x86: ia32_signal: do save_i387_xstate_ia32 at get_sigframe()
[linux-2.6/mini2440.git] / include / linux / mmzone.h
blob35a7b5e19465fc89154dd2097f0bd4913e7b2e21
1 #ifndef _LINUX_MMZONE_H
2 #define _LINUX_MMZONE_H
4 #ifndef __ASSEMBLY__
5 #ifndef __GENERATING_BOUNDS_H
7 #include <linux/spinlock.h>
8 #include <linux/list.h>
9 #include <linux/wait.h>
10 #include <linux/bitops.h>
11 #include <linux/cache.h>
12 #include <linux/threads.h>
13 #include <linux/numa.h>
14 #include <linux/init.h>
15 #include <linux/seqlock.h>
16 #include <linux/nodemask.h>
17 #include <linux/pageblock-flags.h>
18 #include <linux/bounds.h>
19 #include <asm/atomic.h>
20 #include <asm/page.h>
22 /* Free memory management - zoned buddy allocator. */
23 #ifndef CONFIG_FORCE_MAX_ZONEORDER
24 #define MAX_ORDER 11
25 #else
26 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
27 #endif
28 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
32 * costly to service. That is between allocation orders which should
33 * coelesce naturally under reasonable reclaim pressure and those which
34 * will not.
36 #define PAGE_ALLOC_COSTLY_ORDER 3
38 #define MIGRATE_UNMOVABLE 0
39 #define MIGRATE_RECLAIMABLE 1
40 #define MIGRATE_MOVABLE 2
41 #define MIGRATE_RESERVE 3
42 #define MIGRATE_ISOLATE 4 /* can't allocate from here */
43 #define MIGRATE_TYPES 5
45 #define for_each_migratetype_order(order, type) \
46 for (order = 0; order < MAX_ORDER; order++) \
47 for (type = 0; type < MIGRATE_TYPES; type++)
49 extern int page_group_by_mobility_disabled;
51 static inline int get_pageblock_migratetype(struct page *page)
53 if (unlikely(page_group_by_mobility_disabled))
54 return MIGRATE_UNMOVABLE;
56 return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end);
59 struct free_area {
60 struct list_head free_list[MIGRATE_TYPES];
61 unsigned long nr_free;
64 struct pglist_data;
67 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
68 * So add a wild amount of padding here to ensure that they fall into separate
69 * cachelines. There are very few zone structures in the machine, so space
70 * consumption is not a concern here.
72 #if defined(CONFIG_SMP)
73 struct zone_padding {
74 char x[0];
75 } ____cacheline_internodealigned_in_smp;
76 #define ZONE_PADDING(name) struct zone_padding name;
77 #else
78 #define ZONE_PADDING(name)
79 #endif
81 enum zone_stat_item {
82 /* First 128 byte cacheline (assuming 64 bit words) */
83 NR_FREE_PAGES,
84 NR_LRU_BASE,
85 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
86 NR_ACTIVE_ANON, /* " " " " " */
87 NR_INACTIVE_FILE, /* " " " " " */
88 NR_ACTIVE_FILE, /* " " " " " */
89 #ifdef CONFIG_UNEVICTABLE_LRU
90 NR_UNEVICTABLE, /* " " " " " */
91 NR_MLOCK, /* mlock()ed pages found and moved off LRU */
92 #else
93 NR_UNEVICTABLE = NR_ACTIVE_FILE, /* avoid compiler errors in dead code */
94 NR_MLOCK = NR_ACTIVE_FILE,
95 #endif
96 NR_ANON_PAGES, /* Mapped anonymous pages */
97 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
98 only modified from process context */
99 NR_FILE_PAGES,
100 NR_FILE_DIRTY,
101 NR_WRITEBACK,
102 NR_SLAB_RECLAIMABLE,
103 NR_SLAB_UNRECLAIMABLE,
104 NR_PAGETABLE, /* used for pagetables */
105 NR_UNSTABLE_NFS, /* NFS unstable pages */
106 NR_BOUNCE,
107 NR_VMSCAN_WRITE,
108 /* Second 128 byte cacheline */
109 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
110 #ifdef CONFIG_NUMA
111 NUMA_HIT, /* allocated in intended node */
112 NUMA_MISS, /* allocated in non intended node */
113 NUMA_FOREIGN, /* was intended here, hit elsewhere */
114 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
115 NUMA_LOCAL, /* allocation from local node */
116 NUMA_OTHER, /* allocation from other node */
117 #endif
118 NR_VM_ZONE_STAT_ITEMS };
121 * We do arithmetic on the LRU lists in various places in the code,
122 * so it is important to keep the active lists LRU_ACTIVE higher in
123 * the array than the corresponding inactive lists, and to keep
124 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
126 * This has to be kept in sync with the statistics in zone_stat_item
127 * above and the descriptions in vmstat_text in mm/vmstat.c
129 #define LRU_BASE 0
130 #define LRU_ACTIVE 1
131 #define LRU_FILE 2
133 enum lru_list {
134 LRU_INACTIVE_ANON = LRU_BASE,
135 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
136 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
137 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
138 #ifdef CONFIG_UNEVICTABLE_LRU
139 LRU_UNEVICTABLE,
140 #else
141 LRU_UNEVICTABLE = LRU_ACTIVE_FILE, /* avoid compiler errors in dead code */
142 #endif
143 NR_LRU_LISTS
146 #define for_each_lru(l) for (l = 0; l < NR_LRU_LISTS; l++)
148 #define for_each_evictable_lru(l) for (l = 0; l <= LRU_ACTIVE_FILE; l++)
150 static inline int is_file_lru(enum lru_list l)
152 return (l == LRU_INACTIVE_FILE || l == LRU_ACTIVE_FILE);
155 static inline int is_active_lru(enum lru_list l)
157 return (l == LRU_ACTIVE_ANON || l == LRU_ACTIVE_FILE);
160 static inline int is_unevictable_lru(enum lru_list l)
162 #ifdef CONFIG_UNEVICTABLE_LRU
163 return (l == LRU_UNEVICTABLE);
164 #else
165 return 0;
166 #endif
169 struct per_cpu_pages {
170 int count; /* number of pages in the list */
171 int high; /* high watermark, emptying needed */
172 int batch; /* chunk size for buddy add/remove */
173 struct list_head list; /* the list of pages */
176 struct per_cpu_pageset {
177 struct per_cpu_pages pcp;
178 #ifdef CONFIG_NUMA
179 s8 expire;
180 #endif
181 #ifdef CONFIG_SMP
182 s8 stat_threshold;
183 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
184 #endif
185 } ____cacheline_aligned_in_smp;
187 #ifdef CONFIG_NUMA
188 #define zone_pcp(__z, __cpu) ((__z)->pageset[(__cpu)])
189 #else
190 #define zone_pcp(__z, __cpu) (&(__z)->pageset[(__cpu)])
191 #endif
193 #endif /* !__GENERATING_BOUNDS.H */
195 enum zone_type {
196 #ifdef CONFIG_ZONE_DMA
198 * ZONE_DMA is used when there are devices that are not able
199 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
200 * carve out the portion of memory that is needed for these devices.
201 * The range is arch specific.
203 * Some examples
205 * Architecture Limit
206 * ---------------------------
207 * parisc, ia64, sparc <4G
208 * s390 <2G
209 * arm Various
210 * alpha Unlimited or 0-16MB.
212 * i386, x86_64 and multiple other arches
213 * <16M.
215 ZONE_DMA,
216 #endif
217 #ifdef CONFIG_ZONE_DMA32
219 * x86_64 needs two ZONE_DMAs because it supports devices that are
220 * only able to do DMA to the lower 16M but also 32 bit devices that
221 * can only do DMA areas below 4G.
223 ZONE_DMA32,
224 #endif
226 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
227 * performed on pages in ZONE_NORMAL if the DMA devices support
228 * transfers to all addressable memory.
230 ZONE_NORMAL,
231 #ifdef CONFIG_HIGHMEM
233 * A memory area that is only addressable by the kernel through
234 * mapping portions into its own address space. This is for example
235 * used by i386 to allow the kernel to address the memory beyond
236 * 900MB. The kernel will set up special mappings (page
237 * table entries on i386) for each page that the kernel needs to
238 * access.
240 ZONE_HIGHMEM,
241 #endif
242 ZONE_MOVABLE,
243 __MAX_NR_ZONES
246 #ifndef __GENERATING_BOUNDS_H
249 * When a memory allocation must conform to specific limitations (such
250 * as being suitable for DMA) the caller will pass in hints to the
251 * allocator in the gfp_mask, in the zone modifier bits. These bits
252 * are used to select a priority ordered list of memory zones which
253 * match the requested limits. See gfp_zone() in include/linux/gfp.h
256 #if MAX_NR_ZONES < 2
257 #define ZONES_SHIFT 0
258 #elif MAX_NR_ZONES <= 2
259 #define ZONES_SHIFT 1
260 #elif MAX_NR_ZONES <= 4
261 #define ZONES_SHIFT 2
262 #else
263 #error ZONES_SHIFT -- too many zones configured adjust calculation
264 #endif
266 struct zone {
267 /* Fields commonly accessed by the page allocator */
268 unsigned long pages_min, pages_low, pages_high;
270 * We don't know if the memory that we're going to allocate will be freeable
271 * or/and it will be released eventually, so to avoid totally wasting several
272 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
273 * to run OOM on the lower zones despite there's tons of freeable ram
274 * on the higher zones). This array is recalculated at runtime if the
275 * sysctl_lowmem_reserve_ratio sysctl changes.
277 unsigned long lowmem_reserve[MAX_NR_ZONES];
279 #ifdef CONFIG_NUMA
280 int node;
282 * zone reclaim becomes active if more unmapped pages exist.
284 unsigned long min_unmapped_pages;
285 unsigned long min_slab_pages;
286 struct per_cpu_pageset *pageset[NR_CPUS];
287 #else
288 struct per_cpu_pageset pageset[NR_CPUS];
289 #endif
291 * free areas of different sizes
293 spinlock_t lock;
294 #ifdef CONFIG_MEMORY_HOTPLUG
295 /* see spanned/present_pages for more description */
296 seqlock_t span_seqlock;
297 #endif
298 struct free_area free_area[MAX_ORDER];
300 #ifndef CONFIG_SPARSEMEM
302 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
303 * In SPARSEMEM, this map is stored in struct mem_section
305 unsigned long *pageblock_flags;
306 #endif /* CONFIG_SPARSEMEM */
309 ZONE_PADDING(_pad1_)
311 /* Fields commonly accessed by the page reclaim scanner */
312 spinlock_t lru_lock;
313 struct {
314 struct list_head list;
315 unsigned long nr_scan;
316 } lru[NR_LRU_LISTS];
319 * The pageout code in vmscan.c keeps track of how many of the
320 * mem/swap backed and file backed pages are refeferenced.
321 * The higher the rotated/scanned ratio, the more valuable
322 * that cache is.
324 * The anon LRU stats live in [0], file LRU stats in [1]
326 unsigned long recent_rotated[2];
327 unsigned long recent_scanned[2];
329 unsigned long pages_scanned; /* since last reclaim */
330 unsigned long flags; /* zone flags, see below */
332 /* Zone statistics */
333 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
336 * prev_priority holds the scanning priority for this zone. It is
337 * defined as the scanning priority at which we achieved our reclaim
338 * target at the previous try_to_free_pages() or balance_pgdat()
339 * invokation.
341 * We use prev_priority as a measure of how much stress page reclaim is
342 * under - it drives the swappiness decision: whether to unmap mapped
343 * pages.
345 * Access to both this field is quite racy even on uniprocessor. But
346 * it is expected to average out OK.
348 int prev_priority;
351 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
352 * this zone's LRU. Maintained by the pageout code.
354 unsigned int inactive_ratio;
357 ZONE_PADDING(_pad2_)
358 /* Rarely used or read-mostly fields */
361 * wait_table -- the array holding the hash table
362 * wait_table_hash_nr_entries -- the size of the hash table array
363 * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
365 * The purpose of all these is to keep track of the people
366 * waiting for a page to become available and make them
367 * runnable again when possible. The trouble is that this
368 * consumes a lot of space, especially when so few things
369 * wait on pages at a given time. So instead of using
370 * per-page waitqueues, we use a waitqueue hash table.
372 * The bucket discipline is to sleep on the same queue when
373 * colliding and wake all in that wait queue when removing.
374 * When something wakes, it must check to be sure its page is
375 * truly available, a la thundering herd. The cost of a
376 * collision is great, but given the expected load of the
377 * table, they should be so rare as to be outweighed by the
378 * benefits from the saved space.
380 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
381 * primary users of these fields, and in mm/page_alloc.c
382 * free_area_init_core() performs the initialization of them.
384 wait_queue_head_t * wait_table;
385 unsigned long wait_table_hash_nr_entries;
386 unsigned long wait_table_bits;
389 * Discontig memory support fields.
391 struct pglist_data *zone_pgdat;
392 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
393 unsigned long zone_start_pfn;
396 * zone_start_pfn, spanned_pages and present_pages are all
397 * protected by span_seqlock. It is a seqlock because it has
398 * to be read outside of zone->lock, and it is done in the main
399 * allocator path. But, it is written quite infrequently.
401 * The lock is declared along with zone->lock because it is
402 * frequently read in proximity to zone->lock. It's good to
403 * give them a chance of being in the same cacheline.
405 unsigned long spanned_pages; /* total size, including holes */
406 unsigned long present_pages; /* amount of memory (excluding holes) */
409 * rarely used fields:
411 const char *name;
412 } ____cacheline_internodealigned_in_smp;
414 typedef enum {
415 ZONE_ALL_UNRECLAIMABLE, /* all pages pinned */
416 ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */
417 ZONE_OOM_LOCKED, /* zone is in OOM killer zonelist */
418 } zone_flags_t;
420 static inline void zone_set_flag(struct zone *zone, zone_flags_t flag)
422 set_bit(flag, &zone->flags);
425 static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag)
427 return test_and_set_bit(flag, &zone->flags);
430 static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag)
432 clear_bit(flag, &zone->flags);
435 static inline int zone_is_all_unreclaimable(const struct zone *zone)
437 return test_bit(ZONE_ALL_UNRECLAIMABLE, &zone->flags);
440 static inline int zone_is_reclaim_locked(const struct zone *zone)
442 return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
445 static inline int zone_is_oom_locked(const struct zone *zone)
447 return test_bit(ZONE_OOM_LOCKED, &zone->flags);
451 * The "priority" of VM scanning is how much of the queues we will scan in one
452 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
453 * queues ("queue_length >> 12") during an aging round.
455 #define DEF_PRIORITY 12
457 /* Maximum number of zones on a zonelist */
458 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
460 #ifdef CONFIG_NUMA
463 * The NUMA zonelists are doubled becausse we need zonelists that restrict the
464 * allocations to a single node for GFP_THISNODE.
466 * [0] : Zonelist with fallback
467 * [1] : No fallback (GFP_THISNODE)
469 #define MAX_ZONELISTS 2
473 * We cache key information from each zonelist for smaller cache
474 * footprint when scanning for free pages in get_page_from_freelist().
476 * 1) The BITMAP fullzones tracks which zones in a zonelist have come
477 * up short of free memory since the last time (last_fullzone_zap)
478 * we zero'd fullzones.
479 * 2) The array z_to_n[] maps each zone in the zonelist to its node
480 * id, so that we can efficiently evaluate whether that node is
481 * set in the current tasks mems_allowed.
483 * Both fullzones and z_to_n[] are one-to-one with the zonelist,
484 * indexed by a zones offset in the zonelist zones[] array.
486 * The get_page_from_freelist() routine does two scans. During the
487 * first scan, we skip zones whose corresponding bit in 'fullzones'
488 * is set or whose corresponding node in current->mems_allowed (which
489 * comes from cpusets) is not set. During the second scan, we bypass
490 * this zonelist_cache, to ensure we look methodically at each zone.
492 * Once per second, we zero out (zap) fullzones, forcing us to
493 * reconsider nodes that might have regained more free memory.
494 * The field last_full_zap is the time we last zapped fullzones.
496 * This mechanism reduces the amount of time we waste repeatedly
497 * reexaming zones for free memory when they just came up low on
498 * memory momentarilly ago.
500 * The zonelist_cache struct members logically belong in struct
501 * zonelist. However, the mempolicy zonelists constructed for
502 * MPOL_BIND are intentionally variable length (and usually much
503 * shorter). A general purpose mechanism for handling structs with
504 * multiple variable length members is more mechanism than we want
505 * here. We resort to some special case hackery instead.
507 * The MPOL_BIND zonelists don't need this zonelist_cache (in good
508 * part because they are shorter), so we put the fixed length stuff
509 * at the front of the zonelist struct, ending in a variable length
510 * zones[], as is needed by MPOL_BIND.
512 * Then we put the optional zonelist cache on the end of the zonelist
513 * struct. This optional stuff is found by a 'zlcache_ptr' pointer in
514 * the fixed length portion at the front of the struct. This pointer
515 * both enables us to find the zonelist cache, and in the case of
516 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
517 * to know that the zonelist cache is not there.
519 * The end result is that struct zonelists come in two flavors:
520 * 1) The full, fixed length version, shown below, and
521 * 2) The custom zonelists for MPOL_BIND.
522 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
524 * Even though there may be multiple CPU cores on a node modifying
525 * fullzones or last_full_zap in the same zonelist_cache at the same
526 * time, we don't lock it. This is just hint data - if it is wrong now
527 * and then, the allocator will still function, perhaps a bit slower.
531 struct zonelist_cache {
532 unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */
533 DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */
534 unsigned long last_full_zap; /* when last zap'd (jiffies) */
536 #else
537 #define MAX_ZONELISTS 1
538 struct zonelist_cache;
539 #endif
542 * This struct contains information about a zone in a zonelist. It is stored
543 * here to avoid dereferences into large structures and lookups of tables
545 struct zoneref {
546 struct zone *zone; /* Pointer to actual zone */
547 int zone_idx; /* zone_idx(zoneref->zone) */
551 * One allocation request operates on a zonelist. A zonelist
552 * is a list of zones, the first one is the 'goal' of the
553 * allocation, the other zones are fallback zones, in decreasing
554 * priority.
556 * If zlcache_ptr is not NULL, then it is just the address of zlcache,
557 * as explained above. If zlcache_ptr is NULL, there is no zlcache.
559 * To speed the reading of the zonelist, the zonerefs contain the zone index
560 * of the entry being read. Helper functions to access information given
561 * a struct zoneref are
563 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
564 * zonelist_zone_idx() - Return the index of the zone for an entry
565 * zonelist_node_idx() - Return the index of the node for an entry
567 struct zonelist {
568 struct zonelist_cache *zlcache_ptr; // NULL or &zlcache
569 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
570 #ifdef CONFIG_NUMA
571 struct zonelist_cache zlcache; // optional ...
572 #endif
575 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
576 struct node_active_region {
577 unsigned long start_pfn;
578 unsigned long end_pfn;
579 int nid;
581 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
583 #ifndef CONFIG_DISCONTIGMEM
584 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
585 extern struct page *mem_map;
586 #endif
589 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
590 * (mostly NUMA machines?) to denote a higher-level memory zone than the
591 * zone denotes.
593 * On NUMA machines, each NUMA node would have a pg_data_t to describe
594 * it's memory layout.
596 * Memory statistics and page replacement data structures are maintained on a
597 * per-zone basis.
599 struct bootmem_data;
600 typedef struct pglist_data {
601 struct zone node_zones[MAX_NR_ZONES];
602 struct zonelist node_zonelists[MAX_ZONELISTS];
603 int nr_zones;
604 #ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
605 struct page *node_mem_map;
606 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
607 struct page_cgroup *node_page_cgroup;
608 #endif
609 #endif
610 struct bootmem_data *bdata;
611 #ifdef CONFIG_MEMORY_HOTPLUG
613 * Must be held any time you expect node_start_pfn, node_present_pages
614 * or node_spanned_pages stay constant. Holding this will also
615 * guarantee that any pfn_valid() stays that way.
617 * Nests above zone->lock and zone->size_seqlock.
619 spinlock_t node_size_lock;
620 #endif
621 unsigned long node_start_pfn;
622 unsigned long node_present_pages; /* total number of physical pages */
623 unsigned long node_spanned_pages; /* total size of physical page
624 range, including holes */
625 int node_id;
626 wait_queue_head_t kswapd_wait;
627 struct task_struct *kswapd;
628 int kswapd_max_order;
629 } pg_data_t;
631 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
632 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
633 #ifdef CONFIG_FLAT_NODE_MEM_MAP
634 #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
635 #else
636 #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
637 #endif
638 #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
640 #include <linux/memory_hotplug.h>
642 void get_zone_counts(unsigned long *active, unsigned long *inactive,
643 unsigned long *free);
644 void build_all_zonelists(void);
645 void wakeup_kswapd(struct zone *zone, int order);
646 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
647 int classzone_idx, int alloc_flags);
648 enum memmap_context {
649 MEMMAP_EARLY,
650 MEMMAP_HOTPLUG,
652 extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
653 unsigned long size,
654 enum memmap_context context);
656 #ifdef CONFIG_HAVE_MEMORY_PRESENT
657 void memory_present(int nid, unsigned long start, unsigned long end);
658 #else
659 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
660 #endif
662 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
663 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
664 #endif
667 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
669 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
671 static inline int populated_zone(struct zone *zone)
673 return (!!zone->present_pages);
676 extern int movable_zone;
678 static inline int zone_movable_is_highmem(void)
680 #if defined(CONFIG_HIGHMEM) && defined(CONFIG_ARCH_POPULATES_NODE_MAP)
681 return movable_zone == ZONE_HIGHMEM;
682 #else
683 return 0;
684 #endif
687 static inline int is_highmem_idx(enum zone_type idx)
689 #ifdef CONFIG_HIGHMEM
690 return (idx == ZONE_HIGHMEM ||
691 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
692 #else
693 return 0;
694 #endif
697 static inline int is_normal_idx(enum zone_type idx)
699 return (idx == ZONE_NORMAL);
703 * is_highmem - helper function to quickly check if a struct zone is a
704 * highmem zone or not. This is an attempt to keep references
705 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
706 * @zone - pointer to struct zone variable
708 static inline int is_highmem(struct zone *zone)
710 #ifdef CONFIG_HIGHMEM
711 int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones;
712 return zone_off == ZONE_HIGHMEM * sizeof(*zone) ||
713 (zone_off == ZONE_MOVABLE * sizeof(*zone) &&
714 zone_movable_is_highmem());
715 #else
716 return 0;
717 #endif
720 static inline int is_normal(struct zone *zone)
722 return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
725 static inline int is_dma32(struct zone *zone)
727 #ifdef CONFIG_ZONE_DMA32
728 return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
729 #else
730 return 0;
731 #endif
734 static inline int is_dma(struct zone *zone)
736 #ifdef CONFIG_ZONE_DMA
737 return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
738 #else
739 return 0;
740 #endif
743 /* These two functions are used to setup the per zone pages min values */
744 struct ctl_table;
745 struct file;
746 int min_free_kbytes_sysctl_handler(struct ctl_table *, int, struct file *,
747 void __user *, size_t *, loff_t *);
748 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
749 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, struct file *,
750 void __user *, size_t *, loff_t *);
751 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, struct file *,
752 void __user *, size_t *, loff_t *);
753 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
754 struct file *, void __user *, size_t *, loff_t *);
755 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
756 struct file *, void __user *, size_t *, loff_t *);
758 extern int numa_zonelist_order_handler(struct ctl_table *, int,
759 struct file *, void __user *, size_t *, loff_t *);
760 extern char numa_zonelist_order[];
761 #define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */
763 #include <linux/topology.h>
764 /* Returns the number of the current Node. */
765 #ifndef numa_node_id
766 #define numa_node_id() (cpu_to_node(raw_smp_processor_id()))
767 #endif
769 #ifndef CONFIG_NEED_MULTIPLE_NODES
771 extern struct pglist_data contig_page_data;
772 #define NODE_DATA(nid) (&contig_page_data)
773 #define NODE_MEM_MAP(nid) mem_map
775 #else /* CONFIG_NEED_MULTIPLE_NODES */
777 #include <asm/mmzone.h>
779 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
781 extern struct pglist_data *first_online_pgdat(void);
782 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
783 extern struct zone *next_zone(struct zone *zone);
786 * for_each_online_pgdat - helper macro to iterate over all online nodes
787 * @pgdat - pointer to a pg_data_t variable
789 #define for_each_online_pgdat(pgdat) \
790 for (pgdat = first_online_pgdat(); \
791 pgdat; \
792 pgdat = next_online_pgdat(pgdat))
794 * for_each_zone - helper macro to iterate over all memory zones
795 * @zone - pointer to struct zone variable
797 * The user only needs to declare the zone variable, for_each_zone
798 * fills it in.
800 #define for_each_zone(zone) \
801 for (zone = (first_online_pgdat())->node_zones; \
802 zone; \
803 zone = next_zone(zone))
805 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
807 return zoneref->zone;
810 static inline int zonelist_zone_idx(struct zoneref *zoneref)
812 return zoneref->zone_idx;
815 static inline int zonelist_node_idx(struct zoneref *zoneref)
817 #ifdef CONFIG_NUMA
818 /* zone_to_nid not available in this context */
819 return zoneref->zone->node;
820 #else
821 return 0;
822 #endif /* CONFIG_NUMA */
826 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
827 * @z - The cursor used as a starting point for the search
828 * @highest_zoneidx - The zone index of the highest zone to return
829 * @nodes - An optional nodemask to filter the zonelist with
830 * @zone - The first suitable zone found is returned via this parameter
832 * This function returns the next zone at or below a given zone index that is
833 * within the allowed nodemask using a cursor as the starting point for the
834 * search. The zoneref returned is a cursor that represents the current zone
835 * being examined. It should be advanced by one before calling
836 * next_zones_zonelist again.
838 struct zoneref *next_zones_zonelist(struct zoneref *z,
839 enum zone_type highest_zoneidx,
840 nodemask_t *nodes,
841 struct zone **zone);
844 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
845 * @zonelist - The zonelist to search for a suitable zone
846 * @highest_zoneidx - The zone index of the highest zone to return
847 * @nodes - An optional nodemask to filter the zonelist with
848 * @zone - The first suitable zone found is returned via this parameter
850 * This function returns the first zone at or below a given zone index that is
851 * within the allowed nodemask. The zoneref returned is a cursor that can be
852 * used to iterate the zonelist with next_zones_zonelist by advancing it by
853 * one before calling.
855 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
856 enum zone_type highest_zoneidx,
857 nodemask_t *nodes,
858 struct zone **zone)
860 return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes,
861 zone);
865 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
866 * @zone - The current zone in the iterator
867 * @z - The current pointer within zonelist->zones being iterated
868 * @zlist - The zonelist being iterated
869 * @highidx - The zone index of the highest zone to return
870 * @nodemask - Nodemask allowed by the allocator
872 * This iterator iterates though all zones at or below a given zone index and
873 * within a given nodemask
875 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
876 for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \
877 zone; \
878 z = next_zones_zonelist(++z, highidx, nodemask, &zone)) \
881 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
882 * @zone - The current zone in the iterator
883 * @z - The current pointer within zonelist->zones being iterated
884 * @zlist - The zonelist being iterated
885 * @highidx - The zone index of the highest zone to return
887 * This iterator iterates though all zones at or below a given zone index.
889 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
890 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
892 #ifdef CONFIG_SPARSEMEM
893 #include <asm/sparsemem.h>
894 #endif
896 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
897 !defined(CONFIG_ARCH_POPULATES_NODE_MAP)
898 static inline unsigned long early_pfn_to_nid(unsigned long pfn)
900 return 0;
902 #endif
904 #ifdef CONFIG_FLATMEM
905 #define pfn_to_nid(pfn) (0)
906 #endif
908 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
909 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
911 #ifdef CONFIG_SPARSEMEM
914 * SECTION_SHIFT #bits space required to store a section #
916 * PA_SECTION_SHIFT physical address to/from section number
917 * PFN_SECTION_SHIFT pfn to/from section number
919 #define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
921 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
922 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
924 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
926 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
927 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
929 #define SECTION_BLOCKFLAGS_BITS \
930 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
932 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
933 #error Allocator MAX_ORDER exceeds SECTION_SIZE
934 #endif
936 struct page;
937 struct page_cgroup;
938 struct mem_section {
940 * This is, logically, a pointer to an array of struct
941 * pages. However, it is stored with some other magic.
942 * (see sparse.c::sparse_init_one_section())
944 * Additionally during early boot we encode node id of
945 * the location of the section here to guide allocation.
946 * (see sparse.c::memory_present())
948 * Making it a UL at least makes someone do a cast
949 * before using it wrong.
951 unsigned long section_mem_map;
953 /* See declaration of similar field in struct zone */
954 unsigned long *pageblock_flags;
955 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
957 * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use
958 * section. (see memcontrol.h/page_cgroup.h about this.)
960 struct page_cgroup *page_cgroup;
961 unsigned long pad;
962 #endif
965 #ifdef CONFIG_SPARSEMEM_EXTREME
966 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
967 #else
968 #define SECTIONS_PER_ROOT 1
969 #endif
971 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
972 #define NR_SECTION_ROOTS (NR_MEM_SECTIONS / SECTIONS_PER_ROOT)
973 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
975 #ifdef CONFIG_SPARSEMEM_EXTREME
976 extern struct mem_section *mem_section[NR_SECTION_ROOTS];
977 #else
978 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
979 #endif
981 static inline struct mem_section *__nr_to_section(unsigned long nr)
983 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
984 return NULL;
985 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
987 extern int __section_nr(struct mem_section* ms);
988 extern unsigned long usemap_size(void);
991 * We use the lower bits of the mem_map pointer to store
992 * a little bit of information. There should be at least
993 * 3 bits here due to 32-bit alignment.
995 #define SECTION_MARKED_PRESENT (1UL<<0)
996 #define SECTION_HAS_MEM_MAP (1UL<<1)
997 #define SECTION_MAP_LAST_BIT (1UL<<2)
998 #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
999 #define SECTION_NID_SHIFT 2
1001 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1003 unsigned long map = section->section_mem_map;
1004 map &= SECTION_MAP_MASK;
1005 return (struct page *)map;
1008 static inline int present_section(struct mem_section *section)
1010 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1013 static inline int present_section_nr(unsigned long nr)
1015 return present_section(__nr_to_section(nr));
1018 static inline int valid_section(struct mem_section *section)
1020 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1023 static inline int valid_section_nr(unsigned long nr)
1025 return valid_section(__nr_to_section(nr));
1028 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1030 return __nr_to_section(pfn_to_section_nr(pfn));
1033 static inline int pfn_valid(unsigned long pfn)
1035 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1036 return 0;
1037 return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
1040 static inline int pfn_present(unsigned long pfn)
1042 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1043 return 0;
1044 return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1048 * These are _only_ used during initialisation, therefore they
1049 * can use __initdata ... They could have names to indicate
1050 * this restriction.
1052 #ifdef CONFIG_NUMA
1053 #define pfn_to_nid(pfn) \
1054 ({ \
1055 unsigned long __pfn_to_nid_pfn = (pfn); \
1056 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
1058 #else
1059 #define pfn_to_nid(pfn) (0)
1060 #endif
1062 #define early_pfn_valid(pfn) pfn_valid(pfn)
1063 void sparse_init(void);
1064 #else
1065 #define sparse_init() do {} while (0)
1066 #define sparse_index_init(_sec, _nid) do {} while (0)
1067 #endif /* CONFIG_SPARSEMEM */
1069 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1070 #define early_pfn_in_nid(pfn, nid) (early_pfn_to_nid(pfn) == (nid))
1071 #else
1072 #define early_pfn_in_nid(pfn, nid) (1)
1073 #endif
1075 #ifndef early_pfn_valid
1076 #define early_pfn_valid(pfn) (1)
1077 #endif
1079 void memory_present(int nid, unsigned long start, unsigned long end);
1080 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
1083 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1084 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1085 * pfn_valid_within() should be used in this case; we optimise this away
1086 * when we have no holes within a MAX_ORDER_NR_PAGES block.
1088 #ifdef CONFIG_HOLES_IN_ZONE
1089 #define pfn_valid_within(pfn) pfn_valid(pfn)
1090 #else
1091 #define pfn_valid_within(pfn) (1)
1092 #endif
1094 #endif /* !__GENERATING_BOUNDS.H */
1095 #endif /* !__ASSEMBLY__ */
1096 #endif /* _LINUX_MMZONE_H */