2 * (c) 2003-2006 Advanced Micro Devices, Inc.
3 * Your use of this code is subject to the terms and conditions of the
4 * GNU general public license version 2. See "COPYING" or
5 * http://www.gnu.org/licenses/gpl.html
7 * Support : mark.langsdorf@amd.com
9 * Based on the powernow-k7.c module written by Dave Jones.
10 * (C) 2003 Dave Jones <davej@codemonkey.org.uk> on behalf of SuSE Labs
11 * (C) 2004 Dominik Brodowski <linux@brodo.de>
12 * (C) 2004 Pavel Machek <pavel@suse.cz>
13 * Licensed under the terms of the GNU GPL License version 2.
14 * Based upon datasheets & sample CPUs kindly provided by AMD.
16 * Valuable input gratefully received from Dave Jones, Pavel Machek,
17 * Dominik Brodowski, Jacob Shin, and others.
18 * Originally developed by Paul Devriendt.
19 * Processor information obtained from Chapter 9 (Power and Thermal Management)
20 * of the "BIOS and Kernel Developer's Guide for the AMD Athlon 64 and AMD
21 * Opteron Processors" available for download from www.amd.com
23 * Tables for specific CPUs can be inferred from
24 * http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/30430.pdf
27 #include <linux/kernel.h>
28 #include <linux/smp.h>
29 #include <linux/module.h>
30 #include <linux/init.h>
31 #include <linux/cpufreq.h>
32 #include <linux/slab.h>
33 #include <linux/string.h>
34 #include <linux/cpumask.h>
35 #include <linux/sched.h> /* for current / set_cpus_allowed() */
39 #include <asm/delay.h>
41 #ifdef CONFIG_X86_POWERNOW_K8_ACPI
42 #include <linux/acpi.h>
43 #include <linux/mutex.h>
44 #include <acpi/processor.h>
47 #define PFX "powernow-k8: "
48 #define BFX PFX "BIOS error: "
49 #define VERSION "version 2.00.00"
50 #include "powernow-k8.h"
52 /* serialize freq changes */
53 static DEFINE_MUTEX(fidvid_mutex
);
55 static struct powernow_k8_data
*powernow_data
[NR_CPUS
];
57 static int cpu_family
= CPU_OPTERON
;
60 static cpumask_t cpu_core_map
[1];
63 /* Return a frequency in MHz, given an input fid */
64 static u32
find_freq_from_fid(u32 fid
)
66 return 800 + (fid
* 100);
70 /* Return a frequency in KHz, given an input fid */
71 static u32
find_khz_freq_from_fid(u32 fid
)
73 return 1000 * find_freq_from_fid(fid
);
76 /* Return a frequency in MHz, given an input fid and did */
77 static u32
find_freq_from_fiddid(u32 fid
, u32 did
)
79 return 100 * (fid
+ 0x10) >> did
;
82 static u32
find_khz_freq_from_fiddid(u32 fid
, u32 did
)
84 return 1000 * find_freq_from_fiddid(fid
, did
);
87 static u32
find_fid_from_pstate(u32 pstate
)
90 rdmsr(MSR_PSTATE_DEF_BASE
+ pstate
, lo
, hi
);
91 return lo
& HW_PSTATE_FID_MASK
;
94 static u32
find_did_from_pstate(u32 pstate
)
97 rdmsr(MSR_PSTATE_DEF_BASE
+ pstate
, lo
, hi
);
98 return (lo
& HW_PSTATE_DID_MASK
) >> HW_PSTATE_DID_SHIFT
;
101 /* Return the vco fid for an input fid
103 * Each "low" fid has corresponding "high" fid, and you can get to "low" fids
104 * only from corresponding high fids. This returns "high" fid corresponding to
107 static u32
convert_fid_to_vco_fid(u32 fid
)
109 if (fid
< HI_FID_TABLE_BOTTOM
)
110 return 8 + (2 * fid
);
116 * Return 1 if the pending bit is set. Unless we just instructed the processor
117 * to transition to a new state, seeing this bit set is really bad news.
119 static int pending_bit_stuck(void)
123 if (cpu_family
== CPU_HW_PSTATE
)
126 rdmsr(MSR_FIDVID_STATUS
, lo
, hi
);
127 return lo
& MSR_S_LO_CHANGE_PENDING
? 1 : 0;
131 * Update the global current fid / vid values from the status msr.
132 * Returns 1 on error.
134 static int query_current_values_with_pending_wait(struct powernow_k8_data
*data
)
139 if (cpu_family
== CPU_HW_PSTATE
) {
140 rdmsr(MSR_PSTATE_STATUS
, lo
, hi
);
141 i
= lo
& HW_PSTATE_MASK
;
142 rdmsr(MSR_PSTATE_DEF_BASE
+ i
, lo
, hi
);
143 data
->currfid
= lo
& HW_PSTATE_FID_MASK
;
144 data
->currdid
= (lo
& HW_PSTATE_DID_MASK
) >> HW_PSTATE_DID_SHIFT
;
149 dprintk("detected change pending stuck\n");
152 rdmsr(MSR_FIDVID_STATUS
, lo
, hi
);
153 } while (lo
& MSR_S_LO_CHANGE_PENDING
);
155 data
->currvid
= hi
& MSR_S_HI_CURRENT_VID
;
156 data
->currfid
= lo
& MSR_S_LO_CURRENT_FID
;
161 /* the isochronous relief time */
162 static void count_off_irt(struct powernow_k8_data
*data
)
164 udelay((1 << data
->irt
) * 10);
168 /* the voltage stabalization time */
169 static void count_off_vst(struct powernow_k8_data
*data
)
171 udelay(data
->vstable
* VST_UNITS_20US
);
175 /* need to init the control msr to a safe value (for each cpu) */
176 static void fidvid_msr_init(void)
181 rdmsr(MSR_FIDVID_STATUS
, lo
, hi
);
182 vid
= hi
& MSR_S_HI_CURRENT_VID
;
183 fid
= lo
& MSR_S_LO_CURRENT_FID
;
184 lo
= fid
| (vid
<< MSR_C_LO_VID_SHIFT
);
185 hi
= MSR_C_HI_STP_GNT_BENIGN
;
186 dprintk("cpu%d, init lo 0x%x, hi 0x%x\n", smp_processor_id(), lo
, hi
);
187 wrmsr(MSR_FIDVID_CTL
, lo
, hi
);
191 /* write the new fid value along with the other control fields to the msr */
192 static int write_new_fid(struct powernow_k8_data
*data
, u32 fid
)
195 u32 savevid
= data
->currvid
;
198 if ((fid
& INVALID_FID_MASK
) || (data
->currvid
& INVALID_VID_MASK
)) {
199 printk(KERN_ERR PFX
"internal error - overflow on fid write\n");
203 lo
= fid
| (data
->currvid
<< MSR_C_LO_VID_SHIFT
) | MSR_C_LO_INIT_FID_VID
;
205 dprintk("writing fid 0x%x, lo 0x%x, hi 0x%x\n",
206 fid
, lo
, data
->plllock
* PLL_LOCK_CONVERSION
);
209 wrmsr(MSR_FIDVID_CTL
, lo
, data
->plllock
* PLL_LOCK_CONVERSION
);
211 printk(KERN_ERR PFX
"Hardware error - pending bit very stuck - no further pstate changes possible\n");
214 } while (query_current_values_with_pending_wait(data
));
218 if (savevid
!= data
->currvid
) {
219 printk(KERN_ERR PFX
"vid change on fid trans, old 0x%x, new 0x%x\n",
220 savevid
, data
->currvid
);
224 if (fid
!= data
->currfid
) {
225 printk(KERN_ERR PFX
"fid trans failed, fid 0x%x, curr 0x%x\n", fid
,
233 /* Write a new vid to the hardware */
234 static int write_new_vid(struct powernow_k8_data
*data
, u32 vid
)
237 u32 savefid
= data
->currfid
;
240 if ((data
->currfid
& INVALID_FID_MASK
) || (vid
& INVALID_VID_MASK
)) {
241 printk(KERN_ERR PFX
"internal error - overflow on vid write\n");
245 lo
= data
->currfid
| (vid
<< MSR_C_LO_VID_SHIFT
) | MSR_C_LO_INIT_FID_VID
;
247 dprintk("writing vid 0x%x, lo 0x%x, hi 0x%x\n",
248 vid
, lo
, STOP_GRANT_5NS
);
251 wrmsr(MSR_FIDVID_CTL
, lo
, STOP_GRANT_5NS
);
253 printk(KERN_ERR PFX
"internal error - pending bit very stuck - no further pstate changes possible\n");
256 } while (query_current_values_with_pending_wait(data
));
258 if (savefid
!= data
->currfid
) {
259 printk(KERN_ERR PFX
"fid changed on vid trans, old 0x%x new 0x%x\n",
260 savefid
, data
->currfid
);
264 if (vid
!= data
->currvid
) {
265 printk(KERN_ERR PFX
"vid trans failed, vid 0x%x, curr 0x%x\n", vid
,
274 * Reduce the vid by the max of step or reqvid.
275 * Decreasing vid codes represent increasing voltages:
276 * vid of 0 is 1.550V, vid of 0x1e is 0.800V, vid of VID_OFF is off.
278 static int decrease_vid_code_by_step(struct powernow_k8_data
*data
, u32 reqvid
, u32 step
)
280 if ((data
->currvid
- reqvid
) > step
)
281 reqvid
= data
->currvid
- step
;
283 if (write_new_vid(data
, reqvid
))
291 /* Change hardware pstate by single MSR write */
292 static int transition_pstate(struct powernow_k8_data
*data
, u32 pstate
)
294 wrmsr(MSR_PSTATE_CTRL
, pstate
, 0);
295 data
->currfid
= find_fid_from_pstate(pstate
);
299 /* Change Opteron/Athlon64 fid and vid, by the 3 phases. */
300 static int transition_fid_vid(struct powernow_k8_data
*data
, u32 reqfid
, u32 reqvid
)
302 if (core_voltage_pre_transition(data
, reqvid
))
305 if (core_frequency_transition(data
, reqfid
))
308 if (core_voltage_post_transition(data
, reqvid
))
311 if (query_current_values_with_pending_wait(data
))
314 if ((reqfid
!= data
->currfid
) || (reqvid
!= data
->currvid
)) {
315 printk(KERN_ERR PFX
"failed (cpu%d): req 0x%x 0x%x, curr 0x%x 0x%x\n",
317 reqfid
, reqvid
, data
->currfid
, data
->currvid
);
321 dprintk("transitioned (cpu%d): new fid 0x%x, vid 0x%x\n",
322 smp_processor_id(), data
->currfid
, data
->currvid
);
327 /* Phase 1 - core voltage transition ... setup voltage */
328 static int core_voltage_pre_transition(struct powernow_k8_data
*data
, u32 reqvid
)
330 u32 rvosteps
= data
->rvo
;
331 u32 savefid
= data
->currfid
;
334 dprintk("ph1 (cpu%d): start, currfid 0x%x, currvid 0x%x, reqvid 0x%x, rvo 0x%x\n",
336 data
->currfid
, data
->currvid
, reqvid
, data
->rvo
);
338 rdmsr(MSR_FIDVID_STATUS
, lo
, maxvid
);
339 maxvid
= 0x1f & (maxvid
>> 16);
340 dprintk("ph1 maxvid=0x%x\n", maxvid
);
341 if (reqvid
< maxvid
) /* lower numbers are higher voltages */
344 while (data
->currvid
> reqvid
) {
345 dprintk("ph1: curr 0x%x, req vid 0x%x\n",
346 data
->currvid
, reqvid
);
347 if (decrease_vid_code_by_step(data
, reqvid
, data
->vidmvs
))
351 while ((rvosteps
> 0) && ((data
->rvo
+ data
->currvid
) > reqvid
)) {
352 if (data
->currvid
== maxvid
) {
355 dprintk("ph1: changing vid for rvo, req 0x%x\n",
357 if (decrease_vid_code_by_step(data
, data
->currvid
- 1, 1))
363 if (query_current_values_with_pending_wait(data
))
366 if (savefid
!= data
->currfid
) {
367 printk(KERN_ERR PFX
"ph1 err, currfid changed 0x%x\n", data
->currfid
);
371 dprintk("ph1 complete, currfid 0x%x, currvid 0x%x\n",
372 data
->currfid
, data
->currvid
);
377 /* Phase 2 - core frequency transition */
378 static int core_frequency_transition(struct powernow_k8_data
*data
, u32 reqfid
)
380 u32 vcoreqfid
, vcocurrfid
, vcofiddiff
, fid_interval
, savevid
= data
->currvid
;
382 if ((reqfid
< HI_FID_TABLE_BOTTOM
) && (data
->currfid
< HI_FID_TABLE_BOTTOM
)) {
383 printk(KERN_ERR PFX
"ph2: illegal lo-lo transition 0x%x 0x%x\n",
384 reqfid
, data
->currfid
);
388 if (data
->currfid
== reqfid
) {
389 printk(KERN_ERR PFX
"ph2 null fid transition 0x%x\n", data
->currfid
);
393 dprintk("ph2 (cpu%d): starting, currfid 0x%x, currvid 0x%x, reqfid 0x%x\n",
395 data
->currfid
, data
->currvid
, reqfid
);
397 vcoreqfid
= convert_fid_to_vco_fid(reqfid
);
398 vcocurrfid
= convert_fid_to_vco_fid(data
->currfid
);
399 vcofiddiff
= vcocurrfid
> vcoreqfid
? vcocurrfid
- vcoreqfid
400 : vcoreqfid
- vcocurrfid
;
402 while (vcofiddiff
> 2) {
403 (data
->currfid
& 1) ? (fid_interval
= 1) : (fid_interval
= 2);
405 if (reqfid
> data
->currfid
) {
406 if (data
->currfid
> LO_FID_TABLE_TOP
) {
407 if (write_new_fid(data
, data
->currfid
+ fid_interval
)) {
412 (data
, 2 + convert_fid_to_vco_fid(data
->currfid
))) {
417 if (write_new_fid(data
, data
->currfid
- fid_interval
))
421 vcocurrfid
= convert_fid_to_vco_fid(data
->currfid
);
422 vcofiddiff
= vcocurrfid
> vcoreqfid
? vcocurrfid
- vcoreqfid
423 : vcoreqfid
- vcocurrfid
;
426 if (write_new_fid(data
, reqfid
))
429 if (query_current_values_with_pending_wait(data
))
432 if (data
->currfid
!= reqfid
) {
434 "ph2: mismatch, failed fid transition, curr 0x%x, req 0x%x\n",
435 data
->currfid
, reqfid
);
439 if (savevid
!= data
->currvid
) {
440 printk(KERN_ERR PFX
"ph2: vid changed, save 0x%x, curr 0x%x\n",
441 savevid
, data
->currvid
);
445 dprintk("ph2 complete, currfid 0x%x, currvid 0x%x\n",
446 data
->currfid
, data
->currvid
);
451 /* Phase 3 - core voltage transition flow ... jump to the final vid. */
452 static int core_voltage_post_transition(struct powernow_k8_data
*data
, u32 reqvid
)
454 u32 savefid
= data
->currfid
;
455 u32 savereqvid
= reqvid
;
457 dprintk("ph3 (cpu%d): starting, currfid 0x%x, currvid 0x%x\n",
459 data
->currfid
, data
->currvid
);
461 if (reqvid
!= data
->currvid
) {
462 if (write_new_vid(data
, reqvid
))
465 if (savefid
!= data
->currfid
) {
467 "ph3: bad fid change, save 0x%x, curr 0x%x\n",
468 savefid
, data
->currfid
);
472 if (data
->currvid
!= reqvid
) {
474 "ph3: failed vid transition\n, req 0x%x, curr 0x%x",
475 reqvid
, data
->currvid
);
480 if (query_current_values_with_pending_wait(data
))
483 if (savereqvid
!= data
->currvid
) {
484 dprintk("ph3 failed, currvid 0x%x\n", data
->currvid
);
488 if (savefid
!= data
->currfid
) {
489 dprintk("ph3 failed, currfid changed 0x%x\n",
494 dprintk("ph3 complete, currfid 0x%x, currvid 0x%x\n",
495 data
->currfid
, data
->currvid
);
500 static int check_supported_cpu(unsigned int cpu
)
502 cpumask_t oldmask
= CPU_MASK_ALL
;
503 u32 eax
, ebx
, ecx
, edx
;
506 oldmask
= current
->cpus_allowed
;
507 set_cpus_allowed(current
, cpumask_of_cpu(cpu
));
509 if (smp_processor_id() != cpu
) {
510 printk(KERN_ERR PFX
"limiting to cpu %u failed\n", cpu
);
514 if (current_cpu_data
.x86_vendor
!= X86_VENDOR_AMD
)
517 eax
= cpuid_eax(CPUID_PROCESSOR_SIGNATURE
);
518 if (((eax
& CPUID_XFAM
) != CPUID_XFAM_K8
) &&
519 ((eax
& CPUID_XFAM
) < CPUID_XFAM_10H
))
522 if ((eax
& CPUID_XFAM
) == CPUID_XFAM_K8
) {
523 if (((eax
& CPUID_USE_XFAM_XMOD
) != CPUID_USE_XFAM_XMOD
) ||
524 ((eax
& CPUID_XMOD
) > CPUID_XMOD_REV_MASK
)) {
525 printk(KERN_INFO PFX
"Processor cpuid %x not supported\n", eax
);
529 eax
= cpuid_eax(CPUID_GET_MAX_CAPABILITIES
);
530 if (eax
< CPUID_FREQ_VOLT_CAPABILITIES
) {
532 "No frequency change capabilities detected\n");
536 cpuid(CPUID_FREQ_VOLT_CAPABILITIES
, &eax
, &ebx
, &ecx
, &edx
);
537 if ((edx
& P_STATE_TRANSITION_CAPABLE
) != P_STATE_TRANSITION_CAPABLE
) {
538 printk(KERN_INFO PFX
"Power state transitions not supported\n");
541 } else { /* must be a HW Pstate capable processor */
542 cpuid(CPUID_FREQ_VOLT_CAPABILITIES
, &eax
, &ebx
, &ecx
, &edx
);
543 if ((edx
& USE_HW_PSTATE
) == USE_HW_PSTATE
)
544 cpu_family
= CPU_HW_PSTATE
;
552 set_cpus_allowed(current
, oldmask
);
556 static int check_pst_table(struct powernow_k8_data
*data
, struct pst_s
*pst
, u8 maxvid
)
561 for (j
= 0; j
< data
->numps
; j
++) {
562 if (pst
[j
].vid
> LEAST_VID
) {
563 printk(KERN_ERR PFX
"vid %d invalid : 0x%x\n", j
, pst
[j
].vid
);
566 if (pst
[j
].vid
< data
->rvo
) { /* vid + rvo >= 0 */
567 printk(KERN_ERR BFX
"0 vid exceeded with pstate %d\n", j
);
570 if (pst
[j
].vid
< maxvid
+ data
->rvo
) { /* vid + rvo >= maxvid */
571 printk(KERN_ERR BFX
"maxvid exceeded with pstate %d\n", j
);
574 if (pst
[j
].fid
> MAX_FID
) {
575 printk(KERN_ERR BFX
"maxfid exceeded with pstate %d\n", j
);
578 if (j
&& (pst
[j
].fid
< HI_FID_TABLE_BOTTOM
)) {
579 /* Only first fid is allowed to be in "low" range */
580 printk(KERN_ERR BFX
"two low fids - %d : 0x%x\n", j
, pst
[j
].fid
);
583 if (pst
[j
].fid
< lastfid
)
584 lastfid
= pst
[j
].fid
;
587 printk(KERN_ERR BFX
"lastfid invalid\n");
590 if (lastfid
> LO_FID_TABLE_TOP
)
591 printk(KERN_INFO BFX
"first fid not from lo freq table\n");
596 static void print_basics(struct powernow_k8_data
*data
)
599 for (j
= 0; j
< data
->numps
; j
++) {
600 if (data
->powernow_table
[j
].frequency
!= CPUFREQ_ENTRY_INVALID
) {
601 if (cpu_family
== CPU_HW_PSTATE
) {
602 printk(KERN_INFO PFX
" %d : fid 0x%x gid 0x%x (%d MHz)\n", j
, (data
->powernow_table
[j
].index
& 0xff00) >> 8,
603 (data
->powernow_table
[j
].index
& 0xff0000) >> 16,
604 data
->powernow_table
[j
].frequency
/1000);
606 printk(KERN_INFO PFX
" %d : fid 0x%x (%d MHz), vid 0x%x\n", j
,
607 data
->powernow_table
[j
].index
& 0xff,
608 data
->powernow_table
[j
].frequency
/1000,
609 data
->powernow_table
[j
].index
>> 8);
614 printk(KERN_INFO PFX
"Only %d pstates on battery\n", data
->batps
);
617 static int fill_powernow_table(struct powernow_k8_data
*data
, struct pst_s
*pst
, u8 maxvid
)
619 struct cpufreq_frequency_table
*powernow_table
;
622 if (data
->batps
) { /* use ACPI support to get full speed on mains power */
623 printk(KERN_WARNING PFX
"Only %d pstates usable (use ACPI driver for full range\n", data
->batps
);
624 data
->numps
= data
->batps
;
627 for ( j
=1; j
<data
->numps
; j
++ ) {
628 if (pst
[j
-1].fid
>= pst
[j
].fid
) {
629 printk(KERN_ERR PFX
"PST out of sequence\n");
634 if (data
->numps
< 2) {
635 printk(KERN_ERR PFX
"no p states to transition\n");
639 if (check_pst_table(data
, pst
, maxvid
))
642 powernow_table
= kmalloc((sizeof(struct cpufreq_frequency_table
)
643 * (data
->numps
+ 1)), GFP_KERNEL
);
644 if (!powernow_table
) {
645 printk(KERN_ERR PFX
"powernow_table memory alloc failure\n");
649 for (j
= 0; j
< data
->numps
; j
++) {
650 powernow_table
[j
].index
= pst
[j
].fid
; /* lower 8 bits */
651 powernow_table
[j
].index
|= (pst
[j
].vid
<< 8); /* upper 8 bits */
652 powernow_table
[j
].frequency
= find_khz_freq_from_fid(pst
[j
].fid
);
654 powernow_table
[data
->numps
].frequency
= CPUFREQ_TABLE_END
;
655 powernow_table
[data
->numps
].index
= 0;
657 if (query_current_values_with_pending_wait(data
)) {
658 kfree(powernow_table
);
662 dprintk("cfid 0x%x, cvid 0x%x\n", data
->currfid
, data
->currvid
);
663 data
->powernow_table
= powernow_table
;
664 if (first_cpu(cpu_core_map
[data
->cpu
]) == data
->cpu
)
667 for (j
= 0; j
< data
->numps
; j
++)
668 if ((pst
[j
].fid
==data
->currfid
) && (pst
[j
].vid
==data
->currvid
))
671 dprintk("currfid/vid do not match PST, ignoring\n");
675 /* Find and validate the PSB/PST table in BIOS. */
676 static int find_psb_table(struct powernow_k8_data
*data
)
685 for (i
= 0xc0000; i
< 0xffff0; i
+= 0x10) {
686 /* Scan BIOS looking for the signature. */
687 /* It can not be at ffff0 - it is too big. */
689 psb
= phys_to_virt(i
);
690 if (memcmp(psb
, PSB_ID_STRING
, PSB_ID_STRING_LEN
) != 0)
693 dprintk("found PSB header at 0x%p\n", psb
);
695 dprintk("table vers: 0x%x\n", psb
->tableversion
);
696 if (psb
->tableversion
!= PSB_VERSION_1_4
) {
697 printk(KERN_ERR BFX
"PSB table is not v1.4\n");
701 dprintk("flags: 0x%x\n", psb
->flags1
);
703 printk(KERN_ERR BFX
"unknown flags\n");
707 data
->vstable
= psb
->vstable
;
708 dprintk("voltage stabilization time: %d(*20us)\n", data
->vstable
);
710 dprintk("flags2: 0x%x\n", psb
->flags2
);
711 data
->rvo
= psb
->flags2
& 3;
712 data
->irt
= ((psb
->flags2
) >> 2) & 3;
713 mvs
= ((psb
->flags2
) >> 4) & 3;
714 data
->vidmvs
= 1 << mvs
;
715 data
->batps
= ((psb
->flags2
) >> 6) & 3;
717 dprintk("ramp voltage offset: %d\n", data
->rvo
);
718 dprintk("isochronous relief time: %d\n", data
->irt
);
719 dprintk("maximum voltage step: %d - 0x%x\n", mvs
, data
->vidmvs
);
721 dprintk("numpst: 0x%x\n", psb
->num_tables
);
722 cpst
= psb
->num_tables
;
723 if ((psb
->cpuid
== 0x00000fc0) || (psb
->cpuid
== 0x00000fe0) ){
724 thiscpuid
= cpuid_eax(CPUID_PROCESSOR_SIGNATURE
);
725 if ((thiscpuid
== 0x00000fc0) || (thiscpuid
== 0x00000fe0) ) {
730 printk(KERN_ERR BFX
"numpst must be 1\n");
734 data
->plllock
= psb
->plllocktime
;
735 dprintk("plllocktime: 0x%x (units 1us)\n", psb
->plllocktime
);
736 dprintk("maxfid: 0x%x\n", psb
->maxfid
);
737 dprintk("maxvid: 0x%x\n", psb
->maxvid
);
738 maxvid
= psb
->maxvid
;
740 data
->numps
= psb
->numps
;
741 dprintk("numpstates: 0x%x\n", data
->numps
);
742 return fill_powernow_table(data
, (struct pst_s
*)(psb
+1), maxvid
);
745 * If you see this message, complain to BIOS manufacturer. If
746 * he tells you "we do not support Linux" or some similar
747 * nonsense, remember that Windows 2000 uses the same legacy
748 * mechanism that the old Linux PSB driver uses. Tell them it
749 * is broken with Windows 2000.
751 * The reference to the AMD documentation is chapter 9 in the
752 * BIOS and Kernel Developer's Guide, which is available on
755 printk(KERN_ERR PFX
"BIOS error - no PSB or ACPI _PSS objects\n");
759 #ifdef CONFIG_X86_POWERNOW_K8_ACPI
760 static void powernow_k8_acpi_pst_values(struct powernow_k8_data
*data
, unsigned int index
)
762 if (!data
->acpi_data
.state_count
|| (cpu_family
== CPU_HW_PSTATE
))
765 data
->irt
= (data
->acpi_data
.states
[index
].control
>> IRT_SHIFT
) & IRT_MASK
;
766 data
->rvo
= (data
->acpi_data
.states
[index
].control
>> RVO_SHIFT
) & RVO_MASK
;
767 data
->exttype
= (data
->acpi_data
.states
[index
].control
>> EXT_TYPE_SHIFT
) & EXT_TYPE_MASK
;
768 data
->plllock
= (data
->acpi_data
.states
[index
].control
>> PLL_L_SHIFT
) & PLL_L_MASK
;
769 data
->vidmvs
= 1 << ((data
->acpi_data
.states
[index
].control
>> MVS_SHIFT
) & MVS_MASK
);
770 data
->vstable
= (data
->acpi_data
.states
[index
].control
>> VST_SHIFT
) & VST_MASK
;
773 static int powernow_k8_cpu_init_acpi(struct powernow_k8_data
*data
)
775 struct cpufreq_frequency_table
*powernow_table
;
778 if (acpi_processor_register_performance(&data
->acpi_data
, data
->cpu
)) {
779 dprintk("register performance failed: bad ACPI data\n");
783 /* verify the data contained in the ACPI structures */
784 if (data
->acpi_data
.state_count
<= 1) {
785 dprintk("No ACPI P-States\n");
789 if ((data
->acpi_data
.control_register
.space_id
!= ACPI_ADR_SPACE_FIXED_HARDWARE
) ||
790 (data
->acpi_data
.status_register
.space_id
!= ACPI_ADR_SPACE_FIXED_HARDWARE
)) {
791 dprintk("Invalid control/status registers (%x - %x)\n",
792 data
->acpi_data
.control_register
.space_id
,
793 data
->acpi_data
.status_register
.space_id
);
797 /* fill in data->powernow_table */
798 powernow_table
= kmalloc((sizeof(struct cpufreq_frequency_table
)
799 * (data
->acpi_data
.state_count
+ 1)), GFP_KERNEL
);
800 if (!powernow_table
) {
801 dprintk("powernow_table memory alloc failure\n");
805 if (cpu_family
== CPU_HW_PSTATE
)
806 ret_val
= fill_powernow_table_pstate(data
, powernow_table
);
808 ret_val
= fill_powernow_table_fidvid(data
, powernow_table
);
812 powernow_table
[data
->acpi_data
.state_count
].frequency
= CPUFREQ_TABLE_END
;
813 powernow_table
[data
->acpi_data
.state_count
].index
= 0;
814 data
->powernow_table
= powernow_table
;
817 data
->numps
= data
->acpi_data
.state_count
;
818 if (first_cpu(cpu_core_map
[data
->cpu
]) == data
->cpu
)
820 powernow_k8_acpi_pst_values(data
, 0);
822 /* notify BIOS that we exist */
823 acpi_processor_notify_smm(THIS_MODULE
);
828 kfree(powernow_table
);
831 acpi_processor_unregister_performance(&data
->acpi_data
, data
->cpu
);
833 /* data->acpi_data.state_count informs us at ->exit() whether ACPI was used */
834 data
->acpi_data
.state_count
= 0;
839 static int fill_powernow_table_pstate(struct powernow_k8_data
*data
, struct cpufreq_frequency_table
*powernow_table
)
843 for (i
= 0; i
< data
->acpi_data
.state_count
; i
++) {
849 index
= data
->acpi_data
.states
[i
].control
& HW_PSTATE_MASK
;
850 if (index
> MAX_HW_PSTATE
) {
851 printk(KERN_ERR PFX
"invalid pstate %d - bad value %d.\n", i
, index
);
852 printk(KERN_ERR PFX
"Please report to BIOS manufacturer\n");
854 rdmsr(MSR_PSTATE_DEF_BASE
+ index
, lo
, hi
);
855 if (!(hi
& HW_PSTATE_VALID_MASK
)) {
856 dprintk("invalid pstate %d, ignoring\n", index
);
857 powernow_table
[i
].frequency
= CPUFREQ_ENTRY_INVALID
;
861 fid
= lo
& HW_PSTATE_FID_MASK
;
862 did
= (lo
& HW_PSTATE_DID_MASK
) >> HW_PSTATE_DID_SHIFT
;
864 dprintk(" %d : fid 0x%x, did 0x%x\n", index
, fid
, did
);
866 powernow_table
[i
].index
= index
| (fid
<< HW_FID_INDEX_SHIFT
) | (did
<< HW_DID_INDEX_SHIFT
);
868 powernow_table
[i
].frequency
= find_khz_freq_from_fiddid(fid
, did
);
870 if (powernow_table
[i
].frequency
!= (data
->acpi_data
.states
[i
].core_frequency
* 1000)) {
871 printk(KERN_INFO PFX
"invalid freq entries %u kHz vs. %u kHz\n",
872 powernow_table
[i
].frequency
,
873 (unsigned int) (data
->acpi_data
.states
[i
].core_frequency
* 1000));
874 powernow_table
[i
].frequency
= CPUFREQ_ENTRY_INVALID
;
881 static int fill_powernow_table_fidvid(struct powernow_k8_data
*data
, struct cpufreq_frequency_table
*powernow_table
)
885 for (i
= 0; i
< data
->acpi_data
.state_count
; i
++) {
890 fid
= data
->acpi_data
.states
[i
].status
& EXT_FID_MASK
;
891 vid
= (data
->acpi_data
.states
[i
].status
>> VID_SHIFT
) & EXT_VID_MASK
;
893 fid
= data
->acpi_data
.states
[i
].control
& FID_MASK
;
894 vid
= (data
->acpi_data
.states
[i
].control
>> VID_SHIFT
) & VID_MASK
;
897 dprintk(" %d : fid 0x%x, vid 0x%x\n", i
, fid
, vid
);
899 powernow_table
[i
].index
= fid
; /* lower 8 bits */
900 powernow_table
[i
].index
|= (vid
<< 8); /* upper 8 bits */
901 powernow_table
[i
].frequency
= find_khz_freq_from_fid(fid
);
903 /* verify frequency is OK */
904 if ((powernow_table
[i
].frequency
> (MAX_FREQ
* 1000)) ||
905 (powernow_table
[i
].frequency
< (MIN_FREQ
* 1000))) {
906 dprintk("invalid freq %u kHz, ignoring\n", powernow_table
[i
].frequency
);
907 powernow_table
[i
].frequency
= CPUFREQ_ENTRY_INVALID
;
911 /* verify voltage is OK - BIOSs are using "off" to indicate invalid */
912 if (vid
== VID_OFF
) {
913 dprintk("invalid vid %u, ignoring\n", vid
);
914 powernow_table
[i
].frequency
= CPUFREQ_ENTRY_INVALID
;
918 /* verify only 1 entry from the lo frequency table */
919 if (fid
< HI_FID_TABLE_BOTTOM
) {
921 /* if both entries are the same, ignore this one ... */
922 if ((powernow_table
[i
].frequency
!= powernow_table
[cntlofreq
].frequency
) ||
923 (powernow_table
[i
].index
!= powernow_table
[cntlofreq
].index
)) {
924 printk(KERN_ERR PFX
"Too many lo freq table entries\n");
928 dprintk("double low frequency table entry, ignoring it.\n");
929 powernow_table
[i
].frequency
= CPUFREQ_ENTRY_INVALID
;
935 if (powernow_table
[i
].frequency
!= (data
->acpi_data
.states
[i
].core_frequency
* 1000)) {
936 printk(KERN_INFO PFX
"invalid freq entries %u kHz vs. %u kHz\n",
937 powernow_table
[i
].frequency
,
938 (unsigned int) (data
->acpi_data
.states
[i
].core_frequency
* 1000));
939 powernow_table
[i
].frequency
= CPUFREQ_ENTRY_INVALID
;
946 static void powernow_k8_cpu_exit_acpi(struct powernow_k8_data
*data
)
948 if (data
->acpi_data
.state_count
)
949 acpi_processor_unregister_performance(&data
->acpi_data
, data
->cpu
);
953 static int powernow_k8_cpu_init_acpi(struct powernow_k8_data
*data
) { return -ENODEV
; }
954 static void powernow_k8_cpu_exit_acpi(struct powernow_k8_data
*data
) { return; }
955 static void powernow_k8_acpi_pst_values(struct powernow_k8_data
*data
, unsigned int index
) { return; }
956 #endif /* CONFIG_X86_POWERNOW_K8_ACPI */
958 /* Take a frequency, and issue the fid/vid transition command */
959 static int transition_frequency_fidvid(struct powernow_k8_data
*data
, unsigned int index
)
964 struct cpufreq_freqs freqs
;
966 dprintk("cpu %d transition to index %u\n", smp_processor_id(), index
);
968 /* fid/vid correctness check for k8 */
969 /* fid are the lower 8 bits of the index we stored into
970 * the cpufreq frequency table in find_psb_table, vid
971 * are the upper 8 bits.
973 fid
= data
->powernow_table
[index
].index
& 0xFF;
974 vid
= (data
->powernow_table
[index
].index
& 0xFF00) >> 8;
976 dprintk("table matched fid 0x%x, giving vid 0x%x\n", fid
, vid
);
978 if (query_current_values_with_pending_wait(data
))
981 if ((data
->currvid
== vid
) && (data
->currfid
== fid
)) {
982 dprintk("target matches current values (fid 0x%x, vid 0x%x)\n",
987 if ((fid
< HI_FID_TABLE_BOTTOM
) && (data
->currfid
< HI_FID_TABLE_BOTTOM
)) {
989 "ignoring illegal change in lo freq table-%x to 0x%x\n",
994 dprintk("cpu %d, changing to fid 0x%x, vid 0x%x\n",
995 smp_processor_id(), fid
, vid
);
996 freqs
.old
= find_khz_freq_from_fid(data
->currfid
);
997 freqs
.new = find_khz_freq_from_fid(fid
);
999 for_each_cpu_mask(i
, *(data
->available_cores
)) {
1001 cpufreq_notify_transition(&freqs
, CPUFREQ_PRECHANGE
);
1004 res
= transition_fid_vid(data
, fid
, vid
);
1005 freqs
.new = find_khz_freq_from_fid(data
->currfid
);
1007 for_each_cpu_mask(i
, *(data
->available_cores
)) {
1009 cpufreq_notify_transition(&freqs
, CPUFREQ_POSTCHANGE
);
1014 /* Take a frequency, and issue the hardware pstate transition command */
1015 static int transition_frequency_pstate(struct powernow_k8_data
*data
, unsigned int index
)
1021 struct cpufreq_freqs freqs
;
1023 dprintk("cpu %d transition to index %u\n", smp_processor_id(), index
);
1025 /* get fid did for hardware pstate transition */
1026 pstate
= index
& HW_PSTATE_MASK
;
1027 if (pstate
> MAX_HW_PSTATE
)
1029 fid
= (index
& HW_FID_INDEX_MASK
) >> HW_FID_INDEX_SHIFT
;
1030 did
= (index
& HW_DID_INDEX_MASK
) >> HW_DID_INDEX_SHIFT
;
1031 freqs
.old
= find_khz_freq_from_fiddid(data
->currfid
, data
->currdid
);
1032 freqs
.new = find_khz_freq_from_fiddid(fid
, did
);
1034 for_each_cpu_mask(i
, *(data
->available_cores
)) {
1036 cpufreq_notify_transition(&freqs
, CPUFREQ_PRECHANGE
);
1039 res
= transition_pstate(data
, pstate
);
1040 data
->currfid
= find_fid_from_pstate(pstate
);
1041 data
->currdid
= find_did_from_pstate(pstate
);
1042 freqs
.new = find_khz_freq_from_fiddid(data
->currfid
, data
->currdid
);
1044 for_each_cpu_mask(i
, *(data
->available_cores
)) {
1046 cpufreq_notify_transition(&freqs
, CPUFREQ_POSTCHANGE
);
1051 /* Driver entry point to switch to the target frequency */
1052 static int powernowk8_target(struct cpufreq_policy
*pol
, unsigned targfreq
, unsigned relation
)
1054 cpumask_t oldmask
= CPU_MASK_ALL
;
1055 struct powernow_k8_data
*data
= powernow_data
[pol
->cpu
];
1058 unsigned int newstate
;
1064 checkfid
= data
->currfid
;
1065 checkvid
= data
->currvid
;
1067 /* only run on specific CPU from here on */
1068 oldmask
= current
->cpus_allowed
;
1069 set_cpus_allowed(current
, cpumask_of_cpu(pol
->cpu
));
1071 if (smp_processor_id() != pol
->cpu
) {
1072 printk(KERN_ERR PFX
"limiting to cpu %u failed\n", pol
->cpu
);
1076 if (pending_bit_stuck()) {
1077 printk(KERN_ERR PFX
"failing targ, change pending bit set\n");
1081 dprintk("targ: cpu %d, %d kHz, min %d, max %d, relation %d\n",
1082 pol
->cpu
, targfreq
, pol
->min
, pol
->max
, relation
);
1084 if (query_current_values_with_pending_wait(data
))
1087 if (cpu_family
== CPU_HW_PSTATE
)
1088 dprintk("targ: curr fid 0x%x, did 0x%x\n",
1089 data
->currfid
, data
->currvid
);
1091 dprintk("targ: curr fid 0x%x, vid 0x%x\n",
1092 data
->currfid
, data
->currvid
);
1094 if ((checkvid
!= data
->currvid
) || (checkfid
!= data
->currfid
)) {
1095 printk(KERN_INFO PFX
1096 "error - out of sync, fix 0x%x 0x%x, vid 0x%x 0x%x\n",
1097 checkfid
, data
->currfid
, checkvid
, data
->currvid
);
1101 if (cpufreq_frequency_table_target(pol
, data
->powernow_table
, targfreq
, relation
, &newstate
))
1104 mutex_lock(&fidvid_mutex
);
1106 powernow_k8_acpi_pst_values(data
, newstate
);
1108 if (cpu_family
== CPU_HW_PSTATE
)
1109 ret
= transition_frequency_pstate(data
, newstate
);
1111 ret
= transition_frequency_fidvid(data
, newstate
);
1113 printk(KERN_ERR PFX
"transition frequency failed\n");
1115 mutex_unlock(&fidvid_mutex
);
1118 mutex_unlock(&fidvid_mutex
);
1120 if (cpu_family
== CPU_HW_PSTATE
)
1121 pol
->cur
= find_khz_freq_from_fiddid(data
->currfid
, data
->currdid
);
1123 pol
->cur
= find_khz_freq_from_fid(data
->currfid
);
1127 set_cpus_allowed(current
, oldmask
);
1131 /* Driver entry point to verify the policy and range of frequencies */
1132 static int powernowk8_verify(struct cpufreq_policy
*pol
)
1134 struct powernow_k8_data
*data
= powernow_data
[pol
->cpu
];
1139 return cpufreq_frequency_table_verify(pol
, data
->powernow_table
);
1142 /* per CPU init entry point to the driver */
1143 static int __cpuinit
powernowk8_cpu_init(struct cpufreq_policy
*pol
)
1145 struct powernow_k8_data
*data
;
1146 cpumask_t oldmask
= CPU_MASK_ALL
;
1149 if (!cpu_online(pol
->cpu
))
1152 if (!check_supported_cpu(pol
->cpu
))
1155 data
= kzalloc(sizeof(struct powernow_k8_data
), GFP_KERNEL
);
1157 printk(KERN_ERR PFX
"unable to alloc powernow_k8_data");
1161 data
->cpu
= pol
->cpu
;
1163 if (powernow_k8_cpu_init_acpi(data
)) {
1165 * Use the PSB BIOS structure. This is only availabe on
1166 * an UP version, and is deprecated by AMD.
1168 if (num_online_cpus() != 1) {
1169 printk(KERN_ERR PFX
"MP systems not supported by PSB BIOS structure\n");
1173 if (pol
->cpu
!= 0) {
1174 printk(KERN_ERR PFX
"No _PSS objects for CPU other than CPU0\n");
1178 rc
= find_psb_table(data
);
1185 /* only run on specific CPU from here on */
1186 oldmask
= current
->cpus_allowed
;
1187 set_cpus_allowed(current
, cpumask_of_cpu(pol
->cpu
));
1189 if (smp_processor_id() != pol
->cpu
) {
1190 printk(KERN_ERR PFX
"limiting to cpu %u failed\n", pol
->cpu
);
1194 if (pending_bit_stuck()) {
1195 printk(KERN_ERR PFX
"failing init, change pending bit set\n");
1199 if (query_current_values_with_pending_wait(data
))
1202 if (cpu_family
== CPU_OPTERON
)
1205 /* run on any CPU again */
1206 set_cpus_allowed(current
, oldmask
);
1208 pol
->governor
= CPUFREQ_DEFAULT_GOVERNOR
;
1209 if (cpu_family
== CPU_HW_PSTATE
)
1210 pol
->cpus
= cpumask_of_cpu(pol
->cpu
);
1212 pol
->cpus
= cpu_core_map
[pol
->cpu
];
1213 data
->available_cores
= &(pol
->cpus
);
1215 /* Take a crude guess here.
1216 * That guess was in microseconds, so multiply with 1000 */
1217 pol
->cpuinfo
.transition_latency
= (((data
->rvo
+ 8) * data
->vstable
* VST_UNITS_20US
)
1218 + (3 * (1 << data
->irt
) * 10)) * 1000;
1220 if (cpu_family
== CPU_HW_PSTATE
)
1221 pol
->cur
= find_khz_freq_from_fiddid(data
->currfid
, data
->currdid
);
1223 pol
->cur
= find_khz_freq_from_fid(data
->currfid
);
1224 dprintk("policy current frequency %d kHz\n", pol
->cur
);
1226 /* min/max the cpu is capable of */
1227 if (cpufreq_frequency_table_cpuinfo(pol
, data
->powernow_table
)) {
1228 printk(KERN_ERR PFX
"invalid powernow_table\n");
1229 powernow_k8_cpu_exit_acpi(data
);
1230 kfree(data
->powernow_table
);
1235 cpufreq_frequency_table_get_attr(data
->powernow_table
, pol
->cpu
);
1237 if (cpu_family
== CPU_HW_PSTATE
)
1238 dprintk("cpu_init done, current fid 0x%x, did 0x%x\n",
1239 data
->currfid
, data
->currdid
);
1241 dprintk("cpu_init done, current fid 0x%x, vid 0x%x\n",
1242 data
->currfid
, data
->currvid
);
1244 powernow_data
[pol
->cpu
] = data
;
1249 set_cpus_allowed(current
, oldmask
);
1250 powernow_k8_cpu_exit_acpi(data
);
1256 static int __devexit
powernowk8_cpu_exit (struct cpufreq_policy
*pol
)
1258 struct powernow_k8_data
*data
= powernow_data
[pol
->cpu
];
1263 powernow_k8_cpu_exit_acpi(data
);
1265 cpufreq_frequency_table_put_attr(pol
->cpu
);
1267 kfree(data
->powernow_table
);
1273 static unsigned int powernowk8_get (unsigned int cpu
)
1275 struct powernow_k8_data
*data
;
1276 cpumask_t oldmask
= current
->cpus_allowed
;
1277 unsigned int khz
= 0;
1279 data
= powernow_data
[first_cpu(cpu_core_map
[cpu
])];
1284 set_cpus_allowed(current
, cpumask_of_cpu(cpu
));
1285 if (smp_processor_id() != cpu
) {
1286 printk(KERN_ERR PFX
"limiting to CPU %d failed in powernowk8_get\n", cpu
);
1287 set_cpus_allowed(current
, oldmask
);
1291 if (query_current_values_with_pending_wait(data
))
1294 if (cpu_family
== CPU_HW_PSTATE
)
1295 khz
= find_khz_freq_from_fiddid(data
->currfid
, data
->currdid
);
1297 khz
= find_khz_freq_from_fid(data
->currfid
);
1301 set_cpus_allowed(current
, oldmask
);
1305 static struct freq_attr
* powernow_k8_attr
[] = {
1306 &cpufreq_freq_attr_scaling_available_freqs
,
1310 static struct cpufreq_driver cpufreq_amd64_driver
= {
1311 .verify
= powernowk8_verify
,
1312 .target
= powernowk8_target
,
1313 .init
= powernowk8_cpu_init
,
1314 .exit
= __devexit_p(powernowk8_cpu_exit
),
1315 .get
= powernowk8_get
,
1316 .name
= "powernow-k8",
1317 .owner
= THIS_MODULE
,
1318 .attr
= powernow_k8_attr
,
1321 /* driver entry point for init */
1322 static int __cpuinit
powernowk8_init(void)
1324 unsigned int i
, supported_cpus
= 0;
1326 for_each_online_cpu(i
) {
1327 if (check_supported_cpu(i
))
1331 if (supported_cpus
== num_online_cpus()) {
1332 printk(KERN_INFO PFX
"Found %d %s "
1333 "processors (" VERSION
")\n", supported_cpus
,
1334 boot_cpu_data
.x86_model_id
);
1335 return cpufreq_register_driver(&cpufreq_amd64_driver
);
1341 /* driver entry point for term */
1342 static void __exit
powernowk8_exit(void)
1346 cpufreq_unregister_driver(&cpufreq_amd64_driver
);
1349 MODULE_AUTHOR("Paul Devriendt <paul.devriendt@amd.com> and Mark Langsdorf <mark.langsdorf@amd.com>");
1350 MODULE_DESCRIPTION("AMD Athlon 64 and Opteron processor frequency driver.");
1351 MODULE_LICENSE("GPL");
1353 late_initcall(powernowk8_init
);
1354 module_exit(powernowk8_exit
);