sched: prevent bound kthreads from changing cpus_allowed
[linux-2.6/mini2440.git] / kernel / sched.c
blob164fe7fe0d891615ffbcc680c9a8c439a9a14b54
1 /*
2 * kernel/sched.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/reciprocal_div.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/bootmem.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
74 #include <asm/tlb.h>
75 #include <asm/irq_regs.h>
77 #include "sched_cpupri.h"
80 * Convert user-nice values [ -20 ... 0 ... 19 ]
81 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
82 * and back.
84 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
85 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
86 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
89 * 'User priority' is the nice value converted to something we
90 * can work with better when scaling various scheduler parameters,
91 * it's a [ 0 ... 39 ] range.
93 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
94 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
95 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
98 * Helpers for converting nanosecond timing to jiffy resolution
100 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
102 #define NICE_0_LOAD SCHED_LOAD_SCALE
103 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
106 * These are the 'tuning knobs' of the scheduler:
108 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
109 * Timeslices get refilled after they expire.
111 #define DEF_TIMESLICE (100 * HZ / 1000)
114 * single value that denotes runtime == period, ie unlimited time.
116 #define RUNTIME_INF ((u64)~0ULL)
118 #ifdef CONFIG_SMP
120 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
121 * Since cpu_power is a 'constant', we can use a reciprocal divide.
123 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
125 return reciprocal_divide(load, sg->reciprocal_cpu_power);
129 * Each time a sched group cpu_power is changed,
130 * we must compute its reciprocal value
132 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
134 sg->__cpu_power += val;
135 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
137 #endif
139 static inline int rt_policy(int policy)
141 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
142 return 1;
143 return 0;
146 static inline int task_has_rt_policy(struct task_struct *p)
148 return rt_policy(p->policy);
152 * This is the priority-queue data structure of the RT scheduling class:
154 struct rt_prio_array {
155 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
156 struct list_head xqueue[MAX_RT_PRIO]; /* exclusive queue */
157 struct list_head squeue[MAX_RT_PRIO]; /* shared queue */
160 struct rt_bandwidth {
161 /* nests inside the rq lock: */
162 spinlock_t rt_runtime_lock;
163 ktime_t rt_period;
164 u64 rt_runtime;
165 struct hrtimer rt_period_timer;
168 static struct rt_bandwidth def_rt_bandwidth;
170 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
172 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
174 struct rt_bandwidth *rt_b =
175 container_of(timer, struct rt_bandwidth, rt_period_timer);
176 ktime_t now;
177 int overrun;
178 int idle = 0;
180 for (;;) {
181 now = hrtimer_cb_get_time(timer);
182 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
184 if (!overrun)
185 break;
187 idle = do_sched_rt_period_timer(rt_b, overrun);
190 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
193 static
194 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
196 rt_b->rt_period = ns_to_ktime(period);
197 rt_b->rt_runtime = runtime;
199 spin_lock_init(&rt_b->rt_runtime_lock);
201 hrtimer_init(&rt_b->rt_period_timer,
202 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
203 rt_b->rt_period_timer.function = sched_rt_period_timer;
204 rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
207 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
209 ktime_t now;
211 if (rt_b->rt_runtime == RUNTIME_INF)
212 return;
214 if (hrtimer_active(&rt_b->rt_period_timer))
215 return;
217 spin_lock(&rt_b->rt_runtime_lock);
218 for (;;) {
219 if (hrtimer_active(&rt_b->rt_period_timer))
220 break;
222 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
223 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
224 hrtimer_start(&rt_b->rt_period_timer,
225 rt_b->rt_period_timer.expires,
226 HRTIMER_MODE_ABS);
228 spin_unlock(&rt_b->rt_runtime_lock);
231 #ifdef CONFIG_RT_GROUP_SCHED
232 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
234 hrtimer_cancel(&rt_b->rt_period_timer);
236 #endif
239 * sched_domains_mutex serializes calls to arch_init_sched_domains,
240 * detach_destroy_domains and partition_sched_domains.
242 static DEFINE_MUTEX(sched_domains_mutex);
244 #ifdef CONFIG_GROUP_SCHED
246 #include <linux/cgroup.h>
248 struct cfs_rq;
250 static LIST_HEAD(task_groups);
252 /* task group related information */
253 struct task_group {
254 #ifdef CONFIG_CGROUP_SCHED
255 struct cgroup_subsys_state css;
256 #endif
258 #ifdef CONFIG_FAIR_GROUP_SCHED
259 /* schedulable entities of this group on each cpu */
260 struct sched_entity **se;
261 /* runqueue "owned" by this group on each cpu */
262 struct cfs_rq **cfs_rq;
263 unsigned long shares;
264 #endif
266 #ifdef CONFIG_RT_GROUP_SCHED
267 struct sched_rt_entity **rt_se;
268 struct rt_rq **rt_rq;
270 struct rt_bandwidth rt_bandwidth;
271 #endif
273 struct rcu_head rcu;
274 struct list_head list;
276 struct task_group *parent;
277 struct list_head siblings;
278 struct list_head children;
281 #ifdef CONFIG_USER_SCHED
284 * Root task group.
285 * Every UID task group (including init_task_group aka UID-0) will
286 * be a child to this group.
288 struct task_group root_task_group;
290 #ifdef CONFIG_FAIR_GROUP_SCHED
291 /* Default task group's sched entity on each cpu */
292 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
293 /* Default task group's cfs_rq on each cpu */
294 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
295 #endif /* CONFIG_FAIR_GROUP_SCHED */
297 #ifdef CONFIG_RT_GROUP_SCHED
298 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
299 static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
300 #endif /* CONFIG_RT_GROUP_SCHED */
301 #else /* !CONFIG_FAIR_GROUP_SCHED */
302 #define root_task_group init_task_group
303 #endif /* CONFIG_FAIR_GROUP_SCHED */
305 /* task_group_lock serializes add/remove of task groups and also changes to
306 * a task group's cpu shares.
308 static DEFINE_SPINLOCK(task_group_lock);
310 #ifdef CONFIG_FAIR_GROUP_SCHED
311 #ifdef CONFIG_USER_SCHED
312 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
313 #else /* !CONFIG_USER_SCHED */
314 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
315 #endif /* CONFIG_USER_SCHED */
318 * A weight of 0, 1 or ULONG_MAX can cause arithmetics problems.
319 * (The default weight is 1024 - so there's no practical
320 * limitation from this.)
322 #define MIN_SHARES 2
323 #define MAX_SHARES (ULONG_MAX - 1)
325 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
326 #endif
328 /* Default task group.
329 * Every task in system belong to this group at bootup.
331 struct task_group init_task_group;
333 /* return group to which a task belongs */
334 static inline struct task_group *task_group(struct task_struct *p)
336 struct task_group *tg;
338 #ifdef CONFIG_USER_SCHED
339 tg = p->user->tg;
340 #elif defined(CONFIG_CGROUP_SCHED)
341 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
342 struct task_group, css);
343 #else
344 tg = &init_task_group;
345 #endif
346 return tg;
349 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
350 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
352 #ifdef CONFIG_FAIR_GROUP_SCHED
353 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
354 p->se.parent = task_group(p)->se[cpu];
355 #endif
357 #ifdef CONFIG_RT_GROUP_SCHED
358 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
359 p->rt.parent = task_group(p)->rt_se[cpu];
360 #endif
363 #else
365 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
367 #endif /* CONFIG_GROUP_SCHED */
369 /* CFS-related fields in a runqueue */
370 struct cfs_rq {
371 struct load_weight load;
372 unsigned long nr_running;
374 u64 exec_clock;
375 u64 min_vruntime;
377 struct rb_root tasks_timeline;
378 struct rb_node *rb_leftmost;
380 struct list_head tasks;
381 struct list_head *balance_iterator;
384 * 'curr' points to currently running entity on this cfs_rq.
385 * It is set to NULL otherwise (i.e when none are currently running).
387 struct sched_entity *curr, *next;
389 unsigned long nr_spread_over;
391 #ifdef CONFIG_FAIR_GROUP_SCHED
392 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
395 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
396 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
397 * (like users, containers etc.)
399 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
400 * list is used during load balance.
402 struct list_head leaf_cfs_rq_list;
403 struct task_group *tg; /* group that "owns" this runqueue */
404 #endif
407 /* Real-Time classes' related field in a runqueue: */
408 struct rt_rq {
409 struct rt_prio_array active;
410 unsigned long rt_nr_running;
411 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
412 int highest_prio; /* highest queued rt task prio */
413 #endif
414 #ifdef CONFIG_SMP
415 unsigned long rt_nr_migratory;
416 int overloaded;
417 #endif
418 int rt_throttled;
419 u64 rt_time;
420 u64 rt_runtime;
421 /* Nests inside the rq lock: */
422 spinlock_t rt_runtime_lock;
424 #ifdef CONFIG_RT_GROUP_SCHED
425 unsigned long rt_nr_boosted;
427 struct rq *rq;
428 struct list_head leaf_rt_rq_list;
429 struct task_group *tg;
430 struct sched_rt_entity *rt_se;
431 #endif
434 #ifdef CONFIG_SMP
437 * We add the notion of a root-domain which will be used to define per-domain
438 * variables. Each exclusive cpuset essentially defines an island domain by
439 * fully partitioning the member cpus from any other cpuset. Whenever a new
440 * exclusive cpuset is created, we also create and attach a new root-domain
441 * object.
444 struct root_domain {
445 atomic_t refcount;
446 cpumask_t span;
447 cpumask_t online;
450 * The "RT overload" flag: it gets set if a CPU has more than
451 * one runnable RT task.
453 cpumask_t rto_mask;
454 atomic_t rto_count;
455 #ifdef CONFIG_SMP
456 struct cpupri cpupri;
457 #endif
461 * By default the system creates a single root-domain with all cpus as
462 * members (mimicking the global state we have today).
464 static struct root_domain def_root_domain;
466 #endif
469 * This is the main, per-CPU runqueue data structure.
471 * Locking rule: those places that want to lock multiple runqueues
472 * (such as the load balancing or the thread migration code), lock
473 * acquire operations must be ordered by ascending &runqueue.
475 struct rq {
476 /* runqueue lock: */
477 spinlock_t lock;
480 * nr_running and cpu_load should be in the same cacheline because
481 * remote CPUs use both these fields when doing load calculation.
483 unsigned long nr_running;
484 #define CPU_LOAD_IDX_MAX 5
485 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
486 unsigned char idle_at_tick;
487 #ifdef CONFIG_NO_HZ
488 unsigned long last_tick_seen;
489 unsigned char in_nohz_recently;
490 #endif
491 /* capture load from *all* tasks on this cpu: */
492 struct load_weight load;
493 unsigned long nr_load_updates;
494 u64 nr_switches;
496 struct cfs_rq cfs;
497 struct rt_rq rt;
499 #ifdef CONFIG_FAIR_GROUP_SCHED
500 /* list of leaf cfs_rq on this cpu: */
501 struct list_head leaf_cfs_rq_list;
502 #endif
503 #ifdef CONFIG_RT_GROUP_SCHED
504 struct list_head leaf_rt_rq_list;
505 #endif
508 * This is part of a global counter where only the total sum
509 * over all CPUs matters. A task can increase this counter on
510 * one CPU and if it got migrated afterwards it may decrease
511 * it on another CPU. Always updated under the runqueue lock:
513 unsigned long nr_uninterruptible;
515 struct task_struct *curr, *idle;
516 unsigned long next_balance;
517 struct mm_struct *prev_mm;
519 u64 clock;
521 atomic_t nr_iowait;
523 #ifdef CONFIG_SMP
524 struct root_domain *rd;
525 struct sched_domain *sd;
527 /* For active balancing */
528 int active_balance;
529 int push_cpu;
530 /* cpu of this runqueue: */
531 int cpu;
532 int online;
534 struct task_struct *migration_thread;
535 struct list_head migration_queue;
536 #endif
538 #ifdef CONFIG_SCHED_HRTICK
539 unsigned long hrtick_flags;
540 ktime_t hrtick_expire;
541 struct hrtimer hrtick_timer;
542 #endif
544 #ifdef CONFIG_SCHEDSTATS
545 /* latency stats */
546 struct sched_info rq_sched_info;
548 /* sys_sched_yield() stats */
549 unsigned int yld_exp_empty;
550 unsigned int yld_act_empty;
551 unsigned int yld_both_empty;
552 unsigned int yld_count;
554 /* schedule() stats */
555 unsigned int sched_switch;
556 unsigned int sched_count;
557 unsigned int sched_goidle;
559 /* try_to_wake_up() stats */
560 unsigned int ttwu_count;
561 unsigned int ttwu_local;
563 /* BKL stats */
564 unsigned int bkl_count;
565 #endif
566 struct lock_class_key rq_lock_key;
569 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
571 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
573 rq->curr->sched_class->check_preempt_curr(rq, p);
576 static inline int cpu_of(struct rq *rq)
578 #ifdef CONFIG_SMP
579 return rq->cpu;
580 #else
581 return 0;
582 #endif
586 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
587 * See detach_destroy_domains: synchronize_sched for details.
589 * The domain tree of any CPU may only be accessed from within
590 * preempt-disabled sections.
592 #define for_each_domain(cpu, __sd) \
593 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
595 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
596 #define this_rq() (&__get_cpu_var(runqueues))
597 #define task_rq(p) cpu_rq(task_cpu(p))
598 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
600 static inline void update_rq_clock(struct rq *rq)
602 rq->clock = sched_clock_cpu(cpu_of(rq));
606 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
608 #ifdef CONFIG_SCHED_DEBUG
609 # define const_debug __read_mostly
610 #else
611 # define const_debug static const
612 #endif
615 * Debugging: various feature bits
618 #define SCHED_FEAT(name, enabled) \
619 __SCHED_FEAT_##name ,
621 enum {
622 #include "sched_features.h"
625 #undef SCHED_FEAT
627 #define SCHED_FEAT(name, enabled) \
628 (1UL << __SCHED_FEAT_##name) * enabled |
630 const_debug unsigned int sysctl_sched_features =
631 #include "sched_features.h"
634 #undef SCHED_FEAT
636 #ifdef CONFIG_SCHED_DEBUG
637 #define SCHED_FEAT(name, enabled) \
638 #name ,
640 static __read_mostly char *sched_feat_names[] = {
641 #include "sched_features.h"
642 NULL
645 #undef SCHED_FEAT
647 static int sched_feat_open(struct inode *inode, struct file *filp)
649 filp->private_data = inode->i_private;
650 return 0;
653 static ssize_t
654 sched_feat_read(struct file *filp, char __user *ubuf,
655 size_t cnt, loff_t *ppos)
657 char *buf;
658 int r = 0;
659 int len = 0;
660 int i;
662 for (i = 0; sched_feat_names[i]; i++) {
663 len += strlen(sched_feat_names[i]);
664 len += 4;
667 buf = kmalloc(len + 2, GFP_KERNEL);
668 if (!buf)
669 return -ENOMEM;
671 for (i = 0; sched_feat_names[i]; i++) {
672 if (sysctl_sched_features & (1UL << i))
673 r += sprintf(buf + r, "%s ", sched_feat_names[i]);
674 else
675 r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
678 r += sprintf(buf + r, "\n");
679 WARN_ON(r >= len + 2);
681 r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
683 kfree(buf);
685 return r;
688 static ssize_t
689 sched_feat_write(struct file *filp, const char __user *ubuf,
690 size_t cnt, loff_t *ppos)
692 char buf[64];
693 char *cmp = buf;
694 int neg = 0;
695 int i;
697 if (cnt > 63)
698 cnt = 63;
700 if (copy_from_user(&buf, ubuf, cnt))
701 return -EFAULT;
703 buf[cnt] = 0;
705 if (strncmp(buf, "NO_", 3) == 0) {
706 neg = 1;
707 cmp += 3;
710 for (i = 0; sched_feat_names[i]; i++) {
711 int len = strlen(sched_feat_names[i]);
713 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
714 if (neg)
715 sysctl_sched_features &= ~(1UL << i);
716 else
717 sysctl_sched_features |= (1UL << i);
718 break;
722 if (!sched_feat_names[i])
723 return -EINVAL;
725 filp->f_pos += cnt;
727 return cnt;
730 static struct file_operations sched_feat_fops = {
731 .open = sched_feat_open,
732 .read = sched_feat_read,
733 .write = sched_feat_write,
736 static __init int sched_init_debug(void)
738 debugfs_create_file("sched_features", 0644, NULL, NULL,
739 &sched_feat_fops);
741 return 0;
743 late_initcall(sched_init_debug);
745 #endif
747 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
750 * Number of tasks to iterate in a single balance run.
751 * Limited because this is done with IRQs disabled.
753 const_debug unsigned int sysctl_sched_nr_migrate = 32;
756 * period over which we measure -rt task cpu usage in us.
757 * default: 1s
759 unsigned int sysctl_sched_rt_period = 1000000;
761 static __read_mostly int scheduler_running;
764 * part of the period that we allow rt tasks to run in us.
765 * default: 0.95s
767 int sysctl_sched_rt_runtime = 950000;
769 static inline u64 global_rt_period(void)
771 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
774 static inline u64 global_rt_runtime(void)
776 if (sysctl_sched_rt_period < 0)
777 return RUNTIME_INF;
779 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
782 unsigned long long time_sync_thresh = 100000;
784 static DEFINE_PER_CPU(unsigned long long, time_offset);
785 static DEFINE_PER_CPU(unsigned long long, prev_cpu_time);
788 * Global lock which we take every now and then to synchronize
789 * the CPUs time. This method is not warp-safe, but it's good
790 * enough to synchronize slowly diverging time sources and thus
791 * it's good enough for tracing:
793 static DEFINE_SPINLOCK(time_sync_lock);
794 static unsigned long long prev_global_time;
796 static unsigned long long __sync_cpu_clock(unsigned long long time, int cpu)
799 * We want this inlined, to not get tracer function calls
800 * in this critical section:
802 spin_acquire(&time_sync_lock.dep_map, 0, 0, _THIS_IP_);
803 __raw_spin_lock(&time_sync_lock.raw_lock);
805 if (time < prev_global_time) {
806 per_cpu(time_offset, cpu) += prev_global_time - time;
807 time = prev_global_time;
808 } else {
809 prev_global_time = time;
812 __raw_spin_unlock(&time_sync_lock.raw_lock);
813 spin_release(&time_sync_lock.dep_map, 1, _THIS_IP_);
815 return time;
818 static unsigned long long __cpu_clock(int cpu)
820 unsigned long long now;
823 * Only call sched_clock() if the scheduler has already been
824 * initialized (some code might call cpu_clock() very early):
826 if (unlikely(!scheduler_running))
827 return 0;
829 now = sched_clock_cpu(cpu);
831 return now;
835 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
836 * clock constructed from sched_clock():
838 unsigned long long cpu_clock(int cpu)
840 unsigned long long prev_cpu_time, time, delta_time;
841 unsigned long flags;
843 local_irq_save(flags);
844 prev_cpu_time = per_cpu(prev_cpu_time, cpu);
845 time = __cpu_clock(cpu) + per_cpu(time_offset, cpu);
846 delta_time = time-prev_cpu_time;
848 if (unlikely(delta_time > time_sync_thresh)) {
849 time = __sync_cpu_clock(time, cpu);
850 per_cpu(prev_cpu_time, cpu) = time;
852 local_irq_restore(flags);
854 return time;
856 EXPORT_SYMBOL_GPL(cpu_clock);
858 #ifndef prepare_arch_switch
859 # define prepare_arch_switch(next) do { } while (0)
860 #endif
861 #ifndef finish_arch_switch
862 # define finish_arch_switch(prev) do { } while (0)
863 #endif
865 static inline int task_current(struct rq *rq, struct task_struct *p)
867 return rq->curr == p;
870 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
871 static inline int task_running(struct rq *rq, struct task_struct *p)
873 return task_current(rq, p);
876 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
880 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
882 #ifdef CONFIG_DEBUG_SPINLOCK
883 /* this is a valid case when another task releases the spinlock */
884 rq->lock.owner = current;
885 #endif
887 * If we are tracking spinlock dependencies then we have to
888 * fix up the runqueue lock - which gets 'carried over' from
889 * prev into current:
891 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
893 spin_unlock_irq(&rq->lock);
896 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
897 static inline int task_running(struct rq *rq, struct task_struct *p)
899 #ifdef CONFIG_SMP
900 return p->oncpu;
901 #else
902 return task_current(rq, p);
903 #endif
906 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
908 #ifdef CONFIG_SMP
910 * We can optimise this out completely for !SMP, because the
911 * SMP rebalancing from interrupt is the only thing that cares
912 * here.
914 next->oncpu = 1;
915 #endif
916 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
917 spin_unlock_irq(&rq->lock);
918 #else
919 spin_unlock(&rq->lock);
920 #endif
923 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
925 #ifdef CONFIG_SMP
927 * After ->oncpu is cleared, the task can be moved to a different CPU.
928 * We must ensure this doesn't happen until the switch is completely
929 * finished.
931 smp_wmb();
932 prev->oncpu = 0;
933 #endif
934 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
935 local_irq_enable();
936 #endif
938 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
941 * __task_rq_lock - lock the runqueue a given task resides on.
942 * Must be called interrupts disabled.
944 static inline struct rq *__task_rq_lock(struct task_struct *p)
945 __acquires(rq->lock)
947 for (;;) {
948 struct rq *rq = task_rq(p);
949 spin_lock(&rq->lock);
950 if (likely(rq == task_rq(p)))
951 return rq;
952 spin_unlock(&rq->lock);
957 * task_rq_lock - lock the runqueue a given task resides on and disable
958 * interrupts. Note the ordering: we can safely lookup the task_rq without
959 * explicitly disabling preemption.
961 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
962 __acquires(rq->lock)
964 struct rq *rq;
966 for (;;) {
967 local_irq_save(*flags);
968 rq = task_rq(p);
969 spin_lock(&rq->lock);
970 if (likely(rq == task_rq(p)))
971 return rq;
972 spin_unlock_irqrestore(&rq->lock, *flags);
976 static void __task_rq_unlock(struct rq *rq)
977 __releases(rq->lock)
979 spin_unlock(&rq->lock);
982 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
983 __releases(rq->lock)
985 spin_unlock_irqrestore(&rq->lock, *flags);
989 * this_rq_lock - lock this runqueue and disable interrupts.
991 static struct rq *this_rq_lock(void)
992 __acquires(rq->lock)
994 struct rq *rq;
996 local_irq_disable();
997 rq = this_rq();
998 spin_lock(&rq->lock);
1000 return rq;
1003 static void __resched_task(struct task_struct *p, int tif_bit);
1005 static inline void resched_task(struct task_struct *p)
1007 __resched_task(p, TIF_NEED_RESCHED);
1010 #ifdef CONFIG_SCHED_HRTICK
1012 * Use HR-timers to deliver accurate preemption points.
1014 * Its all a bit involved since we cannot program an hrt while holding the
1015 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1016 * reschedule event.
1018 * When we get rescheduled we reprogram the hrtick_timer outside of the
1019 * rq->lock.
1021 static inline void resched_hrt(struct task_struct *p)
1023 __resched_task(p, TIF_HRTICK_RESCHED);
1026 static inline void resched_rq(struct rq *rq)
1028 unsigned long flags;
1030 spin_lock_irqsave(&rq->lock, flags);
1031 resched_task(rq->curr);
1032 spin_unlock_irqrestore(&rq->lock, flags);
1035 enum {
1036 HRTICK_SET, /* re-programm hrtick_timer */
1037 HRTICK_RESET, /* not a new slice */
1038 HRTICK_BLOCK, /* stop hrtick operations */
1042 * Use hrtick when:
1043 * - enabled by features
1044 * - hrtimer is actually high res
1046 static inline int hrtick_enabled(struct rq *rq)
1048 if (!sched_feat(HRTICK))
1049 return 0;
1050 if (unlikely(test_bit(HRTICK_BLOCK, &rq->hrtick_flags)))
1051 return 0;
1052 return hrtimer_is_hres_active(&rq->hrtick_timer);
1056 * Called to set the hrtick timer state.
1058 * called with rq->lock held and irqs disabled
1060 static void hrtick_start(struct rq *rq, u64 delay, int reset)
1062 assert_spin_locked(&rq->lock);
1065 * preempt at: now + delay
1067 rq->hrtick_expire =
1068 ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
1070 * indicate we need to program the timer
1072 __set_bit(HRTICK_SET, &rq->hrtick_flags);
1073 if (reset)
1074 __set_bit(HRTICK_RESET, &rq->hrtick_flags);
1077 * New slices are called from the schedule path and don't need a
1078 * forced reschedule.
1080 if (reset)
1081 resched_hrt(rq->curr);
1084 static void hrtick_clear(struct rq *rq)
1086 if (hrtimer_active(&rq->hrtick_timer))
1087 hrtimer_cancel(&rq->hrtick_timer);
1091 * Update the timer from the possible pending state.
1093 static void hrtick_set(struct rq *rq)
1095 ktime_t time;
1096 int set, reset;
1097 unsigned long flags;
1099 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1101 spin_lock_irqsave(&rq->lock, flags);
1102 set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
1103 reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
1104 time = rq->hrtick_expire;
1105 clear_thread_flag(TIF_HRTICK_RESCHED);
1106 spin_unlock_irqrestore(&rq->lock, flags);
1108 if (set) {
1109 hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
1110 if (reset && !hrtimer_active(&rq->hrtick_timer))
1111 resched_rq(rq);
1112 } else
1113 hrtick_clear(rq);
1117 * High-resolution timer tick.
1118 * Runs from hardirq context with interrupts disabled.
1120 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1122 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1124 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1126 spin_lock(&rq->lock);
1127 update_rq_clock(rq);
1128 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1129 spin_unlock(&rq->lock);
1131 return HRTIMER_NORESTART;
1134 #ifdef CONFIG_SMP
1135 static void hotplug_hrtick_disable(int cpu)
1137 struct rq *rq = cpu_rq(cpu);
1138 unsigned long flags;
1140 spin_lock_irqsave(&rq->lock, flags);
1141 rq->hrtick_flags = 0;
1142 __set_bit(HRTICK_BLOCK, &rq->hrtick_flags);
1143 spin_unlock_irqrestore(&rq->lock, flags);
1145 hrtick_clear(rq);
1148 static void hotplug_hrtick_enable(int cpu)
1150 struct rq *rq = cpu_rq(cpu);
1151 unsigned long flags;
1153 spin_lock_irqsave(&rq->lock, flags);
1154 __clear_bit(HRTICK_BLOCK, &rq->hrtick_flags);
1155 spin_unlock_irqrestore(&rq->lock, flags);
1158 static int
1159 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1161 int cpu = (int)(long)hcpu;
1163 switch (action) {
1164 case CPU_UP_CANCELED:
1165 case CPU_UP_CANCELED_FROZEN:
1166 case CPU_DOWN_PREPARE:
1167 case CPU_DOWN_PREPARE_FROZEN:
1168 case CPU_DEAD:
1169 case CPU_DEAD_FROZEN:
1170 hotplug_hrtick_disable(cpu);
1171 return NOTIFY_OK;
1173 case CPU_UP_PREPARE:
1174 case CPU_UP_PREPARE_FROZEN:
1175 case CPU_DOWN_FAILED:
1176 case CPU_DOWN_FAILED_FROZEN:
1177 case CPU_ONLINE:
1178 case CPU_ONLINE_FROZEN:
1179 hotplug_hrtick_enable(cpu);
1180 return NOTIFY_OK;
1183 return NOTIFY_DONE;
1186 static void init_hrtick(void)
1188 hotcpu_notifier(hotplug_hrtick, 0);
1190 #endif /* CONFIG_SMP */
1192 static void init_rq_hrtick(struct rq *rq)
1194 rq->hrtick_flags = 0;
1195 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1196 rq->hrtick_timer.function = hrtick;
1197 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
1200 void hrtick_resched(void)
1202 struct rq *rq;
1203 unsigned long flags;
1205 if (!test_thread_flag(TIF_HRTICK_RESCHED))
1206 return;
1208 local_irq_save(flags);
1209 rq = cpu_rq(smp_processor_id());
1210 hrtick_set(rq);
1211 local_irq_restore(flags);
1213 #else
1214 static inline void hrtick_clear(struct rq *rq)
1218 static inline void hrtick_set(struct rq *rq)
1222 static inline void init_rq_hrtick(struct rq *rq)
1226 void hrtick_resched(void)
1230 static inline void init_hrtick(void)
1233 #endif
1236 * resched_task - mark a task 'to be rescheduled now'.
1238 * On UP this means the setting of the need_resched flag, on SMP it
1239 * might also involve a cross-CPU call to trigger the scheduler on
1240 * the target CPU.
1242 #ifdef CONFIG_SMP
1244 #ifndef tsk_is_polling
1245 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1246 #endif
1248 static void __resched_task(struct task_struct *p, int tif_bit)
1250 int cpu;
1252 assert_spin_locked(&task_rq(p)->lock);
1254 if (unlikely(test_tsk_thread_flag(p, tif_bit)))
1255 return;
1257 set_tsk_thread_flag(p, tif_bit);
1259 cpu = task_cpu(p);
1260 if (cpu == smp_processor_id())
1261 return;
1263 /* NEED_RESCHED must be visible before we test polling */
1264 smp_mb();
1265 if (!tsk_is_polling(p))
1266 smp_send_reschedule(cpu);
1269 static void resched_cpu(int cpu)
1271 struct rq *rq = cpu_rq(cpu);
1272 unsigned long flags;
1274 if (!spin_trylock_irqsave(&rq->lock, flags))
1275 return;
1276 resched_task(cpu_curr(cpu));
1277 spin_unlock_irqrestore(&rq->lock, flags);
1280 #ifdef CONFIG_NO_HZ
1282 * When add_timer_on() enqueues a timer into the timer wheel of an
1283 * idle CPU then this timer might expire before the next timer event
1284 * which is scheduled to wake up that CPU. In case of a completely
1285 * idle system the next event might even be infinite time into the
1286 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1287 * leaves the inner idle loop so the newly added timer is taken into
1288 * account when the CPU goes back to idle and evaluates the timer
1289 * wheel for the next timer event.
1291 void wake_up_idle_cpu(int cpu)
1293 struct rq *rq = cpu_rq(cpu);
1295 if (cpu == smp_processor_id())
1296 return;
1299 * This is safe, as this function is called with the timer
1300 * wheel base lock of (cpu) held. When the CPU is on the way
1301 * to idle and has not yet set rq->curr to idle then it will
1302 * be serialized on the timer wheel base lock and take the new
1303 * timer into account automatically.
1305 if (rq->curr != rq->idle)
1306 return;
1309 * We can set TIF_RESCHED on the idle task of the other CPU
1310 * lockless. The worst case is that the other CPU runs the
1311 * idle task through an additional NOOP schedule()
1313 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1315 /* NEED_RESCHED must be visible before we test polling */
1316 smp_mb();
1317 if (!tsk_is_polling(rq->idle))
1318 smp_send_reschedule(cpu);
1320 #endif /* CONFIG_NO_HZ */
1322 #else /* !CONFIG_SMP */
1323 static void __resched_task(struct task_struct *p, int tif_bit)
1325 assert_spin_locked(&task_rq(p)->lock);
1326 set_tsk_thread_flag(p, tif_bit);
1328 #endif /* CONFIG_SMP */
1330 #if BITS_PER_LONG == 32
1331 # define WMULT_CONST (~0UL)
1332 #else
1333 # define WMULT_CONST (1UL << 32)
1334 #endif
1336 #define WMULT_SHIFT 32
1339 * Shift right and round:
1341 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1343 static unsigned long
1344 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1345 struct load_weight *lw)
1347 u64 tmp;
1349 if (!lw->inv_weight)
1350 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)/(lw->weight+1);
1352 tmp = (u64)delta_exec * weight;
1354 * Check whether we'd overflow the 64-bit multiplication:
1356 if (unlikely(tmp > WMULT_CONST))
1357 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1358 WMULT_SHIFT/2);
1359 else
1360 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1362 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1365 static inline unsigned long
1366 calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
1368 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
1371 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1373 lw->weight += inc;
1374 lw->inv_weight = 0;
1377 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1379 lw->weight -= dec;
1380 lw->inv_weight = 0;
1384 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1385 * of tasks with abnormal "nice" values across CPUs the contribution that
1386 * each task makes to its run queue's load is weighted according to its
1387 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1388 * scaled version of the new time slice allocation that they receive on time
1389 * slice expiry etc.
1392 #define WEIGHT_IDLEPRIO 2
1393 #define WMULT_IDLEPRIO (1 << 31)
1396 * Nice levels are multiplicative, with a gentle 10% change for every
1397 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1398 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1399 * that remained on nice 0.
1401 * The "10% effect" is relative and cumulative: from _any_ nice level,
1402 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1403 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1404 * If a task goes up by ~10% and another task goes down by ~10% then
1405 * the relative distance between them is ~25%.)
1407 static const int prio_to_weight[40] = {
1408 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1409 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1410 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1411 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1412 /* 0 */ 1024, 820, 655, 526, 423,
1413 /* 5 */ 335, 272, 215, 172, 137,
1414 /* 10 */ 110, 87, 70, 56, 45,
1415 /* 15 */ 36, 29, 23, 18, 15,
1419 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1421 * In cases where the weight does not change often, we can use the
1422 * precalculated inverse to speed up arithmetics by turning divisions
1423 * into multiplications:
1425 static const u32 prio_to_wmult[40] = {
1426 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1427 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1428 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1429 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1430 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1431 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1432 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1433 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1436 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1439 * runqueue iterator, to support SMP load-balancing between different
1440 * scheduling classes, without having to expose their internal data
1441 * structures to the load-balancing proper:
1443 struct rq_iterator {
1444 void *arg;
1445 struct task_struct *(*start)(void *);
1446 struct task_struct *(*next)(void *);
1449 #ifdef CONFIG_SMP
1450 static unsigned long
1451 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1452 unsigned long max_load_move, struct sched_domain *sd,
1453 enum cpu_idle_type idle, int *all_pinned,
1454 int *this_best_prio, struct rq_iterator *iterator);
1456 static int
1457 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1458 struct sched_domain *sd, enum cpu_idle_type idle,
1459 struct rq_iterator *iterator);
1460 #endif
1462 #ifdef CONFIG_CGROUP_CPUACCT
1463 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1464 #else
1465 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1466 #endif
1468 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1470 update_load_add(&rq->load, load);
1473 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1475 update_load_sub(&rq->load, load);
1478 #ifdef CONFIG_SMP
1479 static unsigned long source_load(int cpu, int type);
1480 static unsigned long target_load(int cpu, int type);
1481 static unsigned long cpu_avg_load_per_task(int cpu);
1482 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1483 #else /* CONFIG_SMP */
1485 #ifdef CONFIG_FAIR_GROUP_SCHED
1486 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1489 #endif
1491 #endif /* CONFIG_SMP */
1493 #include "sched_stats.h"
1494 #include "sched_idletask.c"
1495 #include "sched_fair.c"
1496 #include "sched_rt.c"
1497 #ifdef CONFIG_SCHED_DEBUG
1498 # include "sched_debug.c"
1499 #endif
1501 #define sched_class_highest (&rt_sched_class)
1502 #define for_each_class(class) \
1503 for (class = sched_class_highest; class; class = class->next)
1505 static inline void inc_load(struct rq *rq, const struct task_struct *p)
1507 update_load_add(&rq->load, p->se.load.weight);
1510 static inline void dec_load(struct rq *rq, const struct task_struct *p)
1512 update_load_sub(&rq->load, p->se.load.weight);
1515 static void inc_nr_running(struct task_struct *p, struct rq *rq)
1517 rq->nr_running++;
1518 inc_load(rq, p);
1521 static void dec_nr_running(struct task_struct *p, struct rq *rq)
1523 rq->nr_running--;
1524 dec_load(rq, p);
1527 static void set_load_weight(struct task_struct *p)
1529 if (task_has_rt_policy(p)) {
1530 p->se.load.weight = prio_to_weight[0] * 2;
1531 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1532 return;
1536 * SCHED_IDLE tasks get minimal weight:
1538 if (p->policy == SCHED_IDLE) {
1539 p->se.load.weight = WEIGHT_IDLEPRIO;
1540 p->se.load.inv_weight = WMULT_IDLEPRIO;
1541 return;
1544 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1545 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1548 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1550 sched_info_queued(p);
1551 p->sched_class->enqueue_task(rq, p, wakeup);
1552 p->se.on_rq = 1;
1555 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1557 p->sched_class->dequeue_task(rq, p, sleep);
1558 p->se.on_rq = 0;
1562 * __normal_prio - return the priority that is based on the static prio
1564 static inline int __normal_prio(struct task_struct *p)
1566 return p->static_prio;
1570 * Calculate the expected normal priority: i.e. priority
1571 * without taking RT-inheritance into account. Might be
1572 * boosted by interactivity modifiers. Changes upon fork,
1573 * setprio syscalls, and whenever the interactivity
1574 * estimator recalculates.
1576 static inline int normal_prio(struct task_struct *p)
1578 int prio;
1580 if (task_has_rt_policy(p))
1581 prio = MAX_RT_PRIO-1 - p->rt_priority;
1582 else
1583 prio = __normal_prio(p);
1584 return prio;
1588 * Calculate the current priority, i.e. the priority
1589 * taken into account by the scheduler. This value might
1590 * be boosted by RT tasks, or might be boosted by
1591 * interactivity modifiers. Will be RT if the task got
1592 * RT-boosted. If not then it returns p->normal_prio.
1594 static int effective_prio(struct task_struct *p)
1596 p->normal_prio = normal_prio(p);
1598 * If we are RT tasks or we were boosted to RT priority,
1599 * keep the priority unchanged. Otherwise, update priority
1600 * to the normal priority:
1602 if (!rt_prio(p->prio))
1603 return p->normal_prio;
1604 return p->prio;
1608 * activate_task - move a task to the runqueue.
1610 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1612 if (task_contributes_to_load(p))
1613 rq->nr_uninterruptible--;
1615 enqueue_task(rq, p, wakeup);
1616 inc_nr_running(p, rq);
1620 * deactivate_task - remove a task from the runqueue.
1622 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1624 if (task_contributes_to_load(p))
1625 rq->nr_uninterruptible++;
1627 dequeue_task(rq, p, sleep);
1628 dec_nr_running(p, rq);
1632 * task_curr - is this task currently executing on a CPU?
1633 * @p: the task in question.
1635 inline int task_curr(const struct task_struct *p)
1637 return cpu_curr(task_cpu(p)) == p;
1640 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1642 set_task_rq(p, cpu);
1643 #ifdef CONFIG_SMP
1645 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1646 * successfuly executed on another CPU. We must ensure that updates of
1647 * per-task data have been completed by this moment.
1649 smp_wmb();
1650 task_thread_info(p)->cpu = cpu;
1651 #endif
1654 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1655 const struct sched_class *prev_class,
1656 int oldprio, int running)
1658 if (prev_class != p->sched_class) {
1659 if (prev_class->switched_from)
1660 prev_class->switched_from(rq, p, running);
1661 p->sched_class->switched_to(rq, p, running);
1662 } else
1663 p->sched_class->prio_changed(rq, p, oldprio, running);
1666 #ifdef CONFIG_SMP
1668 /* Used instead of source_load when we know the type == 0 */
1669 static unsigned long weighted_cpuload(const int cpu)
1671 return cpu_rq(cpu)->load.weight;
1675 * Is this task likely cache-hot:
1677 static int
1678 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1680 s64 delta;
1683 * Buddy candidates are cache hot:
1685 if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
1686 return 1;
1688 if (p->sched_class != &fair_sched_class)
1689 return 0;
1691 if (sysctl_sched_migration_cost == -1)
1692 return 1;
1693 if (sysctl_sched_migration_cost == 0)
1694 return 0;
1696 delta = now - p->se.exec_start;
1698 return delta < (s64)sysctl_sched_migration_cost;
1702 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1704 int old_cpu = task_cpu(p);
1705 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1706 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1707 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1708 u64 clock_offset;
1710 clock_offset = old_rq->clock - new_rq->clock;
1712 #ifdef CONFIG_SCHEDSTATS
1713 if (p->se.wait_start)
1714 p->se.wait_start -= clock_offset;
1715 if (p->se.sleep_start)
1716 p->se.sleep_start -= clock_offset;
1717 if (p->se.block_start)
1718 p->se.block_start -= clock_offset;
1719 if (old_cpu != new_cpu) {
1720 schedstat_inc(p, se.nr_migrations);
1721 if (task_hot(p, old_rq->clock, NULL))
1722 schedstat_inc(p, se.nr_forced2_migrations);
1724 #endif
1725 p->se.vruntime -= old_cfsrq->min_vruntime -
1726 new_cfsrq->min_vruntime;
1728 __set_task_cpu(p, new_cpu);
1731 struct migration_req {
1732 struct list_head list;
1734 struct task_struct *task;
1735 int dest_cpu;
1737 struct completion done;
1741 * The task's runqueue lock must be held.
1742 * Returns true if you have to wait for migration thread.
1744 static int
1745 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1747 struct rq *rq = task_rq(p);
1750 * If the task is not on a runqueue (and not running), then
1751 * it is sufficient to simply update the task's cpu field.
1753 if (!p->se.on_rq && !task_running(rq, p)) {
1754 set_task_cpu(p, dest_cpu);
1755 return 0;
1758 init_completion(&req->done);
1759 req->task = p;
1760 req->dest_cpu = dest_cpu;
1761 list_add(&req->list, &rq->migration_queue);
1763 return 1;
1767 * wait_task_inactive - wait for a thread to unschedule.
1769 * The caller must ensure that the task *will* unschedule sometime soon,
1770 * else this function might spin for a *long* time. This function can't
1771 * be called with interrupts off, or it may introduce deadlock with
1772 * smp_call_function() if an IPI is sent by the same process we are
1773 * waiting to become inactive.
1775 void wait_task_inactive(struct task_struct *p)
1777 unsigned long flags;
1778 int running, on_rq;
1779 struct rq *rq;
1781 for (;;) {
1783 * We do the initial early heuristics without holding
1784 * any task-queue locks at all. We'll only try to get
1785 * the runqueue lock when things look like they will
1786 * work out!
1788 rq = task_rq(p);
1791 * If the task is actively running on another CPU
1792 * still, just relax and busy-wait without holding
1793 * any locks.
1795 * NOTE! Since we don't hold any locks, it's not
1796 * even sure that "rq" stays as the right runqueue!
1797 * But we don't care, since "task_running()" will
1798 * return false if the runqueue has changed and p
1799 * is actually now running somewhere else!
1801 while (task_running(rq, p))
1802 cpu_relax();
1805 * Ok, time to look more closely! We need the rq
1806 * lock now, to be *sure*. If we're wrong, we'll
1807 * just go back and repeat.
1809 rq = task_rq_lock(p, &flags);
1810 running = task_running(rq, p);
1811 on_rq = p->se.on_rq;
1812 task_rq_unlock(rq, &flags);
1815 * Was it really running after all now that we
1816 * checked with the proper locks actually held?
1818 * Oops. Go back and try again..
1820 if (unlikely(running)) {
1821 cpu_relax();
1822 continue;
1826 * It's not enough that it's not actively running,
1827 * it must be off the runqueue _entirely_, and not
1828 * preempted!
1830 * So if it wa still runnable (but just not actively
1831 * running right now), it's preempted, and we should
1832 * yield - it could be a while.
1834 if (unlikely(on_rq)) {
1835 schedule_timeout_uninterruptible(1);
1836 continue;
1840 * Ahh, all good. It wasn't running, and it wasn't
1841 * runnable, which means that it will never become
1842 * running in the future either. We're all done!
1844 break;
1848 /***
1849 * kick_process - kick a running thread to enter/exit the kernel
1850 * @p: the to-be-kicked thread
1852 * Cause a process which is running on another CPU to enter
1853 * kernel-mode, without any delay. (to get signals handled.)
1855 * NOTE: this function doesnt have to take the runqueue lock,
1856 * because all it wants to ensure is that the remote task enters
1857 * the kernel. If the IPI races and the task has been migrated
1858 * to another CPU then no harm is done and the purpose has been
1859 * achieved as well.
1861 void kick_process(struct task_struct *p)
1863 int cpu;
1865 preempt_disable();
1866 cpu = task_cpu(p);
1867 if ((cpu != smp_processor_id()) && task_curr(p))
1868 smp_send_reschedule(cpu);
1869 preempt_enable();
1873 * Return a low guess at the load of a migration-source cpu weighted
1874 * according to the scheduling class and "nice" value.
1876 * We want to under-estimate the load of migration sources, to
1877 * balance conservatively.
1879 static unsigned long source_load(int cpu, int type)
1881 struct rq *rq = cpu_rq(cpu);
1882 unsigned long total = weighted_cpuload(cpu);
1884 if (type == 0)
1885 return total;
1887 return min(rq->cpu_load[type-1], total);
1891 * Return a high guess at the load of a migration-target cpu weighted
1892 * according to the scheduling class and "nice" value.
1894 static unsigned long target_load(int cpu, int type)
1896 struct rq *rq = cpu_rq(cpu);
1897 unsigned long total = weighted_cpuload(cpu);
1899 if (type == 0)
1900 return total;
1902 return max(rq->cpu_load[type-1], total);
1906 * Return the average load per task on the cpu's run queue
1908 static unsigned long cpu_avg_load_per_task(int cpu)
1910 struct rq *rq = cpu_rq(cpu);
1911 unsigned long total = weighted_cpuload(cpu);
1912 unsigned long n = rq->nr_running;
1914 return n ? total / n : SCHED_LOAD_SCALE;
1918 * find_idlest_group finds and returns the least busy CPU group within the
1919 * domain.
1921 static struct sched_group *
1922 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1924 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1925 unsigned long min_load = ULONG_MAX, this_load = 0;
1926 int load_idx = sd->forkexec_idx;
1927 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1929 do {
1930 unsigned long load, avg_load;
1931 int local_group;
1932 int i;
1934 /* Skip over this group if it has no CPUs allowed */
1935 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1936 continue;
1938 local_group = cpu_isset(this_cpu, group->cpumask);
1940 /* Tally up the load of all CPUs in the group */
1941 avg_load = 0;
1943 for_each_cpu_mask(i, group->cpumask) {
1944 /* Bias balancing toward cpus of our domain */
1945 if (local_group)
1946 load = source_load(i, load_idx);
1947 else
1948 load = target_load(i, load_idx);
1950 avg_load += load;
1953 /* Adjust by relative CPU power of the group */
1954 avg_load = sg_div_cpu_power(group,
1955 avg_load * SCHED_LOAD_SCALE);
1957 if (local_group) {
1958 this_load = avg_load;
1959 this = group;
1960 } else if (avg_load < min_load) {
1961 min_load = avg_load;
1962 idlest = group;
1964 } while (group = group->next, group != sd->groups);
1966 if (!idlest || 100*this_load < imbalance*min_load)
1967 return NULL;
1968 return idlest;
1972 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1974 static int
1975 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
1976 cpumask_t *tmp)
1978 unsigned long load, min_load = ULONG_MAX;
1979 int idlest = -1;
1980 int i;
1982 /* Traverse only the allowed CPUs */
1983 cpus_and(*tmp, group->cpumask, p->cpus_allowed);
1985 for_each_cpu_mask(i, *tmp) {
1986 load = weighted_cpuload(i);
1988 if (load < min_load || (load == min_load && i == this_cpu)) {
1989 min_load = load;
1990 idlest = i;
1994 return idlest;
1998 * sched_balance_self: balance the current task (running on cpu) in domains
1999 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2000 * SD_BALANCE_EXEC.
2002 * Balance, ie. select the least loaded group.
2004 * Returns the target CPU number, or the same CPU if no balancing is needed.
2006 * preempt must be disabled.
2008 static int sched_balance_self(int cpu, int flag)
2010 struct task_struct *t = current;
2011 struct sched_domain *tmp, *sd = NULL;
2013 for_each_domain(cpu, tmp) {
2015 * If power savings logic is enabled for a domain, stop there.
2017 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2018 break;
2019 if (tmp->flags & flag)
2020 sd = tmp;
2023 while (sd) {
2024 cpumask_t span, tmpmask;
2025 struct sched_group *group;
2026 int new_cpu, weight;
2028 if (!(sd->flags & flag)) {
2029 sd = sd->child;
2030 continue;
2033 span = sd->span;
2034 group = find_idlest_group(sd, t, cpu);
2035 if (!group) {
2036 sd = sd->child;
2037 continue;
2040 new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
2041 if (new_cpu == -1 || new_cpu == cpu) {
2042 /* Now try balancing at a lower domain level of cpu */
2043 sd = sd->child;
2044 continue;
2047 /* Now try balancing at a lower domain level of new_cpu */
2048 cpu = new_cpu;
2049 sd = NULL;
2050 weight = cpus_weight(span);
2051 for_each_domain(cpu, tmp) {
2052 if (weight <= cpus_weight(tmp->span))
2053 break;
2054 if (tmp->flags & flag)
2055 sd = tmp;
2057 /* while loop will break here if sd == NULL */
2060 return cpu;
2063 #endif /* CONFIG_SMP */
2065 /***
2066 * try_to_wake_up - wake up a thread
2067 * @p: the to-be-woken-up thread
2068 * @state: the mask of task states that can be woken
2069 * @sync: do a synchronous wakeup?
2071 * Put it on the run-queue if it's not already there. The "current"
2072 * thread is always on the run-queue (except when the actual
2073 * re-schedule is in progress), and as such you're allowed to do
2074 * the simpler "current->state = TASK_RUNNING" to mark yourself
2075 * runnable without the overhead of this.
2077 * returns failure only if the task is already active.
2079 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
2081 int cpu, orig_cpu, this_cpu, success = 0;
2082 unsigned long flags;
2083 long old_state;
2084 struct rq *rq;
2086 if (!sched_feat(SYNC_WAKEUPS))
2087 sync = 0;
2089 smp_wmb();
2090 rq = task_rq_lock(p, &flags);
2091 old_state = p->state;
2092 if (!(old_state & state))
2093 goto out;
2095 if (p->se.on_rq)
2096 goto out_running;
2098 cpu = task_cpu(p);
2099 orig_cpu = cpu;
2100 this_cpu = smp_processor_id();
2102 #ifdef CONFIG_SMP
2103 if (unlikely(task_running(rq, p)))
2104 goto out_activate;
2106 cpu = p->sched_class->select_task_rq(p, sync);
2107 if (cpu != orig_cpu) {
2108 set_task_cpu(p, cpu);
2109 task_rq_unlock(rq, &flags);
2110 /* might preempt at this point */
2111 rq = task_rq_lock(p, &flags);
2112 old_state = p->state;
2113 if (!(old_state & state))
2114 goto out;
2115 if (p->se.on_rq)
2116 goto out_running;
2118 this_cpu = smp_processor_id();
2119 cpu = task_cpu(p);
2122 #ifdef CONFIG_SCHEDSTATS
2123 schedstat_inc(rq, ttwu_count);
2124 if (cpu == this_cpu)
2125 schedstat_inc(rq, ttwu_local);
2126 else {
2127 struct sched_domain *sd;
2128 for_each_domain(this_cpu, sd) {
2129 if (cpu_isset(cpu, sd->span)) {
2130 schedstat_inc(sd, ttwu_wake_remote);
2131 break;
2135 #endif /* CONFIG_SCHEDSTATS */
2137 out_activate:
2138 #endif /* CONFIG_SMP */
2139 schedstat_inc(p, se.nr_wakeups);
2140 if (sync)
2141 schedstat_inc(p, se.nr_wakeups_sync);
2142 if (orig_cpu != cpu)
2143 schedstat_inc(p, se.nr_wakeups_migrate);
2144 if (cpu == this_cpu)
2145 schedstat_inc(p, se.nr_wakeups_local);
2146 else
2147 schedstat_inc(p, se.nr_wakeups_remote);
2148 update_rq_clock(rq);
2149 activate_task(rq, p, 1);
2150 success = 1;
2152 out_running:
2153 check_preempt_curr(rq, p);
2155 p->state = TASK_RUNNING;
2156 #ifdef CONFIG_SMP
2157 if (p->sched_class->task_wake_up)
2158 p->sched_class->task_wake_up(rq, p);
2159 #endif
2160 out:
2161 task_rq_unlock(rq, &flags);
2163 return success;
2166 int wake_up_process(struct task_struct *p)
2168 return try_to_wake_up(p, TASK_ALL, 0);
2170 EXPORT_SYMBOL(wake_up_process);
2172 int wake_up_state(struct task_struct *p, unsigned int state)
2174 return try_to_wake_up(p, state, 0);
2178 * Perform scheduler related setup for a newly forked process p.
2179 * p is forked by current.
2181 * __sched_fork() is basic setup used by init_idle() too:
2183 static void __sched_fork(struct task_struct *p)
2185 p->se.exec_start = 0;
2186 p->se.sum_exec_runtime = 0;
2187 p->se.prev_sum_exec_runtime = 0;
2188 p->se.last_wakeup = 0;
2189 p->se.avg_overlap = 0;
2191 #ifdef CONFIG_SCHEDSTATS
2192 p->se.wait_start = 0;
2193 p->se.sum_sleep_runtime = 0;
2194 p->se.sleep_start = 0;
2195 p->se.block_start = 0;
2196 p->se.sleep_max = 0;
2197 p->se.block_max = 0;
2198 p->se.exec_max = 0;
2199 p->se.slice_max = 0;
2200 p->se.wait_max = 0;
2201 #endif
2203 INIT_LIST_HEAD(&p->rt.run_list);
2204 p->se.on_rq = 0;
2205 INIT_LIST_HEAD(&p->se.group_node);
2207 #ifdef CONFIG_PREEMPT_NOTIFIERS
2208 INIT_HLIST_HEAD(&p->preempt_notifiers);
2209 #endif
2212 * We mark the process as running here, but have not actually
2213 * inserted it onto the runqueue yet. This guarantees that
2214 * nobody will actually run it, and a signal or other external
2215 * event cannot wake it up and insert it on the runqueue either.
2217 p->state = TASK_RUNNING;
2221 * fork()/clone()-time setup:
2223 void sched_fork(struct task_struct *p, int clone_flags)
2225 int cpu = get_cpu();
2227 __sched_fork(p);
2229 #ifdef CONFIG_SMP
2230 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2231 #endif
2232 set_task_cpu(p, cpu);
2235 * Make sure we do not leak PI boosting priority to the child:
2237 p->prio = current->normal_prio;
2238 if (!rt_prio(p->prio))
2239 p->sched_class = &fair_sched_class;
2241 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2242 if (likely(sched_info_on()))
2243 memset(&p->sched_info, 0, sizeof(p->sched_info));
2244 #endif
2245 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2246 p->oncpu = 0;
2247 #endif
2248 #ifdef CONFIG_PREEMPT
2249 /* Want to start with kernel preemption disabled. */
2250 task_thread_info(p)->preempt_count = 1;
2251 #endif
2252 put_cpu();
2256 * wake_up_new_task - wake up a newly created task for the first time.
2258 * This function will do some initial scheduler statistics housekeeping
2259 * that must be done for every newly created context, then puts the task
2260 * on the runqueue and wakes it.
2262 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2264 unsigned long flags;
2265 struct rq *rq;
2267 rq = task_rq_lock(p, &flags);
2268 BUG_ON(p->state != TASK_RUNNING);
2269 update_rq_clock(rq);
2271 p->prio = effective_prio(p);
2273 if (!p->sched_class->task_new || !current->se.on_rq) {
2274 activate_task(rq, p, 0);
2275 } else {
2277 * Let the scheduling class do new task startup
2278 * management (if any):
2280 p->sched_class->task_new(rq, p);
2281 inc_nr_running(p, rq);
2283 check_preempt_curr(rq, p);
2284 #ifdef CONFIG_SMP
2285 if (p->sched_class->task_wake_up)
2286 p->sched_class->task_wake_up(rq, p);
2287 #endif
2288 task_rq_unlock(rq, &flags);
2291 #ifdef CONFIG_PREEMPT_NOTIFIERS
2294 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2295 * @notifier: notifier struct to register
2297 void preempt_notifier_register(struct preempt_notifier *notifier)
2299 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2301 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2304 * preempt_notifier_unregister - no longer interested in preemption notifications
2305 * @notifier: notifier struct to unregister
2307 * This is safe to call from within a preemption notifier.
2309 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2311 hlist_del(&notifier->link);
2313 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2315 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2317 struct preempt_notifier *notifier;
2318 struct hlist_node *node;
2320 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2321 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2324 static void
2325 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2326 struct task_struct *next)
2328 struct preempt_notifier *notifier;
2329 struct hlist_node *node;
2331 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2332 notifier->ops->sched_out(notifier, next);
2335 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2337 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2341 static void
2342 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2343 struct task_struct *next)
2347 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2350 * prepare_task_switch - prepare to switch tasks
2351 * @rq: the runqueue preparing to switch
2352 * @prev: the current task that is being switched out
2353 * @next: the task we are going to switch to.
2355 * This is called with the rq lock held and interrupts off. It must
2356 * be paired with a subsequent finish_task_switch after the context
2357 * switch.
2359 * prepare_task_switch sets up locking and calls architecture specific
2360 * hooks.
2362 static inline void
2363 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2364 struct task_struct *next)
2366 fire_sched_out_preempt_notifiers(prev, next);
2367 prepare_lock_switch(rq, next);
2368 prepare_arch_switch(next);
2372 * finish_task_switch - clean up after a task-switch
2373 * @rq: runqueue associated with task-switch
2374 * @prev: the thread we just switched away from.
2376 * finish_task_switch must be called after the context switch, paired
2377 * with a prepare_task_switch call before the context switch.
2378 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2379 * and do any other architecture-specific cleanup actions.
2381 * Note that we may have delayed dropping an mm in context_switch(). If
2382 * so, we finish that here outside of the runqueue lock. (Doing it
2383 * with the lock held can cause deadlocks; see schedule() for
2384 * details.)
2386 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2387 __releases(rq->lock)
2389 struct mm_struct *mm = rq->prev_mm;
2390 long prev_state;
2392 rq->prev_mm = NULL;
2395 * A task struct has one reference for the use as "current".
2396 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2397 * schedule one last time. The schedule call will never return, and
2398 * the scheduled task must drop that reference.
2399 * The test for TASK_DEAD must occur while the runqueue locks are
2400 * still held, otherwise prev could be scheduled on another cpu, die
2401 * there before we look at prev->state, and then the reference would
2402 * be dropped twice.
2403 * Manfred Spraul <manfred@colorfullife.com>
2405 prev_state = prev->state;
2406 finish_arch_switch(prev);
2407 finish_lock_switch(rq, prev);
2408 #ifdef CONFIG_SMP
2409 if (current->sched_class->post_schedule)
2410 current->sched_class->post_schedule(rq);
2411 #endif
2413 fire_sched_in_preempt_notifiers(current);
2414 if (mm)
2415 mmdrop(mm);
2416 if (unlikely(prev_state == TASK_DEAD)) {
2418 * Remove function-return probe instances associated with this
2419 * task and put them back on the free list.
2421 kprobe_flush_task(prev);
2422 put_task_struct(prev);
2427 * schedule_tail - first thing a freshly forked thread must call.
2428 * @prev: the thread we just switched away from.
2430 asmlinkage void schedule_tail(struct task_struct *prev)
2431 __releases(rq->lock)
2433 struct rq *rq = this_rq();
2435 finish_task_switch(rq, prev);
2436 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2437 /* In this case, finish_task_switch does not reenable preemption */
2438 preempt_enable();
2439 #endif
2440 if (current->set_child_tid)
2441 put_user(task_pid_vnr(current), current->set_child_tid);
2445 * context_switch - switch to the new MM and the new
2446 * thread's register state.
2448 static inline void
2449 context_switch(struct rq *rq, struct task_struct *prev,
2450 struct task_struct *next)
2452 struct mm_struct *mm, *oldmm;
2454 prepare_task_switch(rq, prev, next);
2455 mm = next->mm;
2456 oldmm = prev->active_mm;
2458 * For paravirt, this is coupled with an exit in switch_to to
2459 * combine the page table reload and the switch backend into
2460 * one hypercall.
2462 arch_enter_lazy_cpu_mode();
2464 if (unlikely(!mm)) {
2465 next->active_mm = oldmm;
2466 atomic_inc(&oldmm->mm_count);
2467 enter_lazy_tlb(oldmm, next);
2468 } else
2469 switch_mm(oldmm, mm, next);
2471 if (unlikely(!prev->mm)) {
2472 prev->active_mm = NULL;
2473 rq->prev_mm = oldmm;
2476 * Since the runqueue lock will be released by the next
2477 * task (which is an invalid locking op but in the case
2478 * of the scheduler it's an obvious special-case), so we
2479 * do an early lockdep release here:
2481 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2482 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2483 #endif
2485 /* Here we just switch the register state and the stack. */
2486 switch_to(prev, next, prev);
2488 barrier();
2490 * this_rq must be evaluated again because prev may have moved
2491 * CPUs since it called schedule(), thus the 'rq' on its stack
2492 * frame will be invalid.
2494 finish_task_switch(this_rq(), prev);
2498 * nr_running, nr_uninterruptible and nr_context_switches:
2500 * externally visible scheduler statistics: current number of runnable
2501 * threads, current number of uninterruptible-sleeping threads, total
2502 * number of context switches performed since bootup.
2504 unsigned long nr_running(void)
2506 unsigned long i, sum = 0;
2508 for_each_online_cpu(i)
2509 sum += cpu_rq(i)->nr_running;
2511 return sum;
2514 unsigned long nr_uninterruptible(void)
2516 unsigned long i, sum = 0;
2518 for_each_possible_cpu(i)
2519 sum += cpu_rq(i)->nr_uninterruptible;
2522 * Since we read the counters lockless, it might be slightly
2523 * inaccurate. Do not allow it to go below zero though:
2525 if (unlikely((long)sum < 0))
2526 sum = 0;
2528 return sum;
2531 unsigned long long nr_context_switches(void)
2533 int i;
2534 unsigned long long sum = 0;
2536 for_each_possible_cpu(i)
2537 sum += cpu_rq(i)->nr_switches;
2539 return sum;
2542 unsigned long nr_iowait(void)
2544 unsigned long i, sum = 0;
2546 for_each_possible_cpu(i)
2547 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2549 return sum;
2552 unsigned long nr_active(void)
2554 unsigned long i, running = 0, uninterruptible = 0;
2556 for_each_online_cpu(i) {
2557 running += cpu_rq(i)->nr_running;
2558 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2561 if (unlikely((long)uninterruptible < 0))
2562 uninterruptible = 0;
2564 return running + uninterruptible;
2568 * Update rq->cpu_load[] statistics. This function is usually called every
2569 * scheduler tick (TICK_NSEC).
2571 static void update_cpu_load(struct rq *this_rq)
2573 unsigned long this_load = this_rq->load.weight;
2574 int i, scale;
2576 this_rq->nr_load_updates++;
2578 /* Update our load: */
2579 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2580 unsigned long old_load, new_load;
2582 /* scale is effectively 1 << i now, and >> i divides by scale */
2584 old_load = this_rq->cpu_load[i];
2585 new_load = this_load;
2587 * Round up the averaging division if load is increasing. This
2588 * prevents us from getting stuck on 9 if the load is 10, for
2589 * example.
2591 if (new_load > old_load)
2592 new_load += scale-1;
2593 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2597 #ifdef CONFIG_SMP
2600 * double_rq_lock - safely lock two runqueues
2602 * Note this does not disable interrupts like task_rq_lock,
2603 * you need to do so manually before calling.
2605 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2606 __acquires(rq1->lock)
2607 __acquires(rq2->lock)
2609 BUG_ON(!irqs_disabled());
2610 if (rq1 == rq2) {
2611 spin_lock(&rq1->lock);
2612 __acquire(rq2->lock); /* Fake it out ;) */
2613 } else {
2614 if (rq1 < rq2) {
2615 spin_lock(&rq1->lock);
2616 spin_lock(&rq2->lock);
2617 } else {
2618 spin_lock(&rq2->lock);
2619 spin_lock(&rq1->lock);
2622 update_rq_clock(rq1);
2623 update_rq_clock(rq2);
2627 * double_rq_unlock - safely unlock two runqueues
2629 * Note this does not restore interrupts like task_rq_unlock,
2630 * you need to do so manually after calling.
2632 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2633 __releases(rq1->lock)
2634 __releases(rq2->lock)
2636 spin_unlock(&rq1->lock);
2637 if (rq1 != rq2)
2638 spin_unlock(&rq2->lock);
2639 else
2640 __release(rq2->lock);
2644 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2646 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2647 __releases(this_rq->lock)
2648 __acquires(busiest->lock)
2649 __acquires(this_rq->lock)
2651 int ret = 0;
2653 if (unlikely(!irqs_disabled())) {
2654 /* printk() doesn't work good under rq->lock */
2655 spin_unlock(&this_rq->lock);
2656 BUG_ON(1);
2658 if (unlikely(!spin_trylock(&busiest->lock))) {
2659 if (busiest < this_rq) {
2660 spin_unlock(&this_rq->lock);
2661 spin_lock(&busiest->lock);
2662 spin_lock(&this_rq->lock);
2663 ret = 1;
2664 } else
2665 spin_lock(&busiest->lock);
2667 return ret;
2671 * If dest_cpu is allowed for this process, migrate the task to it.
2672 * This is accomplished by forcing the cpu_allowed mask to only
2673 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2674 * the cpu_allowed mask is restored.
2676 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2678 struct migration_req req;
2679 unsigned long flags;
2680 struct rq *rq;
2682 rq = task_rq_lock(p, &flags);
2683 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2684 || unlikely(cpu_is_offline(dest_cpu)))
2685 goto out;
2687 /* force the process onto the specified CPU */
2688 if (migrate_task(p, dest_cpu, &req)) {
2689 /* Need to wait for migration thread (might exit: take ref). */
2690 struct task_struct *mt = rq->migration_thread;
2692 get_task_struct(mt);
2693 task_rq_unlock(rq, &flags);
2694 wake_up_process(mt);
2695 put_task_struct(mt);
2696 wait_for_completion(&req.done);
2698 return;
2700 out:
2701 task_rq_unlock(rq, &flags);
2705 * sched_exec - execve() is a valuable balancing opportunity, because at
2706 * this point the task has the smallest effective memory and cache footprint.
2708 void sched_exec(void)
2710 int new_cpu, this_cpu = get_cpu();
2711 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2712 put_cpu();
2713 if (new_cpu != this_cpu)
2714 sched_migrate_task(current, new_cpu);
2718 * pull_task - move a task from a remote runqueue to the local runqueue.
2719 * Both runqueues must be locked.
2721 static void pull_task(struct rq *src_rq, struct task_struct *p,
2722 struct rq *this_rq, int this_cpu)
2724 deactivate_task(src_rq, p, 0);
2725 set_task_cpu(p, this_cpu);
2726 activate_task(this_rq, p, 0);
2728 * Note that idle threads have a prio of MAX_PRIO, for this test
2729 * to be always true for them.
2731 check_preempt_curr(this_rq, p);
2735 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2737 static
2738 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2739 struct sched_domain *sd, enum cpu_idle_type idle,
2740 int *all_pinned)
2743 * We do not migrate tasks that are:
2744 * 1) running (obviously), or
2745 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2746 * 3) are cache-hot on their current CPU.
2748 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2749 schedstat_inc(p, se.nr_failed_migrations_affine);
2750 return 0;
2752 *all_pinned = 0;
2754 if (task_running(rq, p)) {
2755 schedstat_inc(p, se.nr_failed_migrations_running);
2756 return 0;
2760 * Aggressive migration if:
2761 * 1) task is cache cold, or
2762 * 2) too many balance attempts have failed.
2765 if (!task_hot(p, rq->clock, sd) ||
2766 sd->nr_balance_failed > sd->cache_nice_tries) {
2767 #ifdef CONFIG_SCHEDSTATS
2768 if (task_hot(p, rq->clock, sd)) {
2769 schedstat_inc(sd, lb_hot_gained[idle]);
2770 schedstat_inc(p, se.nr_forced_migrations);
2772 #endif
2773 return 1;
2776 if (task_hot(p, rq->clock, sd)) {
2777 schedstat_inc(p, se.nr_failed_migrations_hot);
2778 return 0;
2780 return 1;
2783 static unsigned long
2784 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2785 unsigned long max_load_move, struct sched_domain *sd,
2786 enum cpu_idle_type idle, int *all_pinned,
2787 int *this_best_prio, struct rq_iterator *iterator)
2789 int loops = 0, pulled = 0, pinned = 0, skip_for_load;
2790 struct task_struct *p;
2791 long rem_load_move = max_load_move;
2793 if (max_load_move == 0)
2794 goto out;
2796 pinned = 1;
2799 * Start the load-balancing iterator:
2801 p = iterator->start(iterator->arg);
2802 next:
2803 if (!p || loops++ > sysctl_sched_nr_migrate)
2804 goto out;
2806 * To help distribute high priority tasks across CPUs we don't
2807 * skip a task if it will be the highest priority task (i.e. smallest
2808 * prio value) on its new queue regardless of its load weight
2810 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2811 SCHED_LOAD_SCALE_FUZZ;
2812 if ((skip_for_load && p->prio >= *this_best_prio) ||
2813 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2814 p = iterator->next(iterator->arg);
2815 goto next;
2818 pull_task(busiest, p, this_rq, this_cpu);
2819 pulled++;
2820 rem_load_move -= p->se.load.weight;
2823 * We only want to steal up to the prescribed amount of weighted load.
2825 if (rem_load_move > 0) {
2826 if (p->prio < *this_best_prio)
2827 *this_best_prio = p->prio;
2828 p = iterator->next(iterator->arg);
2829 goto next;
2831 out:
2833 * Right now, this is one of only two places pull_task() is called,
2834 * so we can safely collect pull_task() stats here rather than
2835 * inside pull_task().
2837 schedstat_add(sd, lb_gained[idle], pulled);
2839 if (all_pinned)
2840 *all_pinned = pinned;
2842 return max_load_move - rem_load_move;
2846 * move_tasks tries to move up to max_load_move weighted load from busiest to
2847 * this_rq, as part of a balancing operation within domain "sd".
2848 * Returns 1 if successful and 0 otherwise.
2850 * Called with both runqueues locked.
2852 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2853 unsigned long max_load_move,
2854 struct sched_domain *sd, enum cpu_idle_type idle,
2855 int *all_pinned)
2857 const struct sched_class *class = sched_class_highest;
2858 unsigned long total_load_moved = 0;
2859 int this_best_prio = this_rq->curr->prio;
2861 do {
2862 total_load_moved +=
2863 class->load_balance(this_rq, this_cpu, busiest,
2864 max_load_move - total_load_moved,
2865 sd, idle, all_pinned, &this_best_prio);
2866 class = class->next;
2867 } while (class && max_load_move > total_load_moved);
2869 return total_load_moved > 0;
2872 static int
2873 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2874 struct sched_domain *sd, enum cpu_idle_type idle,
2875 struct rq_iterator *iterator)
2877 struct task_struct *p = iterator->start(iterator->arg);
2878 int pinned = 0;
2880 while (p) {
2881 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2882 pull_task(busiest, p, this_rq, this_cpu);
2884 * Right now, this is only the second place pull_task()
2885 * is called, so we can safely collect pull_task()
2886 * stats here rather than inside pull_task().
2888 schedstat_inc(sd, lb_gained[idle]);
2890 return 1;
2892 p = iterator->next(iterator->arg);
2895 return 0;
2899 * move_one_task tries to move exactly one task from busiest to this_rq, as
2900 * part of active balancing operations within "domain".
2901 * Returns 1 if successful and 0 otherwise.
2903 * Called with both runqueues locked.
2905 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2906 struct sched_domain *sd, enum cpu_idle_type idle)
2908 const struct sched_class *class;
2910 for (class = sched_class_highest; class; class = class->next)
2911 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
2912 return 1;
2914 return 0;
2918 * find_busiest_group finds and returns the busiest CPU group within the
2919 * domain. It calculates and returns the amount of weighted load which
2920 * should be moved to restore balance via the imbalance parameter.
2922 static struct sched_group *
2923 find_busiest_group(struct sched_domain *sd, int this_cpu,
2924 unsigned long *imbalance, enum cpu_idle_type idle,
2925 int *sd_idle, const cpumask_t *cpus, int *balance)
2927 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2928 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2929 unsigned long max_pull;
2930 unsigned long busiest_load_per_task, busiest_nr_running;
2931 unsigned long this_load_per_task, this_nr_running;
2932 int load_idx, group_imb = 0;
2933 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2934 int power_savings_balance = 1;
2935 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2936 unsigned long min_nr_running = ULONG_MAX;
2937 struct sched_group *group_min = NULL, *group_leader = NULL;
2938 #endif
2940 max_load = this_load = total_load = total_pwr = 0;
2941 busiest_load_per_task = busiest_nr_running = 0;
2942 this_load_per_task = this_nr_running = 0;
2943 if (idle == CPU_NOT_IDLE)
2944 load_idx = sd->busy_idx;
2945 else if (idle == CPU_NEWLY_IDLE)
2946 load_idx = sd->newidle_idx;
2947 else
2948 load_idx = sd->idle_idx;
2950 do {
2951 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
2952 int local_group;
2953 int i;
2954 int __group_imb = 0;
2955 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2956 unsigned long sum_nr_running, sum_weighted_load;
2958 local_group = cpu_isset(this_cpu, group->cpumask);
2960 if (local_group)
2961 balance_cpu = first_cpu(group->cpumask);
2963 /* Tally up the load of all CPUs in the group */
2964 sum_weighted_load = sum_nr_running = avg_load = 0;
2965 max_cpu_load = 0;
2966 min_cpu_load = ~0UL;
2968 for_each_cpu_mask(i, group->cpumask) {
2969 struct rq *rq;
2971 if (!cpu_isset(i, *cpus))
2972 continue;
2974 rq = cpu_rq(i);
2976 if (*sd_idle && rq->nr_running)
2977 *sd_idle = 0;
2979 /* Bias balancing toward cpus of our domain */
2980 if (local_group) {
2981 if (idle_cpu(i) && !first_idle_cpu) {
2982 first_idle_cpu = 1;
2983 balance_cpu = i;
2986 load = target_load(i, load_idx);
2987 } else {
2988 load = source_load(i, load_idx);
2989 if (load > max_cpu_load)
2990 max_cpu_load = load;
2991 if (min_cpu_load > load)
2992 min_cpu_load = load;
2995 avg_load += load;
2996 sum_nr_running += rq->nr_running;
2997 sum_weighted_load += weighted_cpuload(i);
3001 * First idle cpu or the first cpu(busiest) in this sched group
3002 * is eligible for doing load balancing at this and above
3003 * domains. In the newly idle case, we will allow all the cpu's
3004 * to do the newly idle load balance.
3006 if (idle != CPU_NEWLY_IDLE && local_group &&
3007 balance_cpu != this_cpu && balance) {
3008 *balance = 0;
3009 goto ret;
3012 total_load += avg_load;
3013 total_pwr += group->__cpu_power;
3015 /* Adjust by relative CPU power of the group */
3016 avg_load = sg_div_cpu_power(group,
3017 avg_load * SCHED_LOAD_SCALE);
3019 if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
3020 __group_imb = 1;
3022 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3024 if (local_group) {
3025 this_load = avg_load;
3026 this = group;
3027 this_nr_running = sum_nr_running;
3028 this_load_per_task = sum_weighted_load;
3029 } else if (avg_load > max_load &&
3030 (sum_nr_running > group_capacity || __group_imb)) {
3031 max_load = avg_load;
3032 busiest = group;
3033 busiest_nr_running = sum_nr_running;
3034 busiest_load_per_task = sum_weighted_load;
3035 group_imb = __group_imb;
3038 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3040 * Busy processors will not participate in power savings
3041 * balance.
3043 if (idle == CPU_NOT_IDLE ||
3044 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3045 goto group_next;
3048 * If the local group is idle or completely loaded
3049 * no need to do power savings balance at this domain
3051 if (local_group && (this_nr_running >= group_capacity ||
3052 !this_nr_running))
3053 power_savings_balance = 0;
3056 * If a group is already running at full capacity or idle,
3057 * don't include that group in power savings calculations
3059 if (!power_savings_balance || sum_nr_running >= group_capacity
3060 || !sum_nr_running)
3061 goto group_next;
3064 * Calculate the group which has the least non-idle load.
3065 * This is the group from where we need to pick up the load
3066 * for saving power
3068 if ((sum_nr_running < min_nr_running) ||
3069 (sum_nr_running == min_nr_running &&
3070 first_cpu(group->cpumask) <
3071 first_cpu(group_min->cpumask))) {
3072 group_min = group;
3073 min_nr_running = sum_nr_running;
3074 min_load_per_task = sum_weighted_load /
3075 sum_nr_running;
3079 * Calculate the group which is almost near its
3080 * capacity but still has some space to pick up some load
3081 * from other group and save more power
3083 if (sum_nr_running <= group_capacity - 1) {
3084 if (sum_nr_running > leader_nr_running ||
3085 (sum_nr_running == leader_nr_running &&
3086 first_cpu(group->cpumask) >
3087 first_cpu(group_leader->cpumask))) {
3088 group_leader = group;
3089 leader_nr_running = sum_nr_running;
3092 group_next:
3093 #endif
3094 group = group->next;
3095 } while (group != sd->groups);
3097 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
3098 goto out_balanced;
3100 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3102 if (this_load >= avg_load ||
3103 100*max_load <= sd->imbalance_pct*this_load)
3104 goto out_balanced;
3106 busiest_load_per_task /= busiest_nr_running;
3107 if (group_imb)
3108 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3111 * We're trying to get all the cpus to the average_load, so we don't
3112 * want to push ourselves above the average load, nor do we wish to
3113 * reduce the max loaded cpu below the average load, as either of these
3114 * actions would just result in more rebalancing later, and ping-pong
3115 * tasks around. Thus we look for the minimum possible imbalance.
3116 * Negative imbalances (*we* are more loaded than anyone else) will
3117 * be counted as no imbalance for these purposes -- we can't fix that
3118 * by pulling tasks to us. Be careful of negative numbers as they'll
3119 * appear as very large values with unsigned longs.
3121 if (max_load <= busiest_load_per_task)
3122 goto out_balanced;
3125 * In the presence of smp nice balancing, certain scenarios can have
3126 * max load less than avg load(as we skip the groups at or below
3127 * its cpu_power, while calculating max_load..)
3129 if (max_load < avg_load) {
3130 *imbalance = 0;
3131 goto small_imbalance;
3134 /* Don't want to pull so many tasks that a group would go idle */
3135 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3137 /* How much load to actually move to equalise the imbalance */
3138 *imbalance = min(max_pull * busiest->__cpu_power,
3139 (avg_load - this_load) * this->__cpu_power)
3140 / SCHED_LOAD_SCALE;
3143 * if *imbalance is less than the average load per runnable task
3144 * there is no gaurantee that any tasks will be moved so we'll have
3145 * a think about bumping its value to force at least one task to be
3146 * moved
3148 if (*imbalance < busiest_load_per_task) {
3149 unsigned long tmp, pwr_now, pwr_move;
3150 unsigned int imbn;
3152 small_imbalance:
3153 pwr_move = pwr_now = 0;
3154 imbn = 2;
3155 if (this_nr_running) {
3156 this_load_per_task /= this_nr_running;
3157 if (busiest_load_per_task > this_load_per_task)
3158 imbn = 1;
3159 } else
3160 this_load_per_task = SCHED_LOAD_SCALE;
3162 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
3163 busiest_load_per_task * imbn) {
3164 *imbalance = busiest_load_per_task;
3165 return busiest;
3169 * OK, we don't have enough imbalance to justify moving tasks,
3170 * however we may be able to increase total CPU power used by
3171 * moving them.
3174 pwr_now += busiest->__cpu_power *
3175 min(busiest_load_per_task, max_load);
3176 pwr_now += this->__cpu_power *
3177 min(this_load_per_task, this_load);
3178 pwr_now /= SCHED_LOAD_SCALE;
3180 /* Amount of load we'd subtract */
3181 tmp = sg_div_cpu_power(busiest,
3182 busiest_load_per_task * SCHED_LOAD_SCALE);
3183 if (max_load > tmp)
3184 pwr_move += busiest->__cpu_power *
3185 min(busiest_load_per_task, max_load - tmp);
3187 /* Amount of load we'd add */
3188 if (max_load * busiest->__cpu_power <
3189 busiest_load_per_task * SCHED_LOAD_SCALE)
3190 tmp = sg_div_cpu_power(this,
3191 max_load * busiest->__cpu_power);
3192 else
3193 tmp = sg_div_cpu_power(this,
3194 busiest_load_per_task * SCHED_LOAD_SCALE);
3195 pwr_move += this->__cpu_power *
3196 min(this_load_per_task, this_load + tmp);
3197 pwr_move /= SCHED_LOAD_SCALE;
3199 /* Move if we gain throughput */
3200 if (pwr_move > pwr_now)
3201 *imbalance = busiest_load_per_task;
3204 return busiest;
3206 out_balanced:
3207 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3208 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3209 goto ret;
3211 if (this == group_leader && group_leader != group_min) {
3212 *imbalance = min_load_per_task;
3213 return group_min;
3215 #endif
3216 ret:
3217 *imbalance = 0;
3218 return NULL;
3222 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3224 static struct rq *
3225 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3226 unsigned long imbalance, const cpumask_t *cpus)
3228 struct rq *busiest = NULL, *rq;
3229 unsigned long max_load = 0;
3230 int i;
3232 for_each_cpu_mask(i, group->cpumask) {
3233 unsigned long wl;
3235 if (!cpu_isset(i, *cpus))
3236 continue;
3238 rq = cpu_rq(i);
3239 wl = weighted_cpuload(i);
3241 if (rq->nr_running == 1 && wl > imbalance)
3242 continue;
3244 if (wl > max_load) {
3245 max_load = wl;
3246 busiest = rq;
3250 return busiest;
3254 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3255 * so long as it is large enough.
3257 #define MAX_PINNED_INTERVAL 512
3260 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3261 * tasks if there is an imbalance.
3263 static int load_balance(int this_cpu, struct rq *this_rq,
3264 struct sched_domain *sd, enum cpu_idle_type idle,
3265 int *balance, cpumask_t *cpus)
3267 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
3268 struct sched_group *group;
3269 unsigned long imbalance;
3270 struct rq *busiest;
3271 unsigned long flags;
3273 cpus_setall(*cpus);
3276 * When power savings policy is enabled for the parent domain, idle
3277 * sibling can pick up load irrespective of busy siblings. In this case,
3278 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3279 * portraying it as CPU_NOT_IDLE.
3281 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3282 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3283 sd_idle = 1;
3285 schedstat_inc(sd, lb_count[idle]);
3287 redo:
3288 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3289 cpus, balance);
3291 if (*balance == 0)
3292 goto out_balanced;
3294 if (!group) {
3295 schedstat_inc(sd, lb_nobusyg[idle]);
3296 goto out_balanced;
3299 busiest = find_busiest_queue(group, idle, imbalance, cpus);
3300 if (!busiest) {
3301 schedstat_inc(sd, lb_nobusyq[idle]);
3302 goto out_balanced;
3305 BUG_ON(busiest == this_rq);
3307 schedstat_add(sd, lb_imbalance[idle], imbalance);
3309 ld_moved = 0;
3310 if (busiest->nr_running > 1) {
3312 * Attempt to move tasks. If find_busiest_group has found
3313 * an imbalance but busiest->nr_running <= 1, the group is
3314 * still unbalanced. ld_moved simply stays zero, so it is
3315 * correctly treated as an imbalance.
3317 local_irq_save(flags);
3318 double_rq_lock(this_rq, busiest);
3319 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3320 imbalance, sd, idle, &all_pinned);
3321 double_rq_unlock(this_rq, busiest);
3322 local_irq_restore(flags);
3325 * some other cpu did the load balance for us.
3327 if (ld_moved && this_cpu != smp_processor_id())
3328 resched_cpu(this_cpu);
3330 /* All tasks on this runqueue were pinned by CPU affinity */
3331 if (unlikely(all_pinned)) {
3332 cpu_clear(cpu_of(busiest), *cpus);
3333 if (!cpus_empty(*cpus))
3334 goto redo;
3335 goto out_balanced;
3339 if (!ld_moved) {
3340 schedstat_inc(sd, lb_failed[idle]);
3341 sd->nr_balance_failed++;
3343 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
3345 spin_lock_irqsave(&busiest->lock, flags);
3347 /* don't kick the migration_thread, if the curr
3348 * task on busiest cpu can't be moved to this_cpu
3350 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3351 spin_unlock_irqrestore(&busiest->lock, flags);
3352 all_pinned = 1;
3353 goto out_one_pinned;
3356 if (!busiest->active_balance) {
3357 busiest->active_balance = 1;
3358 busiest->push_cpu = this_cpu;
3359 active_balance = 1;
3361 spin_unlock_irqrestore(&busiest->lock, flags);
3362 if (active_balance)
3363 wake_up_process(busiest->migration_thread);
3366 * We've kicked active balancing, reset the failure
3367 * counter.
3369 sd->nr_balance_failed = sd->cache_nice_tries+1;
3371 } else
3372 sd->nr_balance_failed = 0;
3374 if (likely(!active_balance)) {
3375 /* We were unbalanced, so reset the balancing interval */
3376 sd->balance_interval = sd->min_interval;
3377 } else {
3379 * If we've begun active balancing, start to back off. This
3380 * case may not be covered by the all_pinned logic if there
3381 * is only 1 task on the busy runqueue (because we don't call
3382 * move_tasks).
3384 if (sd->balance_interval < sd->max_interval)
3385 sd->balance_interval *= 2;
3388 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3389 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3390 return -1;
3391 return ld_moved;
3393 out_balanced:
3394 schedstat_inc(sd, lb_balanced[idle]);
3396 sd->nr_balance_failed = 0;
3398 out_one_pinned:
3399 /* tune up the balancing interval */
3400 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3401 (sd->balance_interval < sd->max_interval))
3402 sd->balance_interval *= 2;
3404 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3405 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3406 return -1;
3407 return 0;
3411 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3412 * tasks if there is an imbalance.
3414 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
3415 * this_rq is locked.
3417 static int
3418 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3419 cpumask_t *cpus)
3421 struct sched_group *group;
3422 struct rq *busiest = NULL;
3423 unsigned long imbalance;
3424 int ld_moved = 0;
3425 int sd_idle = 0;
3426 int all_pinned = 0;
3428 cpus_setall(*cpus);
3431 * When power savings policy is enabled for the parent domain, idle
3432 * sibling can pick up load irrespective of busy siblings. In this case,
3433 * let the state of idle sibling percolate up as IDLE, instead of
3434 * portraying it as CPU_NOT_IDLE.
3436 if (sd->flags & SD_SHARE_CPUPOWER &&
3437 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3438 sd_idle = 1;
3440 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3441 redo:
3442 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3443 &sd_idle, cpus, NULL);
3444 if (!group) {
3445 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3446 goto out_balanced;
3449 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
3450 if (!busiest) {
3451 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3452 goto out_balanced;
3455 BUG_ON(busiest == this_rq);
3457 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3459 ld_moved = 0;
3460 if (busiest->nr_running > 1) {
3461 /* Attempt to move tasks */
3462 double_lock_balance(this_rq, busiest);
3463 /* this_rq->clock is already updated */
3464 update_rq_clock(busiest);
3465 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3466 imbalance, sd, CPU_NEWLY_IDLE,
3467 &all_pinned);
3468 spin_unlock(&busiest->lock);
3470 if (unlikely(all_pinned)) {
3471 cpu_clear(cpu_of(busiest), *cpus);
3472 if (!cpus_empty(*cpus))
3473 goto redo;
3477 if (!ld_moved) {
3478 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3479 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3480 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3481 return -1;
3482 } else
3483 sd->nr_balance_failed = 0;
3485 return ld_moved;
3487 out_balanced:
3488 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3489 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3490 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3491 return -1;
3492 sd->nr_balance_failed = 0;
3494 return 0;
3498 * idle_balance is called by schedule() if this_cpu is about to become
3499 * idle. Attempts to pull tasks from other CPUs.
3501 static void idle_balance(int this_cpu, struct rq *this_rq)
3503 struct sched_domain *sd;
3504 int pulled_task = -1;
3505 unsigned long next_balance = jiffies + HZ;
3506 cpumask_t tmpmask;
3508 for_each_domain(this_cpu, sd) {
3509 unsigned long interval;
3511 if (!(sd->flags & SD_LOAD_BALANCE))
3512 continue;
3514 if (sd->flags & SD_BALANCE_NEWIDLE)
3515 /* If we've pulled tasks over stop searching: */
3516 pulled_task = load_balance_newidle(this_cpu, this_rq,
3517 sd, &tmpmask);
3519 interval = msecs_to_jiffies(sd->balance_interval);
3520 if (time_after(next_balance, sd->last_balance + interval))
3521 next_balance = sd->last_balance + interval;
3522 if (pulled_task)
3523 break;
3525 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3527 * We are going idle. next_balance may be set based on
3528 * a busy processor. So reset next_balance.
3530 this_rq->next_balance = next_balance;
3535 * active_load_balance is run by migration threads. It pushes running tasks
3536 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3537 * running on each physical CPU where possible, and avoids physical /
3538 * logical imbalances.
3540 * Called with busiest_rq locked.
3542 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
3544 int target_cpu = busiest_rq->push_cpu;
3545 struct sched_domain *sd;
3546 struct rq *target_rq;
3548 /* Is there any task to move? */
3549 if (busiest_rq->nr_running <= 1)
3550 return;
3552 target_rq = cpu_rq(target_cpu);
3555 * This condition is "impossible", if it occurs
3556 * we need to fix it. Originally reported by
3557 * Bjorn Helgaas on a 128-cpu setup.
3559 BUG_ON(busiest_rq == target_rq);
3561 /* move a task from busiest_rq to target_rq */
3562 double_lock_balance(busiest_rq, target_rq);
3563 update_rq_clock(busiest_rq);
3564 update_rq_clock(target_rq);
3566 /* Search for an sd spanning us and the target CPU. */
3567 for_each_domain(target_cpu, sd) {
3568 if ((sd->flags & SD_LOAD_BALANCE) &&
3569 cpu_isset(busiest_cpu, sd->span))
3570 break;
3573 if (likely(sd)) {
3574 schedstat_inc(sd, alb_count);
3576 if (move_one_task(target_rq, target_cpu, busiest_rq,
3577 sd, CPU_IDLE))
3578 schedstat_inc(sd, alb_pushed);
3579 else
3580 schedstat_inc(sd, alb_failed);
3582 spin_unlock(&target_rq->lock);
3585 #ifdef CONFIG_NO_HZ
3586 static struct {
3587 atomic_t load_balancer;
3588 cpumask_t cpu_mask;
3589 } nohz ____cacheline_aligned = {
3590 .load_balancer = ATOMIC_INIT(-1),
3591 .cpu_mask = CPU_MASK_NONE,
3595 * This routine will try to nominate the ilb (idle load balancing)
3596 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3597 * load balancing on behalf of all those cpus. If all the cpus in the system
3598 * go into this tickless mode, then there will be no ilb owner (as there is
3599 * no need for one) and all the cpus will sleep till the next wakeup event
3600 * arrives...
3602 * For the ilb owner, tick is not stopped. And this tick will be used
3603 * for idle load balancing. ilb owner will still be part of
3604 * nohz.cpu_mask..
3606 * While stopping the tick, this cpu will become the ilb owner if there
3607 * is no other owner. And will be the owner till that cpu becomes busy
3608 * or if all cpus in the system stop their ticks at which point
3609 * there is no need for ilb owner.
3611 * When the ilb owner becomes busy, it nominates another owner, during the
3612 * next busy scheduler_tick()
3614 int select_nohz_load_balancer(int stop_tick)
3616 int cpu = smp_processor_id();
3618 if (stop_tick) {
3619 cpu_set(cpu, nohz.cpu_mask);
3620 cpu_rq(cpu)->in_nohz_recently = 1;
3623 * If we are going offline and still the leader, give up!
3625 if (cpu_is_offline(cpu) &&
3626 atomic_read(&nohz.load_balancer) == cpu) {
3627 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3628 BUG();
3629 return 0;
3632 /* time for ilb owner also to sleep */
3633 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3634 if (atomic_read(&nohz.load_balancer) == cpu)
3635 atomic_set(&nohz.load_balancer, -1);
3636 return 0;
3639 if (atomic_read(&nohz.load_balancer) == -1) {
3640 /* make me the ilb owner */
3641 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3642 return 1;
3643 } else if (atomic_read(&nohz.load_balancer) == cpu)
3644 return 1;
3645 } else {
3646 if (!cpu_isset(cpu, nohz.cpu_mask))
3647 return 0;
3649 cpu_clear(cpu, nohz.cpu_mask);
3651 if (atomic_read(&nohz.load_balancer) == cpu)
3652 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3653 BUG();
3655 return 0;
3657 #endif
3659 static DEFINE_SPINLOCK(balancing);
3662 * It checks each scheduling domain to see if it is due to be balanced,
3663 * and initiates a balancing operation if so.
3665 * Balancing parameters are set up in arch_init_sched_domains.
3667 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3669 int balance = 1;
3670 struct rq *rq = cpu_rq(cpu);
3671 unsigned long interval;
3672 struct sched_domain *sd;
3673 /* Earliest time when we have to do rebalance again */
3674 unsigned long next_balance = jiffies + 60*HZ;
3675 int update_next_balance = 0;
3676 int need_serialize;
3677 cpumask_t tmp;
3679 for_each_domain(cpu, sd) {
3680 if (!(sd->flags & SD_LOAD_BALANCE))
3681 continue;
3683 interval = sd->balance_interval;
3684 if (idle != CPU_IDLE)
3685 interval *= sd->busy_factor;
3687 /* scale ms to jiffies */
3688 interval = msecs_to_jiffies(interval);
3689 if (unlikely(!interval))
3690 interval = 1;
3691 if (interval > HZ*NR_CPUS/10)
3692 interval = HZ*NR_CPUS/10;
3694 need_serialize = sd->flags & SD_SERIALIZE;
3696 if (need_serialize) {
3697 if (!spin_trylock(&balancing))
3698 goto out;
3701 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3702 if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
3704 * We've pulled tasks over so either we're no
3705 * longer idle, or one of our SMT siblings is
3706 * not idle.
3708 idle = CPU_NOT_IDLE;
3710 sd->last_balance = jiffies;
3712 if (need_serialize)
3713 spin_unlock(&balancing);
3714 out:
3715 if (time_after(next_balance, sd->last_balance + interval)) {
3716 next_balance = sd->last_balance + interval;
3717 update_next_balance = 1;
3721 * Stop the load balance at this level. There is another
3722 * CPU in our sched group which is doing load balancing more
3723 * actively.
3725 if (!balance)
3726 break;
3730 * next_balance will be updated only when there is a need.
3731 * When the cpu is attached to null domain for ex, it will not be
3732 * updated.
3734 if (likely(update_next_balance))
3735 rq->next_balance = next_balance;
3739 * run_rebalance_domains is triggered when needed from the scheduler tick.
3740 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3741 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3743 static void run_rebalance_domains(struct softirq_action *h)
3745 int this_cpu = smp_processor_id();
3746 struct rq *this_rq = cpu_rq(this_cpu);
3747 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3748 CPU_IDLE : CPU_NOT_IDLE;
3750 rebalance_domains(this_cpu, idle);
3752 #ifdef CONFIG_NO_HZ
3754 * If this cpu is the owner for idle load balancing, then do the
3755 * balancing on behalf of the other idle cpus whose ticks are
3756 * stopped.
3758 if (this_rq->idle_at_tick &&
3759 atomic_read(&nohz.load_balancer) == this_cpu) {
3760 cpumask_t cpus = nohz.cpu_mask;
3761 struct rq *rq;
3762 int balance_cpu;
3764 cpu_clear(this_cpu, cpus);
3765 for_each_cpu_mask(balance_cpu, cpus) {
3767 * If this cpu gets work to do, stop the load balancing
3768 * work being done for other cpus. Next load
3769 * balancing owner will pick it up.
3771 if (need_resched())
3772 break;
3774 rebalance_domains(balance_cpu, CPU_IDLE);
3776 rq = cpu_rq(balance_cpu);
3777 if (time_after(this_rq->next_balance, rq->next_balance))
3778 this_rq->next_balance = rq->next_balance;
3781 #endif
3785 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3787 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3788 * idle load balancing owner or decide to stop the periodic load balancing,
3789 * if the whole system is idle.
3791 static inline void trigger_load_balance(struct rq *rq, int cpu)
3793 #ifdef CONFIG_NO_HZ
3795 * If we were in the nohz mode recently and busy at the current
3796 * scheduler tick, then check if we need to nominate new idle
3797 * load balancer.
3799 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3800 rq->in_nohz_recently = 0;
3802 if (atomic_read(&nohz.load_balancer) == cpu) {
3803 cpu_clear(cpu, nohz.cpu_mask);
3804 atomic_set(&nohz.load_balancer, -1);
3807 if (atomic_read(&nohz.load_balancer) == -1) {
3809 * simple selection for now: Nominate the
3810 * first cpu in the nohz list to be the next
3811 * ilb owner.
3813 * TBD: Traverse the sched domains and nominate
3814 * the nearest cpu in the nohz.cpu_mask.
3816 int ilb = first_cpu(nohz.cpu_mask);
3818 if (ilb < nr_cpu_ids)
3819 resched_cpu(ilb);
3824 * If this cpu is idle and doing idle load balancing for all the
3825 * cpus with ticks stopped, is it time for that to stop?
3827 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3828 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3829 resched_cpu(cpu);
3830 return;
3834 * If this cpu is idle and the idle load balancing is done by
3835 * someone else, then no need raise the SCHED_SOFTIRQ
3837 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3838 cpu_isset(cpu, nohz.cpu_mask))
3839 return;
3840 #endif
3841 if (time_after_eq(jiffies, rq->next_balance))
3842 raise_softirq(SCHED_SOFTIRQ);
3845 #else /* CONFIG_SMP */
3848 * on UP we do not need to balance between CPUs:
3850 static inline void idle_balance(int cpu, struct rq *rq)
3854 #endif
3856 DEFINE_PER_CPU(struct kernel_stat, kstat);
3858 EXPORT_PER_CPU_SYMBOL(kstat);
3861 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3862 * that have not yet been banked in case the task is currently running.
3864 unsigned long long task_sched_runtime(struct task_struct *p)
3866 unsigned long flags;
3867 u64 ns, delta_exec;
3868 struct rq *rq;
3870 rq = task_rq_lock(p, &flags);
3871 ns = p->se.sum_exec_runtime;
3872 if (task_current(rq, p)) {
3873 update_rq_clock(rq);
3874 delta_exec = rq->clock - p->se.exec_start;
3875 if ((s64)delta_exec > 0)
3876 ns += delta_exec;
3878 task_rq_unlock(rq, &flags);
3880 return ns;
3884 * Account user cpu time to a process.
3885 * @p: the process that the cpu time gets accounted to
3886 * @cputime: the cpu time spent in user space since the last update
3888 void account_user_time(struct task_struct *p, cputime_t cputime)
3890 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3891 cputime64_t tmp;
3893 p->utime = cputime_add(p->utime, cputime);
3895 /* Add user time to cpustat. */
3896 tmp = cputime_to_cputime64(cputime);
3897 if (TASK_NICE(p) > 0)
3898 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3899 else
3900 cpustat->user = cputime64_add(cpustat->user, tmp);
3904 * Account guest cpu time to a process.
3905 * @p: the process that the cpu time gets accounted to
3906 * @cputime: the cpu time spent in virtual machine since the last update
3908 static void account_guest_time(struct task_struct *p, cputime_t cputime)
3910 cputime64_t tmp;
3911 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3913 tmp = cputime_to_cputime64(cputime);
3915 p->utime = cputime_add(p->utime, cputime);
3916 p->gtime = cputime_add(p->gtime, cputime);
3918 cpustat->user = cputime64_add(cpustat->user, tmp);
3919 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3923 * Account scaled user cpu time to a process.
3924 * @p: the process that the cpu time gets accounted to
3925 * @cputime: the cpu time spent in user space since the last update
3927 void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
3929 p->utimescaled = cputime_add(p->utimescaled, cputime);
3933 * Account system cpu time to a process.
3934 * @p: the process that the cpu time gets accounted to
3935 * @hardirq_offset: the offset to subtract from hardirq_count()
3936 * @cputime: the cpu time spent in kernel space since the last update
3938 void account_system_time(struct task_struct *p, int hardirq_offset,
3939 cputime_t cputime)
3941 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3942 struct rq *rq = this_rq();
3943 cputime64_t tmp;
3945 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3946 account_guest_time(p, cputime);
3947 return;
3950 p->stime = cputime_add(p->stime, cputime);
3952 /* Add system time to cpustat. */
3953 tmp = cputime_to_cputime64(cputime);
3954 if (hardirq_count() - hardirq_offset)
3955 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3956 else if (softirq_count())
3957 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3958 else if (p != rq->idle)
3959 cpustat->system = cputime64_add(cpustat->system, tmp);
3960 else if (atomic_read(&rq->nr_iowait) > 0)
3961 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3962 else
3963 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3964 /* Account for system time used */
3965 acct_update_integrals(p);
3969 * Account scaled system cpu time to a process.
3970 * @p: the process that the cpu time gets accounted to
3971 * @hardirq_offset: the offset to subtract from hardirq_count()
3972 * @cputime: the cpu time spent in kernel space since the last update
3974 void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
3976 p->stimescaled = cputime_add(p->stimescaled, cputime);
3980 * Account for involuntary wait time.
3981 * @p: the process from which the cpu time has been stolen
3982 * @steal: the cpu time spent in involuntary wait
3984 void account_steal_time(struct task_struct *p, cputime_t steal)
3986 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3987 cputime64_t tmp = cputime_to_cputime64(steal);
3988 struct rq *rq = this_rq();
3990 if (p == rq->idle) {
3991 p->stime = cputime_add(p->stime, steal);
3992 if (atomic_read(&rq->nr_iowait) > 0)
3993 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3994 else
3995 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3996 } else
3997 cpustat->steal = cputime64_add(cpustat->steal, tmp);
4001 * This function gets called by the timer code, with HZ frequency.
4002 * We call it with interrupts disabled.
4004 * It also gets called by the fork code, when changing the parent's
4005 * timeslices.
4007 void scheduler_tick(void)
4009 int cpu = smp_processor_id();
4010 struct rq *rq = cpu_rq(cpu);
4011 struct task_struct *curr = rq->curr;
4013 sched_clock_tick();
4015 spin_lock(&rq->lock);
4016 update_rq_clock(rq);
4017 update_cpu_load(rq);
4018 curr->sched_class->task_tick(rq, curr, 0);
4019 spin_unlock(&rq->lock);
4021 #ifdef CONFIG_SMP
4022 rq->idle_at_tick = idle_cpu(cpu);
4023 trigger_load_balance(rq, cpu);
4024 #endif
4027 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
4029 void __kprobes add_preempt_count(int val)
4032 * Underflow?
4034 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4035 return;
4036 preempt_count() += val;
4038 * Spinlock count overflowing soon?
4040 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4041 PREEMPT_MASK - 10);
4043 EXPORT_SYMBOL(add_preempt_count);
4045 void __kprobes sub_preempt_count(int val)
4048 * Underflow?
4050 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4051 return;
4053 * Is the spinlock portion underflowing?
4055 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4056 !(preempt_count() & PREEMPT_MASK)))
4057 return;
4059 preempt_count() -= val;
4061 EXPORT_SYMBOL(sub_preempt_count);
4063 #endif
4066 * Print scheduling while atomic bug:
4068 static noinline void __schedule_bug(struct task_struct *prev)
4070 struct pt_regs *regs = get_irq_regs();
4072 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4073 prev->comm, prev->pid, preempt_count());
4075 debug_show_held_locks(prev);
4076 print_modules();
4077 if (irqs_disabled())
4078 print_irqtrace_events(prev);
4080 if (regs)
4081 show_regs(regs);
4082 else
4083 dump_stack();
4087 * Various schedule()-time debugging checks and statistics:
4089 static inline void schedule_debug(struct task_struct *prev)
4092 * Test if we are atomic. Since do_exit() needs to call into
4093 * schedule() atomically, we ignore that path for now.
4094 * Otherwise, whine if we are scheduling when we should not be.
4096 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
4097 __schedule_bug(prev);
4099 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4101 schedstat_inc(this_rq(), sched_count);
4102 #ifdef CONFIG_SCHEDSTATS
4103 if (unlikely(prev->lock_depth >= 0)) {
4104 schedstat_inc(this_rq(), bkl_count);
4105 schedstat_inc(prev, sched_info.bkl_count);
4107 #endif
4111 * Pick up the highest-prio task:
4113 static inline struct task_struct *
4114 pick_next_task(struct rq *rq, struct task_struct *prev)
4116 const struct sched_class *class;
4117 struct task_struct *p;
4120 * Optimization: we know that if all tasks are in
4121 * the fair class we can call that function directly:
4123 if (likely(rq->nr_running == rq->cfs.nr_running)) {
4124 p = fair_sched_class.pick_next_task(rq);
4125 if (likely(p))
4126 return p;
4129 class = sched_class_highest;
4130 for ( ; ; ) {
4131 p = class->pick_next_task(rq);
4132 if (p)
4133 return p;
4135 * Will never be NULL as the idle class always
4136 * returns a non-NULL p:
4138 class = class->next;
4143 * schedule() is the main scheduler function.
4145 asmlinkage void __sched schedule(void)
4147 struct task_struct *prev, *next;
4148 unsigned long *switch_count;
4149 struct rq *rq;
4150 int cpu, hrtick = sched_feat(HRTICK);
4152 need_resched:
4153 preempt_disable();
4154 cpu = smp_processor_id();
4155 rq = cpu_rq(cpu);
4156 rcu_qsctr_inc(cpu);
4157 prev = rq->curr;
4158 switch_count = &prev->nivcsw;
4160 release_kernel_lock(prev);
4161 need_resched_nonpreemptible:
4163 schedule_debug(prev);
4165 if (hrtick)
4166 hrtick_clear(rq);
4169 * Do the rq-clock update outside the rq lock:
4171 local_irq_disable();
4172 update_rq_clock(rq);
4173 spin_lock(&rq->lock);
4174 clear_tsk_need_resched(prev);
4176 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4177 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
4178 signal_pending(prev))) {
4179 prev->state = TASK_RUNNING;
4180 } else {
4181 deactivate_task(rq, prev, 1);
4183 switch_count = &prev->nvcsw;
4186 #ifdef CONFIG_SMP
4187 if (prev->sched_class->pre_schedule)
4188 prev->sched_class->pre_schedule(rq, prev);
4189 #endif
4191 if (unlikely(!rq->nr_running))
4192 idle_balance(cpu, rq);
4194 prev->sched_class->put_prev_task(rq, prev);
4195 next = pick_next_task(rq, prev);
4197 if (likely(prev != next)) {
4198 sched_info_switch(prev, next);
4200 rq->nr_switches++;
4201 rq->curr = next;
4202 ++*switch_count;
4204 context_switch(rq, prev, next); /* unlocks the rq */
4206 * the context switch might have flipped the stack from under
4207 * us, hence refresh the local variables.
4209 cpu = smp_processor_id();
4210 rq = cpu_rq(cpu);
4211 } else
4212 spin_unlock_irq(&rq->lock);
4214 if (hrtick)
4215 hrtick_set(rq);
4217 if (unlikely(reacquire_kernel_lock(current) < 0))
4218 goto need_resched_nonpreemptible;
4220 preempt_enable_no_resched();
4221 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4222 goto need_resched;
4224 EXPORT_SYMBOL(schedule);
4226 #ifdef CONFIG_PREEMPT
4228 * this is the entry point to schedule() from in-kernel preemption
4229 * off of preempt_enable. Kernel preemptions off return from interrupt
4230 * occur there and call schedule directly.
4232 asmlinkage void __sched preempt_schedule(void)
4234 struct thread_info *ti = current_thread_info();
4237 * If there is a non-zero preempt_count or interrupts are disabled,
4238 * we do not want to preempt the current task. Just return..
4240 if (likely(ti->preempt_count || irqs_disabled()))
4241 return;
4243 do {
4244 add_preempt_count(PREEMPT_ACTIVE);
4245 schedule();
4246 sub_preempt_count(PREEMPT_ACTIVE);
4249 * Check again in case we missed a preemption opportunity
4250 * between schedule and now.
4252 barrier();
4253 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4255 EXPORT_SYMBOL(preempt_schedule);
4258 * this is the entry point to schedule() from kernel preemption
4259 * off of irq context.
4260 * Note, that this is called and return with irqs disabled. This will
4261 * protect us against recursive calling from irq.
4263 asmlinkage void __sched preempt_schedule_irq(void)
4265 struct thread_info *ti = current_thread_info();
4267 /* Catch callers which need to be fixed */
4268 BUG_ON(ti->preempt_count || !irqs_disabled());
4270 do {
4271 add_preempt_count(PREEMPT_ACTIVE);
4272 local_irq_enable();
4273 schedule();
4274 local_irq_disable();
4275 sub_preempt_count(PREEMPT_ACTIVE);
4278 * Check again in case we missed a preemption opportunity
4279 * between schedule and now.
4281 barrier();
4282 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4285 #endif /* CONFIG_PREEMPT */
4287 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4288 void *key)
4290 return try_to_wake_up(curr->private, mode, sync);
4292 EXPORT_SYMBOL(default_wake_function);
4295 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4296 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4297 * number) then we wake all the non-exclusive tasks and one exclusive task.
4299 * There are circumstances in which we can try to wake a task which has already
4300 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4301 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4303 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4304 int nr_exclusive, int sync, void *key)
4306 wait_queue_t *curr, *next;
4308 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4309 unsigned flags = curr->flags;
4311 if (curr->func(curr, mode, sync, key) &&
4312 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
4313 break;
4318 * __wake_up - wake up threads blocked on a waitqueue.
4319 * @q: the waitqueue
4320 * @mode: which threads
4321 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4322 * @key: is directly passed to the wakeup function
4324 void __wake_up(wait_queue_head_t *q, unsigned int mode,
4325 int nr_exclusive, void *key)
4327 unsigned long flags;
4329 spin_lock_irqsave(&q->lock, flags);
4330 __wake_up_common(q, mode, nr_exclusive, 0, key);
4331 spin_unlock_irqrestore(&q->lock, flags);
4333 EXPORT_SYMBOL(__wake_up);
4336 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4338 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
4340 __wake_up_common(q, mode, 1, 0, NULL);
4344 * __wake_up_sync - wake up threads blocked on a waitqueue.
4345 * @q: the waitqueue
4346 * @mode: which threads
4347 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4349 * The sync wakeup differs that the waker knows that it will schedule
4350 * away soon, so while the target thread will be woken up, it will not
4351 * be migrated to another CPU - ie. the two threads are 'synchronized'
4352 * with each other. This can prevent needless bouncing between CPUs.
4354 * On UP it can prevent extra preemption.
4356 void
4357 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4359 unsigned long flags;
4360 int sync = 1;
4362 if (unlikely(!q))
4363 return;
4365 if (unlikely(!nr_exclusive))
4366 sync = 0;
4368 spin_lock_irqsave(&q->lock, flags);
4369 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4370 spin_unlock_irqrestore(&q->lock, flags);
4372 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4374 void complete(struct completion *x)
4376 unsigned long flags;
4378 spin_lock_irqsave(&x->wait.lock, flags);
4379 x->done++;
4380 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4381 spin_unlock_irqrestore(&x->wait.lock, flags);
4383 EXPORT_SYMBOL(complete);
4385 void complete_all(struct completion *x)
4387 unsigned long flags;
4389 spin_lock_irqsave(&x->wait.lock, flags);
4390 x->done += UINT_MAX/2;
4391 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4392 spin_unlock_irqrestore(&x->wait.lock, flags);
4394 EXPORT_SYMBOL(complete_all);
4396 static inline long __sched
4397 do_wait_for_common(struct completion *x, long timeout, int state)
4399 if (!x->done) {
4400 DECLARE_WAITQUEUE(wait, current);
4402 wait.flags |= WQ_FLAG_EXCLUSIVE;
4403 __add_wait_queue_tail(&x->wait, &wait);
4404 do {
4405 if ((state == TASK_INTERRUPTIBLE &&
4406 signal_pending(current)) ||
4407 (state == TASK_KILLABLE &&
4408 fatal_signal_pending(current))) {
4409 __remove_wait_queue(&x->wait, &wait);
4410 return -ERESTARTSYS;
4412 __set_current_state(state);
4413 spin_unlock_irq(&x->wait.lock);
4414 timeout = schedule_timeout(timeout);
4415 spin_lock_irq(&x->wait.lock);
4416 if (!timeout) {
4417 __remove_wait_queue(&x->wait, &wait);
4418 return timeout;
4420 } while (!x->done);
4421 __remove_wait_queue(&x->wait, &wait);
4423 x->done--;
4424 return timeout;
4427 static long __sched
4428 wait_for_common(struct completion *x, long timeout, int state)
4430 might_sleep();
4432 spin_lock_irq(&x->wait.lock);
4433 timeout = do_wait_for_common(x, timeout, state);
4434 spin_unlock_irq(&x->wait.lock);
4435 return timeout;
4438 void __sched wait_for_completion(struct completion *x)
4440 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4442 EXPORT_SYMBOL(wait_for_completion);
4444 unsigned long __sched
4445 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4447 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4449 EXPORT_SYMBOL(wait_for_completion_timeout);
4451 int __sched wait_for_completion_interruptible(struct completion *x)
4453 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4454 if (t == -ERESTARTSYS)
4455 return t;
4456 return 0;
4458 EXPORT_SYMBOL(wait_for_completion_interruptible);
4460 unsigned long __sched
4461 wait_for_completion_interruptible_timeout(struct completion *x,
4462 unsigned long timeout)
4464 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4466 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4468 int __sched wait_for_completion_killable(struct completion *x)
4470 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4471 if (t == -ERESTARTSYS)
4472 return t;
4473 return 0;
4475 EXPORT_SYMBOL(wait_for_completion_killable);
4477 static long __sched
4478 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4480 unsigned long flags;
4481 wait_queue_t wait;
4483 init_waitqueue_entry(&wait, current);
4485 __set_current_state(state);
4487 spin_lock_irqsave(&q->lock, flags);
4488 __add_wait_queue(q, &wait);
4489 spin_unlock(&q->lock);
4490 timeout = schedule_timeout(timeout);
4491 spin_lock_irq(&q->lock);
4492 __remove_wait_queue(q, &wait);
4493 spin_unlock_irqrestore(&q->lock, flags);
4495 return timeout;
4498 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4500 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4502 EXPORT_SYMBOL(interruptible_sleep_on);
4504 long __sched
4505 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4507 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4509 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4511 void __sched sleep_on(wait_queue_head_t *q)
4513 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4515 EXPORT_SYMBOL(sleep_on);
4517 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4519 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4521 EXPORT_SYMBOL(sleep_on_timeout);
4523 #ifdef CONFIG_RT_MUTEXES
4526 * rt_mutex_setprio - set the current priority of a task
4527 * @p: task
4528 * @prio: prio value (kernel-internal form)
4530 * This function changes the 'effective' priority of a task. It does
4531 * not touch ->normal_prio like __setscheduler().
4533 * Used by the rt_mutex code to implement priority inheritance logic.
4535 void rt_mutex_setprio(struct task_struct *p, int prio)
4537 unsigned long flags;
4538 int oldprio, on_rq, running;
4539 struct rq *rq;
4540 const struct sched_class *prev_class = p->sched_class;
4542 BUG_ON(prio < 0 || prio > MAX_PRIO);
4544 rq = task_rq_lock(p, &flags);
4545 update_rq_clock(rq);
4547 oldprio = p->prio;
4548 on_rq = p->se.on_rq;
4549 running = task_current(rq, p);
4550 if (on_rq)
4551 dequeue_task(rq, p, 0);
4552 if (running)
4553 p->sched_class->put_prev_task(rq, p);
4555 if (rt_prio(prio))
4556 p->sched_class = &rt_sched_class;
4557 else
4558 p->sched_class = &fair_sched_class;
4560 p->prio = prio;
4562 if (running)
4563 p->sched_class->set_curr_task(rq);
4564 if (on_rq) {
4565 enqueue_task(rq, p, 0);
4567 check_class_changed(rq, p, prev_class, oldprio, running);
4569 task_rq_unlock(rq, &flags);
4572 #endif
4574 void set_user_nice(struct task_struct *p, long nice)
4576 int old_prio, delta, on_rq;
4577 unsigned long flags;
4578 struct rq *rq;
4580 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4581 return;
4583 * We have to be careful, if called from sys_setpriority(),
4584 * the task might be in the middle of scheduling on another CPU.
4586 rq = task_rq_lock(p, &flags);
4587 update_rq_clock(rq);
4589 * The RT priorities are set via sched_setscheduler(), but we still
4590 * allow the 'normal' nice value to be set - but as expected
4591 * it wont have any effect on scheduling until the task is
4592 * SCHED_FIFO/SCHED_RR:
4594 if (task_has_rt_policy(p)) {
4595 p->static_prio = NICE_TO_PRIO(nice);
4596 goto out_unlock;
4598 on_rq = p->se.on_rq;
4599 if (on_rq) {
4600 dequeue_task(rq, p, 0);
4601 dec_load(rq, p);
4604 p->static_prio = NICE_TO_PRIO(nice);
4605 set_load_weight(p);
4606 old_prio = p->prio;
4607 p->prio = effective_prio(p);
4608 delta = p->prio - old_prio;
4610 if (on_rq) {
4611 enqueue_task(rq, p, 0);
4612 inc_load(rq, p);
4614 * If the task increased its priority or is running and
4615 * lowered its priority, then reschedule its CPU:
4617 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4618 resched_task(rq->curr);
4620 out_unlock:
4621 task_rq_unlock(rq, &flags);
4623 EXPORT_SYMBOL(set_user_nice);
4626 * can_nice - check if a task can reduce its nice value
4627 * @p: task
4628 * @nice: nice value
4630 int can_nice(const struct task_struct *p, const int nice)
4632 /* convert nice value [19,-20] to rlimit style value [1,40] */
4633 int nice_rlim = 20 - nice;
4635 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4636 capable(CAP_SYS_NICE));
4639 #ifdef __ARCH_WANT_SYS_NICE
4642 * sys_nice - change the priority of the current process.
4643 * @increment: priority increment
4645 * sys_setpriority is a more generic, but much slower function that
4646 * does similar things.
4648 asmlinkage long sys_nice(int increment)
4650 long nice, retval;
4653 * Setpriority might change our priority at the same moment.
4654 * We don't have to worry. Conceptually one call occurs first
4655 * and we have a single winner.
4657 if (increment < -40)
4658 increment = -40;
4659 if (increment > 40)
4660 increment = 40;
4662 nice = PRIO_TO_NICE(current->static_prio) + increment;
4663 if (nice < -20)
4664 nice = -20;
4665 if (nice > 19)
4666 nice = 19;
4668 if (increment < 0 && !can_nice(current, nice))
4669 return -EPERM;
4671 retval = security_task_setnice(current, nice);
4672 if (retval)
4673 return retval;
4675 set_user_nice(current, nice);
4676 return 0;
4679 #endif
4682 * task_prio - return the priority value of a given task.
4683 * @p: the task in question.
4685 * This is the priority value as seen by users in /proc.
4686 * RT tasks are offset by -200. Normal tasks are centered
4687 * around 0, value goes from -16 to +15.
4689 int task_prio(const struct task_struct *p)
4691 return p->prio - MAX_RT_PRIO;
4695 * task_nice - return the nice value of a given task.
4696 * @p: the task in question.
4698 int task_nice(const struct task_struct *p)
4700 return TASK_NICE(p);
4702 EXPORT_SYMBOL(task_nice);
4705 * idle_cpu - is a given cpu idle currently?
4706 * @cpu: the processor in question.
4708 int idle_cpu(int cpu)
4710 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4714 * idle_task - return the idle task for a given cpu.
4715 * @cpu: the processor in question.
4717 struct task_struct *idle_task(int cpu)
4719 return cpu_rq(cpu)->idle;
4723 * find_process_by_pid - find a process with a matching PID value.
4724 * @pid: the pid in question.
4726 static struct task_struct *find_process_by_pid(pid_t pid)
4728 return pid ? find_task_by_vpid(pid) : current;
4731 /* Actually do priority change: must hold rq lock. */
4732 static void
4733 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4735 BUG_ON(p->se.on_rq);
4737 p->policy = policy;
4738 switch (p->policy) {
4739 case SCHED_NORMAL:
4740 case SCHED_BATCH:
4741 case SCHED_IDLE:
4742 p->sched_class = &fair_sched_class;
4743 break;
4744 case SCHED_FIFO:
4745 case SCHED_RR:
4746 p->sched_class = &rt_sched_class;
4747 break;
4750 p->rt_priority = prio;
4751 p->normal_prio = normal_prio(p);
4752 /* we are holding p->pi_lock already */
4753 p->prio = rt_mutex_getprio(p);
4754 set_load_weight(p);
4758 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4759 * @p: the task in question.
4760 * @policy: new policy.
4761 * @param: structure containing the new RT priority.
4763 * NOTE that the task may be already dead.
4765 int sched_setscheduler(struct task_struct *p, int policy,
4766 struct sched_param *param)
4768 int retval, oldprio, oldpolicy = -1, on_rq, running;
4769 unsigned long flags;
4770 const struct sched_class *prev_class = p->sched_class;
4771 struct rq *rq;
4773 /* may grab non-irq protected spin_locks */
4774 BUG_ON(in_interrupt());
4775 recheck:
4776 /* double check policy once rq lock held */
4777 if (policy < 0)
4778 policy = oldpolicy = p->policy;
4779 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
4780 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4781 policy != SCHED_IDLE)
4782 return -EINVAL;
4784 * Valid priorities for SCHED_FIFO and SCHED_RR are
4785 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4786 * SCHED_BATCH and SCHED_IDLE is 0.
4788 if (param->sched_priority < 0 ||
4789 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4790 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4791 return -EINVAL;
4792 if (rt_policy(policy) != (param->sched_priority != 0))
4793 return -EINVAL;
4796 * Allow unprivileged RT tasks to decrease priority:
4798 if (!capable(CAP_SYS_NICE)) {
4799 if (rt_policy(policy)) {
4800 unsigned long rlim_rtprio;
4802 if (!lock_task_sighand(p, &flags))
4803 return -ESRCH;
4804 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4805 unlock_task_sighand(p, &flags);
4807 /* can't set/change the rt policy */
4808 if (policy != p->policy && !rlim_rtprio)
4809 return -EPERM;
4811 /* can't increase priority */
4812 if (param->sched_priority > p->rt_priority &&
4813 param->sched_priority > rlim_rtprio)
4814 return -EPERM;
4817 * Like positive nice levels, dont allow tasks to
4818 * move out of SCHED_IDLE either:
4820 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4821 return -EPERM;
4823 /* can't change other user's priorities */
4824 if ((current->euid != p->euid) &&
4825 (current->euid != p->uid))
4826 return -EPERM;
4829 #ifdef CONFIG_RT_GROUP_SCHED
4831 * Do not allow realtime tasks into groups that have no runtime
4832 * assigned.
4834 if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
4835 return -EPERM;
4836 #endif
4838 retval = security_task_setscheduler(p, policy, param);
4839 if (retval)
4840 return retval;
4842 * make sure no PI-waiters arrive (or leave) while we are
4843 * changing the priority of the task:
4845 spin_lock_irqsave(&p->pi_lock, flags);
4847 * To be able to change p->policy safely, the apropriate
4848 * runqueue lock must be held.
4850 rq = __task_rq_lock(p);
4851 /* recheck policy now with rq lock held */
4852 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4853 policy = oldpolicy = -1;
4854 __task_rq_unlock(rq);
4855 spin_unlock_irqrestore(&p->pi_lock, flags);
4856 goto recheck;
4858 update_rq_clock(rq);
4859 on_rq = p->se.on_rq;
4860 running = task_current(rq, p);
4861 if (on_rq)
4862 deactivate_task(rq, p, 0);
4863 if (running)
4864 p->sched_class->put_prev_task(rq, p);
4866 oldprio = p->prio;
4867 __setscheduler(rq, p, policy, param->sched_priority);
4869 if (running)
4870 p->sched_class->set_curr_task(rq);
4871 if (on_rq) {
4872 activate_task(rq, p, 0);
4874 check_class_changed(rq, p, prev_class, oldprio, running);
4876 __task_rq_unlock(rq);
4877 spin_unlock_irqrestore(&p->pi_lock, flags);
4879 rt_mutex_adjust_pi(p);
4881 return 0;
4883 EXPORT_SYMBOL_GPL(sched_setscheduler);
4885 static int
4886 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4888 struct sched_param lparam;
4889 struct task_struct *p;
4890 int retval;
4892 if (!param || pid < 0)
4893 return -EINVAL;
4894 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4895 return -EFAULT;
4897 rcu_read_lock();
4898 retval = -ESRCH;
4899 p = find_process_by_pid(pid);
4900 if (p != NULL)
4901 retval = sched_setscheduler(p, policy, &lparam);
4902 rcu_read_unlock();
4904 return retval;
4908 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4909 * @pid: the pid in question.
4910 * @policy: new policy.
4911 * @param: structure containing the new RT priority.
4913 asmlinkage long
4914 sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4916 /* negative values for policy are not valid */
4917 if (policy < 0)
4918 return -EINVAL;
4920 return do_sched_setscheduler(pid, policy, param);
4924 * sys_sched_setparam - set/change the RT priority of a thread
4925 * @pid: the pid in question.
4926 * @param: structure containing the new RT priority.
4928 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4930 return do_sched_setscheduler(pid, -1, param);
4934 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4935 * @pid: the pid in question.
4937 asmlinkage long sys_sched_getscheduler(pid_t pid)
4939 struct task_struct *p;
4940 int retval;
4942 if (pid < 0)
4943 return -EINVAL;
4945 retval = -ESRCH;
4946 read_lock(&tasklist_lock);
4947 p = find_process_by_pid(pid);
4948 if (p) {
4949 retval = security_task_getscheduler(p);
4950 if (!retval)
4951 retval = p->policy;
4953 read_unlock(&tasklist_lock);
4954 return retval;
4958 * sys_sched_getscheduler - get the RT priority of a thread
4959 * @pid: the pid in question.
4960 * @param: structure containing the RT priority.
4962 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4964 struct sched_param lp;
4965 struct task_struct *p;
4966 int retval;
4968 if (!param || pid < 0)
4969 return -EINVAL;
4971 read_lock(&tasklist_lock);
4972 p = find_process_by_pid(pid);
4973 retval = -ESRCH;
4974 if (!p)
4975 goto out_unlock;
4977 retval = security_task_getscheduler(p);
4978 if (retval)
4979 goto out_unlock;
4981 lp.sched_priority = p->rt_priority;
4982 read_unlock(&tasklist_lock);
4985 * This one might sleep, we cannot do it with a spinlock held ...
4987 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4989 return retval;
4991 out_unlock:
4992 read_unlock(&tasklist_lock);
4993 return retval;
4996 long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
4998 cpumask_t cpus_allowed;
4999 cpumask_t new_mask = *in_mask;
5000 struct task_struct *p;
5001 int retval;
5003 get_online_cpus();
5004 read_lock(&tasklist_lock);
5006 p = find_process_by_pid(pid);
5007 if (!p) {
5008 read_unlock(&tasklist_lock);
5009 put_online_cpus();
5010 return -ESRCH;
5014 * It is not safe to call set_cpus_allowed with the
5015 * tasklist_lock held. We will bump the task_struct's
5016 * usage count and then drop tasklist_lock.
5018 get_task_struct(p);
5019 read_unlock(&tasklist_lock);
5021 retval = -EPERM;
5022 if ((current->euid != p->euid) && (current->euid != p->uid) &&
5023 !capable(CAP_SYS_NICE))
5024 goto out_unlock;
5026 retval = security_task_setscheduler(p, 0, NULL);
5027 if (retval)
5028 goto out_unlock;
5030 cpuset_cpus_allowed(p, &cpus_allowed);
5031 cpus_and(new_mask, new_mask, cpus_allowed);
5032 again:
5033 retval = set_cpus_allowed_ptr(p, &new_mask);
5035 if (!retval) {
5036 cpuset_cpus_allowed(p, &cpus_allowed);
5037 if (!cpus_subset(new_mask, cpus_allowed)) {
5039 * We must have raced with a concurrent cpuset
5040 * update. Just reset the cpus_allowed to the
5041 * cpuset's cpus_allowed
5043 new_mask = cpus_allowed;
5044 goto again;
5047 out_unlock:
5048 put_task_struct(p);
5049 put_online_cpus();
5050 return retval;
5053 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5054 cpumask_t *new_mask)
5056 if (len < sizeof(cpumask_t)) {
5057 memset(new_mask, 0, sizeof(cpumask_t));
5058 } else if (len > sizeof(cpumask_t)) {
5059 len = sizeof(cpumask_t);
5061 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5065 * sys_sched_setaffinity - set the cpu affinity of a process
5066 * @pid: pid of the process
5067 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5068 * @user_mask_ptr: user-space pointer to the new cpu mask
5070 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
5071 unsigned long __user *user_mask_ptr)
5073 cpumask_t new_mask;
5074 int retval;
5076 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
5077 if (retval)
5078 return retval;
5080 return sched_setaffinity(pid, &new_mask);
5083 long sched_getaffinity(pid_t pid, cpumask_t *mask)
5085 struct task_struct *p;
5086 int retval;
5088 get_online_cpus();
5089 read_lock(&tasklist_lock);
5091 retval = -ESRCH;
5092 p = find_process_by_pid(pid);
5093 if (!p)
5094 goto out_unlock;
5096 retval = security_task_getscheduler(p);
5097 if (retval)
5098 goto out_unlock;
5100 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
5102 out_unlock:
5103 read_unlock(&tasklist_lock);
5104 put_online_cpus();
5106 return retval;
5110 * sys_sched_getaffinity - get the cpu affinity of a process
5111 * @pid: pid of the process
5112 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5113 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5115 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
5116 unsigned long __user *user_mask_ptr)
5118 int ret;
5119 cpumask_t mask;
5121 if (len < sizeof(cpumask_t))
5122 return -EINVAL;
5124 ret = sched_getaffinity(pid, &mask);
5125 if (ret < 0)
5126 return ret;
5128 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
5129 return -EFAULT;
5131 return sizeof(cpumask_t);
5135 * sys_sched_yield - yield the current processor to other threads.
5137 * This function yields the current CPU to other tasks. If there are no
5138 * other threads running on this CPU then this function will return.
5140 asmlinkage long sys_sched_yield(void)
5142 struct rq *rq = this_rq_lock();
5144 schedstat_inc(rq, yld_count);
5145 current->sched_class->yield_task(rq);
5148 * Since we are going to call schedule() anyway, there's
5149 * no need to preempt or enable interrupts:
5151 __release(rq->lock);
5152 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5153 _raw_spin_unlock(&rq->lock);
5154 preempt_enable_no_resched();
5156 schedule();
5158 return 0;
5161 static void __cond_resched(void)
5163 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5164 __might_sleep(__FILE__, __LINE__);
5165 #endif
5167 * The BKS might be reacquired before we have dropped
5168 * PREEMPT_ACTIVE, which could trigger a second
5169 * cond_resched() call.
5171 do {
5172 add_preempt_count(PREEMPT_ACTIVE);
5173 schedule();
5174 sub_preempt_count(PREEMPT_ACTIVE);
5175 } while (need_resched());
5178 int __sched _cond_resched(void)
5180 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5181 system_state == SYSTEM_RUNNING) {
5182 __cond_resched();
5183 return 1;
5185 return 0;
5187 EXPORT_SYMBOL(_cond_resched);
5190 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5191 * call schedule, and on return reacquire the lock.
5193 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5194 * operations here to prevent schedule() from being called twice (once via
5195 * spin_unlock(), once by hand).
5197 int cond_resched_lock(spinlock_t *lock)
5199 int resched = need_resched() && system_state == SYSTEM_RUNNING;
5200 int ret = 0;
5202 if (spin_needbreak(lock) || resched) {
5203 spin_unlock(lock);
5204 if (resched && need_resched())
5205 __cond_resched();
5206 else
5207 cpu_relax();
5208 ret = 1;
5209 spin_lock(lock);
5211 return ret;
5213 EXPORT_SYMBOL(cond_resched_lock);
5215 int __sched cond_resched_softirq(void)
5217 BUG_ON(!in_softirq());
5219 if (need_resched() && system_state == SYSTEM_RUNNING) {
5220 local_bh_enable();
5221 __cond_resched();
5222 local_bh_disable();
5223 return 1;
5225 return 0;
5227 EXPORT_SYMBOL(cond_resched_softirq);
5230 * yield - yield the current processor to other threads.
5232 * This is a shortcut for kernel-space yielding - it marks the
5233 * thread runnable and calls sys_sched_yield().
5235 void __sched yield(void)
5237 set_current_state(TASK_RUNNING);
5238 sys_sched_yield();
5240 EXPORT_SYMBOL(yield);
5243 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5244 * that process accounting knows that this is a task in IO wait state.
5246 * But don't do that if it is a deliberate, throttling IO wait (this task
5247 * has set its backing_dev_info: the queue against which it should throttle)
5249 void __sched io_schedule(void)
5251 struct rq *rq = &__raw_get_cpu_var(runqueues);
5253 delayacct_blkio_start();
5254 atomic_inc(&rq->nr_iowait);
5255 schedule();
5256 atomic_dec(&rq->nr_iowait);
5257 delayacct_blkio_end();
5259 EXPORT_SYMBOL(io_schedule);
5261 long __sched io_schedule_timeout(long timeout)
5263 struct rq *rq = &__raw_get_cpu_var(runqueues);
5264 long ret;
5266 delayacct_blkio_start();
5267 atomic_inc(&rq->nr_iowait);
5268 ret = schedule_timeout(timeout);
5269 atomic_dec(&rq->nr_iowait);
5270 delayacct_blkio_end();
5271 return ret;
5275 * sys_sched_get_priority_max - return maximum RT priority.
5276 * @policy: scheduling class.
5278 * this syscall returns the maximum rt_priority that can be used
5279 * by a given scheduling class.
5281 asmlinkage long sys_sched_get_priority_max(int policy)
5283 int ret = -EINVAL;
5285 switch (policy) {
5286 case SCHED_FIFO:
5287 case SCHED_RR:
5288 ret = MAX_USER_RT_PRIO-1;
5289 break;
5290 case SCHED_NORMAL:
5291 case SCHED_BATCH:
5292 case SCHED_IDLE:
5293 ret = 0;
5294 break;
5296 return ret;
5300 * sys_sched_get_priority_min - return minimum RT priority.
5301 * @policy: scheduling class.
5303 * this syscall returns the minimum rt_priority that can be used
5304 * by a given scheduling class.
5306 asmlinkage long sys_sched_get_priority_min(int policy)
5308 int ret = -EINVAL;
5310 switch (policy) {
5311 case SCHED_FIFO:
5312 case SCHED_RR:
5313 ret = 1;
5314 break;
5315 case SCHED_NORMAL:
5316 case SCHED_BATCH:
5317 case SCHED_IDLE:
5318 ret = 0;
5320 return ret;
5324 * sys_sched_rr_get_interval - return the default timeslice of a process.
5325 * @pid: pid of the process.
5326 * @interval: userspace pointer to the timeslice value.
5328 * this syscall writes the default timeslice value of a given process
5329 * into the user-space timespec buffer. A value of '0' means infinity.
5331 asmlinkage
5332 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5334 struct task_struct *p;
5335 unsigned int time_slice;
5336 int retval;
5337 struct timespec t;
5339 if (pid < 0)
5340 return -EINVAL;
5342 retval = -ESRCH;
5343 read_lock(&tasklist_lock);
5344 p = find_process_by_pid(pid);
5345 if (!p)
5346 goto out_unlock;
5348 retval = security_task_getscheduler(p);
5349 if (retval)
5350 goto out_unlock;
5353 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5354 * tasks that are on an otherwise idle runqueue:
5356 time_slice = 0;
5357 if (p->policy == SCHED_RR) {
5358 time_slice = DEF_TIMESLICE;
5359 } else if (p->policy != SCHED_FIFO) {
5360 struct sched_entity *se = &p->se;
5361 unsigned long flags;
5362 struct rq *rq;
5364 rq = task_rq_lock(p, &flags);
5365 if (rq->cfs.load.weight)
5366 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
5367 task_rq_unlock(rq, &flags);
5369 read_unlock(&tasklist_lock);
5370 jiffies_to_timespec(time_slice, &t);
5371 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5372 return retval;
5374 out_unlock:
5375 read_unlock(&tasklist_lock);
5376 return retval;
5379 static const char stat_nam[] = "RSDTtZX";
5381 void sched_show_task(struct task_struct *p)
5383 unsigned long free = 0;
5384 unsigned state;
5386 state = p->state ? __ffs(p->state) + 1 : 0;
5387 printk(KERN_INFO "%-13.13s %c", p->comm,
5388 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5389 #if BITS_PER_LONG == 32
5390 if (state == TASK_RUNNING)
5391 printk(KERN_CONT " running ");
5392 else
5393 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5394 #else
5395 if (state == TASK_RUNNING)
5396 printk(KERN_CONT " running task ");
5397 else
5398 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5399 #endif
5400 #ifdef CONFIG_DEBUG_STACK_USAGE
5402 unsigned long *n = end_of_stack(p);
5403 while (!*n)
5404 n++;
5405 free = (unsigned long)n - (unsigned long)end_of_stack(p);
5407 #endif
5408 printk(KERN_CONT "%5lu %5d %6d\n", free,
5409 task_pid_nr(p), task_pid_nr(p->real_parent));
5411 show_stack(p, NULL);
5414 void show_state_filter(unsigned long state_filter)
5416 struct task_struct *g, *p;
5418 #if BITS_PER_LONG == 32
5419 printk(KERN_INFO
5420 " task PC stack pid father\n");
5421 #else
5422 printk(KERN_INFO
5423 " task PC stack pid father\n");
5424 #endif
5425 read_lock(&tasklist_lock);
5426 do_each_thread(g, p) {
5428 * reset the NMI-timeout, listing all files on a slow
5429 * console might take alot of time:
5431 touch_nmi_watchdog();
5432 if (!state_filter || (p->state & state_filter))
5433 sched_show_task(p);
5434 } while_each_thread(g, p);
5436 touch_all_softlockup_watchdogs();
5438 #ifdef CONFIG_SCHED_DEBUG
5439 sysrq_sched_debug_show();
5440 #endif
5441 read_unlock(&tasklist_lock);
5443 * Only show locks if all tasks are dumped:
5445 if (state_filter == -1)
5446 debug_show_all_locks();
5449 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5451 idle->sched_class = &idle_sched_class;
5455 * init_idle - set up an idle thread for a given CPU
5456 * @idle: task in question
5457 * @cpu: cpu the idle task belongs to
5459 * NOTE: this function does not set the idle thread's NEED_RESCHED
5460 * flag, to make booting more robust.
5462 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5464 struct rq *rq = cpu_rq(cpu);
5465 unsigned long flags;
5467 __sched_fork(idle);
5468 idle->se.exec_start = sched_clock();
5470 idle->prio = idle->normal_prio = MAX_PRIO;
5471 idle->cpus_allowed = cpumask_of_cpu(cpu);
5472 __set_task_cpu(idle, cpu);
5474 spin_lock_irqsave(&rq->lock, flags);
5475 rq->curr = rq->idle = idle;
5476 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5477 idle->oncpu = 1;
5478 #endif
5479 spin_unlock_irqrestore(&rq->lock, flags);
5481 /* Set the preempt count _outside_ the spinlocks! */
5482 #if defined(CONFIG_PREEMPT)
5483 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5484 #else
5485 task_thread_info(idle)->preempt_count = 0;
5486 #endif
5488 * The idle tasks have their own, simple scheduling class:
5490 idle->sched_class = &idle_sched_class;
5494 * In a system that switches off the HZ timer nohz_cpu_mask
5495 * indicates which cpus entered this state. This is used
5496 * in the rcu update to wait only for active cpus. For system
5497 * which do not switch off the HZ timer nohz_cpu_mask should
5498 * always be CPU_MASK_NONE.
5500 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5503 * Increase the granularity value when there are more CPUs,
5504 * because with more CPUs the 'effective latency' as visible
5505 * to users decreases. But the relationship is not linear,
5506 * so pick a second-best guess by going with the log2 of the
5507 * number of CPUs.
5509 * This idea comes from the SD scheduler of Con Kolivas:
5511 static inline void sched_init_granularity(void)
5513 unsigned int factor = 1 + ilog2(num_online_cpus());
5514 const unsigned long limit = 200000000;
5516 sysctl_sched_min_granularity *= factor;
5517 if (sysctl_sched_min_granularity > limit)
5518 sysctl_sched_min_granularity = limit;
5520 sysctl_sched_latency *= factor;
5521 if (sysctl_sched_latency > limit)
5522 sysctl_sched_latency = limit;
5524 sysctl_sched_wakeup_granularity *= factor;
5527 #ifdef CONFIG_SMP
5529 * This is how migration works:
5531 * 1) we queue a struct migration_req structure in the source CPU's
5532 * runqueue and wake up that CPU's migration thread.
5533 * 2) we down() the locked semaphore => thread blocks.
5534 * 3) migration thread wakes up (implicitly it forces the migrated
5535 * thread off the CPU)
5536 * 4) it gets the migration request and checks whether the migrated
5537 * task is still in the wrong runqueue.
5538 * 5) if it's in the wrong runqueue then the migration thread removes
5539 * it and puts it into the right queue.
5540 * 6) migration thread up()s the semaphore.
5541 * 7) we wake up and the migration is done.
5545 * Change a given task's CPU affinity. Migrate the thread to a
5546 * proper CPU and schedule it away if the CPU it's executing on
5547 * is removed from the allowed bitmask.
5549 * NOTE: the caller must have a valid reference to the task, the
5550 * task must not exit() & deallocate itself prematurely. The
5551 * call is not atomic; no spinlocks may be held.
5553 int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
5555 struct migration_req req;
5556 unsigned long flags;
5557 struct rq *rq;
5558 int ret = 0;
5560 rq = task_rq_lock(p, &flags);
5561 if (!cpus_intersects(*new_mask, cpu_online_map)) {
5562 ret = -EINVAL;
5563 goto out;
5566 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5567 !cpus_equal(p->cpus_allowed, *new_mask))) {
5568 ret = -EINVAL;
5569 goto out;
5572 if (p->sched_class->set_cpus_allowed)
5573 p->sched_class->set_cpus_allowed(p, new_mask);
5574 else {
5575 p->cpus_allowed = *new_mask;
5576 p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
5579 /* Can the task run on the task's current CPU? If so, we're done */
5580 if (cpu_isset(task_cpu(p), *new_mask))
5581 goto out;
5583 if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
5584 /* Need help from migration thread: drop lock and wait. */
5585 task_rq_unlock(rq, &flags);
5586 wake_up_process(rq->migration_thread);
5587 wait_for_completion(&req.done);
5588 tlb_migrate_finish(p->mm);
5589 return 0;
5591 out:
5592 task_rq_unlock(rq, &flags);
5594 return ret;
5596 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
5599 * Move (not current) task off this cpu, onto dest cpu. We're doing
5600 * this because either it can't run here any more (set_cpus_allowed()
5601 * away from this CPU, or CPU going down), or because we're
5602 * attempting to rebalance this task on exec (sched_exec).
5604 * So we race with normal scheduler movements, but that's OK, as long
5605 * as the task is no longer on this CPU.
5607 * Returns non-zero if task was successfully migrated.
5609 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5611 struct rq *rq_dest, *rq_src;
5612 int ret = 0, on_rq;
5614 if (unlikely(cpu_is_offline(dest_cpu)))
5615 return ret;
5617 rq_src = cpu_rq(src_cpu);
5618 rq_dest = cpu_rq(dest_cpu);
5620 double_rq_lock(rq_src, rq_dest);
5621 /* Already moved. */
5622 if (task_cpu(p) != src_cpu)
5623 goto out;
5624 /* Affinity changed (again). */
5625 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5626 goto out;
5628 on_rq = p->se.on_rq;
5629 if (on_rq)
5630 deactivate_task(rq_src, p, 0);
5632 set_task_cpu(p, dest_cpu);
5633 if (on_rq) {
5634 activate_task(rq_dest, p, 0);
5635 check_preempt_curr(rq_dest, p);
5637 ret = 1;
5638 out:
5639 double_rq_unlock(rq_src, rq_dest);
5640 return ret;
5644 * migration_thread - this is a highprio system thread that performs
5645 * thread migration by bumping thread off CPU then 'pushing' onto
5646 * another runqueue.
5648 static int migration_thread(void *data)
5650 int cpu = (long)data;
5651 struct rq *rq;
5653 rq = cpu_rq(cpu);
5654 BUG_ON(rq->migration_thread != current);
5656 set_current_state(TASK_INTERRUPTIBLE);
5657 while (!kthread_should_stop()) {
5658 struct migration_req *req;
5659 struct list_head *head;
5661 spin_lock_irq(&rq->lock);
5663 if (cpu_is_offline(cpu)) {
5664 spin_unlock_irq(&rq->lock);
5665 goto wait_to_die;
5668 if (rq->active_balance) {
5669 active_load_balance(rq, cpu);
5670 rq->active_balance = 0;
5673 head = &rq->migration_queue;
5675 if (list_empty(head)) {
5676 spin_unlock_irq(&rq->lock);
5677 schedule();
5678 set_current_state(TASK_INTERRUPTIBLE);
5679 continue;
5681 req = list_entry(head->next, struct migration_req, list);
5682 list_del_init(head->next);
5684 spin_unlock(&rq->lock);
5685 __migrate_task(req->task, cpu, req->dest_cpu);
5686 local_irq_enable();
5688 complete(&req->done);
5690 __set_current_state(TASK_RUNNING);
5691 return 0;
5693 wait_to_die:
5694 /* Wait for kthread_stop */
5695 set_current_state(TASK_INTERRUPTIBLE);
5696 while (!kthread_should_stop()) {
5697 schedule();
5698 set_current_state(TASK_INTERRUPTIBLE);
5700 __set_current_state(TASK_RUNNING);
5701 return 0;
5704 #ifdef CONFIG_HOTPLUG_CPU
5706 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5708 int ret;
5710 local_irq_disable();
5711 ret = __migrate_task(p, src_cpu, dest_cpu);
5712 local_irq_enable();
5713 return ret;
5717 * Figure out where task on dead CPU should go, use force if necessary.
5718 * NOTE: interrupts should be disabled by the caller
5720 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5722 unsigned long flags;
5723 cpumask_t mask;
5724 struct rq *rq;
5725 int dest_cpu;
5727 do {
5728 /* On same node? */
5729 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5730 cpus_and(mask, mask, p->cpus_allowed);
5731 dest_cpu = any_online_cpu(mask);
5733 /* On any allowed CPU? */
5734 if (dest_cpu >= nr_cpu_ids)
5735 dest_cpu = any_online_cpu(p->cpus_allowed);
5737 /* No more Mr. Nice Guy. */
5738 if (dest_cpu >= nr_cpu_ids) {
5739 cpumask_t cpus_allowed;
5741 cpuset_cpus_allowed_locked(p, &cpus_allowed);
5743 * Try to stay on the same cpuset, where the
5744 * current cpuset may be a subset of all cpus.
5745 * The cpuset_cpus_allowed_locked() variant of
5746 * cpuset_cpus_allowed() will not block. It must be
5747 * called within calls to cpuset_lock/cpuset_unlock.
5749 rq = task_rq_lock(p, &flags);
5750 p->cpus_allowed = cpus_allowed;
5751 dest_cpu = any_online_cpu(p->cpus_allowed);
5752 task_rq_unlock(rq, &flags);
5755 * Don't tell them about moving exiting tasks or
5756 * kernel threads (both mm NULL), since they never
5757 * leave kernel.
5759 if (p->mm && printk_ratelimit()) {
5760 printk(KERN_INFO "process %d (%s) no "
5761 "longer affine to cpu%d\n",
5762 task_pid_nr(p), p->comm, dead_cpu);
5765 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
5769 * While a dead CPU has no uninterruptible tasks queued at this point,
5770 * it might still have a nonzero ->nr_uninterruptible counter, because
5771 * for performance reasons the counter is not stricly tracking tasks to
5772 * their home CPUs. So we just add the counter to another CPU's counter,
5773 * to keep the global sum constant after CPU-down:
5775 static void migrate_nr_uninterruptible(struct rq *rq_src)
5777 struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
5778 unsigned long flags;
5780 local_irq_save(flags);
5781 double_rq_lock(rq_src, rq_dest);
5782 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5783 rq_src->nr_uninterruptible = 0;
5784 double_rq_unlock(rq_src, rq_dest);
5785 local_irq_restore(flags);
5788 /* Run through task list and migrate tasks from the dead cpu. */
5789 static void migrate_live_tasks(int src_cpu)
5791 struct task_struct *p, *t;
5793 read_lock(&tasklist_lock);
5795 do_each_thread(t, p) {
5796 if (p == current)
5797 continue;
5799 if (task_cpu(p) == src_cpu)
5800 move_task_off_dead_cpu(src_cpu, p);
5801 } while_each_thread(t, p);
5803 read_unlock(&tasklist_lock);
5807 * Schedules idle task to be the next runnable task on current CPU.
5808 * It does so by boosting its priority to highest possible.
5809 * Used by CPU offline code.
5811 void sched_idle_next(void)
5813 int this_cpu = smp_processor_id();
5814 struct rq *rq = cpu_rq(this_cpu);
5815 struct task_struct *p = rq->idle;
5816 unsigned long flags;
5818 /* cpu has to be offline */
5819 BUG_ON(cpu_online(this_cpu));
5822 * Strictly not necessary since rest of the CPUs are stopped by now
5823 * and interrupts disabled on the current cpu.
5825 spin_lock_irqsave(&rq->lock, flags);
5827 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5829 update_rq_clock(rq);
5830 activate_task(rq, p, 0);
5832 spin_unlock_irqrestore(&rq->lock, flags);
5836 * Ensures that the idle task is using init_mm right before its cpu goes
5837 * offline.
5839 void idle_task_exit(void)
5841 struct mm_struct *mm = current->active_mm;
5843 BUG_ON(cpu_online(smp_processor_id()));
5845 if (mm != &init_mm)
5846 switch_mm(mm, &init_mm, current);
5847 mmdrop(mm);
5850 /* called under rq->lock with disabled interrupts */
5851 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5853 struct rq *rq = cpu_rq(dead_cpu);
5855 /* Must be exiting, otherwise would be on tasklist. */
5856 BUG_ON(!p->exit_state);
5858 /* Cannot have done final schedule yet: would have vanished. */
5859 BUG_ON(p->state == TASK_DEAD);
5861 get_task_struct(p);
5864 * Drop lock around migration; if someone else moves it,
5865 * that's OK. No task can be added to this CPU, so iteration is
5866 * fine.
5868 spin_unlock_irq(&rq->lock);
5869 move_task_off_dead_cpu(dead_cpu, p);
5870 spin_lock_irq(&rq->lock);
5872 put_task_struct(p);
5875 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5876 static void migrate_dead_tasks(unsigned int dead_cpu)
5878 struct rq *rq = cpu_rq(dead_cpu);
5879 struct task_struct *next;
5881 for ( ; ; ) {
5882 if (!rq->nr_running)
5883 break;
5884 update_rq_clock(rq);
5885 next = pick_next_task(rq, rq->curr);
5886 if (!next)
5887 break;
5888 migrate_dead(dead_cpu, next);
5892 #endif /* CONFIG_HOTPLUG_CPU */
5894 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5896 static struct ctl_table sd_ctl_dir[] = {
5898 .procname = "sched_domain",
5899 .mode = 0555,
5901 {0, },
5904 static struct ctl_table sd_ctl_root[] = {
5906 .ctl_name = CTL_KERN,
5907 .procname = "kernel",
5908 .mode = 0555,
5909 .child = sd_ctl_dir,
5911 {0, },
5914 static struct ctl_table *sd_alloc_ctl_entry(int n)
5916 struct ctl_table *entry =
5917 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5919 return entry;
5922 static void sd_free_ctl_entry(struct ctl_table **tablep)
5924 struct ctl_table *entry;
5927 * In the intermediate directories, both the child directory and
5928 * procname are dynamically allocated and could fail but the mode
5929 * will always be set. In the lowest directory the names are
5930 * static strings and all have proc handlers.
5932 for (entry = *tablep; entry->mode; entry++) {
5933 if (entry->child)
5934 sd_free_ctl_entry(&entry->child);
5935 if (entry->proc_handler == NULL)
5936 kfree(entry->procname);
5939 kfree(*tablep);
5940 *tablep = NULL;
5943 static void
5944 set_table_entry(struct ctl_table *entry,
5945 const char *procname, void *data, int maxlen,
5946 mode_t mode, proc_handler *proc_handler)
5948 entry->procname = procname;
5949 entry->data = data;
5950 entry->maxlen = maxlen;
5951 entry->mode = mode;
5952 entry->proc_handler = proc_handler;
5955 static struct ctl_table *
5956 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5958 struct ctl_table *table = sd_alloc_ctl_entry(12);
5960 if (table == NULL)
5961 return NULL;
5963 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5964 sizeof(long), 0644, proc_doulongvec_minmax);
5965 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5966 sizeof(long), 0644, proc_doulongvec_minmax);
5967 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5968 sizeof(int), 0644, proc_dointvec_minmax);
5969 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5970 sizeof(int), 0644, proc_dointvec_minmax);
5971 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5972 sizeof(int), 0644, proc_dointvec_minmax);
5973 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5974 sizeof(int), 0644, proc_dointvec_minmax);
5975 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5976 sizeof(int), 0644, proc_dointvec_minmax);
5977 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5978 sizeof(int), 0644, proc_dointvec_minmax);
5979 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5980 sizeof(int), 0644, proc_dointvec_minmax);
5981 set_table_entry(&table[9], "cache_nice_tries",
5982 &sd->cache_nice_tries,
5983 sizeof(int), 0644, proc_dointvec_minmax);
5984 set_table_entry(&table[10], "flags", &sd->flags,
5985 sizeof(int), 0644, proc_dointvec_minmax);
5986 /* &table[11] is terminator */
5988 return table;
5991 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5993 struct ctl_table *entry, *table;
5994 struct sched_domain *sd;
5995 int domain_num = 0, i;
5996 char buf[32];
5998 for_each_domain(cpu, sd)
5999 domain_num++;
6000 entry = table = sd_alloc_ctl_entry(domain_num + 1);
6001 if (table == NULL)
6002 return NULL;
6004 i = 0;
6005 for_each_domain(cpu, sd) {
6006 snprintf(buf, 32, "domain%d", i);
6007 entry->procname = kstrdup(buf, GFP_KERNEL);
6008 entry->mode = 0555;
6009 entry->child = sd_alloc_ctl_domain_table(sd);
6010 entry++;
6011 i++;
6013 return table;
6016 static struct ctl_table_header *sd_sysctl_header;
6017 static void register_sched_domain_sysctl(void)
6019 int i, cpu_num = num_online_cpus();
6020 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6021 char buf[32];
6023 WARN_ON(sd_ctl_dir[0].child);
6024 sd_ctl_dir[0].child = entry;
6026 if (entry == NULL)
6027 return;
6029 for_each_online_cpu(i) {
6030 snprintf(buf, 32, "cpu%d", i);
6031 entry->procname = kstrdup(buf, GFP_KERNEL);
6032 entry->mode = 0555;
6033 entry->child = sd_alloc_ctl_cpu_table(i);
6034 entry++;
6037 WARN_ON(sd_sysctl_header);
6038 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6041 /* may be called multiple times per register */
6042 static void unregister_sched_domain_sysctl(void)
6044 if (sd_sysctl_header)
6045 unregister_sysctl_table(sd_sysctl_header);
6046 sd_sysctl_header = NULL;
6047 if (sd_ctl_dir[0].child)
6048 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6050 #else
6051 static void register_sched_domain_sysctl(void)
6054 static void unregister_sched_domain_sysctl(void)
6057 #endif
6059 static void set_rq_online(struct rq *rq)
6061 if (!rq->online) {
6062 const struct sched_class *class;
6064 cpu_set(rq->cpu, rq->rd->online);
6065 rq->online = 1;
6067 for_each_class(class) {
6068 if (class->rq_online)
6069 class->rq_online(rq);
6074 static void set_rq_offline(struct rq *rq)
6076 if (rq->online) {
6077 const struct sched_class *class;
6079 for_each_class(class) {
6080 if (class->rq_offline)
6081 class->rq_offline(rq);
6084 cpu_clear(rq->cpu, rq->rd->online);
6085 rq->online = 0;
6090 * migration_call - callback that gets triggered when a CPU is added.
6091 * Here we can start up the necessary migration thread for the new CPU.
6093 static int __cpuinit
6094 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
6096 struct task_struct *p;
6097 int cpu = (long)hcpu;
6098 unsigned long flags;
6099 struct rq *rq;
6101 switch (action) {
6103 case CPU_UP_PREPARE:
6104 case CPU_UP_PREPARE_FROZEN:
6105 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
6106 if (IS_ERR(p))
6107 return NOTIFY_BAD;
6108 kthread_bind(p, cpu);
6109 /* Must be high prio: stop_machine expects to yield to it. */
6110 rq = task_rq_lock(p, &flags);
6111 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6112 task_rq_unlock(rq, &flags);
6113 cpu_rq(cpu)->migration_thread = p;
6114 break;
6116 case CPU_ONLINE:
6117 case CPU_ONLINE_FROZEN:
6118 /* Strictly unnecessary, as first user will wake it. */
6119 wake_up_process(cpu_rq(cpu)->migration_thread);
6121 /* Update our root-domain */
6122 rq = cpu_rq(cpu);
6123 spin_lock_irqsave(&rq->lock, flags);
6124 if (rq->rd) {
6125 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6127 set_rq_online(rq);
6129 spin_unlock_irqrestore(&rq->lock, flags);
6130 break;
6132 #ifdef CONFIG_HOTPLUG_CPU
6133 case CPU_UP_CANCELED:
6134 case CPU_UP_CANCELED_FROZEN:
6135 if (!cpu_rq(cpu)->migration_thread)
6136 break;
6137 /* Unbind it from offline cpu so it can run. Fall thru. */
6138 kthread_bind(cpu_rq(cpu)->migration_thread,
6139 any_online_cpu(cpu_online_map));
6140 kthread_stop(cpu_rq(cpu)->migration_thread);
6141 cpu_rq(cpu)->migration_thread = NULL;
6142 break;
6144 case CPU_DEAD:
6145 case CPU_DEAD_FROZEN:
6146 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
6147 migrate_live_tasks(cpu);
6148 rq = cpu_rq(cpu);
6149 kthread_stop(rq->migration_thread);
6150 rq->migration_thread = NULL;
6151 /* Idle task back to normal (off runqueue, low prio) */
6152 spin_lock_irq(&rq->lock);
6153 update_rq_clock(rq);
6154 deactivate_task(rq, rq->idle, 0);
6155 rq->idle->static_prio = MAX_PRIO;
6156 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6157 rq->idle->sched_class = &idle_sched_class;
6158 migrate_dead_tasks(cpu);
6159 spin_unlock_irq(&rq->lock);
6160 cpuset_unlock();
6161 migrate_nr_uninterruptible(rq);
6162 BUG_ON(rq->nr_running != 0);
6165 * No need to migrate the tasks: it was best-effort if
6166 * they didn't take sched_hotcpu_mutex. Just wake up
6167 * the requestors.
6169 spin_lock_irq(&rq->lock);
6170 while (!list_empty(&rq->migration_queue)) {
6171 struct migration_req *req;
6173 req = list_entry(rq->migration_queue.next,
6174 struct migration_req, list);
6175 list_del_init(&req->list);
6176 complete(&req->done);
6178 spin_unlock_irq(&rq->lock);
6179 break;
6181 case CPU_DYING:
6182 case CPU_DYING_FROZEN:
6183 /* Update our root-domain */
6184 rq = cpu_rq(cpu);
6185 spin_lock_irqsave(&rq->lock, flags);
6186 if (rq->rd) {
6187 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6188 set_rq_offline(rq);
6190 spin_unlock_irqrestore(&rq->lock, flags);
6191 break;
6192 #endif
6194 return NOTIFY_OK;
6197 /* Register at highest priority so that task migration (migrate_all_tasks)
6198 * happens before everything else.
6200 static struct notifier_block __cpuinitdata migration_notifier = {
6201 .notifier_call = migration_call,
6202 .priority = 10
6205 void __init migration_init(void)
6207 void *cpu = (void *)(long)smp_processor_id();
6208 int err;
6210 /* Start one for the boot CPU: */
6211 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6212 BUG_ON(err == NOTIFY_BAD);
6213 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6214 register_cpu_notifier(&migration_notifier);
6216 #endif
6218 #ifdef CONFIG_SMP
6220 #ifdef CONFIG_SCHED_DEBUG
6222 static inline const char *sd_level_to_string(enum sched_domain_level lvl)
6224 switch (lvl) {
6225 case SD_LV_NONE:
6226 return "NONE";
6227 case SD_LV_SIBLING:
6228 return "SIBLING";
6229 case SD_LV_MC:
6230 return "MC";
6231 case SD_LV_CPU:
6232 return "CPU";
6233 case SD_LV_NODE:
6234 return "NODE";
6235 case SD_LV_ALLNODES:
6236 return "ALLNODES";
6237 case SD_LV_MAX:
6238 return "MAX";
6241 return "MAX";
6244 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6245 cpumask_t *groupmask)
6247 struct sched_group *group = sd->groups;
6248 char str[256];
6250 cpulist_scnprintf(str, sizeof(str), sd->span);
6251 cpus_clear(*groupmask);
6253 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6255 if (!(sd->flags & SD_LOAD_BALANCE)) {
6256 printk("does not load-balance\n");
6257 if (sd->parent)
6258 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6259 " has parent");
6260 return -1;
6263 printk(KERN_CONT "span %s level %s\n",
6264 str, sd_level_to_string(sd->level));
6266 if (!cpu_isset(cpu, sd->span)) {
6267 printk(KERN_ERR "ERROR: domain->span does not contain "
6268 "CPU%d\n", cpu);
6270 if (!cpu_isset(cpu, group->cpumask)) {
6271 printk(KERN_ERR "ERROR: domain->groups does not contain"
6272 " CPU%d\n", cpu);
6275 printk(KERN_DEBUG "%*s groups:", level + 1, "");
6276 do {
6277 if (!group) {
6278 printk("\n");
6279 printk(KERN_ERR "ERROR: group is NULL\n");
6280 break;
6283 if (!group->__cpu_power) {
6284 printk(KERN_CONT "\n");
6285 printk(KERN_ERR "ERROR: domain->cpu_power not "
6286 "set\n");
6287 break;
6290 if (!cpus_weight(group->cpumask)) {
6291 printk(KERN_CONT "\n");
6292 printk(KERN_ERR "ERROR: empty group\n");
6293 break;
6296 if (cpus_intersects(*groupmask, group->cpumask)) {
6297 printk(KERN_CONT "\n");
6298 printk(KERN_ERR "ERROR: repeated CPUs\n");
6299 break;
6302 cpus_or(*groupmask, *groupmask, group->cpumask);
6304 cpulist_scnprintf(str, sizeof(str), group->cpumask);
6305 printk(KERN_CONT " %s", str);
6307 group = group->next;
6308 } while (group != sd->groups);
6309 printk(KERN_CONT "\n");
6311 if (!cpus_equal(sd->span, *groupmask))
6312 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6314 if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
6315 printk(KERN_ERR "ERROR: parent span is not a superset "
6316 "of domain->span\n");
6317 return 0;
6320 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6322 cpumask_t *groupmask;
6323 int level = 0;
6325 if (!sd) {
6326 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6327 return;
6330 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6332 groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6333 if (!groupmask) {
6334 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6335 return;
6338 for (;;) {
6339 if (sched_domain_debug_one(sd, cpu, level, groupmask))
6340 break;
6341 level++;
6342 sd = sd->parent;
6343 if (!sd)
6344 break;
6346 kfree(groupmask);
6348 #else /* !CONFIG_SCHED_DEBUG */
6349 # define sched_domain_debug(sd, cpu) do { } while (0)
6350 #endif /* CONFIG_SCHED_DEBUG */
6352 static int sd_degenerate(struct sched_domain *sd)
6354 if (cpus_weight(sd->span) == 1)
6355 return 1;
6357 /* Following flags need at least 2 groups */
6358 if (sd->flags & (SD_LOAD_BALANCE |
6359 SD_BALANCE_NEWIDLE |
6360 SD_BALANCE_FORK |
6361 SD_BALANCE_EXEC |
6362 SD_SHARE_CPUPOWER |
6363 SD_SHARE_PKG_RESOURCES)) {
6364 if (sd->groups != sd->groups->next)
6365 return 0;
6368 /* Following flags don't use groups */
6369 if (sd->flags & (SD_WAKE_IDLE |
6370 SD_WAKE_AFFINE |
6371 SD_WAKE_BALANCE))
6372 return 0;
6374 return 1;
6377 static int
6378 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6380 unsigned long cflags = sd->flags, pflags = parent->flags;
6382 if (sd_degenerate(parent))
6383 return 1;
6385 if (!cpus_equal(sd->span, parent->span))
6386 return 0;
6388 /* Does parent contain flags not in child? */
6389 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6390 if (cflags & SD_WAKE_AFFINE)
6391 pflags &= ~SD_WAKE_BALANCE;
6392 /* Flags needing groups don't count if only 1 group in parent */
6393 if (parent->groups == parent->groups->next) {
6394 pflags &= ~(SD_LOAD_BALANCE |
6395 SD_BALANCE_NEWIDLE |
6396 SD_BALANCE_FORK |
6397 SD_BALANCE_EXEC |
6398 SD_SHARE_CPUPOWER |
6399 SD_SHARE_PKG_RESOURCES);
6401 if (~cflags & pflags)
6402 return 0;
6404 return 1;
6407 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6409 unsigned long flags;
6411 spin_lock_irqsave(&rq->lock, flags);
6413 if (rq->rd) {
6414 struct root_domain *old_rd = rq->rd;
6416 if (cpu_isset(rq->cpu, old_rd->online))
6417 set_rq_offline(rq);
6419 cpu_clear(rq->cpu, old_rd->span);
6421 if (atomic_dec_and_test(&old_rd->refcount))
6422 kfree(old_rd);
6425 atomic_inc(&rd->refcount);
6426 rq->rd = rd;
6428 cpu_set(rq->cpu, rd->span);
6429 if (cpu_isset(rq->cpu, cpu_online_map))
6430 set_rq_online(rq);
6432 spin_unlock_irqrestore(&rq->lock, flags);
6435 static void init_rootdomain(struct root_domain *rd)
6437 memset(rd, 0, sizeof(*rd));
6439 cpus_clear(rd->span);
6440 cpus_clear(rd->online);
6442 cpupri_init(&rd->cpupri);
6445 static void init_defrootdomain(void)
6447 init_rootdomain(&def_root_domain);
6448 atomic_set(&def_root_domain.refcount, 1);
6451 static struct root_domain *alloc_rootdomain(void)
6453 struct root_domain *rd;
6455 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6456 if (!rd)
6457 return NULL;
6459 init_rootdomain(rd);
6461 return rd;
6465 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6466 * hold the hotplug lock.
6468 static void
6469 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6471 struct rq *rq = cpu_rq(cpu);
6472 struct sched_domain *tmp;
6474 /* Remove the sched domains which do not contribute to scheduling. */
6475 for (tmp = sd; tmp; tmp = tmp->parent) {
6476 struct sched_domain *parent = tmp->parent;
6477 if (!parent)
6478 break;
6479 if (sd_parent_degenerate(tmp, parent)) {
6480 tmp->parent = parent->parent;
6481 if (parent->parent)
6482 parent->parent->child = tmp;
6486 if (sd && sd_degenerate(sd)) {
6487 sd = sd->parent;
6488 if (sd)
6489 sd->child = NULL;
6492 sched_domain_debug(sd, cpu);
6494 rq_attach_root(rq, rd);
6495 rcu_assign_pointer(rq->sd, sd);
6498 /* cpus with isolated domains */
6499 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
6501 /* Setup the mask of cpus configured for isolated domains */
6502 static int __init isolated_cpu_setup(char *str)
6504 int ints[NR_CPUS], i;
6506 str = get_options(str, ARRAY_SIZE(ints), ints);
6507 cpus_clear(cpu_isolated_map);
6508 for (i = 1; i <= ints[0]; i++)
6509 if (ints[i] < NR_CPUS)
6510 cpu_set(ints[i], cpu_isolated_map);
6511 return 1;
6514 __setup("isolcpus=", isolated_cpu_setup);
6517 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6518 * to a function which identifies what group(along with sched group) a CPU
6519 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6520 * (due to the fact that we keep track of groups covered with a cpumask_t).
6522 * init_sched_build_groups will build a circular linked list of the groups
6523 * covered by the given span, and will set each group's ->cpumask correctly,
6524 * and ->cpu_power to 0.
6526 static void
6527 init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6528 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
6529 struct sched_group **sg,
6530 cpumask_t *tmpmask),
6531 cpumask_t *covered, cpumask_t *tmpmask)
6533 struct sched_group *first = NULL, *last = NULL;
6534 int i;
6536 cpus_clear(*covered);
6538 for_each_cpu_mask(i, *span) {
6539 struct sched_group *sg;
6540 int group = group_fn(i, cpu_map, &sg, tmpmask);
6541 int j;
6543 if (cpu_isset(i, *covered))
6544 continue;
6546 cpus_clear(sg->cpumask);
6547 sg->__cpu_power = 0;
6549 for_each_cpu_mask(j, *span) {
6550 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
6551 continue;
6553 cpu_set(j, *covered);
6554 cpu_set(j, sg->cpumask);
6556 if (!first)
6557 first = sg;
6558 if (last)
6559 last->next = sg;
6560 last = sg;
6562 last->next = first;
6565 #define SD_NODES_PER_DOMAIN 16
6567 #ifdef CONFIG_NUMA
6570 * find_next_best_node - find the next node to include in a sched_domain
6571 * @node: node whose sched_domain we're building
6572 * @used_nodes: nodes already in the sched_domain
6574 * Find the next node to include in a given scheduling domain. Simply
6575 * finds the closest node not already in the @used_nodes map.
6577 * Should use nodemask_t.
6579 static int find_next_best_node(int node, nodemask_t *used_nodes)
6581 int i, n, val, min_val, best_node = 0;
6583 min_val = INT_MAX;
6585 for (i = 0; i < MAX_NUMNODES; i++) {
6586 /* Start at @node */
6587 n = (node + i) % MAX_NUMNODES;
6589 if (!nr_cpus_node(n))
6590 continue;
6592 /* Skip already used nodes */
6593 if (node_isset(n, *used_nodes))
6594 continue;
6596 /* Simple min distance search */
6597 val = node_distance(node, n);
6599 if (val < min_val) {
6600 min_val = val;
6601 best_node = n;
6605 node_set(best_node, *used_nodes);
6606 return best_node;
6610 * sched_domain_node_span - get a cpumask for a node's sched_domain
6611 * @node: node whose cpumask we're constructing
6612 * @span: resulting cpumask
6614 * Given a node, construct a good cpumask for its sched_domain to span. It
6615 * should be one that prevents unnecessary balancing, but also spreads tasks
6616 * out optimally.
6618 static void sched_domain_node_span(int node, cpumask_t *span)
6620 nodemask_t used_nodes;
6621 node_to_cpumask_ptr(nodemask, node);
6622 int i;
6624 cpus_clear(*span);
6625 nodes_clear(used_nodes);
6627 cpus_or(*span, *span, *nodemask);
6628 node_set(node, used_nodes);
6630 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6631 int next_node = find_next_best_node(node, &used_nodes);
6633 node_to_cpumask_ptr_next(nodemask, next_node);
6634 cpus_or(*span, *span, *nodemask);
6637 #endif /* CONFIG_NUMA */
6639 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6642 * SMT sched-domains:
6644 #ifdef CONFIG_SCHED_SMT
6645 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6646 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
6648 static int
6649 cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6650 cpumask_t *unused)
6652 if (sg)
6653 *sg = &per_cpu(sched_group_cpus, cpu);
6654 return cpu;
6656 #endif /* CONFIG_SCHED_SMT */
6659 * multi-core sched-domains:
6661 #ifdef CONFIG_SCHED_MC
6662 static DEFINE_PER_CPU(struct sched_domain, core_domains);
6663 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6664 #endif /* CONFIG_SCHED_MC */
6666 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6667 static int
6668 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6669 cpumask_t *mask)
6671 int group;
6673 *mask = per_cpu(cpu_sibling_map, cpu);
6674 cpus_and(*mask, *mask, *cpu_map);
6675 group = first_cpu(*mask);
6676 if (sg)
6677 *sg = &per_cpu(sched_group_core, group);
6678 return group;
6680 #elif defined(CONFIG_SCHED_MC)
6681 static int
6682 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6683 cpumask_t *unused)
6685 if (sg)
6686 *sg = &per_cpu(sched_group_core, cpu);
6687 return cpu;
6689 #endif
6691 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6692 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
6694 static int
6695 cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6696 cpumask_t *mask)
6698 int group;
6699 #ifdef CONFIG_SCHED_MC
6700 *mask = cpu_coregroup_map(cpu);
6701 cpus_and(*mask, *mask, *cpu_map);
6702 group = first_cpu(*mask);
6703 #elif defined(CONFIG_SCHED_SMT)
6704 *mask = per_cpu(cpu_sibling_map, cpu);
6705 cpus_and(*mask, *mask, *cpu_map);
6706 group = first_cpu(*mask);
6707 #else
6708 group = cpu;
6709 #endif
6710 if (sg)
6711 *sg = &per_cpu(sched_group_phys, group);
6712 return group;
6715 #ifdef CONFIG_NUMA
6717 * The init_sched_build_groups can't handle what we want to do with node
6718 * groups, so roll our own. Now each node has its own list of groups which
6719 * gets dynamically allocated.
6721 static DEFINE_PER_CPU(struct sched_domain, node_domains);
6722 static struct sched_group ***sched_group_nodes_bycpu;
6724 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6725 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
6727 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
6728 struct sched_group **sg, cpumask_t *nodemask)
6730 int group;
6732 *nodemask = node_to_cpumask(cpu_to_node(cpu));
6733 cpus_and(*nodemask, *nodemask, *cpu_map);
6734 group = first_cpu(*nodemask);
6736 if (sg)
6737 *sg = &per_cpu(sched_group_allnodes, group);
6738 return group;
6741 static void init_numa_sched_groups_power(struct sched_group *group_head)
6743 struct sched_group *sg = group_head;
6744 int j;
6746 if (!sg)
6747 return;
6748 do {
6749 for_each_cpu_mask(j, sg->cpumask) {
6750 struct sched_domain *sd;
6752 sd = &per_cpu(phys_domains, j);
6753 if (j != first_cpu(sd->groups->cpumask)) {
6755 * Only add "power" once for each
6756 * physical package.
6758 continue;
6761 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
6763 sg = sg->next;
6764 } while (sg != group_head);
6766 #endif /* CONFIG_NUMA */
6768 #ifdef CONFIG_NUMA
6769 /* Free memory allocated for various sched_group structures */
6770 static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
6772 int cpu, i;
6774 for_each_cpu_mask(cpu, *cpu_map) {
6775 struct sched_group **sched_group_nodes
6776 = sched_group_nodes_bycpu[cpu];
6778 if (!sched_group_nodes)
6779 continue;
6781 for (i = 0; i < MAX_NUMNODES; i++) {
6782 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6784 *nodemask = node_to_cpumask(i);
6785 cpus_and(*nodemask, *nodemask, *cpu_map);
6786 if (cpus_empty(*nodemask))
6787 continue;
6789 if (sg == NULL)
6790 continue;
6791 sg = sg->next;
6792 next_sg:
6793 oldsg = sg;
6794 sg = sg->next;
6795 kfree(oldsg);
6796 if (oldsg != sched_group_nodes[i])
6797 goto next_sg;
6799 kfree(sched_group_nodes);
6800 sched_group_nodes_bycpu[cpu] = NULL;
6803 #else /* !CONFIG_NUMA */
6804 static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
6807 #endif /* CONFIG_NUMA */
6810 * Initialize sched groups cpu_power.
6812 * cpu_power indicates the capacity of sched group, which is used while
6813 * distributing the load between different sched groups in a sched domain.
6814 * Typically cpu_power for all the groups in a sched domain will be same unless
6815 * there are asymmetries in the topology. If there are asymmetries, group
6816 * having more cpu_power will pickup more load compared to the group having
6817 * less cpu_power.
6819 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6820 * the maximum number of tasks a group can handle in the presence of other idle
6821 * or lightly loaded groups in the same sched domain.
6823 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6825 struct sched_domain *child;
6826 struct sched_group *group;
6828 WARN_ON(!sd || !sd->groups);
6830 if (cpu != first_cpu(sd->groups->cpumask))
6831 return;
6833 child = sd->child;
6835 sd->groups->__cpu_power = 0;
6838 * For perf policy, if the groups in child domain share resources
6839 * (for example cores sharing some portions of the cache hierarchy
6840 * or SMT), then set this domain groups cpu_power such that each group
6841 * can handle only one task, when there are other idle groups in the
6842 * same sched domain.
6844 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6845 (child->flags &
6846 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6847 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6848 return;
6852 * add cpu_power of each child group to this groups cpu_power
6854 group = child->groups;
6855 do {
6856 sg_inc_cpu_power(sd->groups, group->__cpu_power);
6857 group = group->next;
6858 } while (group != child->groups);
6862 * Initializers for schedule domains
6863 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6866 #define SD_INIT(sd, type) sd_init_##type(sd)
6867 #define SD_INIT_FUNC(type) \
6868 static noinline void sd_init_##type(struct sched_domain *sd) \
6870 memset(sd, 0, sizeof(*sd)); \
6871 *sd = SD_##type##_INIT; \
6872 sd->level = SD_LV_##type; \
6875 SD_INIT_FUNC(CPU)
6876 #ifdef CONFIG_NUMA
6877 SD_INIT_FUNC(ALLNODES)
6878 SD_INIT_FUNC(NODE)
6879 #endif
6880 #ifdef CONFIG_SCHED_SMT
6881 SD_INIT_FUNC(SIBLING)
6882 #endif
6883 #ifdef CONFIG_SCHED_MC
6884 SD_INIT_FUNC(MC)
6885 #endif
6888 * To minimize stack usage kmalloc room for cpumasks and share the
6889 * space as the usage in build_sched_domains() dictates. Used only
6890 * if the amount of space is significant.
6892 struct allmasks {
6893 cpumask_t tmpmask; /* make this one first */
6894 union {
6895 cpumask_t nodemask;
6896 cpumask_t this_sibling_map;
6897 cpumask_t this_core_map;
6899 cpumask_t send_covered;
6901 #ifdef CONFIG_NUMA
6902 cpumask_t domainspan;
6903 cpumask_t covered;
6904 cpumask_t notcovered;
6905 #endif
6908 #if NR_CPUS > 128
6909 #define SCHED_CPUMASK_ALLOC 1
6910 #define SCHED_CPUMASK_FREE(v) kfree(v)
6911 #define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
6912 #else
6913 #define SCHED_CPUMASK_ALLOC 0
6914 #define SCHED_CPUMASK_FREE(v)
6915 #define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
6916 #endif
6918 #define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
6919 ((unsigned long)(a) + offsetof(struct allmasks, v))
6921 static int default_relax_domain_level = -1;
6923 static int __init setup_relax_domain_level(char *str)
6925 default_relax_domain_level = simple_strtoul(str, NULL, 0);
6926 return 1;
6928 __setup("relax_domain_level=", setup_relax_domain_level);
6930 static void set_domain_attribute(struct sched_domain *sd,
6931 struct sched_domain_attr *attr)
6933 int request;
6935 if (!attr || attr->relax_domain_level < 0) {
6936 if (default_relax_domain_level < 0)
6937 return;
6938 else
6939 request = default_relax_domain_level;
6940 } else
6941 request = attr->relax_domain_level;
6942 if (request < sd->level) {
6943 /* turn off idle balance on this domain */
6944 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
6945 } else {
6946 /* turn on idle balance on this domain */
6947 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
6952 * Build sched domains for a given set of cpus and attach the sched domains
6953 * to the individual cpus
6955 static int __build_sched_domains(const cpumask_t *cpu_map,
6956 struct sched_domain_attr *attr)
6958 int i;
6959 struct root_domain *rd;
6960 SCHED_CPUMASK_DECLARE(allmasks);
6961 cpumask_t *tmpmask;
6962 #ifdef CONFIG_NUMA
6963 struct sched_group **sched_group_nodes = NULL;
6964 int sd_allnodes = 0;
6967 * Allocate the per-node list of sched groups
6969 sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
6970 GFP_KERNEL);
6971 if (!sched_group_nodes) {
6972 printk(KERN_WARNING "Can not alloc sched group node list\n");
6973 return -ENOMEM;
6975 #endif
6977 rd = alloc_rootdomain();
6978 if (!rd) {
6979 printk(KERN_WARNING "Cannot alloc root domain\n");
6980 #ifdef CONFIG_NUMA
6981 kfree(sched_group_nodes);
6982 #endif
6983 return -ENOMEM;
6986 #if SCHED_CPUMASK_ALLOC
6987 /* get space for all scratch cpumask variables */
6988 allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
6989 if (!allmasks) {
6990 printk(KERN_WARNING "Cannot alloc cpumask array\n");
6991 kfree(rd);
6992 #ifdef CONFIG_NUMA
6993 kfree(sched_group_nodes);
6994 #endif
6995 return -ENOMEM;
6997 #endif
6998 tmpmask = (cpumask_t *)allmasks;
7001 #ifdef CONFIG_NUMA
7002 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
7003 #endif
7006 * Set up domains for cpus specified by the cpu_map.
7008 for_each_cpu_mask(i, *cpu_map) {
7009 struct sched_domain *sd = NULL, *p;
7010 SCHED_CPUMASK_VAR(nodemask, allmasks);
7012 *nodemask = node_to_cpumask(cpu_to_node(i));
7013 cpus_and(*nodemask, *nodemask, *cpu_map);
7015 #ifdef CONFIG_NUMA
7016 if (cpus_weight(*cpu_map) >
7017 SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
7018 sd = &per_cpu(allnodes_domains, i);
7019 SD_INIT(sd, ALLNODES);
7020 set_domain_attribute(sd, attr);
7021 sd->span = *cpu_map;
7022 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
7023 p = sd;
7024 sd_allnodes = 1;
7025 } else
7026 p = NULL;
7028 sd = &per_cpu(node_domains, i);
7029 SD_INIT(sd, NODE);
7030 set_domain_attribute(sd, attr);
7031 sched_domain_node_span(cpu_to_node(i), &sd->span);
7032 sd->parent = p;
7033 if (p)
7034 p->child = sd;
7035 cpus_and(sd->span, sd->span, *cpu_map);
7036 #endif
7038 p = sd;
7039 sd = &per_cpu(phys_domains, i);
7040 SD_INIT(sd, CPU);
7041 set_domain_attribute(sd, attr);
7042 sd->span = *nodemask;
7043 sd->parent = p;
7044 if (p)
7045 p->child = sd;
7046 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
7048 #ifdef CONFIG_SCHED_MC
7049 p = sd;
7050 sd = &per_cpu(core_domains, i);
7051 SD_INIT(sd, MC);
7052 set_domain_attribute(sd, attr);
7053 sd->span = cpu_coregroup_map(i);
7054 cpus_and(sd->span, sd->span, *cpu_map);
7055 sd->parent = p;
7056 p->child = sd;
7057 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
7058 #endif
7060 #ifdef CONFIG_SCHED_SMT
7061 p = sd;
7062 sd = &per_cpu(cpu_domains, i);
7063 SD_INIT(sd, SIBLING);
7064 set_domain_attribute(sd, attr);
7065 sd->span = per_cpu(cpu_sibling_map, i);
7066 cpus_and(sd->span, sd->span, *cpu_map);
7067 sd->parent = p;
7068 p->child = sd;
7069 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
7070 #endif
7073 #ifdef CONFIG_SCHED_SMT
7074 /* Set up CPU (sibling) groups */
7075 for_each_cpu_mask(i, *cpu_map) {
7076 SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
7077 SCHED_CPUMASK_VAR(send_covered, allmasks);
7079 *this_sibling_map = per_cpu(cpu_sibling_map, i);
7080 cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
7081 if (i != first_cpu(*this_sibling_map))
7082 continue;
7084 init_sched_build_groups(this_sibling_map, cpu_map,
7085 &cpu_to_cpu_group,
7086 send_covered, tmpmask);
7088 #endif
7090 #ifdef CONFIG_SCHED_MC
7091 /* Set up multi-core groups */
7092 for_each_cpu_mask(i, *cpu_map) {
7093 SCHED_CPUMASK_VAR(this_core_map, allmasks);
7094 SCHED_CPUMASK_VAR(send_covered, allmasks);
7096 *this_core_map = cpu_coregroup_map(i);
7097 cpus_and(*this_core_map, *this_core_map, *cpu_map);
7098 if (i != first_cpu(*this_core_map))
7099 continue;
7101 init_sched_build_groups(this_core_map, cpu_map,
7102 &cpu_to_core_group,
7103 send_covered, tmpmask);
7105 #endif
7107 /* Set up physical groups */
7108 for (i = 0; i < MAX_NUMNODES; i++) {
7109 SCHED_CPUMASK_VAR(nodemask, allmasks);
7110 SCHED_CPUMASK_VAR(send_covered, allmasks);
7112 *nodemask = node_to_cpumask(i);
7113 cpus_and(*nodemask, *nodemask, *cpu_map);
7114 if (cpus_empty(*nodemask))
7115 continue;
7117 init_sched_build_groups(nodemask, cpu_map,
7118 &cpu_to_phys_group,
7119 send_covered, tmpmask);
7122 #ifdef CONFIG_NUMA
7123 /* Set up node groups */
7124 if (sd_allnodes) {
7125 SCHED_CPUMASK_VAR(send_covered, allmasks);
7127 init_sched_build_groups(cpu_map, cpu_map,
7128 &cpu_to_allnodes_group,
7129 send_covered, tmpmask);
7132 for (i = 0; i < MAX_NUMNODES; i++) {
7133 /* Set up node groups */
7134 struct sched_group *sg, *prev;
7135 SCHED_CPUMASK_VAR(nodemask, allmasks);
7136 SCHED_CPUMASK_VAR(domainspan, allmasks);
7137 SCHED_CPUMASK_VAR(covered, allmasks);
7138 int j;
7140 *nodemask = node_to_cpumask(i);
7141 cpus_clear(*covered);
7143 cpus_and(*nodemask, *nodemask, *cpu_map);
7144 if (cpus_empty(*nodemask)) {
7145 sched_group_nodes[i] = NULL;
7146 continue;
7149 sched_domain_node_span(i, domainspan);
7150 cpus_and(*domainspan, *domainspan, *cpu_map);
7152 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
7153 if (!sg) {
7154 printk(KERN_WARNING "Can not alloc domain group for "
7155 "node %d\n", i);
7156 goto error;
7158 sched_group_nodes[i] = sg;
7159 for_each_cpu_mask(j, *nodemask) {
7160 struct sched_domain *sd;
7162 sd = &per_cpu(node_domains, j);
7163 sd->groups = sg;
7165 sg->__cpu_power = 0;
7166 sg->cpumask = *nodemask;
7167 sg->next = sg;
7168 cpus_or(*covered, *covered, *nodemask);
7169 prev = sg;
7171 for (j = 0; j < MAX_NUMNODES; j++) {
7172 SCHED_CPUMASK_VAR(notcovered, allmasks);
7173 int n = (i + j) % MAX_NUMNODES;
7174 node_to_cpumask_ptr(pnodemask, n);
7176 cpus_complement(*notcovered, *covered);
7177 cpus_and(*tmpmask, *notcovered, *cpu_map);
7178 cpus_and(*tmpmask, *tmpmask, *domainspan);
7179 if (cpus_empty(*tmpmask))
7180 break;
7182 cpus_and(*tmpmask, *tmpmask, *pnodemask);
7183 if (cpus_empty(*tmpmask))
7184 continue;
7186 sg = kmalloc_node(sizeof(struct sched_group),
7187 GFP_KERNEL, i);
7188 if (!sg) {
7189 printk(KERN_WARNING
7190 "Can not alloc domain group for node %d\n", j);
7191 goto error;
7193 sg->__cpu_power = 0;
7194 sg->cpumask = *tmpmask;
7195 sg->next = prev->next;
7196 cpus_or(*covered, *covered, *tmpmask);
7197 prev->next = sg;
7198 prev = sg;
7201 #endif
7203 /* Calculate CPU power for physical packages and nodes */
7204 #ifdef CONFIG_SCHED_SMT
7205 for_each_cpu_mask(i, *cpu_map) {
7206 struct sched_domain *sd = &per_cpu(cpu_domains, i);
7208 init_sched_groups_power(i, sd);
7210 #endif
7211 #ifdef CONFIG_SCHED_MC
7212 for_each_cpu_mask(i, *cpu_map) {
7213 struct sched_domain *sd = &per_cpu(core_domains, i);
7215 init_sched_groups_power(i, sd);
7217 #endif
7219 for_each_cpu_mask(i, *cpu_map) {
7220 struct sched_domain *sd = &per_cpu(phys_domains, i);
7222 init_sched_groups_power(i, sd);
7225 #ifdef CONFIG_NUMA
7226 for (i = 0; i < MAX_NUMNODES; i++)
7227 init_numa_sched_groups_power(sched_group_nodes[i]);
7229 if (sd_allnodes) {
7230 struct sched_group *sg;
7232 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
7233 tmpmask);
7234 init_numa_sched_groups_power(sg);
7236 #endif
7238 /* Attach the domains */
7239 for_each_cpu_mask(i, *cpu_map) {
7240 struct sched_domain *sd;
7241 #ifdef CONFIG_SCHED_SMT
7242 sd = &per_cpu(cpu_domains, i);
7243 #elif defined(CONFIG_SCHED_MC)
7244 sd = &per_cpu(core_domains, i);
7245 #else
7246 sd = &per_cpu(phys_domains, i);
7247 #endif
7248 cpu_attach_domain(sd, rd, i);
7251 SCHED_CPUMASK_FREE((void *)allmasks);
7252 return 0;
7254 #ifdef CONFIG_NUMA
7255 error:
7256 free_sched_groups(cpu_map, tmpmask);
7257 SCHED_CPUMASK_FREE((void *)allmasks);
7258 return -ENOMEM;
7259 #endif
7262 static int build_sched_domains(const cpumask_t *cpu_map)
7264 return __build_sched_domains(cpu_map, NULL);
7267 static cpumask_t *doms_cur; /* current sched domains */
7268 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7269 static struct sched_domain_attr *dattr_cur;
7270 /* attribues of custom domains in 'doms_cur' */
7273 * Special case: If a kmalloc of a doms_cur partition (array of
7274 * cpumask_t) fails, then fallback to a single sched domain,
7275 * as determined by the single cpumask_t fallback_doms.
7277 static cpumask_t fallback_doms;
7279 void __attribute__((weak)) arch_update_cpu_topology(void)
7284 * Free current domain masks.
7285 * Called after all cpus are attached to NULL domain.
7287 static void free_sched_domains(void)
7289 ndoms_cur = 0;
7290 if (doms_cur != &fallback_doms)
7291 kfree(doms_cur);
7292 doms_cur = &fallback_doms;
7296 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7297 * For now this just excludes isolated cpus, but could be used to
7298 * exclude other special cases in the future.
7300 static int arch_init_sched_domains(const cpumask_t *cpu_map)
7302 int err;
7304 arch_update_cpu_topology();
7305 ndoms_cur = 1;
7306 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
7307 if (!doms_cur)
7308 doms_cur = &fallback_doms;
7309 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
7310 dattr_cur = NULL;
7311 err = build_sched_domains(doms_cur);
7312 register_sched_domain_sysctl();
7314 return err;
7317 static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
7318 cpumask_t *tmpmask)
7320 free_sched_groups(cpu_map, tmpmask);
7324 * Detach sched domains from a group of cpus specified in cpu_map
7325 * These cpus will now be attached to the NULL domain
7327 static void detach_destroy_domains(const cpumask_t *cpu_map)
7329 cpumask_t tmpmask;
7330 int i;
7332 unregister_sched_domain_sysctl();
7334 for_each_cpu_mask(i, *cpu_map)
7335 cpu_attach_domain(NULL, &def_root_domain, i);
7336 synchronize_sched();
7337 arch_destroy_sched_domains(cpu_map, &tmpmask);
7340 /* handle null as "default" */
7341 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7342 struct sched_domain_attr *new, int idx_new)
7344 struct sched_domain_attr tmp;
7346 /* fast path */
7347 if (!new && !cur)
7348 return 1;
7350 tmp = SD_ATTR_INIT;
7351 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7352 new ? (new + idx_new) : &tmp,
7353 sizeof(struct sched_domain_attr));
7357 * Partition sched domains as specified by the 'ndoms_new'
7358 * cpumasks in the array doms_new[] of cpumasks. This compares
7359 * doms_new[] to the current sched domain partitioning, doms_cur[].
7360 * It destroys each deleted domain and builds each new domain.
7362 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
7363 * The masks don't intersect (don't overlap.) We should setup one
7364 * sched domain for each mask. CPUs not in any of the cpumasks will
7365 * not be load balanced. If the same cpumask appears both in the
7366 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7367 * it as it is.
7369 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7370 * ownership of it and will kfree it when done with it. If the caller
7371 * failed the kmalloc call, then it can pass in doms_new == NULL,
7372 * and partition_sched_domains() will fallback to the single partition
7373 * 'fallback_doms'.
7375 * Call with hotplug lock held
7377 void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
7378 struct sched_domain_attr *dattr_new)
7380 int i, j;
7382 mutex_lock(&sched_domains_mutex);
7384 /* always unregister in case we don't destroy any domains */
7385 unregister_sched_domain_sysctl();
7387 if (doms_new == NULL) {
7388 ndoms_new = 1;
7389 doms_new = &fallback_doms;
7390 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
7391 dattr_new = NULL;
7394 /* Destroy deleted domains */
7395 for (i = 0; i < ndoms_cur; i++) {
7396 for (j = 0; j < ndoms_new; j++) {
7397 if (cpus_equal(doms_cur[i], doms_new[j])
7398 && dattrs_equal(dattr_cur, i, dattr_new, j))
7399 goto match1;
7401 /* no match - a current sched domain not in new doms_new[] */
7402 detach_destroy_domains(doms_cur + i);
7403 match1:
7407 /* Build new domains */
7408 for (i = 0; i < ndoms_new; i++) {
7409 for (j = 0; j < ndoms_cur; j++) {
7410 if (cpus_equal(doms_new[i], doms_cur[j])
7411 && dattrs_equal(dattr_new, i, dattr_cur, j))
7412 goto match2;
7414 /* no match - add a new doms_new */
7415 __build_sched_domains(doms_new + i,
7416 dattr_new ? dattr_new + i : NULL);
7417 match2:
7421 /* Remember the new sched domains */
7422 if (doms_cur != &fallback_doms)
7423 kfree(doms_cur);
7424 kfree(dattr_cur); /* kfree(NULL) is safe */
7425 doms_cur = doms_new;
7426 dattr_cur = dattr_new;
7427 ndoms_cur = ndoms_new;
7429 register_sched_domain_sysctl();
7431 mutex_unlock(&sched_domains_mutex);
7434 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7435 int arch_reinit_sched_domains(void)
7437 int err;
7439 get_online_cpus();
7440 mutex_lock(&sched_domains_mutex);
7441 detach_destroy_domains(&cpu_online_map);
7442 free_sched_domains();
7443 err = arch_init_sched_domains(&cpu_online_map);
7444 mutex_unlock(&sched_domains_mutex);
7445 put_online_cpus();
7447 return err;
7450 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7452 int ret;
7454 if (buf[0] != '0' && buf[0] != '1')
7455 return -EINVAL;
7457 if (smt)
7458 sched_smt_power_savings = (buf[0] == '1');
7459 else
7460 sched_mc_power_savings = (buf[0] == '1');
7462 ret = arch_reinit_sched_domains();
7464 return ret ? ret : count;
7467 #ifdef CONFIG_SCHED_MC
7468 static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
7470 return sprintf(page, "%u\n", sched_mc_power_savings);
7472 static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
7473 const char *buf, size_t count)
7475 return sched_power_savings_store(buf, count, 0);
7477 static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
7478 sched_mc_power_savings_store);
7479 #endif
7481 #ifdef CONFIG_SCHED_SMT
7482 static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
7484 return sprintf(page, "%u\n", sched_smt_power_savings);
7486 static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
7487 const char *buf, size_t count)
7489 return sched_power_savings_store(buf, count, 1);
7491 static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
7492 sched_smt_power_savings_store);
7493 #endif
7495 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7497 int err = 0;
7499 #ifdef CONFIG_SCHED_SMT
7500 if (smt_capable())
7501 err = sysfs_create_file(&cls->kset.kobj,
7502 &attr_sched_smt_power_savings.attr);
7503 #endif
7504 #ifdef CONFIG_SCHED_MC
7505 if (!err && mc_capable())
7506 err = sysfs_create_file(&cls->kset.kobj,
7507 &attr_sched_mc_power_savings.attr);
7508 #endif
7509 return err;
7511 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7514 * Force a reinitialization of the sched domains hierarchy. The domains
7515 * and groups cannot be updated in place without racing with the balancing
7516 * code, so we temporarily attach all running cpus to the NULL domain
7517 * which will prevent rebalancing while the sched domains are recalculated.
7519 static int update_sched_domains(struct notifier_block *nfb,
7520 unsigned long action, void *hcpu)
7522 int cpu = (int)(long)hcpu;
7524 switch (action) {
7525 case CPU_DOWN_PREPARE:
7526 case CPU_DOWN_PREPARE_FROZEN:
7527 disable_runtime(cpu_rq(cpu));
7528 /* fall-through */
7529 case CPU_UP_PREPARE:
7530 case CPU_UP_PREPARE_FROZEN:
7531 detach_destroy_domains(&cpu_online_map);
7532 free_sched_domains();
7533 return NOTIFY_OK;
7536 case CPU_DOWN_FAILED:
7537 case CPU_DOWN_FAILED_FROZEN:
7538 case CPU_ONLINE:
7539 case CPU_ONLINE_FROZEN:
7540 enable_runtime(cpu_rq(cpu));
7541 /* fall-through */
7542 case CPU_UP_CANCELED:
7543 case CPU_UP_CANCELED_FROZEN:
7544 case CPU_DEAD:
7545 case CPU_DEAD_FROZEN:
7547 * Fall through and re-initialise the domains.
7549 break;
7550 default:
7551 return NOTIFY_DONE;
7554 #ifndef CONFIG_CPUSETS
7556 * Create default domain partitioning if cpusets are disabled.
7557 * Otherwise we let cpusets rebuild the domains based on the
7558 * current setup.
7561 /* The hotplug lock is already held by cpu_up/cpu_down */
7562 arch_init_sched_domains(&cpu_online_map);
7563 #endif
7565 return NOTIFY_OK;
7568 void __init sched_init_smp(void)
7570 cpumask_t non_isolated_cpus;
7572 #if defined(CONFIG_NUMA)
7573 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7574 GFP_KERNEL);
7575 BUG_ON(sched_group_nodes_bycpu == NULL);
7576 #endif
7577 get_online_cpus();
7578 mutex_lock(&sched_domains_mutex);
7579 arch_init_sched_domains(&cpu_online_map);
7580 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
7581 if (cpus_empty(non_isolated_cpus))
7582 cpu_set(smp_processor_id(), non_isolated_cpus);
7583 mutex_unlock(&sched_domains_mutex);
7584 put_online_cpus();
7585 /* XXX: Theoretical race here - CPU may be hotplugged now */
7586 hotcpu_notifier(update_sched_domains, 0);
7587 init_hrtick();
7589 /* Move init over to a non-isolated CPU */
7590 if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
7591 BUG();
7592 sched_init_granularity();
7594 #else
7595 void __init sched_init_smp(void)
7597 sched_init_granularity();
7599 #endif /* CONFIG_SMP */
7601 int in_sched_functions(unsigned long addr)
7603 return in_lock_functions(addr) ||
7604 (addr >= (unsigned long)__sched_text_start
7605 && addr < (unsigned long)__sched_text_end);
7608 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
7610 cfs_rq->tasks_timeline = RB_ROOT;
7611 INIT_LIST_HEAD(&cfs_rq->tasks);
7612 #ifdef CONFIG_FAIR_GROUP_SCHED
7613 cfs_rq->rq = rq;
7614 #endif
7615 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7618 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7620 struct rt_prio_array *array;
7621 int i;
7623 array = &rt_rq->active;
7624 for (i = 0; i < MAX_RT_PRIO; i++) {
7625 INIT_LIST_HEAD(array->xqueue + i);
7626 INIT_LIST_HEAD(array->squeue + i);
7627 __clear_bit(i, array->bitmap);
7629 /* delimiter for bitsearch: */
7630 __set_bit(MAX_RT_PRIO, array->bitmap);
7632 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7633 rt_rq->highest_prio = MAX_RT_PRIO;
7634 #endif
7635 #ifdef CONFIG_SMP
7636 rt_rq->rt_nr_migratory = 0;
7637 rt_rq->overloaded = 0;
7638 #endif
7640 rt_rq->rt_time = 0;
7641 rt_rq->rt_throttled = 0;
7642 rt_rq->rt_runtime = 0;
7643 spin_lock_init(&rt_rq->rt_runtime_lock);
7645 #ifdef CONFIG_RT_GROUP_SCHED
7646 rt_rq->rt_nr_boosted = 0;
7647 rt_rq->rq = rq;
7648 #endif
7651 #ifdef CONFIG_FAIR_GROUP_SCHED
7652 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7653 struct sched_entity *se, int cpu, int add,
7654 struct sched_entity *parent)
7656 struct rq *rq = cpu_rq(cpu);
7657 tg->cfs_rq[cpu] = cfs_rq;
7658 init_cfs_rq(cfs_rq, rq);
7659 cfs_rq->tg = tg;
7660 if (add)
7661 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7663 tg->se[cpu] = se;
7664 /* se could be NULL for init_task_group */
7665 if (!se)
7666 return;
7668 if (!parent)
7669 se->cfs_rq = &rq->cfs;
7670 else
7671 se->cfs_rq = parent->my_q;
7673 se->my_q = cfs_rq;
7674 se->load.weight = tg->shares;
7675 se->load.inv_weight = 0;
7676 se->parent = parent;
7678 #endif
7680 #ifdef CONFIG_RT_GROUP_SCHED
7681 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7682 struct sched_rt_entity *rt_se, int cpu, int add,
7683 struct sched_rt_entity *parent)
7685 struct rq *rq = cpu_rq(cpu);
7687 tg->rt_rq[cpu] = rt_rq;
7688 init_rt_rq(rt_rq, rq);
7689 rt_rq->tg = tg;
7690 rt_rq->rt_se = rt_se;
7691 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
7692 if (add)
7693 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7695 tg->rt_se[cpu] = rt_se;
7696 if (!rt_se)
7697 return;
7699 if (!parent)
7700 rt_se->rt_rq = &rq->rt;
7701 else
7702 rt_se->rt_rq = parent->my_q;
7704 rt_se->rt_rq = &rq->rt;
7705 rt_se->my_q = rt_rq;
7706 rt_se->parent = parent;
7707 INIT_LIST_HEAD(&rt_se->run_list);
7709 #endif
7711 void __init sched_init(void)
7713 int i, j;
7714 unsigned long alloc_size = 0, ptr;
7716 #ifdef CONFIG_FAIR_GROUP_SCHED
7717 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7718 #endif
7719 #ifdef CONFIG_RT_GROUP_SCHED
7720 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7721 #endif
7722 #ifdef CONFIG_USER_SCHED
7723 alloc_size *= 2;
7724 #endif
7726 * As sched_init() is called before page_alloc is setup,
7727 * we use alloc_bootmem().
7729 if (alloc_size) {
7730 ptr = (unsigned long)alloc_bootmem(alloc_size);
7732 #ifdef CONFIG_FAIR_GROUP_SCHED
7733 init_task_group.se = (struct sched_entity **)ptr;
7734 ptr += nr_cpu_ids * sizeof(void **);
7736 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
7737 ptr += nr_cpu_ids * sizeof(void **);
7739 #ifdef CONFIG_USER_SCHED
7740 root_task_group.se = (struct sched_entity **)ptr;
7741 ptr += nr_cpu_ids * sizeof(void **);
7743 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7744 ptr += nr_cpu_ids * sizeof(void **);
7745 #endif /* CONFIG_USER_SCHED */
7746 #endif /* CONFIG_FAIR_GROUP_SCHED */
7747 #ifdef CONFIG_RT_GROUP_SCHED
7748 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
7749 ptr += nr_cpu_ids * sizeof(void **);
7751 init_task_group.rt_rq = (struct rt_rq **)ptr;
7752 ptr += nr_cpu_ids * sizeof(void **);
7754 #ifdef CONFIG_USER_SCHED
7755 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7756 ptr += nr_cpu_ids * sizeof(void **);
7758 root_task_group.rt_rq = (struct rt_rq **)ptr;
7759 ptr += nr_cpu_ids * sizeof(void **);
7760 #endif /* CONFIG_USER_SCHED */
7761 #endif /* CONFIG_RT_GROUP_SCHED */
7764 #ifdef CONFIG_SMP
7765 init_defrootdomain();
7766 #endif
7768 init_rt_bandwidth(&def_rt_bandwidth,
7769 global_rt_period(), global_rt_runtime());
7771 #ifdef CONFIG_RT_GROUP_SCHED
7772 init_rt_bandwidth(&init_task_group.rt_bandwidth,
7773 global_rt_period(), global_rt_runtime());
7774 #ifdef CONFIG_USER_SCHED
7775 init_rt_bandwidth(&root_task_group.rt_bandwidth,
7776 global_rt_period(), RUNTIME_INF);
7777 #endif /* CONFIG_USER_SCHED */
7778 #endif /* CONFIG_RT_GROUP_SCHED */
7780 #ifdef CONFIG_GROUP_SCHED
7781 list_add(&init_task_group.list, &task_groups);
7782 INIT_LIST_HEAD(&init_task_group.children);
7784 #ifdef CONFIG_USER_SCHED
7785 INIT_LIST_HEAD(&root_task_group.children);
7786 init_task_group.parent = &root_task_group;
7787 list_add(&init_task_group.siblings, &root_task_group.children);
7788 #endif /* CONFIG_USER_SCHED */
7789 #endif /* CONFIG_GROUP_SCHED */
7791 for_each_possible_cpu(i) {
7792 struct rq *rq;
7794 rq = cpu_rq(i);
7795 spin_lock_init(&rq->lock);
7796 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7797 rq->nr_running = 0;
7798 init_cfs_rq(&rq->cfs, rq);
7799 init_rt_rq(&rq->rt, rq);
7800 #ifdef CONFIG_FAIR_GROUP_SCHED
7801 init_task_group.shares = init_task_group_load;
7802 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7803 #ifdef CONFIG_CGROUP_SCHED
7805 * How much cpu bandwidth does init_task_group get?
7807 * In case of task-groups formed thr' the cgroup filesystem, it
7808 * gets 100% of the cpu resources in the system. This overall
7809 * system cpu resource is divided among the tasks of
7810 * init_task_group and its child task-groups in a fair manner,
7811 * based on each entity's (task or task-group's) weight
7812 * (se->load.weight).
7814 * In other words, if init_task_group has 10 tasks of weight
7815 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7816 * then A0's share of the cpu resource is:
7818 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7820 * We achieve this by letting init_task_group's tasks sit
7821 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
7823 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
7824 #elif defined CONFIG_USER_SCHED
7825 root_task_group.shares = NICE_0_LOAD;
7826 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
7828 * In case of task-groups formed thr' the user id of tasks,
7829 * init_task_group represents tasks belonging to root user.
7830 * Hence it forms a sibling of all subsequent groups formed.
7831 * In this case, init_task_group gets only a fraction of overall
7832 * system cpu resource, based on the weight assigned to root
7833 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
7834 * by letting tasks of init_task_group sit in a separate cfs_rq
7835 * (init_cfs_rq) and having one entity represent this group of
7836 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
7838 init_tg_cfs_entry(&init_task_group,
7839 &per_cpu(init_cfs_rq, i),
7840 &per_cpu(init_sched_entity, i), i, 1,
7841 root_task_group.se[i]);
7843 #endif
7844 #endif /* CONFIG_FAIR_GROUP_SCHED */
7846 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7847 #ifdef CONFIG_RT_GROUP_SCHED
7848 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
7849 #ifdef CONFIG_CGROUP_SCHED
7850 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
7851 #elif defined CONFIG_USER_SCHED
7852 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
7853 init_tg_rt_entry(&init_task_group,
7854 &per_cpu(init_rt_rq, i),
7855 &per_cpu(init_sched_rt_entity, i), i, 1,
7856 root_task_group.rt_se[i]);
7857 #endif
7858 #endif
7860 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7861 rq->cpu_load[j] = 0;
7862 #ifdef CONFIG_SMP
7863 rq->sd = NULL;
7864 rq->rd = NULL;
7865 rq->active_balance = 0;
7866 rq->next_balance = jiffies;
7867 rq->push_cpu = 0;
7868 rq->cpu = i;
7869 rq->online = 0;
7870 rq->migration_thread = NULL;
7871 INIT_LIST_HEAD(&rq->migration_queue);
7872 rq_attach_root(rq, &def_root_domain);
7873 #endif
7874 init_rq_hrtick(rq);
7875 atomic_set(&rq->nr_iowait, 0);
7878 set_load_weight(&init_task);
7880 #ifdef CONFIG_PREEMPT_NOTIFIERS
7881 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7882 #endif
7884 #ifdef CONFIG_SMP
7885 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
7886 #endif
7888 #ifdef CONFIG_RT_MUTEXES
7889 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
7890 #endif
7893 * The boot idle thread does lazy MMU switching as well:
7895 atomic_inc(&init_mm.mm_count);
7896 enter_lazy_tlb(&init_mm, current);
7899 * Make us the idle thread. Technically, schedule() should not be
7900 * called from this thread, however somewhere below it might be,
7901 * but because we are the idle thread, we just pick up running again
7902 * when this runqueue becomes "idle".
7904 init_idle(current, smp_processor_id());
7906 * During early bootup we pretend to be a normal task:
7908 current->sched_class = &fair_sched_class;
7910 scheduler_running = 1;
7913 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7914 void __might_sleep(char *file, int line)
7916 #ifdef in_atomic
7917 static unsigned long prev_jiffy; /* ratelimiting */
7919 if ((in_atomic() || irqs_disabled()) &&
7920 system_state == SYSTEM_RUNNING && !oops_in_progress) {
7921 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7922 return;
7923 prev_jiffy = jiffies;
7924 printk(KERN_ERR "BUG: sleeping function called from invalid"
7925 " context at %s:%d\n", file, line);
7926 printk("in_atomic():%d, irqs_disabled():%d\n",
7927 in_atomic(), irqs_disabled());
7928 debug_show_held_locks(current);
7929 if (irqs_disabled())
7930 print_irqtrace_events(current);
7931 dump_stack();
7933 #endif
7935 EXPORT_SYMBOL(__might_sleep);
7936 #endif
7938 #ifdef CONFIG_MAGIC_SYSRQ
7939 static void normalize_task(struct rq *rq, struct task_struct *p)
7941 int on_rq;
7943 update_rq_clock(rq);
7944 on_rq = p->se.on_rq;
7945 if (on_rq)
7946 deactivate_task(rq, p, 0);
7947 __setscheduler(rq, p, SCHED_NORMAL, 0);
7948 if (on_rq) {
7949 activate_task(rq, p, 0);
7950 resched_task(rq->curr);
7954 void normalize_rt_tasks(void)
7956 struct task_struct *g, *p;
7957 unsigned long flags;
7958 struct rq *rq;
7960 read_lock_irqsave(&tasklist_lock, flags);
7961 do_each_thread(g, p) {
7963 * Only normalize user tasks:
7965 if (!p->mm)
7966 continue;
7968 p->se.exec_start = 0;
7969 #ifdef CONFIG_SCHEDSTATS
7970 p->se.wait_start = 0;
7971 p->se.sleep_start = 0;
7972 p->se.block_start = 0;
7973 #endif
7975 if (!rt_task(p)) {
7977 * Renice negative nice level userspace
7978 * tasks back to 0:
7980 if (TASK_NICE(p) < 0 && p->mm)
7981 set_user_nice(p, 0);
7982 continue;
7985 spin_lock(&p->pi_lock);
7986 rq = __task_rq_lock(p);
7988 normalize_task(rq, p);
7990 __task_rq_unlock(rq);
7991 spin_unlock(&p->pi_lock);
7992 } while_each_thread(g, p);
7994 read_unlock_irqrestore(&tasklist_lock, flags);
7997 #endif /* CONFIG_MAGIC_SYSRQ */
7999 #ifdef CONFIG_IA64
8001 * These functions are only useful for the IA64 MCA handling.
8003 * They can only be called when the whole system has been
8004 * stopped - every CPU needs to be quiescent, and no scheduling
8005 * activity can take place. Using them for anything else would
8006 * be a serious bug, and as a result, they aren't even visible
8007 * under any other configuration.
8011 * curr_task - return the current task for a given cpu.
8012 * @cpu: the processor in question.
8014 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8016 struct task_struct *curr_task(int cpu)
8018 return cpu_curr(cpu);
8022 * set_curr_task - set the current task for a given cpu.
8023 * @cpu: the processor in question.
8024 * @p: the task pointer to set.
8026 * Description: This function must only be used when non-maskable interrupts
8027 * are serviced on a separate stack. It allows the architecture to switch the
8028 * notion of the current task on a cpu in a non-blocking manner. This function
8029 * must be called with all CPU's synchronized, and interrupts disabled, the
8030 * and caller must save the original value of the current task (see
8031 * curr_task() above) and restore that value before reenabling interrupts and
8032 * re-starting the system.
8034 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8036 void set_curr_task(int cpu, struct task_struct *p)
8038 cpu_curr(cpu) = p;
8041 #endif
8043 #ifdef CONFIG_FAIR_GROUP_SCHED
8044 static void free_fair_sched_group(struct task_group *tg)
8046 int i;
8048 for_each_possible_cpu(i) {
8049 if (tg->cfs_rq)
8050 kfree(tg->cfs_rq[i]);
8051 if (tg->se)
8052 kfree(tg->se[i]);
8055 kfree(tg->cfs_rq);
8056 kfree(tg->se);
8059 static
8060 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8062 struct cfs_rq *cfs_rq;
8063 struct sched_entity *se, *parent_se;
8064 struct rq *rq;
8065 int i;
8067 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8068 if (!tg->cfs_rq)
8069 goto err;
8070 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8071 if (!tg->se)
8072 goto err;
8074 tg->shares = NICE_0_LOAD;
8076 for_each_possible_cpu(i) {
8077 rq = cpu_rq(i);
8079 cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
8080 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8081 if (!cfs_rq)
8082 goto err;
8084 se = kmalloc_node(sizeof(struct sched_entity),
8085 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8086 if (!se)
8087 goto err;
8089 parent_se = parent ? parent->se[i] : NULL;
8090 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
8093 return 1;
8095 err:
8096 return 0;
8099 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8101 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8102 &cpu_rq(cpu)->leaf_cfs_rq_list);
8105 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8107 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8109 #else /* !CONFG_FAIR_GROUP_SCHED */
8110 static inline void free_fair_sched_group(struct task_group *tg)
8114 static inline
8115 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8117 return 1;
8120 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8124 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8127 #endif /* CONFIG_FAIR_GROUP_SCHED */
8129 #ifdef CONFIG_RT_GROUP_SCHED
8130 static void free_rt_sched_group(struct task_group *tg)
8132 int i;
8134 destroy_rt_bandwidth(&tg->rt_bandwidth);
8136 for_each_possible_cpu(i) {
8137 if (tg->rt_rq)
8138 kfree(tg->rt_rq[i]);
8139 if (tg->rt_se)
8140 kfree(tg->rt_se[i]);
8143 kfree(tg->rt_rq);
8144 kfree(tg->rt_se);
8147 static
8148 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8150 struct rt_rq *rt_rq;
8151 struct sched_rt_entity *rt_se, *parent_se;
8152 struct rq *rq;
8153 int i;
8155 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8156 if (!tg->rt_rq)
8157 goto err;
8158 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8159 if (!tg->rt_se)
8160 goto err;
8162 init_rt_bandwidth(&tg->rt_bandwidth,
8163 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8165 for_each_possible_cpu(i) {
8166 rq = cpu_rq(i);
8168 rt_rq = kmalloc_node(sizeof(struct rt_rq),
8169 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8170 if (!rt_rq)
8171 goto err;
8173 rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
8174 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8175 if (!rt_se)
8176 goto err;
8178 parent_se = parent ? parent->rt_se[i] : NULL;
8179 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
8182 return 1;
8184 err:
8185 return 0;
8188 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8190 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8191 &cpu_rq(cpu)->leaf_rt_rq_list);
8194 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8196 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8198 #else /* !CONFIG_RT_GROUP_SCHED */
8199 static inline void free_rt_sched_group(struct task_group *tg)
8203 static inline
8204 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8206 return 1;
8209 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8213 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8216 #endif /* CONFIG_RT_GROUP_SCHED */
8218 #ifdef CONFIG_GROUP_SCHED
8219 static void free_sched_group(struct task_group *tg)
8221 free_fair_sched_group(tg);
8222 free_rt_sched_group(tg);
8223 kfree(tg);
8226 /* allocate runqueue etc for a new task group */
8227 struct task_group *sched_create_group(struct task_group *parent)
8229 struct task_group *tg;
8230 unsigned long flags;
8231 int i;
8233 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8234 if (!tg)
8235 return ERR_PTR(-ENOMEM);
8237 if (!alloc_fair_sched_group(tg, parent))
8238 goto err;
8240 if (!alloc_rt_sched_group(tg, parent))
8241 goto err;
8243 spin_lock_irqsave(&task_group_lock, flags);
8244 for_each_possible_cpu(i) {
8245 register_fair_sched_group(tg, i);
8246 register_rt_sched_group(tg, i);
8248 list_add_rcu(&tg->list, &task_groups);
8250 WARN_ON(!parent); /* root should already exist */
8252 tg->parent = parent;
8253 list_add_rcu(&tg->siblings, &parent->children);
8254 INIT_LIST_HEAD(&tg->children);
8255 spin_unlock_irqrestore(&task_group_lock, flags);
8257 return tg;
8259 err:
8260 free_sched_group(tg);
8261 return ERR_PTR(-ENOMEM);
8264 /* rcu callback to free various structures associated with a task group */
8265 static void free_sched_group_rcu(struct rcu_head *rhp)
8267 /* now it should be safe to free those cfs_rqs */
8268 free_sched_group(container_of(rhp, struct task_group, rcu));
8271 /* Destroy runqueue etc associated with a task group */
8272 void sched_destroy_group(struct task_group *tg)
8274 unsigned long flags;
8275 int i;
8277 spin_lock_irqsave(&task_group_lock, flags);
8278 for_each_possible_cpu(i) {
8279 unregister_fair_sched_group(tg, i);
8280 unregister_rt_sched_group(tg, i);
8282 list_del_rcu(&tg->list);
8283 list_del_rcu(&tg->siblings);
8284 spin_unlock_irqrestore(&task_group_lock, flags);
8286 /* wait for possible concurrent references to cfs_rqs complete */
8287 call_rcu(&tg->rcu, free_sched_group_rcu);
8290 /* change task's runqueue when it moves between groups.
8291 * The caller of this function should have put the task in its new group
8292 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8293 * reflect its new group.
8295 void sched_move_task(struct task_struct *tsk)
8297 int on_rq, running;
8298 unsigned long flags;
8299 struct rq *rq;
8301 rq = task_rq_lock(tsk, &flags);
8303 update_rq_clock(rq);
8305 running = task_current(rq, tsk);
8306 on_rq = tsk->se.on_rq;
8308 if (on_rq)
8309 dequeue_task(rq, tsk, 0);
8310 if (unlikely(running))
8311 tsk->sched_class->put_prev_task(rq, tsk);
8313 set_task_rq(tsk, task_cpu(tsk));
8315 #ifdef CONFIG_FAIR_GROUP_SCHED
8316 if (tsk->sched_class->moved_group)
8317 tsk->sched_class->moved_group(tsk);
8318 #endif
8320 if (unlikely(running))
8321 tsk->sched_class->set_curr_task(rq);
8322 if (on_rq)
8323 enqueue_task(rq, tsk, 0);
8325 task_rq_unlock(rq, &flags);
8327 #endif /* CONFIG_GROUP_SCHED */
8329 #ifdef CONFIG_FAIR_GROUP_SCHED
8330 static void set_se_shares(struct sched_entity *se, unsigned long shares)
8332 struct cfs_rq *cfs_rq = se->cfs_rq;
8333 struct rq *rq = cfs_rq->rq;
8334 int on_rq;
8336 spin_lock_irq(&rq->lock);
8338 on_rq = se->on_rq;
8339 if (on_rq)
8340 dequeue_entity(cfs_rq, se, 0);
8342 se->load.weight = shares;
8343 se->load.inv_weight = 0;
8345 if (on_rq)
8346 enqueue_entity(cfs_rq, se, 0);
8348 spin_unlock_irq(&rq->lock);
8351 static DEFINE_MUTEX(shares_mutex);
8353 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8355 int i;
8356 unsigned long flags;
8359 * We can't change the weight of the root cgroup.
8361 if (!tg->se[0])
8362 return -EINVAL;
8364 if (shares < MIN_SHARES)
8365 shares = MIN_SHARES;
8366 else if (shares > MAX_SHARES)
8367 shares = MAX_SHARES;
8369 mutex_lock(&shares_mutex);
8370 if (tg->shares == shares)
8371 goto done;
8373 spin_lock_irqsave(&task_group_lock, flags);
8374 for_each_possible_cpu(i)
8375 unregister_fair_sched_group(tg, i);
8376 list_del_rcu(&tg->siblings);
8377 spin_unlock_irqrestore(&task_group_lock, flags);
8379 /* wait for any ongoing reference to this group to finish */
8380 synchronize_sched();
8383 * Now we are free to modify the group's share on each cpu
8384 * w/o tripping rebalance_share or load_balance_fair.
8386 tg->shares = shares;
8387 for_each_possible_cpu(i)
8388 set_se_shares(tg->se[i], shares);
8391 * Enable load balance activity on this group, by inserting it back on
8392 * each cpu's rq->leaf_cfs_rq_list.
8394 spin_lock_irqsave(&task_group_lock, flags);
8395 for_each_possible_cpu(i)
8396 register_fair_sched_group(tg, i);
8397 list_add_rcu(&tg->siblings, &tg->parent->children);
8398 spin_unlock_irqrestore(&task_group_lock, flags);
8399 done:
8400 mutex_unlock(&shares_mutex);
8401 return 0;
8404 unsigned long sched_group_shares(struct task_group *tg)
8406 return tg->shares;
8408 #endif
8410 #ifdef CONFIG_RT_GROUP_SCHED
8412 * Ensure that the real time constraints are schedulable.
8414 static DEFINE_MUTEX(rt_constraints_mutex);
8416 static unsigned long to_ratio(u64 period, u64 runtime)
8418 if (runtime == RUNTIME_INF)
8419 return 1ULL << 16;
8421 return div64_u64(runtime << 16, period);
8424 #ifdef CONFIG_CGROUP_SCHED
8425 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8427 struct task_group *tgi, *parent = tg->parent;
8428 unsigned long total = 0;
8430 if (!parent) {
8431 if (global_rt_period() < period)
8432 return 0;
8434 return to_ratio(period, runtime) <
8435 to_ratio(global_rt_period(), global_rt_runtime());
8438 if (ktime_to_ns(parent->rt_bandwidth.rt_period) < period)
8439 return 0;
8441 rcu_read_lock();
8442 list_for_each_entry_rcu(tgi, &parent->children, siblings) {
8443 if (tgi == tg)
8444 continue;
8446 total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
8447 tgi->rt_bandwidth.rt_runtime);
8449 rcu_read_unlock();
8451 return total + to_ratio(period, runtime) <
8452 to_ratio(ktime_to_ns(parent->rt_bandwidth.rt_period),
8453 parent->rt_bandwidth.rt_runtime);
8455 #elif defined CONFIG_USER_SCHED
8456 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8458 struct task_group *tgi;
8459 unsigned long total = 0;
8460 unsigned long global_ratio =
8461 to_ratio(global_rt_period(), global_rt_runtime());
8463 rcu_read_lock();
8464 list_for_each_entry_rcu(tgi, &task_groups, list) {
8465 if (tgi == tg)
8466 continue;
8468 total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
8469 tgi->rt_bandwidth.rt_runtime);
8471 rcu_read_unlock();
8473 return total + to_ratio(period, runtime) < global_ratio;
8475 #endif
8477 /* Must be called with tasklist_lock held */
8478 static inline int tg_has_rt_tasks(struct task_group *tg)
8480 struct task_struct *g, *p;
8481 do_each_thread(g, p) {
8482 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8483 return 1;
8484 } while_each_thread(g, p);
8485 return 0;
8488 static int tg_set_bandwidth(struct task_group *tg,
8489 u64 rt_period, u64 rt_runtime)
8491 int i, err = 0;
8493 mutex_lock(&rt_constraints_mutex);
8494 read_lock(&tasklist_lock);
8495 if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
8496 err = -EBUSY;
8497 goto unlock;
8499 if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
8500 err = -EINVAL;
8501 goto unlock;
8504 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8505 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8506 tg->rt_bandwidth.rt_runtime = rt_runtime;
8508 for_each_possible_cpu(i) {
8509 struct rt_rq *rt_rq = tg->rt_rq[i];
8511 spin_lock(&rt_rq->rt_runtime_lock);
8512 rt_rq->rt_runtime = rt_runtime;
8513 spin_unlock(&rt_rq->rt_runtime_lock);
8515 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8516 unlock:
8517 read_unlock(&tasklist_lock);
8518 mutex_unlock(&rt_constraints_mutex);
8520 return err;
8523 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8525 u64 rt_runtime, rt_period;
8527 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8528 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8529 if (rt_runtime_us < 0)
8530 rt_runtime = RUNTIME_INF;
8532 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8535 long sched_group_rt_runtime(struct task_group *tg)
8537 u64 rt_runtime_us;
8539 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8540 return -1;
8542 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8543 do_div(rt_runtime_us, NSEC_PER_USEC);
8544 return rt_runtime_us;
8547 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8549 u64 rt_runtime, rt_period;
8551 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8552 rt_runtime = tg->rt_bandwidth.rt_runtime;
8554 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8557 long sched_group_rt_period(struct task_group *tg)
8559 u64 rt_period_us;
8561 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8562 do_div(rt_period_us, NSEC_PER_USEC);
8563 return rt_period_us;
8566 static int sched_rt_global_constraints(void)
8568 int ret = 0;
8570 mutex_lock(&rt_constraints_mutex);
8571 if (!__rt_schedulable(NULL, 1, 0))
8572 ret = -EINVAL;
8573 mutex_unlock(&rt_constraints_mutex);
8575 return ret;
8577 #else /* !CONFIG_RT_GROUP_SCHED */
8578 static int sched_rt_global_constraints(void)
8580 unsigned long flags;
8581 int i;
8583 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8584 for_each_possible_cpu(i) {
8585 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8587 spin_lock(&rt_rq->rt_runtime_lock);
8588 rt_rq->rt_runtime = global_rt_runtime();
8589 spin_unlock(&rt_rq->rt_runtime_lock);
8591 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8593 return 0;
8595 #endif /* CONFIG_RT_GROUP_SCHED */
8597 int sched_rt_handler(struct ctl_table *table, int write,
8598 struct file *filp, void __user *buffer, size_t *lenp,
8599 loff_t *ppos)
8601 int ret;
8602 int old_period, old_runtime;
8603 static DEFINE_MUTEX(mutex);
8605 mutex_lock(&mutex);
8606 old_period = sysctl_sched_rt_period;
8607 old_runtime = sysctl_sched_rt_runtime;
8609 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
8611 if (!ret && write) {
8612 ret = sched_rt_global_constraints();
8613 if (ret) {
8614 sysctl_sched_rt_period = old_period;
8615 sysctl_sched_rt_runtime = old_runtime;
8616 } else {
8617 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8618 def_rt_bandwidth.rt_period =
8619 ns_to_ktime(global_rt_period());
8622 mutex_unlock(&mutex);
8624 return ret;
8627 #ifdef CONFIG_CGROUP_SCHED
8629 /* return corresponding task_group object of a cgroup */
8630 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8632 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8633 struct task_group, css);
8636 static struct cgroup_subsys_state *
8637 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8639 struct task_group *tg, *parent;
8641 if (!cgrp->parent) {
8642 /* This is early initialization for the top cgroup */
8643 init_task_group.css.cgroup = cgrp;
8644 return &init_task_group.css;
8647 parent = cgroup_tg(cgrp->parent);
8648 tg = sched_create_group(parent);
8649 if (IS_ERR(tg))
8650 return ERR_PTR(-ENOMEM);
8652 /* Bind the cgroup to task_group object we just created */
8653 tg->css.cgroup = cgrp;
8655 return &tg->css;
8658 static void
8659 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8661 struct task_group *tg = cgroup_tg(cgrp);
8663 sched_destroy_group(tg);
8666 static int
8667 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8668 struct task_struct *tsk)
8670 #ifdef CONFIG_RT_GROUP_SCHED
8671 /* Don't accept realtime tasks when there is no way for them to run */
8672 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
8673 return -EINVAL;
8674 #else
8675 /* We don't support RT-tasks being in separate groups */
8676 if (tsk->sched_class != &fair_sched_class)
8677 return -EINVAL;
8678 #endif
8680 return 0;
8683 static void
8684 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8685 struct cgroup *old_cont, struct task_struct *tsk)
8687 sched_move_task(tsk);
8690 #ifdef CONFIG_FAIR_GROUP_SCHED
8691 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8692 u64 shareval)
8694 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8697 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8699 struct task_group *tg = cgroup_tg(cgrp);
8701 return (u64) tg->shares;
8703 #endif /* CONFIG_FAIR_GROUP_SCHED */
8705 #ifdef CONFIG_RT_GROUP_SCHED
8706 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8707 s64 val)
8709 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
8712 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
8714 return sched_group_rt_runtime(cgroup_tg(cgrp));
8717 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8718 u64 rt_period_us)
8720 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8723 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8725 return sched_group_rt_period(cgroup_tg(cgrp));
8727 #endif /* CONFIG_RT_GROUP_SCHED */
8729 static struct cftype cpu_files[] = {
8730 #ifdef CONFIG_FAIR_GROUP_SCHED
8732 .name = "shares",
8733 .read_u64 = cpu_shares_read_u64,
8734 .write_u64 = cpu_shares_write_u64,
8736 #endif
8737 #ifdef CONFIG_RT_GROUP_SCHED
8739 .name = "rt_runtime_us",
8740 .read_s64 = cpu_rt_runtime_read,
8741 .write_s64 = cpu_rt_runtime_write,
8744 .name = "rt_period_us",
8745 .read_u64 = cpu_rt_period_read_uint,
8746 .write_u64 = cpu_rt_period_write_uint,
8748 #endif
8751 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8753 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
8756 struct cgroup_subsys cpu_cgroup_subsys = {
8757 .name = "cpu",
8758 .create = cpu_cgroup_create,
8759 .destroy = cpu_cgroup_destroy,
8760 .can_attach = cpu_cgroup_can_attach,
8761 .attach = cpu_cgroup_attach,
8762 .populate = cpu_cgroup_populate,
8763 .subsys_id = cpu_cgroup_subsys_id,
8764 .early_init = 1,
8767 #endif /* CONFIG_CGROUP_SCHED */
8769 #ifdef CONFIG_CGROUP_CPUACCT
8772 * CPU accounting code for task groups.
8774 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8775 * (balbir@in.ibm.com).
8778 /* track cpu usage of a group of tasks */
8779 struct cpuacct {
8780 struct cgroup_subsys_state css;
8781 /* cpuusage holds pointer to a u64-type object on every cpu */
8782 u64 *cpuusage;
8785 struct cgroup_subsys cpuacct_subsys;
8787 /* return cpu accounting group corresponding to this container */
8788 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
8790 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
8791 struct cpuacct, css);
8794 /* return cpu accounting group to which this task belongs */
8795 static inline struct cpuacct *task_ca(struct task_struct *tsk)
8797 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8798 struct cpuacct, css);
8801 /* create a new cpu accounting group */
8802 static struct cgroup_subsys_state *cpuacct_create(
8803 struct cgroup_subsys *ss, struct cgroup *cgrp)
8805 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8807 if (!ca)
8808 return ERR_PTR(-ENOMEM);
8810 ca->cpuusage = alloc_percpu(u64);
8811 if (!ca->cpuusage) {
8812 kfree(ca);
8813 return ERR_PTR(-ENOMEM);
8816 return &ca->css;
8819 /* destroy an existing cpu accounting group */
8820 static void
8821 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8823 struct cpuacct *ca = cgroup_ca(cgrp);
8825 free_percpu(ca->cpuusage);
8826 kfree(ca);
8829 /* return total cpu usage (in nanoseconds) of a group */
8830 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8832 struct cpuacct *ca = cgroup_ca(cgrp);
8833 u64 totalcpuusage = 0;
8834 int i;
8836 for_each_possible_cpu(i) {
8837 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
8840 * Take rq->lock to make 64-bit addition safe on 32-bit
8841 * platforms.
8843 spin_lock_irq(&cpu_rq(i)->lock);
8844 totalcpuusage += *cpuusage;
8845 spin_unlock_irq(&cpu_rq(i)->lock);
8848 return totalcpuusage;
8851 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8852 u64 reset)
8854 struct cpuacct *ca = cgroup_ca(cgrp);
8855 int err = 0;
8856 int i;
8858 if (reset) {
8859 err = -EINVAL;
8860 goto out;
8863 for_each_possible_cpu(i) {
8864 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
8866 spin_lock_irq(&cpu_rq(i)->lock);
8867 *cpuusage = 0;
8868 spin_unlock_irq(&cpu_rq(i)->lock);
8870 out:
8871 return err;
8874 static struct cftype files[] = {
8876 .name = "usage",
8877 .read_u64 = cpuusage_read,
8878 .write_u64 = cpuusage_write,
8882 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
8884 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
8888 * charge this task's execution time to its accounting group.
8890 * called with rq->lock held.
8892 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8894 struct cpuacct *ca;
8896 if (!cpuacct_subsys.active)
8897 return;
8899 ca = task_ca(tsk);
8900 if (ca) {
8901 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
8903 *cpuusage += cputime;
8907 struct cgroup_subsys cpuacct_subsys = {
8908 .name = "cpuacct",
8909 .create = cpuacct_create,
8910 .destroy = cpuacct_destroy,
8911 .populate = cpuacct_populate,
8912 .subsys_id = cpuacct_subsys_id,
8914 #endif /* CONFIG_CGROUP_CPUACCT */