1 #ifndef _LINUX_MMZONE_H
2 #define _LINUX_MMZONE_H
5 #ifndef __GENERATING_BOUNDS_H
7 #include <linux/spinlock.h>
8 #include <linux/list.h>
9 #include <linux/wait.h>
10 #include <linux/bitops.h>
11 #include <linux/cache.h>
12 #include <linux/threads.h>
13 #include <linux/numa.h>
14 #include <linux/init.h>
15 #include <linux/seqlock.h>
16 #include <linux/nodemask.h>
17 #include <linux/pageblock-flags.h>
18 #include <linux/bounds.h>
19 #include <asm/atomic.h>
22 /* Free memory management - zoned buddy allocator. */
23 #ifndef CONFIG_FORCE_MAX_ZONEORDER
26 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
28 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
32 * costly to service. That is between allocation orders which should
33 * coelesce naturally under reasonable reclaim pressure and those which
36 #define PAGE_ALLOC_COSTLY_ORDER 3
38 #define MIGRATE_UNMOVABLE 0
39 #define MIGRATE_RECLAIMABLE 1
40 #define MIGRATE_MOVABLE 2
41 #define MIGRATE_RESERVE 3
42 #define MIGRATE_ISOLATE 4 /* can't allocate from here */
43 #define MIGRATE_TYPES 5
45 #define for_each_migratetype_order(order, type) \
46 for (order = 0; order < MAX_ORDER; order++) \
47 for (type = 0; type < MIGRATE_TYPES; type++)
49 extern int page_group_by_mobility_disabled
;
51 static inline int get_pageblock_migratetype(struct page
*page
)
53 if (unlikely(page_group_by_mobility_disabled
))
54 return MIGRATE_UNMOVABLE
;
56 return get_pageblock_flags_group(page
, PB_migrate
, PB_migrate_end
);
60 struct list_head free_list
[MIGRATE_TYPES
];
61 unsigned long nr_free
;
67 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
68 * So add a wild amount of padding here to ensure that they fall into separate
69 * cachelines. There are very few zone structures in the machine, so space
70 * consumption is not a concern here.
72 #if defined(CONFIG_SMP)
75 } ____cacheline_internodealigned_in_smp
;
76 #define ZONE_PADDING(name) struct zone_padding name;
78 #define ZONE_PADDING(name)
82 /* First 128 byte cacheline (assuming 64 bit words) */
85 NR_INACTIVE_ANON
= NR_LRU_BASE
, /* must match order of LRU_[IN]ACTIVE */
86 NR_ACTIVE_ANON
, /* " " " " " */
87 NR_INACTIVE_FILE
, /* " " " " " */
88 NR_ACTIVE_FILE
, /* " " " " " */
89 #ifdef CONFIG_UNEVICTABLE_LRU
90 NR_UNEVICTABLE
, /* " " " " " */
91 NR_MLOCK
, /* mlock()ed pages found and moved off LRU */
93 NR_UNEVICTABLE
= NR_ACTIVE_FILE
, /* avoid compiler errors in dead code */
94 NR_MLOCK
= NR_ACTIVE_FILE
,
96 NR_ANON_PAGES
, /* Mapped anonymous pages */
97 NR_FILE_MAPPED
, /* pagecache pages mapped into pagetables.
98 only modified from process context */
103 NR_SLAB_UNRECLAIMABLE
,
104 NR_PAGETABLE
, /* used for pagetables */
105 NR_UNSTABLE_NFS
, /* NFS unstable pages */
108 /* Second 128 byte cacheline */
109 NR_WRITEBACK_TEMP
, /* Writeback using temporary buffers */
111 NUMA_HIT
, /* allocated in intended node */
112 NUMA_MISS
, /* allocated in non intended node */
113 NUMA_FOREIGN
, /* was intended here, hit elsewhere */
114 NUMA_INTERLEAVE_HIT
, /* interleaver preferred this zone */
115 NUMA_LOCAL
, /* allocation from local node */
116 NUMA_OTHER
, /* allocation from other node */
118 NR_VM_ZONE_STAT_ITEMS
};
121 * We do arithmetic on the LRU lists in various places in the code,
122 * so it is important to keep the active lists LRU_ACTIVE higher in
123 * the array than the corresponding inactive lists, and to keep
124 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
126 * This has to be kept in sync with the statistics in zone_stat_item
127 * above and the descriptions in vmstat_text in mm/vmstat.c
134 LRU_INACTIVE_ANON
= LRU_BASE
,
135 LRU_ACTIVE_ANON
= LRU_BASE
+ LRU_ACTIVE
,
136 LRU_INACTIVE_FILE
= LRU_BASE
+ LRU_FILE
,
137 LRU_ACTIVE_FILE
= LRU_BASE
+ LRU_FILE
+ LRU_ACTIVE
,
138 #ifdef CONFIG_UNEVICTABLE_LRU
141 LRU_UNEVICTABLE
= LRU_ACTIVE_FILE
, /* avoid compiler errors in dead code */
146 #define for_each_lru(l) for (l = 0; l < NR_LRU_LISTS; l++)
148 #define for_each_evictable_lru(l) for (l = 0; l <= LRU_ACTIVE_FILE; l++)
150 static inline int is_file_lru(enum lru_list l
)
152 return (l
== LRU_INACTIVE_FILE
|| l
== LRU_ACTIVE_FILE
);
155 static inline int is_active_lru(enum lru_list l
)
157 return (l
== LRU_ACTIVE_ANON
|| l
== LRU_ACTIVE_FILE
);
160 static inline int is_unevictable_lru(enum lru_list l
)
162 #ifdef CONFIG_UNEVICTABLE_LRU
163 return (l
== LRU_UNEVICTABLE
);
169 struct per_cpu_pages
{
170 int count
; /* number of pages in the list */
171 int high
; /* high watermark, emptying needed */
172 int batch
; /* chunk size for buddy add/remove */
173 struct list_head list
; /* the list of pages */
176 struct per_cpu_pageset
{
177 struct per_cpu_pages pcp
;
183 s8 vm_stat_diff
[NR_VM_ZONE_STAT_ITEMS
];
185 } ____cacheline_aligned_in_smp
;
188 #define zone_pcp(__z, __cpu) ((__z)->pageset[(__cpu)])
190 #define zone_pcp(__z, __cpu) (&(__z)->pageset[(__cpu)])
193 #endif /* !__GENERATING_BOUNDS.H */
196 #ifdef CONFIG_ZONE_DMA
198 * ZONE_DMA is used when there are devices that are not able
199 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
200 * carve out the portion of memory that is needed for these devices.
201 * The range is arch specific.
206 * ---------------------------
207 * parisc, ia64, sparc <4G
210 * alpha Unlimited or 0-16MB.
212 * i386, x86_64 and multiple other arches
217 #ifdef CONFIG_ZONE_DMA32
219 * x86_64 needs two ZONE_DMAs because it supports devices that are
220 * only able to do DMA to the lower 16M but also 32 bit devices that
221 * can only do DMA areas below 4G.
226 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
227 * performed on pages in ZONE_NORMAL if the DMA devices support
228 * transfers to all addressable memory.
231 #ifdef CONFIG_HIGHMEM
233 * A memory area that is only addressable by the kernel through
234 * mapping portions into its own address space. This is for example
235 * used by i386 to allow the kernel to address the memory beyond
236 * 900MB. The kernel will set up special mappings (page
237 * table entries on i386) for each page that the kernel needs to
246 #ifndef __GENERATING_BOUNDS_H
249 * When a memory allocation must conform to specific limitations (such
250 * as being suitable for DMA) the caller will pass in hints to the
251 * allocator in the gfp_mask, in the zone modifier bits. These bits
252 * are used to select a priority ordered list of memory zones which
253 * match the requested limits. See gfp_zone() in include/linux/gfp.h
257 #define ZONES_SHIFT 0
258 #elif MAX_NR_ZONES <= 2
259 #define ZONES_SHIFT 1
260 #elif MAX_NR_ZONES <= 4
261 #define ZONES_SHIFT 2
263 #error ZONES_SHIFT -- too many zones configured adjust calculation
267 /* Fields commonly accessed by the page allocator */
268 unsigned long pages_min
, pages_low
, pages_high
;
270 * We don't know if the memory that we're going to allocate will be freeable
271 * or/and it will be released eventually, so to avoid totally wasting several
272 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
273 * to run OOM on the lower zones despite there's tons of freeable ram
274 * on the higher zones). This array is recalculated at runtime if the
275 * sysctl_lowmem_reserve_ratio sysctl changes.
277 unsigned long lowmem_reserve
[MAX_NR_ZONES
];
282 * zone reclaim becomes active if more unmapped pages exist.
284 unsigned long min_unmapped_pages
;
285 unsigned long min_slab_pages
;
286 struct per_cpu_pageset
*pageset
[NR_CPUS
];
288 struct per_cpu_pageset pageset
[NR_CPUS
];
291 * free areas of different sizes
294 #ifdef CONFIG_MEMORY_HOTPLUG
295 /* see spanned/present_pages for more description */
296 seqlock_t span_seqlock
;
298 struct free_area free_area
[MAX_ORDER
];
300 #ifndef CONFIG_SPARSEMEM
302 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
303 * In SPARSEMEM, this map is stored in struct mem_section
305 unsigned long *pageblock_flags
;
306 #endif /* CONFIG_SPARSEMEM */
311 /* Fields commonly accessed by the page reclaim scanner */
314 struct list_head list
;
315 unsigned long nr_scan
;
319 * The pageout code in vmscan.c keeps track of how many of the
320 * mem/swap backed and file backed pages are refeferenced.
321 * The higher the rotated/scanned ratio, the more valuable
324 * The anon LRU stats live in [0], file LRU stats in [1]
326 unsigned long recent_rotated
[2];
327 unsigned long recent_scanned
[2];
329 unsigned long pages_scanned
; /* since last reclaim */
330 unsigned long flags
; /* zone flags, see below */
332 /* Zone statistics */
333 atomic_long_t vm_stat
[NR_VM_ZONE_STAT_ITEMS
];
336 * prev_priority holds the scanning priority for this zone. It is
337 * defined as the scanning priority at which we achieved our reclaim
338 * target at the previous try_to_free_pages() or balance_pgdat()
341 * We use prev_priority as a measure of how much stress page reclaim is
342 * under - it drives the swappiness decision: whether to unmap mapped
345 * Access to both this field is quite racy even on uniprocessor. But
346 * it is expected to average out OK.
351 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
352 * this zone's LRU. Maintained by the pageout code.
354 unsigned int inactive_ratio
;
358 /* Rarely used or read-mostly fields */
361 * wait_table -- the array holding the hash table
362 * wait_table_hash_nr_entries -- the size of the hash table array
363 * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
365 * The purpose of all these is to keep track of the people
366 * waiting for a page to become available and make them
367 * runnable again when possible. The trouble is that this
368 * consumes a lot of space, especially when so few things
369 * wait on pages at a given time. So instead of using
370 * per-page waitqueues, we use a waitqueue hash table.
372 * The bucket discipline is to sleep on the same queue when
373 * colliding and wake all in that wait queue when removing.
374 * When something wakes, it must check to be sure its page is
375 * truly available, a la thundering herd. The cost of a
376 * collision is great, but given the expected load of the
377 * table, they should be so rare as to be outweighed by the
378 * benefits from the saved space.
380 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
381 * primary users of these fields, and in mm/page_alloc.c
382 * free_area_init_core() performs the initialization of them.
384 wait_queue_head_t
* wait_table
;
385 unsigned long wait_table_hash_nr_entries
;
386 unsigned long wait_table_bits
;
389 * Discontig memory support fields.
391 struct pglist_data
*zone_pgdat
;
392 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
393 unsigned long zone_start_pfn
;
396 * zone_start_pfn, spanned_pages and present_pages are all
397 * protected by span_seqlock. It is a seqlock because it has
398 * to be read outside of zone->lock, and it is done in the main
399 * allocator path. But, it is written quite infrequently.
401 * The lock is declared along with zone->lock because it is
402 * frequently read in proximity to zone->lock. It's good to
403 * give them a chance of being in the same cacheline.
405 unsigned long spanned_pages
; /* total size, including holes */
406 unsigned long present_pages
; /* amount of memory (excluding holes) */
409 * rarely used fields:
412 } ____cacheline_internodealigned_in_smp
;
415 ZONE_ALL_UNRECLAIMABLE
, /* all pages pinned */
416 ZONE_RECLAIM_LOCKED
, /* prevents concurrent reclaim */
417 ZONE_OOM_LOCKED
, /* zone is in OOM killer zonelist */
420 static inline void zone_set_flag(struct zone
*zone
, zone_flags_t flag
)
422 set_bit(flag
, &zone
->flags
);
425 static inline int zone_test_and_set_flag(struct zone
*zone
, zone_flags_t flag
)
427 return test_and_set_bit(flag
, &zone
->flags
);
430 static inline void zone_clear_flag(struct zone
*zone
, zone_flags_t flag
)
432 clear_bit(flag
, &zone
->flags
);
435 static inline int zone_is_all_unreclaimable(const struct zone
*zone
)
437 return test_bit(ZONE_ALL_UNRECLAIMABLE
, &zone
->flags
);
440 static inline int zone_is_reclaim_locked(const struct zone
*zone
)
442 return test_bit(ZONE_RECLAIM_LOCKED
, &zone
->flags
);
445 static inline int zone_is_oom_locked(const struct zone
*zone
)
447 return test_bit(ZONE_OOM_LOCKED
, &zone
->flags
);
451 * The "priority" of VM scanning is how much of the queues we will scan in one
452 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
453 * queues ("queue_length >> 12") during an aging round.
455 #define DEF_PRIORITY 12
457 /* Maximum number of zones on a zonelist */
458 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
463 * The NUMA zonelists are doubled becausse we need zonelists that restrict the
464 * allocations to a single node for GFP_THISNODE.
466 * [0] : Zonelist with fallback
467 * [1] : No fallback (GFP_THISNODE)
469 #define MAX_ZONELISTS 2
473 * We cache key information from each zonelist for smaller cache
474 * footprint when scanning for free pages in get_page_from_freelist().
476 * 1) The BITMAP fullzones tracks which zones in a zonelist have come
477 * up short of free memory since the last time (last_fullzone_zap)
478 * we zero'd fullzones.
479 * 2) The array z_to_n[] maps each zone in the zonelist to its node
480 * id, so that we can efficiently evaluate whether that node is
481 * set in the current tasks mems_allowed.
483 * Both fullzones and z_to_n[] are one-to-one with the zonelist,
484 * indexed by a zones offset in the zonelist zones[] array.
486 * The get_page_from_freelist() routine does two scans. During the
487 * first scan, we skip zones whose corresponding bit in 'fullzones'
488 * is set or whose corresponding node in current->mems_allowed (which
489 * comes from cpusets) is not set. During the second scan, we bypass
490 * this zonelist_cache, to ensure we look methodically at each zone.
492 * Once per second, we zero out (zap) fullzones, forcing us to
493 * reconsider nodes that might have regained more free memory.
494 * The field last_full_zap is the time we last zapped fullzones.
496 * This mechanism reduces the amount of time we waste repeatedly
497 * reexaming zones for free memory when they just came up low on
498 * memory momentarilly ago.
500 * The zonelist_cache struct members logically belong in struct
501 * zonelist. However, the mempolicy zonelists constructed for
502 * MPOL_BIND are intentionally variable length (and usually much
503 * shorter). A general purpose mechanism for handling structs with
504 * multiple variable length members is more mechanism than we want
505 * here. We resort to some special case hackery instead.
507 * The MPOL_BIND zonelists don't need this zonelist_cache (in good
508 * part because they are shorter), so we put the fixed length stuff
509 * at the front of the zonelist struct, ending in a variable length
510 * zones[], as is needed by MPOL_BIND.
512 * Then we put the optional zonelist cache on the end of the zonelist
513 * struct. This optional stuff is found by a 'zlcache_ptr' pointer in
514 * the fixed length portion at the front of the struct. This pointer
515 * both enables us to find the zonelist cache, and in the case of
516 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
517 * to know that the zonelist cache is not there.
519 * The end result is that struct zonelists come in two flavors:
520 * 1) The full, fixed length version, shown below, and
521 * 2) The custom zonelists for MPOL_BIND.
522 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
524 * Even though there may be multiple CPU cores on a node modifying
525 * fullzones or last_full_zap in the same zonelist_cache at the same
526 * time, we don't lock it. This is just hint data - if it is wrong now
527 * and then, the allocator will still function, perhaps a bit slower.
531 struct zonelist_cache
{
532 unsigned short z_to_n
[MAX_ZONES_PER_ZONELIST
]; /* zone->nid */
533 DECLARE_BITMAP(fullzones
, MAX_ZONES_PER_ZONELIST
); /* zone full? */
534 unsigned long last_full_zap
; /* when last zap'd (jiffies) */
537 #define MAX_ZONELISTS 1
538 struct zonelist_cache
;
542 * This struct contains information about a zone in a zonelist. It is stored
543 * here to avoid dereferences into large structures and lookups of tables
546 struct zone
*zone
; /* Pointer to actual zone */
547 int zone_idx
; /* zone_idx(zoneref->zone) */
551 * One allocation request operates on a zonelist. A zonelist
552 * is a list of zones, the first one is the 'goal' of the
553 * allocation, the other zones are fallback zones, in decreasing
556 * If zlcache_ptr is not NULL, then it is just the address of zlcache,
557 * as explained above. If zlcache_ptr is NULL, there is no zlcache.
559 * To speed the reading of the zonelist, the zonerefs contain the zone index
560 * of the entry being read. Helper functions to access information given
561 * a struct zoneref are
563 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
564 * zonelist_zone_idx() - Return the index of the zone for an entry
565 * zonelist_node_idx() - Return the index of the node for an entry
568 struct zonelist_cache
*zlcache_ptr
; // NULL or &zlcache
569 struct zoneref _zonerefs
[MAX_ZONES_PER_ZONELIST
+ 1];
571 struct zonelist_cache zlcache
; // optional ...
575 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
576 struct node_active_region
{
577 unsigned long start_pfn
;
578 unsigned long end_pfn
;
581 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
583 #ifndef CONFIG_DISCONTIGMEM
584 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
585 extern struct page
*mem_map
;
589 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
590 * (mostly NUMA machines?) to denote a higher-level memory zone than the
593 * On NUMA machines, each NUMA node would have a pg_data_t to describe
594 * it's memory layout.
596 * Memory statistics and page replacement data structures are maintained on a
600 typedef struct pglist_data
{
601 struct zone node_zones
[MAX_NR_ZONES
];
602 struct zonelist node_zonelists
[MAX_ZONELISTS
];
604 #ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
605 struct page
*node_mem_map
;
606 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
607 struct page_cgroup
*node_page_cgroup
;
610 struct bootmem_data
*bdata
;
611 #ifdef CONFIG_MEMORY_HOTPLUG
613 * Must be held any time you expect node_start_pfn, node_present_pages
614 * or node_spanned_pages stay constant. Holding this will also
615 * guarantee that any pfn_valid() stays that way.
617 * Nests above zone->lock and zone->size_seqlock.
619 spinlock_t node_size_lock
;
621 unsigned long node_start_pfn
;
622 unsigned long node_present_pages
; /* total number of physical pages */
623 unsigned long node_spanned_pages
; /* total size of physical page
624 range, including holes */
626 wait_queue_head_t kswapd_wait
;
627 struct task_struct
*kswapd
;
628 int kswapd_max_order
;
631 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
632 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
633 #ifdef CONFIG_FLAT_NODE_MEM_MAP
634 #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
636 #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
638 #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
640 #include <linux/memory_hotplug.h>
642 void get_zone_counts(unsigned long *active
, unsigned long *inactive
,
643 unsigned long *free
);
644 void build_all_zonelists(void);
645 void wakeup_kswapd(struct zone
*zone
, int order
);
646 int zone_watermark_ok(struct zone
*z
, int order
, unsigned long mark
,
647 int classzone_idx
, int alloc_flags
);
648 enum memmap_context
{
652 extern int init_currently_empty_zone(struct zone
*zone
, unsigned long start_pfn
,
654 enum memmap_context context
);
656 #ifdef CONFIG_HAVE_MEMORY_PRESENT
657 void memory_present(int nid
, unsigned long start
, unsigned long end
);
659 static inline void memory_present(int nid
, unsigned long start
, unsigned long end
) {}
662 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
663 unsigned long __init
node_memmap_size_bytes(int, unsigned long, unsigned long);
667 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
669 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
671 static inline int populated_zone(struct zone
*zone
)
673 return (!!zone
->present_pages
);
676 extern int movable_zone
;
678 static inline int zone_movable_is_highmem(void)
680 #if defined(CONFIG_HIGHMEM) && defined(CONFIG_ARCH_POPULATES_NODE_MAP)
681 return movable_zone
== ZONE_HIGHMEM
;
687 static inline int is_highmem_idx(enum zone_type idx
)
689 #ifdef CONFIG_HIGHMEM
690 return (idx
== ZONE_HIGHMEM
||
691 (idx
== ZONE_MOVABLE
&& zone_movable_is_highmem()));
697 static inline int is_normal_idx(enum zone_type idx
)
699 return (idx
== ZONE_NORMAL
);
703 * is_highmem - helper function to quickly check if a struct zone is a
704 * highmem zone or not. This is an attempt to keep references
705 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
706 * @zone - pointer to struct zone variable
708 static inline int is_highmem(struct zone
*zone
)
710 #ifdef CONFIG_HIGHMEM
711 int zone_off
= (char *)zone
- (char *)zone
->zone_pgdat
->node_zones
;
712 return zone_off
== ZONE_HIGHMEM
* sizeof(*zone
) ||
713 (zone_off
== ZONE_MOVABLE
* sizeof(*zone
) &&
714 zone_movable_is_highmem());
720 static inline int is_normal(struct zone
*zone
)
722 return zone
== zone
->zone_pgdat
->node_zones
+ ZONE_NORMAL
;
725 static inline int is_dma32(struct zone
*zone
)
727 #ifdef CONFIG_ZONE_DMA32
728 return zone
== zone
->zone_pgdat
->node_zones
+ ZONE_DMA32
;
734 static inline int is_dma(struct zone
*zone
)
736 #ifdef CONFIG_ZONE_DMA
737 return zone
== zone
->zone_pgdat
->node_zones
+ ZONE_DMA
;
743 /* These two functions are used to setup the per zone pages min values */
746 int min_free_kbytes_sysctl_handler(struct ctl_table
*, int, struct file
*,
747 void __user
*, size_t *, loff_t
*);
748 extern int sysctl_lowmem_reserve_ratio
[MAX_NR_ZONES
-1];
749 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table
*, int, struct file
*,
750 void __user
*, size_t *, loff_t
*);
751 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table
*, int, struct file
*,
752 void __user
*, size_t *, loff_t
*);
753 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table
*, int,
754 struct file
*, void __user
*, size_t *, loff_t
*);
755 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table
*, int,
756 struct file
*, void __user
*, size_t *, loff_t
*);
758 extern int numa_zonelist_order_handler(struct ctl_table
*, int,
759 struct file
*, void __user
*, size_t *, loff_t
*);
760 extern char numa_zonelist_order
[];
761 #define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */
763 #include <linux/topology.h>
764 /* Returns the number of the current Node. */
766 #define numa_node_id() (cpu_to_node(raw_smp_processor_id()))
769 #ifndef CONFIG_NEED_MULTIPLE_NODES
771 extern struct pglist_data contig_page_data
;
772 #define NODE_DATA(nid) (&contig_page_data)
773 #define NODE_MEM_MAP(nid) mem_map
775 #else /* CONFIG_NEED_MULTIPLE_NODES */
777 #include <asm/mmzone.h>
779 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
781 extern struct pglist_data
*first_online_pgdat(void);
782 extern struct pglist_data
*next_online_pgdat(struct pglist_data
*pgdat
);
783 extern struct zone
*next_zone(struct zone
*zone
);
786 * for_each_online_pgdat - helper macro to iterate over all online nodes
787 * @pgdat - pointer to a pg_data_t variable
789 #define for_each_online_pgdat(pgdat) \
790 for (pgdat = first_online_pgdat(); \
792 pgdat = next_online_pgdat(pgdat))
794 * for_each_zone - helper macro to iterate over all memory zones
795 * @zone - pointer to struct zone variable
797 * The user only needs to declare the zone variable, for_each_zone
800 #define for_each_zone(zone) \
801 for (zone = (first_online_pgdat())->node_zones; \
803 zone = next_zone(zone))
805 static inline struct zone
*zonelist_zone(struct zoneref
*zoneref
)
807 return zoneref
->zone
;
810 static inline int zonelist_zone_idx(struct zoneref
*zoneref
)
812 return zoneref
->zone_idx
;
815 static inline int zonelist_node_idx(struct zoneref
*zoneref
)
818 /* zone_to_nid not available in this context */
819 return zoneref
->zone
->node
;
822 #endif /* CONFIG_NUMA */
826 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
827 * @z - The cursor used as a starting point for the search
828 * @highest_zoneidx - The zone index of the highest zone to return
829 * @nodes - An optional nodemask to filter the zonelist with
830 * @zone - The first suitable zone found is returned via this parameter
832 * This function returns the next zone at or below a given zone index that is
833 * within the allowed nodemask using a cursor as the starting point for the
834 * search. The zoneref returned is a cursor that represents the current zone
835 * being examined. It should be advanced by one before calling
836 * next_zones_zonelist again.
838 struct zoneref
*next_zones_zonelist(struct zoneref
*z
,
839 enum zone_type highest_zoneidx
,
844 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
845 * @zonelist - The zonelist to search for a suitable zone
846 * @highest_zoneidx - The zone index of the highest zone to return
847 * @nodes - An optional nodemask to filter the zonelist with
848 * @zone - The first suitable zone found is returned via this parameter
850 * This function returns the first zone at or below a given zone index that is
851 * within the allowed nodemask. The zoneref returned is a cursor that can be
852 * used to iterate the zonelist with next_zones_zonelist by advancing it by
853 * one before calling.
855 static inline struct zoneref
*first_zones_zonelist(struct zonelist
*zonelist
,
856 enum zone_type highest_zoneidx
,
860 return next_zones_zonelist(zonelist
->_zonerefs
, highest_zoneidx
, nodes
,
865 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
866 * @zone - The current zone in the iterator
867 * @z - The current pointer within zonelist->zones being iterated
868 * @zlist - The zonelist being iterated
869 * @highidx - The zone index of the highest zone to return
870 * @nodemask - Nodemask allowed by the allocator
872 * This iterator iterates though all zones at or below a given zone index and
873 * within a given nodemask
875 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
876 for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \
878 z = next_zones_zonelist(++z, highidx, nodemask, &zone)) \
881 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
882 * @zone - The current zone in the iterator
883 * @z - The current pointer within zonelist->zones being iterated
884 * @zlist - The zonelist being iterated
885 * @highidx - The zone index of the highest zone to return
887 * This iterator iterates though all zones at or below a given zone index.
889 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
890 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
892 #ifdef CONFIG_SPARSEMEM
893 #include <asm/sparsemem.h>
896 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
897 !defined(CONFIG_ARCH_POPULATES_NODE_MAP)
898 static inline unsigned long early_pfn_to_nid(unsigned long pfn
)
904 #ifdef CONFIG_FLATMEM
905 #define pfn_to_nid(pfn) (0)
908 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
909 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
911 #ifdef CONFIG_SPARSEMEM
914 * SECTION_SHIFT #bits space required to store a section #
916 * PA_SECTION_SHIFT physical address to/from section number
917 * PFN_SECTION_SHIFT pfn to/from section number
919 #define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
921 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
922 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
924 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
926 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
927 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
929 #define SECTION_BLOCKFLAGS_BITS \
930 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
932 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
933 #error Allocator MAX_ORDER exceeds SECTION_SIZE
940 * This is, logically, a pointer to an array of struct
941 * pages. However, it is stored with some other magic.
942 * (see sparse.c::sparse_init_one_section())
944 * Additionally during early boot we encode node id of
945 * the location of the section here to guide allocation.
946 * (see sparse.c::memory_present())
948 * Making it a UL at least makes someone do a cast
949 * before using it wrong.
951 unsigned long section_mem_map
;
953 /* See declaration of similar field in struct zone */
954 unsigned long *pageblock_flags
;
955 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
957 * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use
958 * section. (see memcontrol.h/page_cgroup.h about this.)
960 struct page_cgroup
*page_cgroup
;
965 #ifdef CONFIG_SPARSEMEM_EXTREME
966 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
968 #define SECTIONS_PER_ROOT 1
971 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
972 #define NR_SECTION_ROOTS (NR_MEM_SECTIONS / SECTIONS_PER_ROOT)
973 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
975 #ifdef CONFIG_SPARSEMEM_EXTREME
976 extern struct mem_section
*mem_section
[NR_SECTION_ROOTS
];
978 extern struct mem_section mem_section
[NR_SECTION_ROOTS
][SECTIONS_PER_ROOT
];
981 static inline struct mem_section
*__nr_to_section(unsigned long nr
)
983 if (!mem_section
[SECTION_NR_TO_ROOT(nr
)])
985 return &mem_section
[SECTION_NR_TO_ROOT(nr
)][nr
& SECTION_ROOT_MASK
];
987 extern int __section_nr(struct mem_section
* ms
);
988 extern unsigned long usemap_size(void);
991 * We use the lower bits of the mem_map pointer to store
992 * a little bit of information. There should be at least
993 * 3 bits here due to 32-bit alignment.
995 #define SECTION_MARKED_PRESENT (1UL<<0)
996 #define SECTION_HAS_MEM_MAP (1UL<<1)
997 #define SECTION_MAP_LAST_BIT (1UL<<2)
998 #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
999 #define SECTION_NID_SHIFT 2
1001 static inline struct page
*__section_mem_map_addr(struct mem_section
*section
)
1003 unsigned long map
= section
->section_mem_map
;
1004 map
&= SECTION_MAP_MASK
;
1005 return (struct page
*)map
;
1008 static inline int present_section(struct mem_section
*section
)
1010 return (section
&& (section
->section_mem_map
& SECTION_MARKED_PRESENT
));
1013 static inline int present_section_nr(unsigned long nr
)
1015 return present_section(__nr_to_section(nr
));
1018 static inline int valid_section(struct mem_section
*section
)
1020 return (section
&& (section
->section_mem_map
& SECTION_HAS_MEM_MAP
));
1023 static inline int valid_section_nr(unsigned long nr
)
1025 return valid_section(__nr_to_section(nr
));
1028 static inline struct mem_section
*__pfn_to_section(unsigned long pfn
)
1030 return __nr_to_section(pfn_to_section_nr(pfn
));
1033 static inline int pfn_valid(unsigned long pfn
)
1035 if (pfn_to_section_nr(pfn
) >= NR_MEM_SECTIONS
)
1037 return valid_section(__nr_to_section(pfn_to_section_nr(pfn
)));
1040 static inline int pfn_present(unsigned long pfn
)
1042 if (pfn_to_section_nr(pfn
) >= NR_MEM_SECTIONS
)
1044 return present_section(__nr_to_section(pfn_to_section_nr(pfn
)));
1048 * These are _only_ used during initialisation, therefore they
1049 * can use __initdata ... They could have names to indicate
1053 #define pfn_to_nid(pfn) \
1055 unsigned long __pfn_to_nid_pfn = (pfn); \
1056 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
1059 #define pfn_to_nid(pfn) (0)
1062 #define early_pfn_valid(pfn) pfn_valid(pfn)
1063 void sparse_init(void);
1065 #define sparse_init() do {} while (0)
1066 #define sparse_index_init(_sec, _nid) do {} while (0)
1067 #endif /* CONFIG_SPARSEMEM */
1069 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1070 #define early_pfn_in_nid(pfn, nid) (early_pfn_to_nid(pfn) == (nid))
1072 #define early_pfn_in_nid(pfn, nid) (1)
1075 #ifndef early_pfn_valid
1076 #define early_pfn_valid(pfn) (1)
1079 void memory_present(int nid
, unsigned long start
, unsigned long end
);
1080 unsigned long __init
node_memmap_size_bytes(int, unsigned long, unsigned long);
1083 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1084 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1085 * pfn_valid_within() should be used in this case; we optimise this away
1086 * when we have no holes within a MAX_ORDER_NR_PAGES block.
1088 #ifdef CONFIG_HOLES_IN_ZONE
1089 #define pfn_valid_within(pfn) pfn_valid(pfn)
1091 #define pfn_valid_within(pfn) (1)
1094 #endif /* !__GENERATING_BOUNDS.H */
1095 #endif /* !__ASSEMBLY__ */
1096 #endif /* _LINUX_MMZONE_H */