE_SCHED,
2024 &q->state);
2025 qdisc_run(q);
2026 spin_unlock(root_lock);
2027 } else {
2028 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2029 &q->state)) {
2030 __netif_reschedule(q);
2031 } else {
2032 smp_mb__before_clear_bit();
2033 clear_bit(__QDISC_STATE_SCHED,
2034 &q->state);
2041 static inline int deliver_skb(struct sk_buff *skb,
2042 struct packet_type *pt_prev,
2043 struct net_device *orig_dev)
2045 atomic_inc(&skb->users);
2046 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2049 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
2050 /* These hooks defined here for ATM */
2051 struct net_bridge;
2052 struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br,
2053 unsigned char *addr);
2054 void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent) __read_mostly;
2057 * If bridge module is loaded call bridging hook.
2058 * returns NULL if packet was consumed.
2060 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
2061 struct sk_buff *skb) __read_mostly;
2062 static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
2063 struct packet_type **pt_prev, int *ret,
2064 struct net_device *orig_dev)
2066 struct net_bridge_port *port;
2068 if (skb->pkt_type == PACKET_LOOPBACK ||
2069 (port = rcu_dereference(skb->dev->br_port)) == NULL)
2070 return skb;
2072 if (*pt_prev) {
2073 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2074 *pt_prev = NULL;
2077 return br_handle_frame_hook(port, skb);
2079 #else
2080 #define handle_bridge(skb, pt_prev, ret, orig_dev) (skb)
2081 #endif
2083 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
2084 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly;
2085 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
2087 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
2088 struct packet_type **pt_prev,
2089 int *ret,
2090 struct net_device *orig_dev)
2092 if (skb->dev->macvlan_port == NULL)
2093 return skb;
2095 if (*pt_prev) {
2096 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2097 *pt_prev = NULL;
2099 return macvlan_handle_frame_hook(skb);
2101 #else
2102 #define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb)
2103 #endif
2105 #ifdef CONFIG_NET_CLS_ACT
2106 /* TODO: Maybe we should just force sch_ingress to be compiled in
2107 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2108 * a compare and 2 stores extra right now if we dont have it on
2109 * but have CONFIG_NET_CLS_ACT
2110 * NOTE: This doesnt stop any functionality; if you dont have
2111 * the ingress scheduler, you just cant add policies on ingress.
2114 static int ing_filter(struct sk_buff *skb)
2116 struct net_device *dev = skb->dev;
2117 u32 ttl = G_TC_RTTL(skb->tc_verd);
2118 struct netdev_queue *rxq;
2119 int result = TC_ACT_OK;
2120 struct Qdisc *q;
2122 if (MAX_RED_LOOP < ttl++) {
2123 printk(KERN_WARNING
2124 "Redir loop detected Dropping packet (%d->%d)\n",
2125 skb->iif, dev->ifindex);
2126 return TC_ACT_SHOT;
2129 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2130 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2132 rxq = &dev->rx_queue;
2134 q = rxq->qdisc;
2135 if (q != &noop_qdisc) {
2136 spin_lock(qdisc_lock(q));
2137 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2138 result = qdisc_enqueue_root(skb, q);
2139 spin_unlock(qdisc_lock(q));
2142 return result;
2145 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2146 struct packet_type **pt_prev,
2147 int *ret, struct net_device *orig_dev)
2149 if (skb->dev->rx_queue.qdisc == &noop_qdisc)
2150 goto out;
2152 if (*pt_prev) {
2153 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2154 *pt_prev = NULL;
2155 } else {
2156 /* Huh? Why does turning on AF_PACKET affect this? */
2157 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
2160 switch (ing_filter(skb)) {
2161 case TC_ACT_SHOT:
2162 case TC_ACT_STOLEN:
2163 kfree_skb(skb);
2164 return NULL;
2167 out:
2168 skb->tc_verd = 0;
2169 return skb;
2171 #endif
2174 * netif_nit_deliver - deliver received packets to network taps
2175 * @skb: buffer
2177 * This function is used to deliver incoming packets to network
2178 * taps. It should be used when the normal netif_receive_skb path
2179 * is bypassed, for example because of VLAN acceleration.
2181 void netif_nit_deliver(struct sk_buff *skb)
2183 struct packet_type *ptype;
2185 if (list_empty(&ptype_all))
2186 return;
2188 skb_reset_network_header(skb);
2189 skb_reset_transport_header(skb);
2190 skb->mac_len = skb->network_header - skb->mac_header;
2192 rcu_read_lock();
2193 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2194 if (!ptype->dev || ptype->dev == skb->dev)
2195 deliver_skb(skb, ptype, skb->dev);
2197 rcu_read_unlock();
2201 * netif_receive_skb - process receive buffer from network
2202 * @skb: buffer to process
2204 * netif_receive_skb() is the main receive data processing function.
2205 * It always succeeds. The buffer may be dropped during processing
2206 * for congestion control or by the protocol layers.
2208 * This function may only be called from softirq context and interrupts
2209 * should be enabled.
2211 * Return values (usually ignored):
2212 * NET_RX_SUCCESS: no congestion
2213 * NET_RX_DROP: packet was dropped
2215 int netif_receive_skb(struct sk_buff *skb)
2217 struct packet_type *ptype, *pt_prev;
2218 struct net_device *orig_dev;
2219 struct net_device *null_or_orig;
2220 int ret = NET_RX_DROP;
2221 __be16 type;
2223 if (skb->vlan_tci && vlan_hwaccel_do_receive(skb))
2224 return NET_RX_SUCCESS;
2226 /* if we've gotten here through NAPI, check netpoll */
2227 if (netpoll_receive_skb(skb))
2228 return NET_RX_DROP;
2230 if (!skb->tstamp.tv64)
2231 net_timestamp(skb);
2233 if (!skb->iif)
2234 skb->iif = skb->dev->ifindex;
2236 null_or_orig = NULL;
2237 orig_dev = skb->dev;
2238 if (orig_dev->master) {
2239 if (skb_bond_should_drop(skb))
2240 null_or_orig = orig_dev; /* deliver only exact match */
2241 else
2242 skb->dev = orig_dev->master;
2245 __get_cpu_var(netdev_rx_stat).total++;
2247 skb_reset_network_header(skb);
2248 skb_reset_transport_header(skb);
2249 skb->mac_len = skb->network_header - skb->mac_header;
2251 pt_prev = NULL;
2253 rcu_read_lock();
2255 /* Don't receive packets in an exiting network namespace */
2256 if (!net_alive(dev_net(skb->dev))) {
2257 kfree_skb(skb);
2258 goto out;
2261 #ifdef CONFIG_NET_CLS_ACT
2262 if (skb->tc_verd & TC_NCLS) {
2263 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2264 goto ncls;
2266 #endif
2268 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2269 if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2270 ptype->dev == orig_dev) {
2271 if (pt_prev)
2272 ret = deliver_skb(skb, pt_prev, orig_dev);
2273 pt_prev = ptype;
2277 #ifdef CONFIG_NET_CLS_ACT
2278 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2279 if (!skb)
2280 goto out;
2281 ncls:
2282 #endif
2284 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
2285 if (!skb)
2286 goto out;
2287 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2288 if (!skb)
2289 goto out;
2291 skb_orphan(skb);
2293 type = skb->protocol;
2294 list_for_each_entry_rcu(ptype,
2295 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2296 if (ptype->type == type &&
2297 (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2298 ptype->dev == orig_dev)) {
2299 if (pt_prev)
2300 ret = deliver_skb(skb, pt_prev, orig_dev);
2301 pt_prev = ptype;
2305 if (pt_prev) {
2306 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2307 } else {
2308 kfree_skb(skb);
2309 /* Jamal, now you will not able to escape explaining
2310 * me how you were going to use this. :-)
2312 ret = NET_RX_DROP;
2315 out:
2316 rcu_read_unlock();
2317 return ret;
2320 /* Network device is going away, flush any packets still pending */
2321 static void flush_backlog(void *arg)
2323 struct net_device *dev = arg;
2324 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2325 struct sk_buff *skb, *tmp;
2327 skb_queue_walk_safe(&queue->input_pkt_queue, skb, tmp)
2328 if (skb->dev == dev) {
2329 __skb_unlink(skb, &queue->input_pkt_queue);
2330 kfree_skb(skb);
2334 static int napi_gro_complete(struct sk_buff *skb)
2336 struct packet_type *ptype;
2337 __be16 type = skb->protocol;
2338 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2339 int err = -ENOENT;
2341 if (NAPI_GRO_CB(skb)->count == 1)
2342 goto out;
2344 rcu_read_lock();
2345 list_for_each_entry_rcu(ptype, head, list) {
2346 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
2347 continue;
2349 err = ptype->gro_complete(skb);
2350 break;
2352 rcu_read_unlock();
2354 if (err) {
2355 WARN_ON(&ptype->list == head);
2356 kfree_skb(skb);
2357 return NET_RX_SUCCESS;
2360 out:
2361 skb_shinfo(skb)->gso_size = 0;
2362 return netif_receive_skb(skb);
2365 void napi_gro_flush(struct napi_struct *napi)
2367 struct sk_buff *skb, *next;
2369 for (skb = napi->gro_list; skb; skb = next) {
2370 next = skb->next;
2371 skb->next = NULL;
2372 napi_gro_complete(skb);
2375 napi->gro_list = NULL;
2377 EXPORT_SYMBOL(napi_gro_flush);
2379 void *skb_gro_header(struct sk_buff *skb, unsigned int hlen)
2381 unsigned int offset = skb_gro_offset(skb);
2383 hlen += offset;
2384 if (hlen <= skb_headlen(skb))
2385 return skb->data + offset;
2387 if (unlikely(!skb_shinfo(skb)->nr_frags ||
2388 skb_shinfo(skb)->frags[0].size <=
2389 hlen - skb_headlen(skb) ||
2390 PageHighMem(skb_shinfo(skb)->frags[0].page)))
2391 return pskb_may_pull(skb, hlen) ? skb->data + offset : NULL;
2393 return page_address(skb_shinfo(skb)->frags[0].page) +
2394 skb_shinfo(skb)->frags[0].page_offset + offset;
2396 EXPORT_SYMBOL(skb_gro_header);
2398 int dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2400 struct sk_buff **pp = NULL;
2401 struct packet_type *ptype;
2402 __be16 type = skb->protocol;
2403 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2404 int count = 0;
2405 int same_flow;
2406 int mac_len;
2407 int ret;
2409 if (!(skb->dev->features & NETIF_F_GRO))
2410 goto normal;
2412 if (skb_is_gso(skb) || skb_shinfo(skb)->frag_list)
2413 goto normal;
2415 rcu_read_lock();
2416 list_for_each_entry_rcu(ptype, head, list) {
2417 struct sk_buff *p;
2418 void *mac;
2420 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
2421 continue;
2423 skb_set_network_header(skb, skb_gro_offset(skb));
2424 mac = skb_gro_mac_header(skb);
2425 mac_len = skb->network_header - skb->mac_header;
2426 skb->mac_len = mac_len;
2427 NAPI_GRO_CB(skb)->same_flow = 0;
2428 NAPI_GRO_CB(skb)->flush = 0;
2429 NAPI_GRO_CB(skb)->free = 0;
2431 for (p = napi->gro_list; p; p = p->next) {
2432 count++;
2434 if (!NAPI_GRO_CB(p)->same_flow)
2435 continue;
2437 if (p->mac_len != mac_len ||
2438 memcmp(skb_mac_header(p), mac, mac_len))
2439 NAPI_GRO_CB(p)->same_flow = 0;
2442 pp = ptype->gro_receive(&napi->gro_list, skb);
2443 break;
2445 rcu_read_unlock();
2447 if (&ptype->list == head)
2448 goto normal;
2450 same_flow = NAPI_GRO_CB(skb)->same_flow;
2451 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
2453 if (pp) {
2454 struct sk_buff *nskb = *pp;
2456 *pp = nskb->next;
2457 nskb->next = NULL;
2458 napi_gro_complete(nskb);
2459 count--;
2462 if (same_flow)
2463 goto ok;
2465 if (NAPI_GRO_CB(skb)->flush || count >= MAX_GRO_SKBS)
2466 goto normal;
2468 NAPI_GRO_CB(skb)->count = 1;
2469 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
2470 skb->next = napi->gro_list;
2471 napi->gro_list = skb;
2472 ret = GRO_HELD;
2474 pull:
2475 if (unlikely(!pskb_may_pull(skb, skb_gro_offset(skb)))) {
2476 if (napi->gro_list == skb)
2477 napi->gro_list = skb->next;
2478 ret = GRO_DROP;
2482 return ret;
2484 normal:
2485 ret = GRO_NORMAL;
2486 goto pull;
2488 EXPORT_SYMBOL(dev_gro_receive);
2490 static int __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2492 struct sk_buff *p;
2494 for (p = napi->gro_list; p; p = p->next) {
2495 NAPI_GRO_CB(p)->same_flow = 1;
2496 NAPI_GRO_CB(p)->flush = 0;
2499 return dev_gro_receive(napi, skb);
2502 int napi_skb_finish(int ret, struct sk_buff *skb)
2504 int err = NET_RX_SUCCESS;
2506 switch (ret) {
2507 case GRO_NORMAL:
2508 return netif_receive_skb(skb);
2510 case GRO_DROP:
2511 err = NET_RX_DROP;
2512 /* fall through */
2514 case GRO_MERGED_FREE:
2515 kfree_skb(skb);
2516 break;
2519 return err;
2521 EXPORT_SYMBOL(napi_skb_finish);
2523 int napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2525 skb_gro_reset_offset(skb);
2527 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
2529 EXPORT_SYMBOL(napi_gro_receive);
2531 void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
2533 __skb_pull(skb, skb_headlen(skb));
2534 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
2536 napi->skb = skb;
2538 EXPORT_SYMBOL(napi_reuse_skb);
2540 struct sk_buff *napi_fraginfo_skb(struct napi_struct *napi,
2541 struct napi_gro_fraginfo *info)
2543 struct net_device *dev = napi->dev;
2544 struct sk_buff *skb = napi->skb;
2545 struct ethhdr *eth;
2546 skb_frag_t *frag;
2547 int i;
2549 napi->skb = NULL;
2551 if (!skb) {
2552 skb = netdev_alloc_skb(dev, GRO_MAX_HEAD + NET_IP_ALIGN);
2553 if (!skb)
2554 goto out;
2556 skb_reserve(skb, NET_IP_ALIGN);
2559 BUG_ON(info->nr_frags > MAX_SKB_FRAGS);
2560 frag = &info->frags[info->nr_frags - 1];
2562 for (i = skb_shinfo(skb)->nr_frags; i < info->nr_frags; i++) {
2563 skb_fill_page_desc(skb, i, frag->page, frag->page_offset,
2564 frag->size);
2565 frag++;
2567 skb_shinfo(skb)->nr_frags = info->nr_frags;
2569 skb->data_len = info->len;
2570 skb->len += info->len;
2571 skb->truesize += info->len;
2573 skb_reset_mac_header(skb);
2574 skb_gro_reset_offset(skb);
2576 eth = skb_gro_header(skb, sizeof(*eth));
2577 if (!eth) {
2578 napi_reuse_skb(napi, skb);
2579 skb = NULL;
2580 goto out;
2583 skb_gro_pull(skb, sizeof(*eth));
2586 * This works because the only protocols we care about don't require
2587 * special handling. We'll fix it up properly at the end.
2589 skb->protocol = eth->h_proto;
2591 skb->ip_summed = info->ip_summed;
2592 skb->csum = info->csum;
2594 out:
2595 return skb;
2597 EXPORT_SYMBOL(napi_fraginfo_skb);
2599 int napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb, int ret)
2601 int err = NET_RX_SUCCESS;
2603 switch (ret) {
2604 case GRO_NORMAL:
2605 case GRO_HELD:
2606 skb->protocol = eth_type_trans(skb, napi->dev);
2608 if (ret == GRO_NORMAL)
2609 return netif_receive_skb(skb);
2611 skb_gro_pull(skb, -ETH_HLEN);
2612 break;
2614 case GRO_DROP:
2615 err = NET_RX_DROP;
2616 /* fall through */
2618 case GRO_MERGED_FREE:
2619 napi_reuse_skb(napi, skb);
2620 break;
2623 return err;
2625 EXPORT_SYMBOL(napi_frags_finish);
2627 int napi_gro_frags(struct napi_struct *napi, struct napi_gro_fraginfo *info)
2629 struct sk_buff *skb = napi_fraginfo_skb(napi, info);
2631 if (!skb)
2632 return NET_RX_DROP;
2634 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
2636 EXPORT_SYMBOL(napi_gro_frags);
2638 static int process_backlog(struct napi_struct *napi, int quota)
2640 int work = 0;
2641 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2642 unsigned long start_time = jiffies;
2644 napi->weight = weight_p;
2645 do {
2646 struct sk_buff *skb;
2648 local_irq_disable();
2649 skb = __skb_dequeue(&queue->input_pkt_queue);
2650 if (!skb) {
2651 __napi_complete(napi);
2652 local_irq_enable();
2653 break;
2655 local_irq_enable();
2657 napi_gro_receive(napi, skb);
2658 } while (++work < quota && jiffies == start_time);
2660 napi_gro_flush(napi);
2662 return work;
2666 * __napi_schedule - schedule for receive
2667 * @n: entry to schedule
2669 * The entry's receive function will be scheduled to run
2671 void __napi_schedule(struct napi_struct *n)
2673 unsigned long flags;
2675 local_irq_save(flags);
2676 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
2677 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2678 local_irq_restore(flags);
2680 EXPORT_SYMBOL(__napi_schedule);
2682 void __napi_complete(struct napi_struct *n)
2684 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
2685 BUG_ON(n->gro_list);
2687 list_del(&n->poll_list);
2688 smp_mb__before_clear_bit();
2689 clear_bit(NAPI_STATE_SCHED, &n->state);
2691 EXPORT_SYMBOL(__napi_complete);
2693 void napi_complete(struct napi_struct *n)
2695 unsigned long flags;
2698 * don't let napi dequeue from the cpu poll list
2699 * just in case its running on a different cpu
2701 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
2702 return;
2704 napi_gro_flush(n);
2705 local_irq_save(flags);
2706 __napi_complete(n);
2707 local_irq_restore(flags);
2709 EXPORT_SYMBOL(napi_complete);
2711 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2712 int (*poll)(struct napi_struct *, int), int weight)
2714 INIT_LIST_HEAD(&napi->poll_list);
2715 napi->gro_list = NULL;
2716 napi->skb = NULL;
2717 napi->poll = poll;
2718 napi->weight = weight;
2719 list_add(&napi->dev_list, &dev->napi_list);
2720 napi->dev = dev;
2721 #ifdef CONFIG_NETPOLL
2722 spin_lock_init(&napi->poll_lock);
2723 napi->poll_owner = -1;
2724 #endif
2725 set_bit(NAPI_STATE_SCHED, &napi->state);
2727 EXPORT_SYMBOL(netif_napi_add);
2729 void netif_napi_del(struct napi_struct *napi)
2731 struct sk_buff *skb, *next;
2733 list_del_init(&napi->dev_list);
2734 kfree(napi->skb);
2736 for (skb = napi->gro_list; skb; skb = next) {
2737 next = skb->next;
2738 skb->next = NULL;
2739 kfree_skb(skb);
2742 napi->gro_list = NULL;
2744 EXPORT_SYMBOL(netif_napi_del);
2747 static void net_rx_action(struct softirq_action *h)
2749 struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
2750 unsigned long time_limit = jiffies + 2;
2751 int budget = netdev_budget;
2752 void *have;
2754 local_irq_disable();
2756 while (!list_empty(list)) {
2757 struct napi_struct *n;
2758 int work, weight;
2760 /* If softirq window is exhuasted then punt.
2761 * Allow this to run for 2 jiffies since which will allow
2762 * an average latency of 1.5/HZ.
2764 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
2765 goto softnet_break;
2767 local_irq_enable();
2769 /* Even though interrupts have been re-enabled, this
2770 * access is safe because interrupts can only add new
2771 * entries to the tail of this list, and only ->poll()
2772 * calls can remove this head entry from the list.
2774 n = list_entry(list->next, struct napi_struct, poll_list);
2776 have = netpoll_poll_lock(n);
2778 weight = n->weight;
2780 /* This NAPI_STATE_SCHED test is for avoiding a race
2781 * with netpoll's poll_napi(). Only the entity which
2782 * obtains the lock and sees NAPI_STATE_SCHED set will
2783 * actually make the ->poll() call. Therefore we avoid
2784 * accidently calling ->poll() when NAPI is not scheduled.
2786 work = 0;
2787 if (test_bit(NAPI_STATE_SCHED, &n->state))
2788 work = n->poll(n, weight);
2790 WARN_ON_ONCE(work > weight);
2792 budget -= work;
2794 local_irq_disable();
2796 /* Drivers must not modify the NAPI state if they
2797 * consume the entire weight. In such cases this code
2798 * still "owns" the NAPI instance and therefore can
2799 * move the instance around on the list at-will.
2801 if (unlikely(work == weight)) {
2802 if (unlikely(napi_disable_pending(n)))
2803 __napi_complete(n);
2804 else
2805 list_move_tail(&n->poll_list, list);
2808 netpoll_poll_unlock(have);
2810 out:
2811 local_irq_enable();
2813 #ifdef CONFIG_NET_DMA
2815 * There may not be any more sk_buffs coming right now, so push
2816 * any pending DMA copies to hardware
2818 dma_issue_pending_all();
2819 #endif
2821 return;
2823 softnet_break:
2824 __get_cpu_var(netdev_rx_stat).time_squeeze++;
2825 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2826 goto out;
2829 static gifconf_func_t * gifconf_list [NPROTO];
2832 * register_gifconf - register a SIOCGIF handler
2833 * @family: Address family
2834 * @gifconf: Function handler
2836 * Register protocol dependent address dumping routines. The handler
2837 * that is passed must not be freed or reused until it has been replaced
2838 * by another handler.
2840 int register_gifconf(unsigned int family, gifconf_func_t * gifconf)
2842 if (family >= NPROTO)
2843 return -EINVAL;
2844 gifconf_list[family] = gifconf;
2845 return 0;
2850 * Map an interface index to its name (SIOCGIFNAME)
2854 * We need this ioctl for efficient implementation of the
2855 * if_indextoname() function required by the IPv6 API. Without
2856 * it, we would have to search all the interfaces to find a
2857 * match. --pb
2860 static int dev_ifname(struct net *net, struct ifreq __user *arg)
2862 struct net_device *dev;
2863 struct ifreq ifr;
2866 * Fetch the caller's info block.
2869 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
2870 return -EFAULT;
2872 read_lock(&dev_base_lock);
2873 dev = __dev_get_by_index(net, ifr.ifr_ifindex);
2874 if (!dev) {
2875 read_unlock(&dev_base_lock);
2876 return -ENODEV;
2879 strcpy(ifr.ifr_name, dev->name);
2880 read_unlock(&dev_base_lock);
2882 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
2883 return -EFAULT;
2884 return 0;
2888 * Perform a SIOCGIFCONF call. This structure will change
2889 * size eventually, and there is nothing I can do about it.
2890 * Thus we will need a 'compatibility mode'.
2893 static int dev_ifconf(struct net *net, char __user *arg)
2895 struct ifconf ifc;
2896 struct net_device *dev;
2897 char __user *pos;
2898 int len;
2899 int total;
2900 int i;
2903 * Fetch the caller's info block.
2906 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
2907 return -EFAULT;
2909 pos = ifc.ifc_buf;
2910 len = ifc.ifc_len;
2913 * Loop over the interfaces, and write an info block for each.
2916 total = 0;
2917 for_each_netdev(net, dev) {
2918 for (i = 0; i < NPROTO; i++) {
2919 if (gifconf_list[i]) {
2920 int done;
2921 if (!pos)
2922 done = gifconf_list[i](dev, NULL, 0);
2923 else
2924 done = gifconf_list[i](dev, pos + total,
2925 len - total);
2926 if (done < 0)
2927 return -EFAULT;
2928 total += done;
2934 * All done. Write the updated control block back to the caller.
2936 ifc.ifc_len = total;
2939 * Both BSD and Solaris return 0 here, so we do too.
2941 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
2944 #ifdef CONFIG_PROC_FS
2946 * This is invoked by the /proc filesystem handler to display a device
2947 * in detail.
2949 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
2950 __acquires(dev_base_lock)
2952 struct net *net = seq_file_net(seq);
2953 loff_t off;
2954 struct net_device *dev;
2956 read_lock(&dev_base_lock);
2957 if (!*pos)
2958 return SEQ_START_TOKEN;
2960 off = 1;
2961 for_each_netdev(net, dev)
2962 if (off++ == *pos)
2963 return dev;
2965 return NULL;
2968 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2970 struct net *net = seq_file_net(seq);
2971 ++*pos;
2972 return v == SEQ_START_TOKEN ?
2973 first_net_device(net) : next_net_device((struct net_device *)v);
2976 void dev_seq_stop(struct seq_file *seq, void *v)
2977 __releases(dev_base_lock)
2979 read_unlock(&dev_base_lock);
2982 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
2984 const struct net_device_stats *stats = dev_get_stats(dev);
2986 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
2987 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
2988 dev->name, stats->rx_bytes, stats->rx_packets,
2989 stats->rx_errors,
2990 stats->rx_dropped + stats->rx_missed_errors,
2991 stats->rx_fifo_errors,
2992 stats->rx_length_errors + stats->rx_over_errors +
2993 stats->rx_crc_errors + stats->rx_frame_errors,
2994 stats->rx_compressed, stats->multicast,
2995 stats->tx_bytes, stats->tx_packets,
2996 stats->tx_errors, stats->tx_dropped,
2997 stats->tx_fifo_errors, stats->collisions,
2998 stats->tx_carrier_errors +
2999 stats->tx_aborted_errors +
3000 stats->tx_window_errors +
3001 stats->tx_heartbeat_errors,
3002 stats->tx_compressed);
3006 * Called from the PROCfs module. This now uses the new arbitrary sized
3007 * /proc/net interface to create /proc/net/dev
3009 static int dev_seq_show(struct seq_file *seq, void *v)
3011 if (v == SEQ_START_TOKEN)
3012 seq_puts(seq, "Inter-| Receive "
3013 " | Transmit\n"
3014 " face |bytes packets errs drop fifo frame "
3015 "compressed multicast|bytes packets errs "
3016 "drop fifo colls carrier compressed\n");
3017 else
3018 dev_seq_printf_stats(seq, v);
3019 return 0;
3022 static struct netif_rx_stats *softnet_get_online(loff_t *pos)
3024 struct netif_rx_stats *rc = NULL;
3026 while (*pos < nr_cpu_ids)
3027 if (cpu_online(*pos)) {
3028 rc = &per_cpu(netdev_rx_stat, *pos);
3029 break;
3030 } else
3031 ++*pos;
3032 return rc;
3035 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
3037 return softnet_get_online(pos);
3040 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3042 ++*pos;
3043 return softnet_get_online(pos);
3046 static void softnet_seq_stop(struct seq_file *seq, void *v)
3050 static int softnet_seq_show(struct seq_file *seq, void *v)
3052 struct netif_rx_stats *s = v;
3054 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
3055 s->total, s->dropped, s->time_squeeze, 0,
3056 0, 0, 0, 0, /* was fastroute */
3057 s->cpu_collision );
3058 return 0;
3061 static const struct seq_operations dev_seq_ops = {
3062 .start = dev_seq_start,
3063 .next = dev_seq_next,
3064 .stop = dev_seq_stop,
3065 .show = dev_seq_show,
3068 static int dev_seq_open(struct inode *inode, struct file *file)
3070 return seq_open_net(inode, file, &dev_seq_ops,
3071 sizeof(struct seq_net_private));
3074 static const struct file_operations dev_seq_fops = {
3075 .owner = THIS_MODULE,
3076 .open = dev_seq_open,
3077 .read = seq_read,
3078 .llseek = seq_lseek,
3079 .release = seq_release_net,
3082 static const struct seq_operations softnet_seq_ops = {
3083 .start = softnet_seq_start,
3084 .next = softnet_seq_next,
3085 .stop = softnet_seq_stop,
3086 .show = softnet_seq_show,
3089 static int softnet_seq_open(struct inode *inode, struct file *file)
3091 return seq_open(file, &softnet_seq_ops);
3094 static const struct file_operations softnet_seq_fops = {
3095 .owner = THIS_MODULE,
3096 .open = softnet_seq_open,
3097 .read = seq_read,
3098 .llseek = seq_lseek,
3099 .release = seq_release,
3102 static void *ptype_get_idx(loff_t pos)
3104 struct packet_type *pt = NULL;
3105 loff_t i = 0;
3106 int t;
3108 list_for_each_entry_rcu(pt, &ptype_all, list) {
3109 if (i == pos)
3110 return pt;
3111 ++i;
3114 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
3115 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
3116 if (i == pos)
3117 return pt;
3118 ++i;
3121 return NULL;
3124 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
3125 __acquires(RCU)
3127 rcu_read_lock();
3128 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
3131 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3133 struct packet_type *pt;
3134 struct list_head *nxt;
3135 int hash;
3137 ++*pos;
3138 if (v == SEQ_START_TOKEN)
3139 return ptype_get_idx(0);
3141 pt = v;
3142 nxt = pt->list.next;
3143 if (pt->type == htons(ETH_P_ALL)) {
3144 if (nxt != &ptype_all)
3145 goto found;
3146 hash = 0;
3147 nxt = ptype_base[0].next;
3148 } else
3149 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
3151 while (nxt == &ptype_base[hash]) {
3152 if (++hash >= PTYPE_HASH_SIZE)
3153 return NULL;
3154 nxt = ptype_base[hash].next;
3156 found:
3157 return list_entry(nxt, struct packet_type, list);
3160 static void ptype_seq_stop(struct seq_file *seq, void *v)
3161 __releases(RCU)
3163 rcu_read_unlock();
3166 static int ptype_seq_show(struct seq_file *seq, void *v)
3168 struct packet_type *pt = v;
3170 if (v == SEQ_START_TOKEN)
3171 seq_puts(seq, "Type Device Function\n");
3172 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
3173 if (pt->type == htons(ETH_P_ALL))
3174 seq_puts(seq, "ALL ");
3175 else
3176 seq_printf(seq, "%04x", ntohs(pt->type));
3178 seq_printf(seq, " %-8s %pF\n",
3179 pt->dev ? pt->dev->name : "", pt->func);
3182 return 0;
3185 static const struct seq_operations ptype_seq_ops = {
3186 .start = ptype_seq_start,
3187 .next = ptype_seq_next,
3188 .stop = ptype_seq_stop,
3189 .show = ptype_seq_show,
3192 static int ptype_seq_open(struct inode *inode, struct file *file)
3194 return seq_open_net(inode, file, &ptype_seq_ops,
3195 sizeof(struct seq_net_private));
3198 static const struct file_operations ptype_seq_fops = {
3199 .owner = THIS_MODULE,
3200 .open = ptype_seq_open,
3201 .read = seq_read,
3202 .llseek = seq_lseek,
3203 .release = seq_release_net,
3207 static int __net_init dev_proc_net_init(struct net *net)
3209 int rc = -ENOMEM;
3211 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
3212 goto out;
3213 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
3214 goto out_dev;
3215 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
3216 goto out_softnet;
3218 if (wext_proc_init(net))
3219 goto out_ptype;
3220 rc = 0;
3221 out:
3222 return rc;
3223 out_ptype:
3224 proc_net_remove(net, "ptype");
3225 out_softnet:
3226 proc_net_remove(net, "softnet_stat");
3227 out_dev:
3228 proc_net_remove(net, "dev");
3229 goto out;
3232 static void __net_exit dev_proc_net_exit(struct net *net)
3234 wext_proc_exit(net);
3236 proc_net_remove(net, "ptype");
3237 proc_net_remove(net, "softnet_stat");
3238 proc_net_remove(net, "dev");
3241 static struct pernet_operations __net_initdata dev_proc_ops = {
3242 .init = dev_proc_net_init,
3243 .exit = dev_proc_net_exit,
3246 static int __init dev_proc_init(void)
3248 return register_pernet_subsys(&dev_proc_ops);
3250 #else
3251 #define dev_proc_init() 0
3252 #endif /* CONFIG_PROC_FS */
3256 * netdev_set_master - set up master/slave pair
3257 * @slave: slave device
3258 * @master: new master device
3260 * Changes the master device of the slave. Pass %NULL to break the
3261 * bonding. The caller must hold the RTNL semaphore. On a failure
3262 * a negative errno code is returned. On success the reference counts
3263 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
3264 * function returns zero.
3266 int netdev_set_master(struct net_device *slave, struct net_device *master)
3268 struct net_device *old = slave->master;
3270 ASSERT_RTNL();
3272 if (master) {
3273 if (old)
3274 return -EBUSY;
3275 dev_hold(master);
3278 slave->master = master;
3280 synchronize_net();
3282 if (old)
3283 dev_put(old);
3285 if (master)
3286 slave->flags |= IFF_SLAVE;
3287 else
3288 slave->flags &= ~IFF_SLAVE;
3290 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
3291 return 0;
3294 static void dev_change_rx_flags(struct net_device *dev, int flags)
3296 const struct net_device_ops *ops = dev->netdev_ops;
3298 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
3299 ops->ndo_change_rx_flags(dev, flags);
3302 static int __dev_set_promiscuity(struct net_device *dev, int inc)
3304 unsigned short old_flags = dev->flags;
3305 uid_t uid;
3306 gid_t gid;
3308 ASSERT_RTNL();
3310 dev->flags |= IFF_PROMISC;
3311 dev->promiscuity += inc;
3312 if (dev->promiscuity == 0) {
3314 * Avoid overflow.
3315 * If inc causes overflow, untouch promisc and return error.
3317 if (inc < 0)
3318 dev->flags &= ~IFF_PROMISC;
3319 else {
3320 dev->promiscuity -= inc;
3321 printk(KERN_WARNING "%s: promiscuity touches roof, "
3322 "set promiscuity failed, promiscuity feature "
3323 "of device might be broken.\n", dev->name);
3324 return -EOVERFLOW;
3327 if (dev->flags != old_flags) {
3328 printk(KERN_INFO "device %s %s promiscuous mode\n",
3329 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
3330 "left");
3331 if (audit_enabled) {
3332 current_uid_gid(&uid, &gid);
3333 audit_log(current->audit_context, GFP_ATOMIC,
3334 AUDIT_ANOM_PROMISCUOUS,
3335 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
3336 dev->name, (dev->flags & IFF_PROMISC),
3337 (old_flags & IFF_PROMISC),
3338 audit_get_loginuid(current),
3339 uid, gid,
3340 audit_get_sessionid(current));
3343 dev_change_rx_flags(dev, IFF_PROMISC);
3345 return 0;
3349 * dev_set_promiscuity - update promiscuity count on a device
3350 * @dev: device
3351 * @inc: modifier
3353 * Add or remove promiscuity from a device. While the count in the device
3354 * remains above zero the interface remains promiscuous. Once it hits zero
3355 * the device reverts back to normal filtering operation. A negative inc
3356 * value is used to drop promiscuity on the device.
3357 * Return 0 if successful or a negative errno code on error.
3359 int dev_set_promiscuity(struct net_device *dev, int inc)
3361 unsigned short old_flags = dev->flags;
3362 int err;
3364 err = __dev_set_promiscuity(dev, inc);
3365 if (err < 0)
3366 return err;
3367 if (dev->flags != old_flags)
3368 dev_set_rx_mode(dev);
3369 return err;
3373 * dev_set_allmulti - update allmulti count on a device
3374 * @dev: device
3375 * @inc: modifier
3377 * Add or remove reception of all multicast frames to a device. While the
3378 * count in the device remains above zero the interface remains listening
3379 * to all interfaces. Once it hits zero the device reverts back to normal
3380 * filtering operation. A negative @inc value is used to drop the counter
3381 * when releasing a resource needing all multicasts.
3382 * Return 0 if successful or a negative errno code on error.
3385 int dev_set_allmulti(struct net_device *dev, int inc)
3387 unsigned short old_flags = dev->flags;
3389 ASSERT_RTNL();
3391 dev->flags |= IFF_ALLMULTI;
3392 dev->allmulti += inc;
3393 if (dev->allmulti == 0) {
3395 * Avoid overflow.
3396 * If inc causes overflow, untouch allmulti and return error.
3398 if (inc < 0)
3399 dev->flags &= ~IFF_ALLMULTI;
3400 else {
3401 dev->allmulti -= inc;
3402 printk(KERN_WARNING "%s: allmulti touches roof, "
3403 "set allmulti failed, allmulti feature of "
3404 "device might be broken.\n", dev->name);
3405 return -EOVERFLOW;
3408 if (dev->flags ^ old_flags) {
3409 dev_change_rx_flags(dev, IFF_ALLMULTI);
3410 dev_set_rx_mode(dev);
3412 return 0;
3416 * Upload unicast and multicast address lists to device and
3417 * configure RX filtering. When the device doesn't support unicast
3418 * filtering it is put in promiscuous mode while unicast addresses
3419 * are present.
3421 void __dev_set_rx_mode(struct net_device *dev)
3423 const struct net_device_ops *ops = dev->netdev_ops;
3425 /* dev_open will call this function so the list will stay sane. */
3426 if (!(dev->flags&IFF_UP))
3427 return;
3429 if (!netif_device_present(dev))
3430 return;
3432 if (ops->ndo_set_rx_mode)
3433 ops->ndo_set_rx_mode(dev);
3434 else {
3435 /* Unicast addresses changes may only happen under the rtnl,
3436 * therefore calling __dev_set_promiscuity here is safe.
3438 if (dev->uc_count > 0 && !dev->uc_promisc) {
3439 __dev_set_promiscuity(dev, 1);
3440 dev->uc_promisc = 1;
3441 } else if (dev->uc_count == 0 && dev->uc_promisc) {
3442 __dev_set_promiscuity(dev, -1);
3443 dev->uc_promisc = 0;
3446 if (ops->ndo_set_multicast_list)
3447 ops->ndo_set_multicast_list(dev);
3451 void dev_set_rx_mode(struct net_device *dev)
3453 netif_addr_lock_bh(dev);
3454 __dev_set_rx_mode(dev);
3455 netif_addr_unlock_bh(dev);
3458 int __dev_addr_delete(struct dev_addr_list **list, int *count,
3459 void *addr, int alen, int glbl)
3461 struct dev_addr_list *da;
3463 for (; (da = *list) != NULL; list = &da->next) {
3464 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3465 alen == da->da_addrlen) {
3466 if (glbl) {
3467 int old_glbl = da->da_gusers;
3468 da->da_gusers = 0;
3469 if (old_glbl == 0)
3470 break;
3472 if (--da->da_users)
3473 return 0;
3475 *list = da->next;
3476 kfree(da);
3477 (*count)--;
3478 return 0;
3481 return -ENOENT;
3484 int __dev_addr_add(struct dev_addr_list **list, int *count,
3485 void *addr, int alen, int glbl)
3487 struct dev_addr_list *da;
3489 for (da = *list; da != NULL; da = da->next) {
3490 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3491 da->da_addrlen == alen) {
3492 if (glbl) {
3493 int old_glbl = da->da_gusers;
3494 da->da_gusers = 1;
3495 if (old_glbl)
3496 return 0;
3498 da->da_users++;
3499 return 0;
3503 da = kzalloc(sizeof(*da), GFP_ATOMIC);
3504 if (da == NULL)
3505 return -ENOMEM;
3506 memcpy(da->da_addr, addr, alen);
3507 da->da_addrlen = alen;
3508 da->da_users = 1;
3509 da->da_gusers = glbl ? 1 : 0;
3510 da->next = *list;
3511 *list = da;
3512 (*count)++;
3513 return 0;
3517 * dev_unicast_delete - Release secondary unicast address.
3518 * @dev: device
3519 * @addr: address to delete
3520 * @alen: length of @addr
3522 * Release reference to a secondary unicast address and remove it
3523 * from the device if the reference count drops to zero.
3525 * The caller must hold the rtnl_mutex.
3527 int dev_unicast_delete(struct net_device *dev, void *addr, int alen)
3529 int err;
3531 ASSERT_RTNL();
3533 netif_addr_lock_bh(dev);
3534 err = __dev_addr_delete(&dev->uc_list, &dev->uc_count, addr, alen, 0);
3535 if (!err)
3536 __dev_set_rx_mode(dev);
3537 netif_addr_unlock_bh(dev);
3538 return err;
3540 EXPORT_SYMBOL(dev_unicast_delete);
3543 * dev_unicast_add - add a secondary unicast address
3544 * @dev: device
3545 * @addr: address to add
3546 * @alen: length of @addr
3548 * Add a secondary unicast address to the device or increase
3549 * the reference count if it already exists.
3551 * The caller must hold the rtnl_mutex.
3553 int dev_unicast_add(struct net_device *dev, void *addr, int alen)
3555 int err;
3557 ASSERT_RTNL();
3559 netif_addr_lock_bh(dev);
3560 err = __dev_addr_add(&dev->uc_list, &dev->uc_count, addr, alen, 0);
3561 if (!err)
3562 __dev_set_rx_mode(dev);
3563 netif_addr_unlock_bh(dev);
3564 return err;
3566 EXPORT_SYMBOL(dev_unicast_add);
3568 int __dev_addr_sync(struct dev_addr_list **to, int *to_count,
3569 struct dev_addr_list **from, int *from_count)
3571 struct dev_addr_list *da, *next;
3572 int err = 0;
3574 da = *from;
3575 while (da != NULL) {
3576 next = da->next;
3577 if (!da->da_synced) {
3578 err = __dev_addr_add(to, to_count,
3579 da->da_addr, da->da_addrlen, 0);
3580 if (err < 0)
3581 break;
3582 da->da_synced = 1;
3583 da->da_users++;
3584 } else if (da->da_users == 1) {
3585 __dev_addr_delete(to, to_count,
3586 da->da_addr, da->da_addrlen, 0);
3587 __dev_addr_delete(from, from_count,
3588 da->da_addr, da->da_addrlen, 0);
3590 da = next;
3592 return err;
3595 void __dev_addr_unsync(struct dev_addr_list **to, int *to_count,
3596 struct dev_addr_list **from, int *from_count)
3598 struct dev_addr_list *da, *next;
3600 da = *from;
3601 while (da != NULL) {
3602 next = da->next;
3603 if (da->da_synced) {
3604 __dev_addr_delete(to, to_count,
3605 da->da_addr, da->da_addrlen, 0);
3606 da->da_synced = 0;
3607 __dev_addr_delete(from, from_count,
3608 da->da_addr, da->da_addrlen, 0);
3610 da = next;
3615 * dev_unicast_sync - Synchronize device's unicast list to another device
3616 * @to: destination device
3617 * @from: source device
3619 * Add newly added addresses to the destination device and release
3620 * addresses that have no users left. The source device must be
3621 * locked by netif_tx_lock_bh.
3623 * This function is intended to be called from the dev->set_rx_mode
3624 * function of layered software devices.
3626 int dev_unicast_sync(struct net_device *to, struct net_device *from)
3628 int err = 0;
3630 netif_addr_lock_bh(to);
3631 err = __dev_addr_sync(&to->uc_list, &to->uc_count,
3632 &from->uc_list, &from->uc_count);
3633 if (!err)
3634 __dev_set_rx_mode(to);
3635 netif_addr_unlock_bh(to);
3636 return err;
3638 EXPORT_SYMBOL(dev_unicast_sync);
3641 * dev_unicast_unsync - Remove synchronized addresses from the destination device
3642 * @to: destination device
3643 * @from: source device
3645 * Remove all addresses that were added to the destination device by
3646 * dev_unicast_sync(). This function is intended to be called from the
3647 * dev->stop function of layered software devices.
3649 void dev_unicast_unsync(struct net_device *to, struct net_device *from)
3651 netif_addr_lock_bh(from);
3652 netif_addr_lock(to);
3654 __dev_addr_unsync(&to->uc_list, &to->uc_count,
3655 &from->uc_list, &from->uc_count);
3656 __dev_set_rx_mode(to);
3658 netif_addr_unlock(to);
3659 netif_addr_unlock_bh(from);
3661 EXPORT_SYMBOL(dev_unicast_unsync);
3663 static void __dev_addr_discard(struct dev_addr_list **list)
3665 struct dev_addr_list *tmp;
3667 while (*list != NULL) {
3668 tmp = *list;
3669 *list = tmp->next;
3670 if (tmp->da_users > tmp->da_gusers)
3671 printk("__dev_addr_discard: address leakage! "
3672 "da_users=%d\n", tmp->da_users);
3673 kfree(tmp);
3677 static void dev_addr_discard(struct net_device *dev)
3679 netif_addr_lock_bh(dev);
3681 __dev_addr_discard(&dev->uc_list);
3682 dev->uc_count = 0;
3684 __dev_addr_discard(&dev->mc_list);
3685 dev->mc_count = 0;
3687 netif_addr_unlock_bh(dev);
3691 * dev_get_flags - get flags reported to userspace
3692 * @dev: device
3694 * Get the combination of flag bits exported through APIs to userspace.
3696 unsigned dev_get_flags(const struct net_device *dev)
3698 unsigned flags;
3700 flags = (dev->flags & ~(IFF_PROMISC |
3701 IFF_ALLMULTI |
3702 IFF_RUNNING |
3703 IFF_LOWER_UP |
3704 IFF_DORMANT)) |
3705 (dev->gflags & (IFF_PROMISC |
3706 IFF_ALLMULTI));
3708 if (netif_running(dev)) {
3709 if (netif_oper_up(dev))
3710 flags |= IFF_RUNNING;
3711 if (netif_carrier_ok(dev))
3712 flags |= IFF_LOWER_UP;
3713 if (netif_dormant(dev))
3714 flags |= IFF_DORMANT;
3717 return flags;
3721 * dev_change_flags - change device settings
3722 * @dev: device
3723 * @flags: device state flags
3725 * Change settings on device based state flags. The flags are
3726 * in the userspace exported format.
3728 int dev_change_flags(struct net_device *dev, unsigned flags)
3730 int ret, changes;
3731 int old_flags = dev->flags;
3733 ASSERT_RTNL();
3736 * Set the flags on our device.
3739 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
3740 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
3741 IFF_AUTOMEDIA)) |
3742 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
3743 IFF_ALLMULTI));
3746 * Load in the correct multicast list now the flags have changed.
3749 if ((old_flags ^ flags) & IFF_MULTICAST)
3750 dev_change_rx_flags(dev, IFF_MULTICAST);
3752 dev_set_rx_mode(dev);
3755 * Have we downed the interface. We handle IFF_UP ourselves
3756 * according to user attempts to set it, rather than blindly
3757 * setting it.
3760 ret = 0;
3761 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
3762 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev);
3764 if (!ret)
3765 dev_set_rx_mode(dev);
3768 if (dev->flags & IFF_UP &&
3769 ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI |
3770 IFF_VOLATILE)))
3771 call_netdevice_notifiers(NETDEV_CHANGE, dev);
3773 if ((flags ^ dev->gflags) & IFF_PROMISC) {
3774 int inc = (flags & IFF_PROMISC) ? +1 : -1;
3775 dev->gflags ^= IFF_PROMISC;
3776 dev_set_promiscuity(dev, inc);
3779 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
3780 is important. Some (broken) drivers set IFF_PROMISC, when
3781 IFF_ALLMULTI is requested not asking us and not reporting.
3783 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
3784 int inc = (flags & IFF_ALLMULTI) ? +1 : -1;
3785 dev->gflags ^= IFF_ALLMULTI;
3786 dev_set_allmulti(dev, inc);
3789 /* Exclude state transition flags, already notified */
3790 changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING);
3791 if (changes)
3792 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
3794 return ret;
3798 * dev_set_mtu - Change maximum transfer unit
3799 * @dev: device
3800 * @new_mtu: new transfer unit
3802 * Change the maximum transfer size of the network device.
3804 int dev_set_mtu(struct net_device *dev, int new_mtu)
3806 const struct net_device_ops *ops = dev->netdev_ops;
3807 int err;
3809 if (new_mtu == dev->mtu)
3810 return 0;
3812 /* MTU must be positive. */
3813 if (new_mtu < 0)
3814 return -EINVAL;
3816 if (!netif_device_present(dev))
3817 return -ENODEV;
3819 err = 0;
3820 if (ops->ndo_change_mtu)
3821 err = ops->ndo_change_mtu(dev, new_mtu);
3822 else
3823 dev->mtu = new_mtu;
3825 if (!err && dev->flags & IFF_UP)
3826 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
3827 return err;
3831 * dev_set_mac_address - Change Media Access Control Address
3832 * @dev: device
3833 * @sa: new address
3835 * Change the hardware (MAC) address of the device
3837 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
3839 const struct net_device_ops *ops = dev->netdev_ops;
3840 int err;
3842 if (!ops->ndo_set_mac_address)
3843 return -EOPNOTSUPP;
3844 if (sa->sa_family != dev->type)
3845 return -EINVAL;
3846 if (!netif_device_present(dev))
3847 return -ENODEV;
3848 err = ops->ndo_set_mac_address(dev, sa);
3849 if (!err)
3850 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3851 return err;
3855 * Perform the SIOCxIFxxx calls, inside read_lock(dev_base_lock)
3857 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
3859 int err;
3860 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3862 if (!dev)
3863 return -ENODEV;
3865 switch (cmd) {
3866 case SIOCGIFFLAGS: /* Get interface flags */
3867 ifr->ifr_flags = dev_get_flags(dev);
3868 return 0;
3870 case SIOCGIFMETRIC: /* Get the metric on the interface
3871 (currently unused) */
3872 ifr->ifr_metric = 0;
3873 return 0;
3875 case SIOCGIFMTU: /* Get the MTU of a device */
3876 ifr->ifr_mtu = dev->mtu;
3877 return 0;
3879 case SIOCGIFHWADDR:
3880 if (!dev->addr_len)
3881 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
3882 else
3883 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
3884 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3885 ifr->ifr_hwaddr.sa_family = dev->type;
3886 return 0;
3888 case SIOCGIFSLAVE:
3889 err = -EINVAL;
3890 break;
3892 case SIOCGIFMAP:
3893 ifr->ifr_map.mem_start = dev->mem_start;
3894 ifr->ifr_map.mem_end = dev->mem_end;
3895 ifr->ifr_map.base_addr = dev->base_addr;
3896 ifr->ifr_map.irq = dev->irq;
3897 ifr->ifr_map.dma = dev->dma;
3898 ifr->ifr_map.port = dev->if_port;
3899 return 0;
3901 case SIOCGIFINDEX:
3902 ifr->ifr_ifindex = dev->ifindex;
3903 return 0;
3905 case SIOCGIFTXQLEN:
3906 ifr->ifr_qlen = dev->tx_queue_len;
3907 return 0;
3909 default:
3910 /* dev_ioctl() should ensure this case
3911 * is never reached
3913 WARN_ON(1);
3914 err = -EINVAL;
3915 break;
3918 return err;
3922 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
3924 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
3926 int err;
3927 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3928 const struct net_device_ops *ops;
3930 if (!dev)
3931 return -ENODEV;
3933 ops = dev->netdev_ops;
3935 switch (cmd) {
3936 case SIOCSIFFLAGS: /* Set interface flags */
3937 return dev_change_flags(dev, ifr->ifr_flags);
3939 case SIOCSIFMETRIC: /* Set the metric on the interface
3940 (currently unused) */
3941 return -EOPNOTSUPP;
3943 case SIOCSIFMTU: /* Set the MTU of a device */
3944 return dev_set_mtu(dev, ifr->ifr_mtu);
3946 case SIOCSIFHWADDR:
3947 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
3949 case SIOCSIFHWBROADCAST:
3950 if (ifr->ifr_hwaddr.sa_family != dev->type)
3951 return -EINVAL;
3952 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
3953 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3954 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3955 return 0;
3957 case SIOCSIFMAP:
3958 if (ops->ndo_set_config) {
3959 if (!netif_device_present(dev))
3960 return -ENODEV;
3961 return ops->ndo_set_config(dev, &ifr->ifr_map);
3963 return -EOPNOTSUPP;
3965 case SIOCADDMULTI:
3966 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
3967 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3968 return -EINVAL;
3969 if (!netif_device_present(dev))
3970 return -ENODEV;
3971 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
3972 dev->addr_len, 1);
3974 case SIOCDELMULTI:
3975 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
3976 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3977 return -EINVAL;
3978 if (!netif_device_present(dev))
3979 return -ENODEV;
3980 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
3981 dev->addr_len, 1);
3983 case SIOCSIFTXQLEN:
3984 if (ifr->ifr_qlen < 0)
3985 return -EINVAL;
3986 dev->tx_queue_len = ifr->ifr_qlen;
3987 return 0;
3989 case SIOCSIFNAME:
3990 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
3991 return dev_change_name(dev, ifr->ifr_newname);
3994 * Unknown or private ioctl
3997 default:
3998 if ((cmd >= SIOCDEVPRIVATE &&
3999 cmd <= SIOCDEVPRIVATE + 15) ||
4000 cmd == SIOCBONDENSLAVE ||
4001 cmd == SIOCBONDRELEASE ||
4002 cmd == SIOCBONDSETHWADDR ||
4003 cmd == SIOCBONDSLAVEINFOQUERY ||
4004 cmd == SIOCBONDINFOQUERY ||
4005 cmd == SIOCBONDCHANGEACTIVE ||
4006 cmd == SIOCGMIIPHY ||
4007 cmd == SIOCGMIIREG ||
4008 cmd == SIOCSMIIREG ||
4009 cmd == SIOCBRADDIF ||
4010 cmd == SIOCBRDELIF ||
4011 cmd == SIOCWANDEV) {
4012 err = -EOPNOTSUPP;
4013 if (ops->ndo_do_ioctl) {
4014 if (netif_device_present(dev))
4015 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4016 else
4017 err = -ENODEV;
4019 } else
4020 err = -EINVAL;
4023 return err;
4027 * This function handles all "interface"-type I/O control requests. The actual
4028 * 'doing' part of this is dev_ifsioc above.
4032 * dev_ioctl - network device ioctl
4033 * @net: the applicable net namespace
4034 * @cmd: command to issue
4035 * @arg: pointer to a struct ifreq in user space
4037 * Issue ioctl functions to devices. This is normally called by the
4038 * user space syscall interfaces but can sometimes be useful for
4039 * other purposes. The return value is the return from the syscall if
4040 * positive or a negative errno code on error.
4043 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4045 struct ifreq ifr;
4046 int ret;
4047 char *colon;
4049 /* One special case: SIOCGIFCONF takes ifconf argument
4050 and requires shared lock, because it sleeps writing
4051 to user space.
4054 if (cmd == SIOCGIFCONF) {
4055 rtnl_lock();
4056 ret = dev_ifconf(net, (char __user *) arg);
4057 rtnl_unlock();
4058 return ret;
4060 if (cmd == SIOCGIFNAME)
4061 return dev_ifname(net, (struct ifreq __user *)arg);
4063 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4064 return -EFAULT;
4066 ifr.ifr_name[IFNAMSIZ-1] = 0;
4068 colon = strchr(ifr.ifr_name, ':');
4069 if (colon)
4070 *colon = 0;
4073 * See which interface the caller is talking about.
4076 switch (cmd) {
4078 * These ioctl calls:
4079 * - can be done by all.
4080 * - atomic and do not require locking.
4081 * - return a value
4083 case SIOCGIFFLAGS:
4084 case SIOCGIFMETRIC:
4085 case SIOCGIFMTU:
4086 case SIOCGIFHWADDR:
4087 case SIOCGIFSLAVE:
4088 case SIOCGIFMAP:
4089 case SIOCGIFINDEX:
4090 case SIOCGIFTXQLEN:
4091 dev_load(net, ifr.ifr_name);
4092 read_lock(&dev_base_lock);
4093 ret = dev_ifsioc_locked(net, &ifr, cmd);
4094 read_unlock(&dev_base_lock);
4095 if (!ret) {
4096 if (colon)
4097 *colon = ':';
4098 if (copy_to_user(arg, &ifr,
4099 sizeof(struct ifreq)))
4100 ret = -EFAULT;
4102 return ret;
4104 case SIOCETHTOOL:
4105 dev_load(net, ifr.ifr_name);
4106 rtnl_lock();
4107 ret = dev_ethtool(net, &ifr);
4108 rtnl_unlock();
4109 if (!ret) {
4110 if (colon)
4111 *colon = ':';
4112 if (copy_to_user(arg, &ifr,
4113 sizeof(struct ifreq)))
4114 ret = -EFAULT;
4116 return ret;
4119 * These ioctl calls:
4120 * - require superuser power.
4121 * - require strict serialization.
4122 * - return a value
4124 case SIOCGMIIPHY:
4125 case SIOCGMIIREG:
4126 case SIOCSIFNAME:
4127 if (!capable(CAP_NET_ADMIN))
4128 return -EPERM;
4129 dev_load(net, ifr.ifr_name);
4130 rtnl_lock();
4131 ret = dev_ifsioc(net, &ifr, cmd);
4132 rtnl_unlock();
4133 if (!ret) {
4134 if (colon)
4135 *colon = ':';
4136 if (copy_to_user(arg, &ifr,
4137 sizeof(struct ifreq)))
4138 ret = -EFAULT;
4140 return ret;
4143 * These ioctl calls:
4144 * - require superuser power.
4145 * - require strict serialization.
4146 * - do not return a value
4148 case SIOCSIFFLAGS:
4149 case SIOCSIFMETRIC:
4150 case SIOCSIFMTU:
4151 case SIOCSIFMAP:
4152 case SIOCSIFHWADDR:
4153 case SIOCSIFSLAVE:
4154 case SIOCADDMULTI:
4155 case SIOCDELMULTI:
4156 case SIOCSIFHWBROADCAST:
4157 case SIOCSIFTXQLEN:
4158 case SIOCSMIIREG:
4159 case SIOCBONDENSLAVE:
4160 case SIOCBONDRELEASE:
4161 case SIOCBONDSETHWADDR:
4162 case SIOCBONDCHANGEACTIVE:
4163 case SIOCBRADDIF:
4164 case SIOCBRDELIF:
4165 if (!capable(CAP_NET_ADMIN))
4166 return -EPERM;
4167 /* fall through */
4168 case SIOCBONDSLAVEINFOQUERY:
4169 case SIOCBONDINFOQUERY:
4170 dev_load(net, ifr.ifr_name);
4171 rtnl_lock();
4172 ret = dev_ifsioc(net, &ifr, cmd);
4173 rtnl_unlock();
4174 return ret;
4176 case SIOCGIFMEM:
4177 /* Get the per device memory space. We can add this but
4178 * currently do not support it */
4179 case SIOCSIFMEM:
4180 /* Set the per device memory buffer space.
4181 * Not applicable in our case */
4182 case SIOCSIFLINK:
4183 return -EINVAL;
4186 * Unknown or private ioctl.
4188 default:
4189 if (cmd == SIOCWANDEV ||
4190 (cmd >= SIOCDEVPRIVATE &&
4191 cmd <= SIOCDEVPRIVATE + 15)) {
4192 dev_load(net, ifr.ifr_name);
4193 rtnl_lock();
4194 ret = dev_ifsioc(net, &ifr, cmd);
4195 rtnl_unlock();
4196 if (!ret && copy_to_user(arg, &ifr,
4197 sizeof(struct ifreq)))
4198 ret = -EFAULT;
4199 return ret;
4201 /* Take care of Wireless Extensions */
4202 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
4203 return wext_handle_ioctl(net, &ifr, cmd, arg);
4204 return -EINVAL;
4210 * dev_new_index - allocate an ifindex
4211 * @net: the applicable net namespace
4213 * Returns a suitable unique value for a new device interface
4214 * number. The caller must hold the rtnl semaphore or the
4215 * dev_base_lock to be sure it remains unique.
4217 static int dev_new_index(struct net *net)
4219 static int ifindex;
4220 for (;;) {
4221 if (++ifindex <= 0)
4222 ifindex = 1;
4223 if (!__dev_get_by_index(net, ifindex))
4224 return ifindex;
4228 /* Delayed registration/unregisteration */
4229 static LIST_HEAD(net_todo_list);
4231 static void net_set_todo(struct net_device *dev)
4233 list_add_tail(&dev->todo_list, &net_todo_list);
4236 static void rollback_registered(struct net_device *dev)
4238 BUG_ON(dev_boot_phase);
4239 ASSERT_RTNL();
4241 /* Some devices call without registering for initialization unwind. */
4242 if (dev->reg_state == NETREG_UNINITIALIZED) {
4243 printk(KERN_DEBUG "unregister_netdevice: device %s/%p never "
4244 "was registered\n", dev->name, dev);
4246 WARN_ON(1);
4247 return;
4250 BUG_ON(dev->reg_state != NETREG_REGISTERED);
4252 /* If device is running, close it first. */
4253 dev_close(dev);
4255 /* And unlink it from device chain. */
4256 unlist_netdevice(dev);
4258 dev->reg_state = NETREG_UNREGISTERING;
4260 synchronize_net();
4262 /* Shutdown queueing discipline. */
4263 dev_shutdown(dev);
4266 /* Notify protocols, that we are about to destroy
4267 this device. They should clean all the things.
4269 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4272 * Flush the unicast and multicast chains
4274 dev_addr_discard(dev);
4276 if (dev->netdev_ops->ndo_uninit)
4277 dev->netdev_ops->ndo_uninit(dev);
4279 /* Notifier chain MUST detach us from master device. */
4280 WARN_ON(dev->master);
4282 /* Remove entries from kobject tree */
4283 netdev_unregister_kobject(dev);
4285 synchronize_net();
4287 dev_put(dev);
4290 static void __netdev_init_queue_locks_one(struct net_device *dev,
4291 struct netdev_queue *dev_queue,
4292 void *_unused)
4294 spin_lock_init(&dev_queue->_xmit_lock);
4295 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type);
4296 dev_queue->xmit_lock_owner = -1;
4299 static void netdev_init_queue_locks(struct net_device *dev)
4301 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL);
4302 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL);
4305 unsigned long netdev_fix_features(unsigned long features, const char *name)
4307 /* Fix illegal SG+CSUM combinations. */
4308 if ((features & NETIF_F_SG) &&
4309 !(features & NETIF_F_ALL_CSUM)) {
4310 if (name)
4311 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
4312 "checksum feature.\n", name);
4313 features &= ~NETIF_F_SG;
4316 /* TSO requires that SG is present as well. */
4317 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
4318 if (name)
4319 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
4320 "SG feature.\n", name);
4321 features &= ~NETIF_F_TSO;
4324 if (features & NETIF_F_UFO) {
4325 if (!(features & NETIF_F_GEN_CSUM)) {
4326 if (name)
4327 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4328 "since no NETIF_F_HW_CSUM feature.\n",
4329 name);
4330 features &= ~NETIF_F_UFO;
4333 if (!(features & NETIF_F_SG)) {
4334 if (name)
4335 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4336 "since no NETIF_F_SG feature.\n", name);
4337 features &= ~NETIF_F_UFO;
4341 return features;
4343 EXPORT_SYMBOL(netdev_fix_features);
4346 * register_netdevice - register a network device
4347 * @dev: device to register
4349 * Take a completed network device structure and add it to the kernel
4350 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4351 * chain. 0 is returned on success. A negative errno code is returned
4352 * on a failure to set up the device, or if the name is a duplicate.
4354 * Callers must hold the rtnl semaphore. You may want
4355 * register_netdev() instead of this.
4357 * BUGS:
4358 * The locking appears insufficient to guarantee two parallel registers
4359 * will not get the same name.
4362 int register_netdevice(struct net_device *dev)
4364 struct hlist_head *head;
4365 struct hlist_node *p;
4366 int ret;
4367 struct net *net = dev_net(dev);
4369 BUG_ON(dev_boot_phase);
4370 ASSERT_RTNL();
4372 might_sleep();
4374 /* When net_device's are persistent, this will be fatal. */
4375 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
4376 BUG_ON(!net);
4378 spin_lock_init(&dev->addr_list_lock);
4379 netdev_set_addr_lockdep_class(dev);
4380 netdev_init_queue_locks(dev);
4382 dev->iflink = -1;
4384 #ifdef CONFIG_COMPAT_NET_DEV_OPS
4385 /* Netdevice_ops API compatiability support.
4386 * This is temporary until all network devices are converted.
4388 if (dev->netdev_ops) {
4389 const struct net_device_ops *ops = dev->netdev_ops;
4391 dev->init = ops->ndo_init;
4392 dev->uninit = ops->ndo_uninit;
4393 dev->open = ops->ndo_open;
4394 dev->change_rx_flags = ops->ndo_change_rx_flags;
4395 dev->set_rx_mode = ops->ndo_set_rx_mode;
4396 dev->set_multicast_list = ops->ndo_set_multicast_list;
4397 dev->set_mac_address = ops->ndo_set_mac_address;
4398 dev->validate_addr = ops->ndo_validate_addr;
4399 dev->do_ioctl = ops->ndo_do_ioctl;
4400 dev->set_config = ops->ndo_set_config;
4401 dev->change_mtu = ops->ndo_change_mtu;
4402 dev->tx_timeout = ops->ndo_tx_timeout;
4403 dev->get_stats = ops->ndo_get_stats;
4404 dev->vlan_rx_register = ops->ndo_vlan_rx_register;
4405 dev->vlan_rx_add_vid = ops->ndo_vlan_rx_add_vid;
4406 dev->vlan_rx_kill_vid = ops->ndo_vlan_rx_kill_vid;
4407 #ifdef CONFIG_NET_POLL_CONTROLLER
4408 dev->poll_controller = ops->ndo_poll_controller;
4409 #endif
4410 } else {
4411 char drivername[64];
4412 pr_info("%s (%s): not using net_device_ops yet\n",
4413 dev->name, netdev_drivername(dev, drivername, 64));
4415 /* This works only because net_device_ops and the
4416 compatiablity structure are the same. */
4417 dev->netdev_ops = (void *) &(dev->init);
4419 #endif
4421 /* Init, if this function is available */
4422 if (dev->netdev_ops->ndo_init) {
4423 ret = dev->netdev_ops->ndo_init(dev);
4424 if (ret) {
4425 if (ret > 0)
4426 ret = -EIO;
4427 goto out;
4431 if (!dev_valid_name(dev->name)) {
4432 ret = -EINVAL;
4433 goto err_uninit;
4436 dev->ifindex = dev_new_index(net);
4437 if (dev->iflink == -1)
4438 dev->iflink = dev->ifindex;
4440 /* Check for existence of name */
4441 head = dev_name_hash(net, dev->name);
4442 hlist_for_each(p, head) {
4443 struct net_device *d
4444 = hlist_entry(p, struct net_device, name_hlist);
4445 if (!strncmp(d->name, dev->name, IFNAMSIZ)) {
4446 ret = -EEXIST;
4447 goto err_uninit;
4451 /* Fix illegal checksum combinations */
4452 if ((dev->features & NETIF_F_HW_CSUM) &&
4453 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4454 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
4455 dev->name);
4456 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4459 if ((dev->features & NETIF_F_NO_CSUM) &&
4460 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4461 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
4462 dev->name);
4463 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
4466 dev->features = netdev_fix_features(dev->features, dev->name);
4468 /* Enable software GSO if SG is supported. */
4469 if (dev->features & NETIF_F_SG)
4470 dev->features |= NETIF_F_GSO;
4472 netdev_initialize_kobject(dev);
4473 ret = netdev_register_kobject(dev);
4474 if (ret)
4475 goto err_uninit;
4476 dev->reg_state = NETREG_REGISTERED;
4479 * Default initial state at registry is that the
4480 * device is present.
4483 set_bit(__LINK_STATE_PRESENT, &dev->state);
4485 dev_init_scheduler(dev);
4486 dev_hold(dev);
4487 list_netdevice(dev);
4489 /* Notify protocols, that a new device appeared. */
4490 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
4491 ret = notifier_to_errno(ret);
4492 if (ret) {
4493 rollback_registered(dev);
4494 dev->reg_state = NETREG_UNREGISTERED;
4497 out:
4498 return ret;
4500 err_uninit:
4501 if (dev->netdev_ops->ndo_uninit)
4502 dev->netdev_ops->ndo_uninit(dev);
4503 goto out;
4507 * init_dummy_netdev - init a dummy network device for NAPI
4508 * @dev: device to init
4510 * This takes a network device structure and initialize the minimum
4511 * amount of fields so it can be used to schedule NAPI polls without
4512 * registering a full blown interface. This is to be used by drivers
4513 * that need to tie several hardware interfaces to a single NAPI
4514 * poll scheduler due to HW limitations.
4516 int init_dummy_netdev(struct net_device *dev)
4518 /* Clear everything. Note we don't initialize spinlocks
4519 * are they aren't supposed to be taken by any of the
4520 * NAPI code and this dummy netdev is supposed to be
4521 * only ever used for NAPI polls
4523 memset(dev, 0, sizeof(struct net_device));
4525 /* make sure we BUG if trying to hit standard
4526 * register/unregister code path
4528 dev->reg_state = NETREG_DUMMY;
4530 /* initialize the ref count */
4531 atomic_set(&dev->refcnt, 1);
4533 /* NAPI wants this */
4534 INIT_LIST_HEAD(&dev->napi_list);
4536 /* a dummy interface is started by default */
4537 set_bit(__LINK_STATE_PRESENT, &dev->state);
4538 set_bit(__LINK_STATE_START, &dev->state);
4540 return 0;
4542 EXPORT_SYMBOL_GPL(init_dummy_netdev);
4546 * register_netdev - register a network device
4547 * @dev: device to register
4549 * Take a completed network device structure and add it to the kernel
4550 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4551 * chain. 0 is returned on success. A negative errno code is returned
4552 * on a failure to set up the device, or if the name is a duplicate.
4554 * This is a wrapper around register_netdevice that takes the rtnl semaphore
4555 * and expands the device name if you passed a format string to
4556 * alloc_netdev.
4558 int register_netdev(struct net_device *dev)
4560 int err;
4562 rtnl_lock();
4565 * If the name is a format string the caller wants us to do a
4566 * name allocation.
4568 if (strchr(dev->name, '%')) {
4569 err = dev_alloc_name(dev, dev->name);
4570 if (err < 0)
4571 goto out;
4574 err = register_netdevice(dev);
4575 out:
4576 rtnl_unlock();
4577 return err;
4579 EXPORT_SYMBOL(register_netdev);
4582 * netdev_wait_allrefs - wait until all references are gone.
4584 * This is called when unregistering network devices.
4586 * Any protocol or device that holds a reference should register
4587 * for netdevice notification, and cleanup and put back the
4588 * reference if they receive an UNREGISTER event.
4589 * We can get stuck here if buggy protocols don't correctly
4590 * call dev_put.
4592 static void netdev_wait_allrefs(struct net_device *dev)
4594 unsigned long rebroadcast_time, warning_time;
4596 rebroadcast_time = warning_time = jiffies;
4597 while (atomic_read(&dev->refcnt) != 0) {
4598 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
4599 rtnl_lock();
4601 /* Rebroadcast unregister notification */
4602 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4604 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
4605 &dev->state)) {
4606 /* We must not have linkwatch events
4607 * pending on unregister. If this
4608 * happens, we simply run the queue
4609 * unscheduled, resulting in a noop
4610 * for this device.
4612 linkwatch_run_queue();
4615 __rtnl_unlock();
4617 rebroadcast_time = jiffies;
4620 msleep(250);
4622 if (time_after(jiffies, warning_time + 10 * HZ)) {
4623 printk(KERN_EMERG "unregister_netdevice: "
4624 "waiting for %s to become free. Usage "
4625 "count = %d\n",
4626 dev->name, atomic_read(&dev->refcnt));
4627 warning_time = jiffies;
4632 /* The sequence is:
4634 * rtnl_lock();
4635 * ...
4636 * register_netdevice(x1);
4637 * register_netdevice(x2);
4638 * ...
4639 * unregister_netdevice(y1);
4640 * unregister_netdevice(y2);
4641 * ...
4642 * rtnl_unlock();
4643 * free_netdev(y1);
4644 * free_netdev(y2);
4646 * We are invoked by rtnl_unlock().
4647 * This allows us to deal with problems:
4648 * 1) We can delete sysfs objects which invoke hotplug
4649 * without deadlocking with linkwatch via keventd.
4650 * 2) Since we run with the RTNL semaphore not held, we can sleep
4651 * safely in order to wait for the netdev refcnt to drop to zero.
4653 * We must not return until all unregister events added during
4654 * the interval the lock was held have been completed.
4656 void netdev_run_todo(void)
4658 struct list_head list;
4660 /* Snapshot list, allow later requests */
4661 list_replace_init(&net_todo_list, &list);
4663 __rtnl_unlock();
4665 while (!list_empty(&list)) {
4666 struct net_device *dev
4667 = list_entry(list.next, struct net_device, todo_list);
4668 list_del(&dev->todo_list);
4670 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
4671 printk(KERN_ERR "network todo '%s' but state %d\n",
4672 dev->name, dev->reg_state);
4673 dump_stack();
4674 continue;
4677 dev->reg_state = NETREG_UNREGISTERED;
4679 on_each_cpu(flush_backlog, dev, 1);
4681 netdev_wait_allrefs(dev);
4683 /* paranoia */
4684 BUG_ON(atomic_read(&dev->refcnt));
4685 WARN_ON(dev->ip_ptr);
4686 WARN_ON(dev->ip6_ptr);
4687 WARN_ON(dev->dn_ptr);
4689 if (dev->destructor)
4690 dev->destructor(dev);
4692 /* Free network device */
4693 kobject_put(&dev->dev.kobj);
4698 * dev_get_stats - get network device statistics
4699 * @dev: device to get statistics from
4701 * Get network statistics from device. The device driver may provide
4702 * its own method by setting dev->netdev_ops->get_stats; otherwise
4703 * the internal statistics structure is used.
4705 const struct net_device_stats *dev_get_stats(struct net_device *dev)
4707 const struct net_device_ops *ops = dev->netdev_ops;
4709 if (ops->ndo_get_stats)
4710 return ops->ndo_get_stats(dev);
4711 else
4712 return &dev->stats;
4714 EXPORT_SYMBOL(dev_get_stats);
4716 static void netdev_init_one_queue(struct net_device *dev,
4717 struct netdev_queue *queue,
4718 void *_unused)
4720 queue->dev = dev;
4723 static void netdev_init_queues(struct net_device *dev)
4725 netdev_init_one_queue(dev, &dev->rx_queue, NULL);
4726 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
4727 spin_lock_init(&dev->tx_global_lock);
4731 * alloc_netdev_mq - allocate network device
4732 * @sizeof_priv: size of private data to allocate space for
4733 * @name: device name format string
4734 * @setup: callback to initialize device
4735 * @queue_count: the number of subqueues to allocate
4737 * Allocates a struct net_device with private data area for driver use
4738 * and performs basic initialization. Also allocates subquue structs
4739 * for each queue on the device at the end of the netdevice.
4741 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
4742 void (*setup)(struct net_device *), unsigned int queue_count)
4744 struct netdev_queue *tx;
4745 struct net_device *dev;
4746 size_t alloc_size;
4747 void *p;
4749 BUG_ON(strlen(name) >= sizeof(dev->name));
4751 alloc_size = sizeof(struct net_device);
4752 if (sizeof_priv) {
4753 /* ensure 32-byte alignment of private area */
4754 alloc_size = (alloc_size + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST;
4755 alloc_size += sizeof_priv;
4757 /* ensure 32-byte alignment of whole construct */
4758 alloc_size += NETDEV_ALIGN_CONST;
4760 p = kzalloc(alloc_size, GFP_KERNEL);
4761 if (!p) {
4762 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
4763 return NULL;
4766 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL);
4767 if (!tx) {
4768 printk(KERN_ERR "alloc_netdev: Unable to allocate "
4769 "tx qdiscs.\n");
4770 kfree(p);
4771 return NULL;
4774 dev = (struct net_device *)
4775 (((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST);
4776 dev->padded = (char *)dev - (char *)p;
4777 dev_net_set(dev, &init_net);
4779 dev->_tx = tx;
4780 dev->num_tx_queues = queue_count;
4781 dev->real_num_tx_queues = queue_count;
4783 dev->gso_max_size = GSO_MAX_SIZE;
4785 netdev_init_queues(dev);
4787 INIT_LIST_HEAD(&dev->napi_list);
4788 setup(dev);
4789 strcpy(dev->name, name);
4790 return dev;
4792 EXPORT_SYMBOL(alloc_netdev_mq);
4795 * free_netdev - free network device
4796 * @dev: device
4798 * This function does the last stage of destroying an allocated device
4799 * interface. The reference to the device object is released.
4800 * If this is the last reference then it will be freed.
4802 void free_netdev(struct net_device *dev)
4804 struct napi_struct *p, *n;
4806 release_net(dev_net(dev));
4808 kfree(dev->_tx);
4810 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
4811 netif_napi_del(p);
4813 /* Compatibility with error handling in drivers */
4814 if (dev->reg_state == NETREG_UNINITIALIZED) {
4815 kfree((char *)dev - dev->padded);
4816 return;
4819 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
4820 dev->reg_state = NETREG_RELEASED;
4822 /* will free via device release */
4823 put_device(&dev->dev);
4827 * synchronize_net - Synchronize with packet receive processing
4829 * Wait for packets currently being received to be done.
4830 * Does not block later packets from starting.
4832 void synchronize_net(void)
4834 might_sleep();
4835 synchronize_rcu();
4839 * unregister_netdevice - remove device from the kernel
4840 * @dev: device
4842 * This function shuts down a device interface and removes it
4843 * from the kernel tables.
4845 * Callers must hold the rtnl semaphore. You may want
4846 * unregister_netdev() instead of this.
4849 void unregister_netdevice(struct net_device *dev)
4851 ASSERT_RTNL();
4853 rollback_registered(dev);
4854 /* Finish processing unregister after unlock */
4855 net_set_todo(dev);
4859 * unregister_netdev - remove device from the kernel
4860 * @dev: device
4862 * This function shuts down a device interface and removes it
4863 * from the kernel tables.
4865 * This is just a wrapper for unregister_netdevice that takes
4866 * the rtnl semaphore. In general you want to use this and not
4867 * unregister_netdevice.
4869 void unregister_netdev(struct net_device *dev)
4871 rtnl_lock();
4872 unregister_netdevice(dev);
4873 rtnl_unlock();
4876 EXPORT_SYMBOL(unregister_netdev);
4879 * dev_change_net_namespace - move device to different nethost namespace
4880 * @dev: device
4881 * @net: network namespace
4882 * @pat: If not NULL name pattern to try if the current device name
4883 * is already taken in the destination network namespace.
4885 * This function shuts down a device interface and moves it
4886 * to a new network namespace. On success 0 is returned, on
4887 * a failure a netagive errno code is returned.
4889 * Callers must hold the rtnl semaphore.
4892 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
4894 char buf[IFNAMSIZ];
4895 const char *destname;
4896 int err;
4898 ASSERT_RTNL();
4900 /* Don't allow namespace local devices to be moved. */
4901 err = -EINVAL;
4902 if (dev->features & NETIF_F_NETNS_LOCAL)
4903 goto out;
4905 #ifdef CONFIG_SYSFS
4906 /* Don't allow real devices to be moved when sysfs
4907 * is enabled.
4909 err = -EINVAL;
4910 if (dev->dev.parent)
4911 goto out;
4912 #endif
4914 /* Ensure the device has been registrered */
4915 err = -EINVAL;
4916 if (dev->reg_state != NETREG_REGISTERED)
4917 goto out;
4919 /* Get out if there is nothing todo */
4920 err = 0;
4921 if (net_eq(dev_net(dev), net))
4922 goto out;
4924 /* Pick the destination device name, and ensure
4925 * we can use it in the destination network namespace.
4927 err = -EEXIST;
4928 destname = dev->name;
4929 if (__dev_get_by_name(net, destname)) {
4930 /* We get here if we can't use the current device name */
4931 if (!pat)
4932 goto out;
4933 if (!dev_valid_name(pat))
4934 goto out;
4935 if (strchr(pat, '%')) {
4936 if (__dev_alloc_name(net, pat, buf) < 0)
4937 goto out;
4938 destname = buf;
4939 } else
4940 destname = pat;
4941 if (__dev_get_by_name(net, destname))
4942 goto out;
4946 * And now a mini version of register_netdevice unregister_netdevice.
4949 /* If device is running close it first. */
4950 dev_close(dev);
4952 /* And unlink it from device chain */
4953 err = -ENODEV;
4954 unlist_netdevice(dev);
4956 synchronize_net();
4958 /* Shutdown queueing discipline. */
4959 dev_shutdown(dev);
4961 /* Notify protocols, that we are about to destroy
4962 this device. They should clean all the things.
4964 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4967 * Flush the unicast and multicast chains
4969 dev_addr_discard(dev);
4971 netdev_unregister_kobject(dev);
4973 /* Actually switch the network namespace */
4974 dev_net_set(dev, net);
4976 /* Assign the new device name */
4977 if (destname != dev->name)
4978 strcpy(dev->name, destname);
4980 /* If there is an ifindex conflict assign a new one */
4981 if (__dev_get_by_index(net, dev->ifindex)) {
4982 int iflink = (dev->iflink == dev->ifindex);
4983 dev->ifindex = dev_new_index(net);
4984 if (iflink)
4985 dev->iflink = dev->ifindex;
4988 /* Fixup kobjects */
4989 err = netdev_register_kobject(dev);
4990 WARN_ON(err);
4992 /* Add the device back in the hashes */
4993 list_netdevice(dev);
4995 /* Notify protocols, that a new device appeared. */
4996 call_netdevice_notifiers(NETDEV_REGISTER, dev);
4998 synchronize_net();
4999 err = 0;
5000 out:
5001 return err;
5004 static int dev_cpu_callback(struct notifier_block *nfb,
5005 unsigned long action,
5006 void *ocpu)
5008 struct sk_buff **list_skb;
5009 struct Qdisc **list_net;
5010 struct sk_buff *skb;
5011 unsigned int cpu, oldcpu = (unsigned long)ocpu;
5012 struct softnet_data *sd, *oldsd;
5014 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5015 return NOTIFY_OK;
5017 local_irq_disable();
5018 cpu = smp_processor_id();
5019 sd = &per_cpu(softnet_data, cpu);
5020 oldsd = &per_cpu(softnet_data, oldcpu);
5022 /* Find end of our completion_queue. */
5023 list_skb = &sd->completion_queue;
5024 while (*list_skb)
5025 list_skb = &(*list_skb)->next;
5026 /* Append completion queue from offline CPU. */
5027 *list_skb = oldsd->completion_queue;
5028 oldsd->completion_queue = NULL;
5030 /* Find end of our output_queue. */
5031 list_net = &sd->output_queue;
5032 while (*list_net)
5033 list_net = &(*list_net)->next_sched;
5034 /* Append output queue from offline CPU. */
5035 *list_net = oldsd->output_queue;
5036 oldsd->output_queue = NULL;
5038 raise_softirq_irqoff(NET_TX_SOFTIRQ);
5039 local_irq_enable();
5041 /* Process offline CPU's input_pkt_queue */
5042 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
5043 netif_rx(skb);
5045 return NOTIFY_OK;
5050 * netdev_increment_features - increment feature set by one
5051 * @all: current feature set
5052 * @one: new feature set
5053 * @mask: mask feature set
5055 * Computes a new feature set after adding a device with feature set
5056 * @one to the master device with current feature set @all. Will not
5057 * enable anything that is off in @mask. Returns the new feature set.
5059 unsigned long netdev_increment_features(unsigned long all, unsigned long one,
5060 unsigned long mask)
5062 /* If device needs checksumming, downgrade to it. */
5063 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
5064 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
5065 else if (mask & NETIF_F_ALL_CSUM) {
5066 /* If one device supports v4/v6 checksumming, set for all. */
5067 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
5068 !(all & NETIF_F_GEN_CSUM)) {
5069 all &= ~NETIF_F_ALL_CSUM;
5070 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
5073 /* If one device supports hw checksumming, set for all. */
5074 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
5075 all &= ~NETIF_F_ALL_CSUM;
5076 all |= NETIF_F_HW_CSUM;
5080 one |= NETIF_F_ALL_CSUM;
5082 one |= all & NETIF_F_ONE_FOR_ALL;
5083 all &= one | NETIF_F_LLTX | NETIF_F_GSO;
5084 all |= one & mask & NETIF_F_ONE_FOR_ALL;
5086 return all;
5088 EXPORT_SYMBOL(netdev_increment_features);
5090 static struct hlist_head *netdev_create_hash(void)
5092 int i;
5093 struct hlist_head *hash;
5095 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
5096 if (hash != NULL)
5097 for (i = 0; i < NETDEV_HASHENTRIES; i++)
5098 INIT_HLIST_HEAD(&hash[i]);
5100 return hash;
5103 /* Initialize per network namespace state */
5104 static int __net_init netdev_init(struct net *net)
5106 INIT_LIST_HEAD(&net->dev_base_head);
5108 net->dev_name_head = netdev_create_hash();
5109 if (net->dev_name_head == NULL)
5110 goto err_name;
5112 net->dev_index_head = netdev_create_hash();
5113 if (net->dev_index_head == NULL)
5114 goto err_idx;
5116 return 0;
5118 err_idx:
5119 kfree(net->dev_name_head);
5120 err_name:
5121 return -ENOMEM;
5125 * netdev_drivername - network driver for the device
5126 * @dev: network device
5127 * @buffer: buffer for resulting name
5128 * @len: size of buffer
5130 * Determine network driver for device.
5132 char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
5134 const struct device_driver *driver;
5135 const struct device *parent;
5137 if (len <= 0 || !buffer)
5138 return buffer;
5139 buffer[0] = 0;
5141 parent = dev->dev.parent;
5143 if (!parent)
5144 return buffer;
5146 driver = parent->driver;
5147 if (driver && driver->name)
5148 strlcpy(buffer, driver->name, len);
5149 return buffer;
5152 static void __net_exit netdev_exit(struct net *net)
5154 kfree(net->dev_name_head);
5155 kfree(net->dev_index_head);
5158 static struct pernet_operations __net_initdata netdev_net_ops = {
5159 .init = netdev_init,
5160 .exit = netdev_exit,
5163 static void __net_exit default_device_exit(struct net *net)
5165 struct net_device *dev;
5167 * Push all migratable of the network devices back to the
5168 * initial network namespace
5170 rtnl_lock();
5171 restart:
5172 for_each_netdev(net, dev) {
5173 int err;
5174 char fb_name[IFNAMSIZ];
5176 /* Ignore unmoveable devices (i.e. loopback) */
5177 if (dev->features & NETIF_F_NETNS_LOCAL)
5178 continue;
5180 /* Delete virtual devices */
5181 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) {
5182 dev->rtnl_link_ops->dellink(dev);
5183 goto restart;
5186 /* Push remaing network devices to init_net */
5187 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
5188 err = dev_change_net_namespace(dev, &init_net, fb_name);
5189 if (err) {
5190 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
5191 __func__, dev->name, err);
5192 BUG();
5194 goto restart;
5196 rtnl_unlock();
5199 static struct pernet_operations __net_initdata default_device_ops = {
5200 .exit = default_device_exit,
5204 * Initialize the DEV module. At boot time this walks the device list and
5205 * unhooks any devices that fail to initialise (normally hardware not
5206 * present) and leaves us with a valid list of present and active devices.
5211 * This is called single threaded during boot, so no need
5212 * to take the rtnl semaphore.
5214 static int __init net_dev_init(void)
5216 int i, rc = -ENOMEM;
5218 BUG_ON(!dev_boot_phase);
5220 if (dev_proc_init())
5221 goto out;
5223 if (netdev_kobject_init())
5224 goto out;
5226 INIT_LIST_HEAD(&ptype_all);
5227 for (i = 0; i < PTYPE_HASH_SIZE; i++)
5228 INIT_LIST_HEAD(&ptype_base[i]);
5230 if (register_pernet_subsys(&netdev_net_ops))
5231 goto out;
5234 * Initialise the packet receive queues.
5237 for_each_possible_cpu(i) {
5238 struct softnet_data *queue;
5240 queue = &per_cpu(softnet_data, i);
5241 skb_queue_head_init(&queue->input_pkt_queue);
5242 queue->completion_queue = NULL;
5243 INIT_LIST_HEAD(&queue->poll_list);
5245 queue->backlog.poll = process_backlog;
5246 queue->backlog.weight = weight_p;
5247 queue->backlog.gro_list = NULL;
5250 dev_boot_phase = 0;
5252 /* The loopback device is special if any other network devices
5253 * is present in a network namespace the loopback device must
5254 * be present. Since we now dynamically allocate and free the
5255 * loopback device ensure this invariant is maintained by
5256 * keeping the loopback device as the first device on the
5257 * list of network devices. Ensuring the loopback devices
5258 * is the first device that appears and the last network device
5259 * that disappears.
5261 if (register_pernet_device(&loopback_net_ops))
5262 goto out;
5264 if (register_pernet_device(&default_device_ops))
5265 goto out;
5267 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
5268 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
5270 hotcpu_notifier(dev_cpu_callback, 0);
5271 dst_init();
5272 dev_mcast_init();
5273 rc = 0;
5274 out:
5275 return rc;
5278 subsys_initcall(net_dev_init);
5280 EXPORT_SYMBOL(__dev_get_by_index);
5281 EXPORT_SYMBOL(__dev_get_by_name);
5282 EXPORT_SYMBOL(__dev_remove_pack);
5283 EXPORT_SYMBOL(dev_valid_name);
5284 EXPORT_SYMBOL(dev_add_pack);
5285 EXPORT_SYMBOL(dev_alloc_name);
5286 EXPORT_SYMBOL(dev_close);
5287 EXPORT_SYMBOL(dev_get_by_flags);
5288 EXPORT_SYMBOL(dev_get_by_index);
5289 EXPORT_SYMBOL(dev_get_by_name);
5290 EXPORT_SYMBOL(dev_open);
5291 EXPORT_SYMBOL(dev_queue_xmit);
5292 EXPORT_SYMBOL(dev_remove_pack);
5293 EXPORT_SYMBOL(dev_set_allmulti);
5294 EXPORT_SYMBOL(dev_set_promiscuity);
5295 EXPORT_SYMBOL(dev_change_flags);
5296 EXPORT_SYMBOL(dev_set_mtu);
5297 EXPORT_SYMBOL(dev_set_mac_address);
5298 EXPORT_SYMBOL(free_netdev);
5299 EXPORT_SYMBOL(netdev_boot_setup_check);
5300 EXPORT_SYMBOL(netdev_set_master);
5301 EXPORT_SYMBOL(netdev_state_change);
5302 EXPORT_SYMBOL(netif_receive_skb);
5303 EXPORT_SYMBOL(netif_rx);
5304 EXPORT_SYMBOL(register_gifconf);
5305 EXPORT_SYMBOL(register_netdevice);
5306 EXPORT_SYMBOL(register_netdevice_notifier);
5307 EXPORT_SYMBOL(skb_checksum_help);
5308 EXPORT_SYMBOL(synchronize_net);
5309 EXPORT_SYMBOL(unregister_netdevice);
5310 EXPORT_SYMBOL(unregister_netdevice_notifier);
5311 EXPORT_SYMBOL(net_enable_timestamp);
5312 EXPORT_SYMBOL(net_disable_timestamp);
5313 EXPORT_SYMBOL(dev_get_flags);
5315 #if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)
5316 EXPORT_SYMBOL(br_handle_frame_hook);
5317 EXPORT_SYMBOL(br_fdb_get_hook);
5318 EXPORT_SYMBOL(br_fdb_put_hook);
5319 #endif
5321 EXPORT_SYMBOL(dev_load);
5323 EXPORT_PER_CPU_SYMBOL(softnet_data);