e1000: simplify skb_put call.
[linux-2.6/mini2440.git] / drivers / net / e1000 / e1000_main.c
blob44ba52229c73b9946229ebb13b2961a436ab9dce
1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 #include "e1000.h"
31 char e1000_driver_name[] = "e1000";
32 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
33 #ifndef CONFIG_E1000_NAPI
34 #define DRIVERNAPI
35 #else
36 #define DRIVERNAPI "-NAPI"
37 #endif
38 #define DRV_VERSION "7.2.9-k4"DRIVERNAPI
39 char e1000_driver_version[] = DRV_VERSION;
40 static char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
42 /* e1000_pci_tbl - PCI Device ID Table
44 * Last entry must be all 0s
46 * Macro expands to...
47 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
49 static struct pci_device_id e1000_pci_tbl[] = {
50 INTEL_E1000_ETHERNET_DEVICE(0x1000),
51 INTEL_E1000_ETHERNET_DEVICE(0x1001),
52 INTEL_E1000_ETHERNET_DEVICE(0x1004),
53 INTEL_E1000_ETHERNET_DEVICE(0x1008),
54 INTEL_E1000_ETHERNET_DEVICE(0x1009),
55 INTEL_E1000_ETHERNET_DEVICE(0x100C),
56 INTEL_E1000_ETHERNET_DEVICE(0x100D),
57 INTEL_E1000_ETHERNET_DEVICE(0x100E),
58 INTEL_E1000_ETHERNET_DEVICE(0x100F),
59 INTEL_E1000_ETHERNET_DEVICE(0x1010),
60 INTEL_E1000_ETHERNET_DEVICE(0x1011),
61 INTEL_E1000_ETHERNET_DEVICE(0x1012),
62 INTEL_E1000_ETHERNET_DEVICE(0x1013),
63 INTEL_E1000_ETHERNET_DEVICE(0x1014),
64 INTEL_E1000_ETHERNET_DEVICE(0x1015),
65 INTEL_E1000_ETHERNET_DEVICE(0x1016),
66 INTEL_E1000_ETHERNET_DEVICE(0x1017),
67 INTEL_E1000_ETHERNET_DEVICE(0x1018),
68 INTEL_E1000_ETHERNET_DEVICE(0x1019),
69 INTEL_E1000_ETHERNET_DEVICE(0x101A),
70 INTEL_E1000_ETHERNET_DEVICE(0x101D),
71 INTEL_E1000_ETHERNET_DEVICE(0x101E),
72 INTEL_E1000_ETHERNET_DEVICE(0x1026),
73 INTEL_E1000_ETHERNET_DEVICE(0x1027),
74 INTEL_E1000_ETHERNET_DEVICE(0x1028),
75 INTEL_E1000_ETHERNET_DEVICE(0x1049),
76 INTEL_E1000_ETHERNET_DEVICE(0x104A),
77 INTEL_E1000_ETHERNET_DEVICE(0x104B),
78 INTEL_E1000_ETHERNET_DEVICE(0x104C),
79 INTEL_E1000_ETHERNET_DEVICE(0x104D),
80 INTEL_E1000_ETHERNET_DEVICE(0x105E),
81 INTEL_E1000_ETHERNET_DEVICE(0x105F),
82 INTEL_E1000_ETHERNET_DEVICE(0x1060),
83 INTEL_E1000_ETHERNET_DEVICE(0x1075),
84 INTEL_E1000_ETHERNET_DEVICE(0x1076),
85 INTEL_E1000_ETHERNET_DEVICE(0x1077),
86 INTEL_E1000_ETHERNET_DEVICE(0x1078),
87 INTEL_E1000_ETHERNET_DEVICE(0x1079),
88 INTEL_E1000_ETHERNET_DEVICE(0x107A),
89 INTEL_E1000_ETHERNET_DEVICE(0x107B),
90 INTEL_E1000_ETHERNET_DEVICE(0x107C),
91 INTEL_E1000_ETHERNET_DEVICE(0x107D),
92 INTEL_E1000_ETHERNET_DEVICE(0x107E),
93 INTEL_E1000_ETHERNET_DEVICE(0x107F),
94 INTEL_E1000_ETHERNET_DEVICE(0x108A),
95 INTEL_E1000_ETHERNET_DEVICE(0x108B),
96 INTEL_E1000_ETHERNET_DEVICE(0x108C),
97 INTEL_E1000_ETHERNET_DEVICE(0x1096),
98 INTEL_E1000_ETHERNET_DEVICE(0x1098),
99 INTEL_E1000_ETHERNET_DEVICE(0x1099),
100 INTEL_E1000_ETHERNET_DEVICE(0x109A),
101 INTEL_E1000_ETHERNET_DEVICE(0x10A4),
102 INTEL_E1000_ETHERNET_DEVICE(0x10B5),
103 INTEL_E1000_ETHERNET_DEVICE(0x10B9),
104 INTEL_E1000_ETHERNET_DEVICE(0x10BA),
105 INTEL_E1000_ETHERNET_DEVICE(0x10BB),
106 /* required last entry */
107 {0,}
110 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
112 int e1000_up(struct e1000_adapter *adapter);
113 void e1000_down(struct e1000_adapter *adapter);
114 void e1000_reinit_locked(struct e1000_adapter *adapter);
115 void e1000_reset(struct e1000_adapter *adapter);
116 int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
117 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
118 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
119 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
120 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
121 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
122 struct e1000_tx_ring *txdr);
123 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
124 struct e1000_rx_ring *rxdr);
125 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
126 struct e1000_tx_ring *tx_ring);
127 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
128 struct e1000_rx_ring *rx_ring);
129 void e1000_update_stats(struct e1000_adapter *adapter);
131 static int e1000_init_module(void);
132 static void e1000_exit_module(void);
133 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
134 static void __devexit e1000_remove(struct pci_dev *pdev);
135 static int e1000_alloc_queues(struct e1000_adapter *adapter);
136 static int e1000_sw_init(struct e1000_adapter *adapter);
137 static int e1000_open(struct net_device *netdev);
138 static int e1000_close(struct net_device *netdev);
139 static void e1000_configure_tx(struct e1000_adapter *adapter);
140 static void e1000_configure_rx(struct e1000_adapter *adapter);
141 static void e1000_setup_rctl(struct e1000_adapter *adapter);
142 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
143 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
144 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
145 struct e1000_tx_ring *tx_ring);
146 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
147 struct e1000_rx_ring *rx_ring);
148 static void e1000_set_multi(struct net_device *netdev);
149 static void e1000_update_phy_info(unsigned long data);
150 static void e1000_watchdog(unsigned long data);
151 static void e1000_82547_tx_fifo_stall(unsigned long data);
152 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
153 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
154 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
155 static int e1000_set_mac(struct net_device *netdev, void *p);
156 static irqreturn_t e1000_intr(int irq, void *data);
157 static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter,
158 struct e1000_tx_ring *tx_ring);
159 #ifdef CONFIG_E1000_NAPI
160 static int e1000_clean(struct net_device *poll_dev, int *budget);
161 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
162 struct e1000_rx_ring *rx_ring,
163 int *work_done, int work_to_do);
164 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
165 struct e1000_rx_ring *rx_ring,
166 int *work_done, int work_to_do);
167 #else
168 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
169 struct e1000_rx_ring *rx_ring);
170 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
171 struct e1000_rx_ring *rx_ring);
172 #endif
173 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
174 struct e1000_rx_ring *rx_ring,
175 int cleaned_count);
176 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
177 struct e1000_rx_ring *rx_ring,
178 int cleaned_count);
179 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
180 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
181 int cmd);
182 void e1000_set_ethtool_ops(struct net_device *netdev);
183 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
184 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
185 static void e1000_tx_timeout(struct net_device *dev);
186 static void e1000_reset_task(struct net_device *dev);
187 static void e1000_smartspeed(struct e1000_adapter *adapter);
188 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
189 struct sk_buff *skb);
191 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
192 static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid);
193 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
194 static void e1000_restore_vlan(struct e1000_adapter *adapter);
196 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
197 #ifdef CONFIG_PM
198 static int e1000_resume(struct pci_dev *pdev);
199 #endif
200 static void e1000_shutdown(struct pci_dev *pdev);
202 #ifdef CONFIG_NET_POLL_CONTROLLER
203 /* for netdump / net console */
204 static void e1000_netpoll (struct net_device *netdev);
205 #endif
207 extern void e1000_check_options(struct e1000_adapter *adapter);
209 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
210 pci_channel_state_t state);
211 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
212 static void e1000_io_resume(struct pci_dev *pdev);
214 static struct pci_error_handlers e1000_err_handler = {
215 .error_detected = e1000_io_error_detected,
216 .slot_reset = e1000_io_slot_reset,
217 .resume = e1000_io_resume,
220 static struct pci_driver e1000_driver = {
221 .name = e1000_driver_name,
222 .id_table = e1000_pci_tbl,
223 .probe = e1000_probe,
224 .remove = __devexit_p(e1000_remove),
225 #ifdef CONFIG_PM
226 /* Power Managment Hooks */
227 .suspend = e1000_suspend,
228 .resume = e1000_resume,
229 #endif
230 .shutdown = e1000_shutdown,
231 .err_handler = &e1000_err_handler
234 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
235 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
236 MODULE_LICENSE("GPL");
237 MODULE_VERSION(DRV_VERSION);
239 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
240 module_param(debug, int, 0);
241 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
244 * e1000_init_module - Driver Registration Routine
246 * e1000_init_module is the first routine called when the driver is
247 * loaded. All it does is register with the PCI subsystem.
250 static int __init
251 e1000_init_module(void)
253 int ret;
254 printk(KERN_INFO "%s - version %s\n",
255 e1000_driver_string, e1000_driver_version);
257 printk(KERN_INFO "%s\n", e1000_copyright);
259 ret = pci_register_driver(&e1000_driver);
261 return ret;
264 module_init(e1000_init_module);
267 * e1000_exit_module - Driver Exit Cleanup Routine
269 * e1000_exit_module is called just before the driver is removed
270 * from memory.
273 static void __exit
274 e1000_exit_module(void)
276 pci_unregister_driver(&e1000_driver);
279 module_exit(e1000_exit_module);
281 static int e1000_request_irq(struct e1000_adapter *adapter)
283 struct net_device *netdev = adapter->netdev;
284 int flags, err = 0;
286 flags = IRQF_SHARED;
287 #ifdef CONFIG_PCI_MSI
288 if (adapter->hw.mac_type > e1000_82547_rev_2) {
289 adapter->have_msi = TRUE;
290 if ((err = pci_enable_msi(adapter->pdev))) {
291 DPRINTK(PROBE, ERR,
292 "Unable to allocate MSI interrupt Error: %d\n", err);
293 adapter->have_msi = FALSE;
296 if (adapter->have_msi)
297 flags &= ~IRQF_SHARED;
298 #endif
299 if ((err = request_irq(adapter->pdev->irq, &e1000_intr, flags,
300 netdev->name, netdev)))
301 DPRINTK(PROBE, ERR,
302 "Unable to allocate interrupt Error: %d\n", err);
304 return err;
307 static void e1000_free_irq(struct e1000_adapter *adapter)
309 struct net_device *netdev = adapter->netdev;
311 free_irq(adapter->pdev->irq, netdev);
313 #ifdef CONFIG_PCI_MSI
314 if (adapter->have_msi)
315 pci_disable_msi(adapter->pdev);
316 #endif
320 * e1000_irq_disable - Mask off interrupt generation on the NIC
321 * @adapter: board private structure
324 static void
325 e1000_irq_disable(struct e1000_adapter *adapter)
327 atomic_inc(&adapter->irq_sem);
328 E1000_WRITE_REG(&adapter->hw, IMC, ~0);
329 E1000_WRITE_FLUSH(&adapter->hw);
330 synchronize_irq(adapter->pdev->irq);
334 * e1000_irq_enable - Enable default interrupt generation settings
335 * @adapter: board private structure
338 static void
339 e1000_irq_enable(struct e1000_adapter *adapter)
341 if (likely(atomic_dec_and_test(&adapter->irq_sem))) {
342 E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK);
343 E1000_WRITE_FLUSH(&adapter->hw);
347 static void
348 e1000_update_mng_vlan(struct e1000_adapter *adapter)
350 struct net_device *netdev = adapter->netdev;
351 uint16_t vid = adapter->hw.mng_cookie.vlan_id;
352 uint16_t old_vid = adapter->mng_vlan_id;
353 if (adapter->vlgrp) {
354 if (!adapter->vlgrp->vlan_devices[vid]) {
355 if (adapter->hw.mng_cookie.status &
356 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
357 e1000_vlan_rx_add_vid(netdev, vid);
358 adapter->mng_vlan_id = vid;
359 } else
360 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
362 if ((old_vid != (uint16_t)E1000_MNG_VLAN_NONE) &&
363 (vid != old_vid) &&
364 !adapter->vlgrp->vlan_devices[old_vid])
365 e1000_vlan_rx_kill_vid(netdev, old_vid);
366 } else
367 adapter->mng_vlan_id = vid;
372 * e1000_release_hw_control - release control of the h/w to f/w
373 * @adapter: address of board private structure
375 * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
376 * For ASF and Pass Through versions of f/w this means that the
377 * driver is no longer loaded. For AMT version (only with 82573) i
378 * of the f/w this means that the network i/f is closed.
382 static void
383 e1000_release_hw_control(struct e1000_adapter *adapter)
385 uint32_t ctrl_ext;
386 uint32_t swsm;
387 uint32_t extcnf;
389 /* Let firmware taken over control of h/w */
390 switch (adapter->hw.mac_type) {
391 case e1000_82571:
392 case e1000_82572:
393 case e1000_80003es2lan:
394 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
395 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
396 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
397 break;
398 case e1000_82573:
399 swsm = E1000_READ_REG(&adapter->hw, SWSM);
400 E1000_WRITE_REG(&adapter->hw, SWSM,
401 swsm & ~E1000_SWSM_DRV_LOAD);
402 case e1000_ich8lan:
403 extcnf = E1000_READ_REG(&adapter->hw, CTRL_EXT);
404 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
405 extcnf & ~E1000_CTRL_EXT_DRV_LOAD);
406 break;
407 default:
408 break;
413 * e1000_get_hw_control - get control of the h/w from f/w
414 * @adapter: address of board private structure
416 * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
417 * For ASF and Pass Through versions of f/w this means that
418 * the driver is loaded. For AMT version (only with 82573)
419 * of the f/w this means that the network i/f is open.
423 static void
424 e1000_get_hw_control(struct e1000_adapter *adapter)
426 uint32_t ctrl_ext;
427 uint32_t swsm;
428 uint32_t extcnf;
430 /* Let firmware know the driver has taken over */
431 switch (adapter->hw.mac_type) {
432 case e1000_82571:
433 case e1000_82572:
434 case e1000_80003es2lan:
435 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
436 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
437 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
438 break;
439 case e1000_82573:
440 swsm = E1000_READ_REG(&adapter->hw, SWSM);
441 E1000_WRITE_REG(&adapter->hw, SWSM,
442 swsm | E1000_SWSM_DRV_LOAD);
443 break;
444 case e1000_ich8lan:
445 extcnf = E1000_READ_REG(&adapter->hw, EXTCNF_CTRL);
446 E1000_WRITE_REG(&adapter->hw, EXTCNF_CTRL,
447 extcnf | E1000_EXTCNF_CTRL_SWFLAG);
448 break;
449 default:
450 break;
455 e1000_up(struct e1000_adapter *adapter)
457 struct net_device *netdev = adapter->netdev;
458 int i;
460 /* hardware has been reset, we need to reload some things */
462 e1000_set_multi(netdev);
464 e1000_restore_vlan(adapter);
466 e1000_configure_tx(adapter);
467 e1000_setup_rctl(adapter);
468 e1000_configure_rx(adapter);
469 /* call E1000_DESC_UNUSED which always leaves
470 * at least 1 descriptor unused to make sure
471 * next_to_use != next_to_clean */
472 for (i = 0; i < adapter->num_rx_queues; i++) {
473 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
474 adapter->alloc_rx_buf(adapter, ring,
475 E1000_DESC_UNUSED(ring));
478 adapter->tx_queue_len = netdev->tx_queue_len;
480 #ifdef CONFIG_E1000_NAPI
481 netif_poll_enable(netdev);
482 #endif
483 e1000_irq_enable(adapter);
485 clear_bit(__E1000_DOWN, &adapter->flags);
487 mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
488 return 0;
492 * e1000_power_up_phy - restore link in case the phy was powered down
493 * @adapter: address of board private structure
495 * The phy may be powered down to save power and turn off link when the
496 * driver is unloaded and wake on lan is not enabled (among others)
497 * *** this routine MUST be followed by a call to e1000_reset ***
501 void e1000_power_up_phy(struct e1000_adapter *adapter)
503 uint16_t mii_reg = 0;
505 /* Just clear the power down bit to wake the phy back up */
506 if (adapter->hw.media_type == e1000_media_type_copper) {
507 /* according to the manual, the phy will retain its
508 * settings across a power-down/up cycle */
509 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
510 mii_reg &= ~MII_CR_POWER_DOWN;
511 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
515 static void e1000_power_down_phy(struct e1000_adapter *adapter)
517 /* Power down the PHY so no link is implied when interface is down *
518 * The PHY cannot be powered down if any of the following is TRUE *
519 * (a) WoL is enabled
520 * (b) AMT is active
521 * (c) SoL/IDER session is active */
522 if (!adapter->wol && adapter->hw.mac_type >= e1000_82540 &&
523 adapter->hw.media_type == e1000_media_type_copper) {
524 uint16_t mii_reg = 0;
526 switch (adapter->hw.mac_type) {
527 case e1000_82540:
528 case e1000_82545:
529 case e1000_82545_rev_3:
530 case e1000_82546:
531 case e1000_82546_rev_3:
532 case e1000_82541:
533 case e1000_82541_rev_2:
534 case e1000_82547:
535 case e1000_82547_rev_2:
536 if (E1000_READ_REG(&adapter->hw, MANC) &
537 E1000_MANC_SMBUS_EN)
538 goto out;
539 break;
540 case e1000_82571:
541 case e1000_82572:
542 case e1000_82573:
543 case e1000_80003es2lan:
544 case e1000_ich8lan:
545 if (e1000_check_mng_mode(&adapter->hw) ||
546 e1000_check_phy_reset_block(&adapter->hw))
547 goto out;
548 break;
549 default:
550 goto out;
552 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
553 mii_reg |= MII_CR_POWER_DOWN;
554 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
555 mdelay(1);
557 out:
558 return;
561 void
562 e1000_down(struct e1000_adapter *adapter)
564 struct net_device *netdev = adapter->netdev;
566 /* signal that we're down so the interrupt handler does not
567 * reschedule our watchdog timer */
568 set_bit(__E1000_DOWN, &adapter->flags);
570 e1000_irq_disable(adapter);
572 del_timer_sync(&adapter->tx_fifo_stall_timer);
573 del_timer_sync(&adapter->watchdog_timer);
574 del_timer_sync(&adapter->phy_info_timer);
576 #ifdef CONFIG_E1000_NAPI
577 netif_poll_disable(netdev);
578 #endif
579 netdev->tx_queue_len = adapter->tx_queue_len;
580 adapter->link_speed = 0;
581 adapter->link_duplex = 0;
582 netif_carrier_off(netdev);
583 netif_stop_queue(netdev);
585 e1000_reset(adapter);
586 e1000_clean_all_tx_rings(adapter);
587 e1000_clean_all_rx_rings(adapter);
590 void
591 e1000_reinit_locked(struct e1000_adapter *adapter)
593 WARN_ON(in_interrupt());
594 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
595 msleep(1);
596 e1000_down(adapter);
597 e1000_up(adapter);
598 clear_bit(__E1000_RESETTING, &adapter->flags);
601 void
602 e1000_reset(struct e1000_adapter *adapter)
604 uint32_t pba, manc;
605 uint16_t fc_high_water_mark = E1000_FC_HIGH_DIFF;
607 /* Repartition Pba for greater than 9k mtu
608 * To take effect CTRL.RST is required.
611 switch (adapter->hw.mac_type) {
612 case e1000_82547:
613 case e1000_82547_rev_2:
614 pba = E1000_PBA_30K;
615 break;
616 case e1000_82571:
617 case e1000_82572:
618 case e1000_80003es2lan:
619 pba = E1000_PBA_38K;
620 break;
621 case e1000_82573:
622 pba = E1000_PBA_12K;
623 break;
624 case e1000_ich8lan:
625 pba = E1000_PBA_8K;
626 break;
627 default:
628 pba = E1000_PBA_48K;
629 break;
632 if ((adapter->hw.mac_type != e1000_82573) &&
633 (adapter->netdev->mtu > E1000_RXBUFFER_8192))
634 pba -= 8; /* allocate more FIFO for Tx */
637 if (adapter->hw.mac_type == e1000_82547) {
638 adapter->tx_fifo_head = 0;
639 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
640 adapter->tx_fifo_size =
641 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
642 atomic_set(&adapter->tx_fifo_stall, 0);
645 E1000_WRITE_REG(&adapter->hw, PBA, pba);
647 /* flow control settings */
648 /* Set the FC high water mark to 90% of the FIFO size.
649 * Required to clear last 3 LSB */
650 fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8;
651 /* We can't use 90% on small FIFOs because the remainder
652 * would be less than 1 full frame. In this case, we size
653 * it to allow at least a full frame above the high water
654 * mark. */
655 if (pba < E1000_PBA_16K)
656 fc_high_water_mark = (pba * 1024) - 1600;
658 adapter->hw.fc_high_water = fc_high_water_mark;
659 adapter->hw.fc_low_water = fc_high_water_mark - 8;
660 if (adapter->hw.mac_type == e1000_80003es2lan)
661 adapter->hw.fc_pause_time = 0xFFFF;
662 else
663 adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME;
664 adapter->hw.fc_send_xon = 1;
665 adapter->hw.fc = adapter->hw.original_fc;
667 /* Allow time for pending master requests to run */
668 e1000_reset_hw(&adapter->hw);
669 if (adapter->hw.mac_type >= e1000_82544)
670 E1000_WRITE_REG(&adapter->hw, WUC, 0);
672 if (e1000_init_hw(&adapter->hw))
673 DPRINTK(PROBE, ERR, "Hardware Error\n");
674 e1000_update_mng_vlan(adapter);
675 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
676 E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE);
678 e1000_reset_adaptive(&adapter->hw);
679 e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
681 if (!adapter->smart_power_down &&
682 (adapter->hw.mac_type == e1000_82571 ||
683 adapter->hw.mac_type == e1000_82572)) {
684 uint16_t phy_data = 0;
685 /* speed up time to link by disabling smart power down, ignore
686 * the return value of this function because there is nothing
687 * different we would do if it failed */
688 e1000_read_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
689 &phy_data);
690 phy_data &= ~IGP02E1000_PM_SPD;
691 e1000_write_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
692 phy_data);
695 if ((adapter->en_mng_pt) &&
696 (adapter->hw.mac_type >= e1000_82540) &&
697 (adapter->hw.mac_type < e1000_82571) &&
698 (adapter->hw.media_type == e1000_media_type_copper)) {
699 manc = E1000_READ_REG(&adapter->hw, MANC);
700 manc |= (E1000_MANC_ARP_EN | E1000_MANC_EN_MNG2HOST);
701 E1000_WRITE_REG(&adapter->hw, MANC, manc);
706 * e1000_probe - Device Initialization Routine
707 * @pdev: PCI device information struct
708 * @ent: entry in e1000_pci_tbl
710 * Returns 0 on success, negative on failure
712 * e1000_probe initializes an adapter identified by a pci_dev structure.
713 * The OS initialization, configuring of the adapter private structure,
714 * and a hardware reset occur.
717 static int __devinit
718 e1000_probe(struct pci_dev *pdev,
719 const struct pci_device_id *ent)
721 struct net_device *netdev;
722 struct e1000_adapter *adapter;
723 unsigned long mmio_start, mmio_len;
724 unsigned long flash_start, flash_len;
726 static int cards_found = 0;
727 static int global_quad_port_a = 0; /* global ksp3 port a indication */
728 int i, err, pci_using_dac;
729 uint16_t eeprom_data = 0;
730 uint16_t eeprom_apme_mask = E1000_EEPROM_APME;
731 if ((err = pci_enable_device(pdev)))
732 return err;
734 if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK)) &&
735 !(err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK))) {
736 pci_using_dac = 1;
737 } else {
738 if ((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK)) &&
739 (err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK))) {
740 E1000_ERR("No usable DMA configuration, aborting\n");
741 goto err_dma;
743 pci_using_dac = 0;
746 if ((err = pci_request_regions(pdev, e1000_driver_name)))
747 goto err_pci_reg;
749 pci_set_master(pdev);
751 err = -ENOMEM;
752 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
753 if (!netdev)
754 goto err_alloc_etherdev;
756 SET_MODULE_OWNER(netdev);
757 SET_NETDEV_DEV(netdev, &pdev->dev);
759 pci_set_drvdata(pdev, netdev);
760 adapter = netdev_priv(netdev);
761 adapter->netdev = netdev;
762 adapter->pdev = pdev;
763 adapter->hw.back = adapter;
764 adapter->msg_enable = (1 << debug) - 1;
766 mmio_start = pci_resource_start(pdev, BAR_0);
767 mmio_len = pci_resource_len(pdev, BAR_0);
769 err = -EIO;
770 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
771 if (!adapter->hw.hw_addr)
772 goto err_ioremap;
774 for (i = BAR_1; i <= BAR_5; i++) {
775 if (pci_resource_len(pdev, i) == 0)
776 continue;
777 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
778 adapter->hw.io_base = pci_resource_start(pdev, i);
779 break;
783 netdev->open = &e1000_open;
784 netdev->stop = &e1000_close;
785 netdev->hard_start_xmit = &e1000_xmit_frame;
786 netdev->get_stats = &e1000_get_stats;
787 netdev->set_multicast_list = &e1000_set_multi;
788 netdev->set_mac_address = &e1000_set_mac;
789 netdev->change_mtu = &e1000_change_mtu;
790 netdev->do_ioctl = &e1000_ioctl;
791 e1000_set_ethtool_ops(netdev);
792 netdev->tx_timeout = &e1000_tx_timeout;
793 netdev->watchdog_timeo = 5 * HZ;
794 #ifdef CONFIG_E1000_NAPI
795 netdev->poll = &e1000_clean;
796 netdev->weight = 64;
797 #endif
798 netdev->vlan_rx_register = e1000_vlan_rx_register;
799 netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
800 netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
801 #ifdef CONFIG_NET_POLL_CONTROLLER
802 netdev->poll_controller = e1000_netpoll;
803 #endif
804 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
806 netdev->mem_start = mmio_start;
807 netdev->mem_end = mmio_start + mmio_len;
808 netdev->base_addr = adapter->hw.io_base;
810 adapter->bd_number = cards_found;
812 /* setup the private structure */
814 if ((err = e1000_sw_init(adapter)))
815 goto err_sw_init;
817 err = -EIO;
818 /* Flash BAR mapping must happen after e1000_sw_init
819 * because it depends on mac_type */
820 if ((adapter->hw.mac_type == e1000_ich8lan) &&
821 (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
822 flash_start = pci_resource_start(pdev, 1);
823 flash_len = pci_resource_len(pdev, 1);
824 adapter->hw.flash_address = ioremap(flash_start, flash_len);
825 if (!adapter->hw.flash_address)
826 goto err_flashmap;
829 if (e1000_check_phy_reset_block(&adapter->hw))
830 DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
832 if (adapter->hw.mac_type >= e1000_82543) {
833 netdev->features = NETIF_F_SG |
834 NETIF_F_HW_CSUM |
835 NETIF_F_HW_VLAN_TX |
836 NETIF_F_HW_VLAN_RX |
837 NETIF_F_HW_VLAN_FILTER;
838 if (adapter->hw.mac_type == e1000_ich8lan)
839 netdev->features &= ~NETIF_F_HW_VLAN_FILTER;
842 #ifdef NETIF_F_TSO
843 if ((adapter->hw.mac_type >= e1000_82544) &&
844 (adapter->hw.mac_type != e1000_82547))
845 netdev->features |= NETIF_F_TSO;
847 #ifdef NETIF_F_TSO6
848 if (adapter->hw.mac_type > e1000_82547_rev_2)
849 netdev->features |= NETIF_F_TSO6;
850 #endif
851 #endif
852 if (pci_using_dac)
853 netdev->features |= NETIF_F_HIGHDMA;
855 netdev->features |= NETIF_F_LLTX;
857 adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw);
859 /* initialize eeprom parameters */
861 if (e1000_init_eeprom_params(&adapter->hw)) {
862 E1000_ERR("EEPROM initialization failed\n");
863 goto err_eeprom;
866 /* before reading the EEPROM, reset the controller to
867 * put the device in a known good starting state */
869 e1000_reset_hw(&adapter->hw);
871 /* make sure the EEPROM is good */
873 if (e1000_validate_eeprom_checksum(&adapter->hw) < 0) {
874 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
875 goto err_eeprom;
878 /* copy the MAC address out of the EEPROM */
880 if (e1000_read_mac_addr(&adapter->hw))
881 DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
882 memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
883 memcpy(netdev->perm_addr, adapter->hw.mac_addr, netdev->addr_len);
885 if (!is_valid_ether_addr(netdev->perm_addr)) {
886 DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
887 goto err_eeprom;
890 e1000_get_bus_info(&adapter->hw);
892 init_timer(&adapter->tx_fifo_stall_timer);
893 adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
894 adapter->tx_fifo_stall_timer.data = (unsigned long) adapter;
896 init_timer(&adapter->watchdog_timer);
897 adapter->watchdog_timer.function = &e1000_watchdog;
898 adapter->watchdog_timer.data = (unsigned long) adapter;
900 init_timer(&adapter->phy_info_timer);
901 adapter->phy_info_timer.function = &e1000_update_phy_info;
902 adapter->phy_info_timer.data = (unsigned long) adapter;
904 INIT_WORK(&adapter->reset_task,
905 (void (*)(void *))e1000_reset_task, netdev);
907 e1000_check_options(adapter);
909 /* Initial Wake on LAN setting
910 * If APM wake is enabled in the EEPROM,
911 * enable the ACPI Magic Packet filter
914 switch (adapter->hw.mac_type) {
915 case e1000_82542_rev2_0:
916 case e1000_82542_rev2_1:
917 case e1000_82543:
918 break;
919 case e1000_82544:
920 e1000_read_eeprom(&adapter->hw,
921 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
922 eeprom_apme_mask = E1000_EEPROM_82544_APM;
923 break;
924 case e1000_ich8lan:
925 e1000_read_eeprom(&adapter->hw,
926 EEPROM_INIT_CONTROL1_REG, 1, &eeprom_data);
927 eeprom_apme_mask = E1000_EEPROM_ICH8_APME;
928 break;
929 case e1000_82546:
930 case e1000_82546_rev_3:
931 case e1000_82571:
932 case e1000_80003es2lan:
933 if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1){
934 e1000_read_eeprom(&adapter->hw,
935 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
936 break;
938 /* Fall Through */
939 default:
940 e1000_read_eeprom(&adapter->hw,
941 EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
942 break;
944 if (eeprom_data & eeprom_apme_mask)
945 adapter->eeprom_wol |= E1000_WUFC_MAG;
947 /* now that we have the eeprom settings, apply the special cases
948 * where the eeprom may be wrong or the board simply won't support
949 * wake on lan on a particular port */
950 switch (pdev->device) {
951 case E1000_DEV_ID_82546GB_PCIE:
952 adapter->eeprom_wol = 0;
953 break;
954 case E1000_DEV_ID_82546EB_FIBER:
955 case E1000_DEV_ID_82546GB_FIBER:
956 case E1000_DEV_ID_82571EB_FIBER:
957 /* Wake events only supported on port A for dual fiber
958 * regardless of eeprom setting */
959 if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1)
960 adapter->eeprom_wol = 0;
961 break;
962 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
963 case E1000_DEV_ID_82571EB_QUAD_COPPER:
964 /* if quad port adapter, disable WoL on all but port A */
965 if (global_quad_port_a != 0)
966 adapter->eeprom_wol = 0;
967 else
968 adapter->quad_port_a = 1;
969 /* Reset for multiple quad port adapters */
970 if (++global_quad_port_a == 4)
971 global_quad_port_a = 0;
972 break;
975 /* initialize the wol settings based on the eeprom settings */
976 adapter->wol = adapter->eeprom_wol;
978 /* print bus type/speed/width info */
980 struct e1000_hw *hw = &adapter->hw;
981 DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
982 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" :
983 (hw->bus_type == e1000_bus_type_pci_express ? " Express":"")),
984 ((hw->bus_speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
985 (hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
986 (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" :
987 (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" :
988 (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
989 ((hw->bus_width == e1000_bus_width_64) ? "64-bit" :
990 (hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" :
991 (hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" :
992 "32-bit"));
995 for (i = 0; i < 6; i++)
996 printk("%2.2x%c", netdev->dev_addr[i], i == 5 ? '\n' : ':');
998 /* reset the hardware with the new settings */
999 e1000_reset(adapter);
1001 /* If the controller is 82573 and f/w is AMT, do not set
1002 * DRV_LOAD until the interface is up. For all other cases,
1003 * let the f/w know that the h/w is now under the control
1004 * of the driver. */
1005 if (adapter->hw.mac_type != e1000_82573 ||
1006 !e1000_check_mng_mode(&adapter->hw))
1007 e1000_get_hw_control(adapter);
1009 strcpy(netdev->name, "eth%d");
1010 if ((err = register_netdev(netdev)))
1011 goto err_register;
1013 /* tell the stack to leave us alone until e1000_open() is called */
1014 netif_carrier_off(netdev);
1015 netif_stop_queue(netdev);
1017 DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
1019 cards_found++;
1020 return 0;
1022 err_register:
1023 e1000_release_hw_control(adapter);
1024 err_eeprom:
1025 if (!e1000_check_phy_reset_block(&adapter->hw))
1026 e1000_phy_hw_reset(&adapter->hw);
1028 if (adapter->hw.flash_address)
1029 iounmap(adapter->hw.flash_address);
1030 err_flashmap:
1031 #ifdef CONFIG_E1000_NAPI
1032 for (i = 0; i < adapter->num_rx_queues; i++)
1033 dev_put(&adapter->polling_netdev[i]);
1034 #endif
1036 kfree(adapter->tx_ring);
1037 kfree(adapter->rx_ring);
1038 #ifdef CONFIG_E1000_NAPI
1039 kfree(adapter->polling_netdev);
1040 #endif
1041 err_sw_init:
1042 iounmap(adapter->hw.hw_addr);
1043 err_ioremap:
1044 free_netdev(netdev);
1045 err_alloc_etherdev:
1046 pci_release_regions(pdev);
1047 err_pci_reg:
1048 err_dma:
1049 pci_disable_device(pdev);
1050 return err;
1054 * e1000_remove - Device Removal Routine
1055 * @pdev: PCI device information struct
1057 * e1000_remove is called by the PCI subsystem to alert the driver
1058 * that it should release a PCI device. The could be caused by a
1059 * Hot-Plug event, or because the driver is going to be removed from
1060 * memory.
1063 static void __devexit
1064 e1000_remove(struct pci_dev *pdev)
1066 struct net_device *netdev = pci_get_drvdata(pdev);
1067 struct e1000_adapter *adapter = netdev_priv(netdev);
1068 uint32_t manc;
1069 #ifdef CONFIG_E1000_NAPI
1070 int i;
1071 #endif
1073 flush_scheduled_work();
1075 if (adapter->hw.mac_type >= e1000_82540 &&
1076 adapter->hw.mac_type < e1000_82571 &&
1077 adapter->hw.media_type == e1000_media_type_copper) {
1078 manc = E1000_READ_REG(&adapter->hw, MANC);
1079 if (manc & E1000_MANC_SMBUS_EN) {
1080 manc |= E1000_MANC_ARP_EN;
1081 E1000_WRITE_REG(&adapter->hw, MANC, manc);
1085 /* Release control of h/w to f/w. If f/w is AMT enabled, this
1086 * would have already happened in close and is redundant. */
1087 e1000_release_hw_control(adapter);
1089 unregister_netdev(netdev);
1090 #ifdef CONFIG_E1000_NAPI
1091 for (i = 0; i < adapter->num_rx_queues; i++)
1092 dev_put(&adapter->polling_netdev[i]);
1093 #endif
1095 if (!e1000_check_phy_reset_block(&adapter->hw))
1096 e1000_phy_hw_reset(&adapter->hw);
1098 kfree(adapter->tx_ring);
1099 kfree(adapter->rx_ring);
1100 #ifdef CONFIG_E1000_NAPI
1101 kfree(adapter->polling_netdev);
1102 #endif
1104 iounmap(adapter->hw.hw_addr);
1105 if (adapter->hw.flash_address)
1106 iounmap(adapter->hw.flash_address);
1107 pci_release_regions(pdev);
1109 free_netdev(netdev);
1111 pci_disable_device(pdev);
1115 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1116 * @adapter: board private structure to initialize
1118 * e1000_sw_init initializes the Adapter private data structure.
1119 * Fields are initialized based on PCI device information and
1120 * OS network device settings (MTU size).
1123 static int __devinit
1124 e1000_sw_init(struct e1000_adapter *adapter)
1126 struct e1000_hw *hw = &adapter->hw;
1127 struct net_device *netdev = adapter->netdev;
1128 struct pci_dev *pdev = adapter->pdev;
1129 #ifdef CONFIG_E1000_NAPI
1130 int i;
1131 #endif
1133 /* PCI config space info */
1135 hw->vendor_id = pdev->vendor;
1136 hw->device_id = pdev->device;
1137 hw->subsystem_vendor_id = pdev->subsystem_vendor;
1138 hw->subsystem_id = pdev->subsystem_device;
1140 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
1142 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
1144 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1145 adapter->rx_ps_bsize0 = E1000_RXBUFFER_128;
1146 hw->max_frame_size = netdev->mtu +
1147 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
1148 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
1150 /* identify the MAC */
1152 if (e1000_set_mac_type(hw)) {
1153 DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
1154 return -EIO;
1157 switch (hw->mac_type) {
1158 default:
1159 break;
1160 case e1000_82541:
1161 case e1000_82547:
1162 case e1000_82541_rev_2:
1163 case e1000_82547_rev_2:
1164 hw->phy_init_script = 1;
1165 break;
1168 e1000_set_media_type(hw);
1170 hw->wait_autoneg_complete = FALSE;
1171 hw->tbi_compatibility_en = TRUE;
1172 hw->adaptive_ifs = TRUE;
1174 /* Copper options */
1176 if (hw->media_type == e1000_media_type_copper) {
1177 hw->mdix = AUTO_ALL_MODES;
1178 hw->disable_polarity_correction = FALSE;
1179 hw->master_slave = E1000_MASTER_SLAVE;
1182 adapter->num_tx_queues = 1;
1183 adapter->num_rx_queues = 1;
1185 if (e1000_alloc_queues(adapter)) {
1186 DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
1187 return -ENOMEM;
1190 #ifdef CONFIG_E1000_NAPI
1191 for (i = 0; i < adapter->num_rx_queues; i++) {
1192 adapter->polling_netdev[i].priv = adapter;
1193 adapter->polling_netdev[i].poll = &e1000_clean;
1194 adapter->polling_netdev[i].weight = 64;
1195 dev_hold(&adapter->polling_netdev[i]);
1196 set_bit(__LINK_STATE_START, &adapter->polling_netdev[i].state);
1198 spin_lock_init(&adapter->tx_queue_lock);
1199 #endif
1201 atomic_set(&adapter->irq_sem, 1);
1202 spin_lock_init(&adapter->stats_lock);
1204 set_bit(__E1000_DOWN, &adapter->flags);
1206 return 0;
1210 * e1000_alloc_queues - Allocate memory for all rings
1211 * @adapter: board private structure to initialize
1213 * We allocate one ring per queue at run-time since we don't know the
1214 * number of queues at compile-time. The polling_netdev array is
1215 * intended for Multiqueue, but should work fine with a single queue.
1218 static int __devinit
1219 e1000_alloc_queues(struct e1000_adapter *adapter)
1221 int size;
1223 size = sizeof(struct e1000_tx_ring) * adapter->num_tx_queues;
1224 adapter->tx_ring = kmalloc(size, GFP_KERNEL);
1225 if (!adapter->tx_ring)
1226 return -ENOMEM;
1227 memset(adapter->tx_ring, 0, size);
1229 size = sizeof(struct e1000_rx_ring) * adapter->num_rx_queues;
1230 adapter->rx_ring = kmalloc(size, GFP_KERNEL);
1231 if (!adapter->rx_ring) {
1232 kfree(adapter->tx_ring);
1233 return -ENOMEM;
1235 memset(adapter->rx_ring, 0, size);
1237 #ifdef CONFIG_E1000_NAPI
1238 size = sizeof(struct net_device) * adapter->num_rx_queues;
1239 adapter->polling_netdev = kmalloc(size, GFP_KERNEL);
1240 if (!adapter->polling_netdev) {
1241 kfree(adapter->tx_ring);
1242 kfree(adapter->rx_ring);
1243 return -ENOMEM;
1245 memset(adapter->polling_netdev, 0, size);
1246 #endif
1248 return E1000_SUCCESS;
1252 * e1000_open - Called when a network interface is made active
1253 * @netdev: network interface device structure
1255 * Returns 0 on success, negative value on failure
1257 * The open entry point is called when a network interface is made
1258 * active by the system (IFF_UP). At this point all resources needed
1259 * for transmit and receive operations are allocated, the interrupt
1260 * handler is registered with the OS, the watchdog timer is started,
1261 * and the stack is notified that the interface is ready.
1264 static int
1265 e1000_open(struct net_device *netdev)
1267 struct e1000_adapter *adapter = netdev_priv(netdev);
1268 int err;
1270 /* disallow open during test */
1271 if (test_bit(__E1000_TESTING, &adapter->flags))
1272 return -EBUSY;
1274 /* allocate transmit descriptors */
1275 if ((err = e1000_setup_all_tx_resources(adapter)))
1276 goto err_setup_tx;
1278 /* allocate receive descriptors */
1279 if ((err = e1000_setup_all_rx_resources(adapter)))
1280 goto err_setup_rx;
1282 err = e1000_request_irq(adapter);
1283 if (err)
1284 goto err_req_irq;
1286 e1000_power_up_phy(adapter);
1288 if ((err = e1000_up(adapter)))
1289 goto err_up;
1290 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1291 if ((adapter->hw.mng_cookie.status &
1292 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1293 e1000_update_mng_vlan(adapter);
1296 /* If AMT is enabled, let the firmware know that the network
1297 * interface is now open */
1298 if (adapter->hw.mac_type == e1000_82573 &&
1299 e1000_check_mng_mode(&adapter->hw))
1300 e1000_get_hw_control(adapter);
1302 return E1000_SUCCESS;
1304 err_up:
1305 e1000_power_down_phy(adapter);
1306 e1000_free_irq(adapter);
1307 err_req_irq:
1308 e1000_free_all_rx_resources(adapter);
1309 err_setup_rx:
1310 e1000_free_all_tx_resources(adapter);
1311 err_setup_tx:
1312 e1000_reset(adapter);
1314 return err;
1318 * e1000_close - Disables a network interface
1319 * @netdev: network interface device structure
1321 * Returns 0, this is not allowed to fail
1323 * The close entry point is called when an interface is de-activated
1324 * by the OS. The hardware is still under the drivers control, but
1325 * needs to be disabled. A global MAC reset is issued to stop the
1326 * hardware, and all transmit and receive resources are freed.
1329 static int
1330 e1000_close(struct net_device *netdev)
1332 struct e1000_adapter *adapter = netdev_priv(netdev);
1334 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1335 e1000_down(adapter);
1336 e1000_power_down_phy(adapter);
1337 e1000_free_irq(adapter);
1339 e1000_free_all_tx_resources(adapter);
1340 e1000_free_all_rx_resources(adapter);
1342 /* kill manageability vlan ID if supported, but not if a vlan with
1343 * the same ID is registered on the host OS (let 8021q kill it) */
1344 if ((adapter->hw.mng_cookie.status &
1345 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1346 !(adapter->vlgrp &&
1347 adapter->vlgrp->vlan_devices[adapter->mng_vlan_id])) {
1348 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1351 /* If AMT is enabled, let the firmware know that the network
1352 * interface is now closed */
1353 if (adapter->hw.mac_type == e1000_82573 &&
1354 e1000_check_mng_mode(&adapter->hw))
1355 e1000_release_hw_control(adapter);
1357 return 0;
1361 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1362 * @adapter: address of board private structure
1363 * @start: address of beginning of memory
1364 * @len: length of memory
1366 static boolean_t
1367 e1000_check_64k_bound(struct e1000_adapter *adapter,
1368 void *start, unsigned long len)
1370 unsigned long begin = (unsigned long) start;
1371 unsigned long end = begin + len;
1373 /* First rev 82545 and 82546 need to not allow any memory
1374 * write location to cross 64k boundary due to errata 23 */
1375 if (adapter->hw.mac_type == e1000_82545 ||
1376 adapter->hw.mac_type == e1000_82546) {
1377 return ((begin ^ (end - 1)) >> 16) != 0 ? FALSE : TRUE;
1380 return TRUE;
1384 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1385 * @adapter: board private structure
1386 * @txdr: tx descriptor ring (for a specific queue) to setup
1388 * Return 0 on success, negative on failure
1391 static int
1392 e1000_setup_tx_resources(struct e1000_adapter *adapter,
1393 struct e1000_tx_ring *txdr)
1395 struct pci_dev *pdev = adapter->pdev;
1396 int size;
1398 size = sizeof(struct e1000_buffer) * txdr->count;
1399 txdr->buffer_info = vmalloc(size);
1400 if (!txdr->buffer_info) {
1401 DPRINTK(PROBE, ERR,
1402 "Unable to allocate memory for the transmit descriptor ring\n");
1403 return -ENOMEM;
1405 memset(txdr->buffer_info, 0, size);
1407 /* round up to nearest 4K */
1409 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1410 E1000_ROUNDUP(txdr->size, 4096);
1412 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1413 if (!txdr->desc) {
1414 setup_tx_desc_die:
1415 vfree(txdr->buffer_info);
1416 DPRINTK(PROBE, ERR,
1417 "Unable to allocate memory for the transmit descriptor ring\n");
1418 return -ENOMEM;
1421 /* Fix for errata 23, can't cross 64kB boundary */
1422 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1423 void *olddesc = txdr->desc;
1424 dma_addr_t olddma = txdr->dma;
1425 DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
1426 "at %p\n", txdr->size, txdr->desc);
1427 /* Try again, without freeing the previous */
1428 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1429 /* Failed allocation, critical failure */
1430 if (!txdr->desc) {
1431 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1432 goto setup_tx_desc_die;
1435 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1436 /* give up */
1437 pci_free_consistent(pdev, txdr->size, txdr->desc,
1438 txdr->dma);
1439 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1440 DPRINTK(PROBE, ERR,
1441 "Unable to allocate aligned memory "
1442 "for the transmit descriptor ring\n");
1443 vfree(txdr->buffer_info);
1444 return -ENOMEM;
1445 } else {
1446 /* Free old allocation, new allocation was successful */
1447 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1450 memset(txdr->desc, 0, txdr->size);
1452 txdr->next_to_use = 0;
1453 txdr->next_to_clean = 0;
1454 spin_lock_init(&txdr->tx_lock);
1456 return 0;
1460 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1461 * (Descriptors) for all queues
1462 * @adapter: board private structure
1464 * Return 0 on success, negative on failure
1468 e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1470 int i, err = 0;
1472 for (i = 0; i < adapter->num_tx_queues; i++) {
1473 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1474 if (err) {
1475 DPRINTK(PROBE, ERR,
1476 "Allocation for Tx Queue %u failed\n", i);
1477 for (i-- ; i >= 0; i--)
1478 e1000_free_tx_resources(adapter,
1479 &adapter->tx_ring[i]);
1480 break;
1484 return err;
1488 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1489 * @adapter: board private structure
1491 * Configure the Tx unit of the MAC after a reset.
1494 static void
1495 e1000_configure_tx(struct e1000_adapter *adapter)
1497 uint64_t tdba;
1498 struct e1000_hw *hw = &adapter->hw;
1499 uint32_t tdlen, tctl, tipg, tarc;
1500 uint32_t ipgr1, ipgr2;
1502 /* Setup the HW Tx Head and Tail descriptor pointers */
1504 switch (adapter->num_tx_queues) {
1505 case 1:
1506 default:
1507 tdba = adapter->tx_ring[0].dma;
1508 tdlen = adapter->tx_ring[0].count *
1509 sizeof(struct e1000_tx_desc);
1510 E1000_WRITE_REG(hw, TDLEN, tdlen);
1511 E1000_WRITE_REG(hw, TDBAH, (tdba >> 32));
1512 E1000_WRITE_REG(hw, TDBAL, (tdba & 0x00000000ffffffffULL));
1513 E1000_WRITE_REG(hw, TDT, 0);
1514 E1000_WRITE_REG(hw, TDH, 0);
1515 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
1516 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
1517 break;
1520 /* Set the default values for the Tx Inter Packet Gap timer */
1522 if (hw->media_type == e1000_media_type_fiber ||
1523 hw->media_type == e1000_media_type_internal_serdes)
1524 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1525 else
1526 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1528 switch (hw->mac_type) {
1529 case e1000_82542_rev2_0:
1530 case e1000_82542_rev2_1:
1531 tipg = DEFAULT_82542_TIPG_IPGT;
1532 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1533 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1534 break;
1535 case e1000_80003es2lan:
1536 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1537 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
1538 break;
1539 default:
1540 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1541 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1542 break;
1544 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1545 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1546 E1000_WRITE_REG(hw, TIPG, tipg);
1548 /* Set the Tx Interrupt Delay register */
1550 E1000_WRITE_REG(hw, TIDV, adapter->tx_int_delay);
1551 if (hw->mac_type >= e1000_82540)
1552 E1000_WRITE_REG(hw, TADV, adapter->tx_abs_int_delay);
1554 /* Program the Transmit Control Register */
1556 tctl = E1000_READ_REG(hw, TCTL);
1557 tctl &= ~E1000_TCTL_CT;
1558 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1559 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1561 if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
1562 tarc = E1000_READ_REG(hw, TARC0);
1563 /* set the speed mode bit, we'll clear it if we're not at
1564 * gigabit link later */
1565 tarc |= (1 << 21);
1566 E1000_WRITE_REG(hw, TARC0, tarc);
1567 } else if (hw->mac_type == e1000_80003es2lan) {
1568 tarc = E1000_READ_REG(hw, TARC0);
1569 tarc |= 1;
1570 E1000_WRITE_REG(hw, TARC0, tarc);
1571 tarc = E1000_READ_REG(hw, TARC1);
1572 tarc |= 1;
1573 E1000_WRITE_REG(hw, TARC1, tarc);
1576 e1000_config_collision_dist(hw);
1578 /* Setup Transmit Descriptor Settings for eop descriptor */
1579 adapter->txd_cmd = E1000_TXD_CMD_IDE | E1000_TXD_CMD_EOP |
1580 E1000_TXD_CMD_IFCS;
1582 if (hw->mac_type < e1000_82543)
1583 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1584 else
1585 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1587 /* Cache if we're 82544 running in PCI-X because we'll
1588 * need this to apply a workaround later in the send path. */
1589 if (hw->mac_type == e1000_82544 &&
1590 hw->bus_type == e1000_bus_type_pcix)
1591 adapter->pcix_82544 = 1;
1593 E1000_WRITE_REG(hw, TCTL, tctl);
1598 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1599 * @adapter: board private structure
1600 * @rxdr: rx descriptor ring (for a specific queue) to setup
1602 * Returns 0 on success, negative on failure
1605 static int
1606 e1000_setup_rx_resources(struct e1000_adapter *adapter,
1607 struct e1000_rx_ring *rxdr)
1609 struct pci_dev *pdev = adapter->pdev;
1610 int size, desc_len;
1612 size = sizeof(struct e1000_buffer) * rxdr->count;
1613 rxdr->buffer_info = vmalloc(size);
1614 if (!rxdr->buffer_info) {
1615 DPRINTK(PROBE, ERR,
1616 "Unable to allocate memory for the receive descriptor ring\n");
1617 return -ENOMEM;
1619 memset(rxdr->buffer_info, 0, size);
1621 size = sizeof(struct e1000_ps_page) * rxdr->count;
1622 rxdr->ps_page = kmalloc(size, GFP_KERNEL);
1623 if (!rxdr->ps_page) {
1624 vfree(rxdr->buffer_info);
1625 DPRINTK(PROBE, ERR,
1626 "Unable to allocate memory for the receive descriptor ring\n");
1627 return -ENOMEM;
1629 memset(rxdr->ps_page, 0, size);
1631 size = sizeof(struct e1000_ps_page_dma) * rxdr->count;
1632 rxdr->ps_page_dma = kmalloc(size, GFP_KERNEL);
1633 if (!rxdr->ps_page_dma) {
1634 vfree(rxdr->buffer_info);
1635 kfree(rxdr->ps_page);
1636 DPRINTK(PROBE, ERR,
1637 "Unable to allocate memory for the receive descriptor ring\n");
1638 return -ENOMEM;
1640 memset(rxdr->ps_page_dma, 0, size);
1642 if (adapter->hw.mac_type <= e1000_82547_rev_2)
1643 desc_len = sizeof(struct e1000_rx_desc);
1644 else
1645 desc_len = sizeof(union e1000_rx_desc_packet_split);
1647 /* Round up to nearest 4K */
1649 rxdr->size = rxdr->count * desc_len;
1650 E1000_ROUNDUP(rxdr->size, 4096);
1652 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1654 if (!rxdr->desc) {
1655 DPRINTK(PROBE, ERR,
1656 "Unable to allocate memory for the receive descriptor ring\n");
1657 setup_rx_desc_die:
1658 vfree(rxdr->buffer_info);
1659 kfree(rxdr->ps_page);
1660 kfree(rxdr->ps_page_dma);
1661 return -ENOMEM;
1664 /* Fix for errata 23, can't cross 64kB boundary */
1665 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1666 void *olddesc = rxdr->desc;
1667 dma_addr_t olddma = rxdr->dma;
1668 DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
1669 "at %p\n", rxdr->size, rxdr->desc);
1670 /* Try again, without freeing the previous */
1671 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1672 /* Failed allocation, critical failure */
1673 if (!rxdr->desc) {
1674 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1675 DPRINTK(PROBE, ERR,
1676 "Unable to allocate memory "
1677 "for the receive descriptor ring\n");
1678 goto setup_rx_desc_die;
1681 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1682 /* give up */
1683 pci_free_consistent(pdev, rxdr->size, rxdr->desc,
1684 rxdr->dma);
1685 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1686 DPRINTK(PROBE, ERR,
1687 "Unable to allocate aligned memory "
1688 "for the receive descriptor ring\n");
1689 goto setup_rx_desc_die;
1690 } else {
1691 /* Free old allocation, new allocation was successful */
1692 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1695 memset(rxdr->desc, 0, rxdr->size);
1697 rxdr->next_to_clean = 0;
1698 rxdr->next_to_use = 0;
1700 return 0;
1704 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1705 * (Descriptors) for all queues
1706 * @adapter: board private structure
1708 * Return 0 on success, negative on failure
1712 e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1714 int i, err = 0;
1716 for (i = 0; i < adapter->num_rx_queues; i++) {
1717 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1718 if (err) {
1719 DPRINTK(PROBE, ERR,
1720 "Allocation for Rx Queue %u failed\n", i);
1721 for (i-- ; i >= 0; i--)
1722 e1000_free_rx_resources(adapter,
1723 &adapter->rx_ring[i]);
1724 break;
1728 return err;
1732 * e1000_setup_rctl - configure the receive control registers
1733 * @adapter: Board private structure
1735 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1736 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1737 static void
1738 e1000_setup_rctl(struct e1000_adapter *adapter)
1740 uint32_t rctl, rfctl;
1741 uint32_t psrctl = 0;
1742 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1743 uint32_t pages = 0;
1744 #endif
1746 rctl = E1000_READ_REG(&adapter->hw, RCTL);
1748 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1750 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1751 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1752 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1754 if (adapter->hw.tbi_compatibility_on == 1)
1755 rctl |= E1000_RCTL_SBP;
1756 else
1757 rctl &= ~E1000_RCTL_SBP;
1759 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1760 rctl &= ~E1000_RCTL_LPE;
1761 else
1762 rctl |= E1000_RCTL_LPE;
1764 /* Setup buffer sizes */
1765 rctl &= ~E1000_RCTL_SZ_4096;
1766 rctl |= E1000_RCTL_BSEX;
1767 switch (adapter->rx_buffer_len) {
1768 case E1000_RXBUFFER_256:
1769 rctl |= E1000_RCTL_SZ_256;
1770 rctl &= ~E1000_RCTL_BSEX;
1771 break;
1772 case E1000_RXBUFFER_512:
1773 rctl |= E1000_RCTL_SZ_512;
1774 rctl &= ~E1000_RCTL_BSEX;
1775 break;
1776 case E1000_RXBUFFER_1024:
1777 rctl |= E1000_RCTL_SZ_1024;
1778 rctl &= ~E1000_RCTL_BSEX;
1779 break;
1780 case E1000_RXBUFFER_2048:
1781 default:
1782 rctl |= E1000_RCTL_SZ_2048;
1783 rctl &= ~E1000_RCTL_BSEX;
1784 break;
1785 case E1000_RXBUFFER_4096:
1786 rctl |= E1000_RCTL_SZ_4096;
1787 break;
1788 case E1000_RXBUFFER_8192:
1789 rctl |= E1000_RCTL_SZ_8192;
1790 break;
1791 case E1000_RXBUFFER_16384:
1792 rctl |= E1000_RCTL_SZ_16384;
1793 break;
1796 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1797 /* 82571 and greater support packet-split where the protocol
1798 * header is placed in skb->data and the packet data is
1799 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1800 * In the case of a non-split, skb->data is linearly filled,
1801 * followed by the page buffers. Therefore, skb->data is
1802 * sized to hold the largest protocol header.
1804 /* allocations using alloc_page take too long for regular MTU
1805 * so only enable packet split for jumbo frames */
1806 pages = PAGE_USE_COUNT(adapter->netdev->mtu);
1807 if ((adapter->hw.mac_type >= e1000_82571) && (pages <= 3) &&
1808 PAGE_SIZE <= 16384 && (rctl & E1000_RCTL_LPE))
1809 adapter->rx_ps_pages = pages;
1810 else
1811 adapter->rx_ps_pages = 0;
1812 #endif
1813 if (adapter->rx_ps_pages) {
1814 /* Configure extra packet-split registers */
1815 rfctl = E1000_READ_REG(&adapter->hw, RFCTL);
1816 rfctl |= E1000_RFCTL_EXTEN;
1817 /* disable packet split support for IPv6 extension headers,
1818 * because some malformed IPv6 headers can hang the RX */
1819 rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
1820 E1000_RFCTL_NEW_IPV6_EXT_DIS);
1822 E1000_WRITE_REG(&adapter->hw, RFCTL, rfctl);
1824 rctl |= E1000_RCTL_DTYP_PS;
1826 psrctl |= adapter->rx_ps_bsize0 >>
1827 E1000_PSRCTL_BSIZE0_SHIFT;
1829 switch (adapter->rx_ps_pages) {
1830 case 3:
1831 psrctl |= PAGE_SIZE <<
1832 E1000_PSRCTL_BSIZE3_SHIFT;
1833 case 2:
1834 psrctl |= PAGE_SIZE <<
1835 E1000_PSRCTL_BSIZE2_SHIFT;
1836 case 1:
1837 psrctl |= PAGE_SIZE >>
1838 E1000_PSRCTL_BSIZE1_SHIFT;
1839 break;
1842 E1000_WRITE_REG(&adapter->hw, PSRCTL, psrctl);
1845 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1849 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1850 * @adapter: board private structure
1852 * Configure the Rx unit of the MAC after a reset.
1855 static void
1856 e1000_configure_rx(struct e1000_adapter *adapter)
1858 uint64_t rdba;
1859 struct e1000_hw *hw = &adapter->hw;
1860 uint32_t rdlen, rctl, rxcsum, ctrl_ext;
1862 if (adapter->rx_ps_pages) {
1863 /* this is a 32 byte descriptor */
1864 rdlen = adapter->rx_ring[0].count *
1865 sizeof(union e1000_rx_desc_packet_split);
1866 adapter->clean_rx = e1000_clean_rx_irq_ps;
1867 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
1868 } else {
1869 rdlen = adapter->rx_ring[0].count *
1870 sizeof(struct e1000_rx_desc);
1871 adapter->clean_rx = e1000_clean_rx_irq;
1872 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1875 /* disable receives while setting up the descriptors */
1876 rctl = E1000_READ_REG(hw, RCTL);
1877 E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
1879 /* set the Receive Delay Timer Register */
1880 E1000_WRITE_REG(hw, RDTR, adapter->rx_int_delay);
1882 if (hw->mac_type >= e1000_82540) {
1883 E1000_WRITE_REG(hw, RADV, adapter->rx_abs_int_delay);
1884 if (adapter->itr > 1)
1885 E1000_WRITE_REG(hw, ITR,
1886 1000000000 / (adapter->itr * 256));
1889 if (hw->mac_type >= e1000_82571) {
1890 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1891 /* Reset delay timers after every interrupt */
1892 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
1893 #ifdef CONFIG_E1000_NAPI
1894 /* Auto-Mask interrupts upon ICR read. */
1895 ctrl_ext |= E1000_CTRL_EXT_IAME;
1896 #endif
1897 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1898 E1000_WRITE_REG(hw, IAM, ~0);
1899 E1000_WRITE_FLUSH(hw);
1902 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1903 * the Base and Length of the Rx Descriptor Ring */
1904 switch (adapter->num_rx_queues) {
1905 case 1:
1906 default:
1907 rdba = adapter->rx_ring[0].dma;
1908 E1000_WRITE_REG(hw, RDLEN, rdlen);
1909 E1000_WRITE_REG(hw, RDBAH, (rdba >> 32));
1910 E1000_WRITE_REG(hw, RDBAL, (rdba & 0x00000000ffffffffULL));
1911 E1000_WRITE_REG(hw, RDT, 0);
1912 E1000_WRITE_REG(hw, RDH, 0);
1913 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
1914 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
1915 break;
1918 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1919 if (hw->mac_type >= e1000_82543) {
1920 rxcsum = E1000_READ_REG(hw, RXCSUM);
1921 if (adapter->rx_csum == TRUE) {
1922 rxcsum |= E1000_RXCSUM_TUOFL;
1924 /* Enable 82571 IPv4 payload checksum for UDP fragments
1925 * Must be used in conjunction with packet-split. */
1926 if ((hw->mac_type >= e1000_82571) &&
1927 (adapter->rx_ps_pages)) {
1928 rxcsum |= E1000_RXCSUM_IPPCSE;
1930 } else {
1931 rxcsum &= ~E1000_RXCSUM_TUOFL;
1932 /* don't need to clear IPPCSE as it defaults to 0 */
1934 E1000_WRITE_REG(hw, RXCSUM, rxcsum);
1937 /* enable early receives on 82573, only takes effect if using > 2048
1938 * byte total frame size. for example only for jumbo frames */
1939 #define E1000_ERT_2048 0x100
1940 if (hw->mac_type == e1000_82573)
1941 E1000_WRITE_REG(hw, ERT, E1000_ERT_2048);
1943 /* Enable Receives */
1944 E1000_WRITE_REG(hw, RCTL, rctl);
1948 * e1000_free_tx_resources - Free Tx Resources per Queue
1949 * @adapter: board private structure
1950 * @tx_ring: Tx descriptor ring for a specific queue
1952 * Free all transmit software resources
1955 static void
1956 e1000_free_tx_resources(struct e1000_adapter *adapter,
1957 struct e1000_tx_ring *tx_ring)
1959 struct pci_dev *pdev = adapter->pdev;
1961 e1000_clean_tx_ring(adapter, tx_ring);
1963 vfree(tx_ring->buffer_info);
1964 tx_ring->buffer_info = NULL;
1966 pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
1968 tx_ring->desc = NULL;
1972 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1973 * @adapter: board private structure
1975 * Free all transmit software resources
1978 void
1979 e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1981 int i;
1983 for (i = 0; i < adapter->num_tx_queues; i++)
1984 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1987 static void
1988 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1989 struct e1000_buffer *buffer_info)
1991 if (buffer_info->dma) {
1992 pci_unmap_page(adapter->pdev,
1993 buffer_info->dma,
1994 buffer_info->length,
1995 PCI_DMA_TODEVICE);
1997 if (buffer_info->skb)
1998 dev_kfree_skb_any(buffer_info->skb);
1999 memset(buffer_info, 0, sizeof(struct e1000_buffer));
2003 * e1000_clean_tx_ring - Free Tx Buffers
2004 * @adapter: board private structure
2005 * @tx_ring: ring to be cleaned
2008 static void
2009 e1000_clean_tx_ring(struct e1000_adapter *adapter,
2010 struct e1000_tx_ring *tx_ring)
2012 struct e1000_buffer *buffer_info;
2013 unsigned long size;
2014 unsigned int i;
2016 /* Free all the Tx ring sk_buffs */
2018 for (i = 0; i < tx_ring->count; i++) {
2019 buffer_info = &tx_ring->buffer_info[i];
2020 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2023 size = sizeof(struct e1000_buffer) * tx_ring->count;
2024 memset(tx_ring->buffer_info, 0, size);
2026 /* Zero out the descriptor ring */
2028 memset(tx_ring->desc, 0, tx_ring->size);
2030 tx_ring->next_to_use = 0;
2031 tx_ring->next_to_clean = 0;
2032 tx_ring->last_tx_tso = 0;
2034 writel(0, adapter->hw.hw_addr + tx_ring->tdh);
2035 writel(0, adapter->hw.hw_addr + tx_ring->tdt);
2039 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2040 * @adapter: board private structure
2043 static void
2044 e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2046 int i;
2048 for (i = 0; i < adapter->num_tx_queues; i++)
2049 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2053 * e1000_free_rx_resources - Free Rx Resources
2054 * @adapter: board private structure
2055 * @rx_ring: ring to clean the resources from
2057 * Free all receive software resources
2060 static void
2061 e1000_free_rx_resources(struct e1000_adapter *adapter,
2062 struct e1000_rx_ring *rx_ring)
2064 struct pci_dev *pdev = adapter->pdev;
2066 e1000_clean_rx_ring(adapter, rx_ring);
2068 vfree(rx_ring->buffer_info);
2069 rx_ring->buffer_info = NULL;
2070 kfree(rx_ring->ps_page);
2071 rx_ring->ps_page = NULL;
2072 kfree(rx_ring->ps_page_dma);
2073 rx_ring->ps_page_dma = NULL;
2075 pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2077 rx_ring->desc = NULL;
2081 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2082 * @adapter: board private structure
2084 * Free all receive software resources
2087 void
2088 e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2090 int i;
2092 for (i = 0; i < adapter->num_rx_queues; i++)
2093 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2097 * e1000_clean_rx_ring - Free Rx Buffers per Queue
2098 * @adapter: board private structure
2099 * @rx_ring: ring to free buffers from
2102 static void
2103 e1000_clean_rx_ring(struct e1000_adapter *adapter,
2104 struct e1000_rx_ring *rx_ring)
2106 struct e1000_buffer *buffer_info;
2107 struct e1000_ps_page *ps_page;
2108 struct e1000_ps_page_dma *ps_page_dma;
2109 struct pci_dev *pdev = adapter->pdev;
2110 unsigned long size;
2111 unsigned int i, j;
2113 /* Free all the Rx ring sk_buffs */
2114 for (i = 0; i < rx_ring->count; i++) {
2115 buffer_info = &rx_ring->buffer_info[i];
2116 if (buffer_info->skb) {
2117 pci_unmap_single(pdev,
2118 buffer_info->dma,
2119 buffer_info->length,
2120 PCI_DMA_FROMDEVICE);
2122 dev_kfree_skb(buffer_info->skb);
2123 buffer_info->skb = NULL;
2125 ps_page = &rx_ring->ps_page[i];
2126 ps_page_dma = &rx_ring->ps_page_dma[i];
2127 for (j = 0; j < adapter->rx_ps_pages; j++) {
2128 if (!ps_page->ps_page[j]) break;
2129 pci_unmap_page(pdev,
2130 ps_page_dma->ps_page_dma[j],
2131 PAGE_SIZE, PCI_DMA_FROMDEVICE);
2132 ps_page_dma->ps_page_dma[j] = 0;
2133 put_page(ps_page->ps_page[j]);
2134 ps_page->ps_page[j] = NULL;
2138 size = sizeof(struct e1000_buffer) * rx_ring->count;
2139 memset(rx_ring->buffer_info, 0, size);
2140 size = sizeof(struct e1000_ps_page) * rx_ring->count;
2141 memset(rx_ring->ps_page, 0, size);
2142 size = sizeof(struct e1000_ps_page_dma) * rx_ring->count;
2143 memset(rx_ring->ps_page_dma, 0, size);
2145 /* Zero out the descriptor ring */
2147 memset(rx_ring->desc, 0, rx_ring->size);
2149 rx_ring->next_to_clean = 0;
2150 rx_ring->next_to_use = 0;
2152 writel(0, adapter->hw.hw_addr + rx_ring->rdh);
2153 writel(0, adapter->hw.hw_addr + rx_ring->rdt);
2157 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2158 * @adapter: board private structure
2161 static void
2162 e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2164 int i;
2166 for (i = 0; i < adapter->num_rx_queues; i++)
2167 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2170 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2171 * and memory write and invalidate disabled for certain operations
2173 static void
2174 e1000_enter_82542_rst(struct e1000_adapter *adapter)
2176 struct net_device *netdev = adapter->netdev;
2177 uint32_t rctl;
2179 e1000_pci_clear_mwi(&adapter->hw);
2181 rctl = E1000_READ_REG(&adapter->hw, RCTL);
2182 rctl |= E1000_RCTL_RST;
2183 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2184 E1000_WRITE_FLUSH(&adapter->hw);
2185 mdelay(5);
2187 if (netif_running(netdev))
2188 e1000_clean_all_rx_rings(adapter);
2191 static void
2192 e1000_leave_82542_rst(struct e1000_adapter *adapter)
2194 struct net_device *netdev = adapter->netdev;
2195 uint32_t rctl;
2197 rctl = E1000_READ_REG(&adapter->hw, RCTL);
2198 rctl &= ~E1000_RCTL_RST;
2199 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2200 E1000_WRITE_FLUSH(&adapter->hw);
2201 mdelay(5);
2203 if (adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE)
2204 e1000_pci_set_mwi(&adapter->hw);
2206 if (netif_running(netdev)) {
2207 /* No need to loop, because 82542 supports only 1 queue */
2208 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2209 e1000_configure_rx(adapter);
2210 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2215 * e1000_set_mac - Change the Ethernet Address of the NIC
2216 * @netdev: network interface device structure
2217 * @p: pointer to an address structure
2219 * Returns 0 on success, negative on failure
2222 static int
2223 e1000_set_mac(struct net_device *netdev, void *p)
2225 struct e1000_adapter *adapter = netdev_priv(netdev);
2226 struct sockaddr *addr = p;
2228 if (!is_valid_ether_addr(addr->sa_data))
2229 return -EADDRNOTAVAIL;
2231 /* 82542 2.0 needs to be in reset to write receive address registers */
2233 if (adapter->hw.mac_type == e1000_82542_rev2_0)
2234 e1000_enter_82542_rst(adapter);
2236 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2237 memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
2239 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2241 /* With 82571 controllers, LAA may be overwritten (with the default)
2242 * due to controller reset from the other port. */
2243 if (adapter->hw.mac_type == e1000_82571) {
2244 /* activate the work around */
2245 adapter->hw.laa_is_present = 1;
2247 /* Hold a copy of the LAA in RAR[14] This is done so that
2248 * between the time RAR[0] gets clobbered and the time it
2249 * gets fixed (in e1000_watchdog), the actual LAA is in one
2250 * of the RARs and no incoming packets directed to this port
2251 * are dropped. Eventaully the LAA will be in RAR[0] and
2252 * RAR[14] */
2253 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr,
2254 E1000_RAR_ENTRIES - 1);
2257 if (adapter->hw.mac_type == e1000_82542_rev2_0)
2258 e1000_leave_82542_rst(adapter);
2260 return 0;
2264 * e1000_set_multi - Multicast and Promiscuous mode set
2265 * @netdev: network interface device structure
2267 * The set_multi entry point is called whenever the multicast address
2268 * list or the network interface flags are updated. This routine is
2269 * responsible for configuring the hardware for proper multicast,
2270 * promiscuous mode, and all-multi behavior.
2273 static void
2274 e1000_set_multi(struct net_device *netdev)
2276 struct e1000_adapter *adapter = netdev_priv(netdev);
2277 struct e1000_hw *hw = &adapter->hw;
2278 struct dev_mc_list *mc_ptr;
2279 uint32_t rctl;
2280 uint32_t hash_value;
2281 int i, rar_entries = E1000_RAR_ENTRIES;
2282 int mta_reg_count = (hw->mac_type == e1000_ich8lan) ?
2283 E1000_NUM_MTA_REGISTERS_ICH8LAN :
2284 E1000_NUM_MTA_REGISTERS;
2286 if (adapter->hw.mac_type == e1000_ich8lan)
2287 rar_entries = E1000_RAR_ENTRIES_ICH8LAN;
2289 /* reserve RAR[14] for LAA over-write work-around */
2290 if (adapter->hw.mac_type == e1000_82571)
2291 rar_entries--;
2293 /* Check for Promiscuous and All Multicast modes */
2295 rctl = E1000_READ_REG(hw, RCTL);
2297 if (netdev->flags & IFF_PROMISC) {
2298 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2299 } else if (netdev->flags & IFF_ALLMULTI) {
2300 rctl |= E1000_RCTL_MPE;
2301 rctl &= ~E1000_RCTL_UPE;
2302 } else {
2303 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2306 E1000_WRITE_REG(hw, RCTL, rctl);
2308 /* 82542 2.0 needs to be in reset to write receive address registers */
2310 if (hw->mac_type == e1000_82542_rev2_0)
2311 e1000_enter_82542_rst(adapter);
2313 /* load the first 14 multicast address into the exact filters 1-14
2314 * RAR 0 is used for the station MAC adddress
2315 * if there are not 14 addresses, go ahead and clear the filters
2316 * -- with 82571 controllers only 0-13 entries are filled here
2318 mc_ptr = netdev->mc_list;
2320 for (i = 1; i < rar_entries; i++) {
2321 if (mc_ptr) {
2322 e1000_rar_set(hw, mc_ptr->dmi_addr, i);
2323 mc_ptr = mc_ptr->next;
2324 } else {
2325 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2326 E1000_WRITE_FLUSH(hw);
2327 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2328 E1000_WRITE_FLUSH(hw);
2332 /* clear the old settings from the multicast hash table */
2334 for (i = 0; i < mta_reg_count; i++) {
2335 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
2336 E1000_WRITE_FLUSH(hw);
2339 /* load any remaining addresses into the hash table */
2341 for (; mc_ptr; mc_ptr = mc_ptr->next) {
2342 hash_value = e1000_hash_mc_addr(hw, mc_ptr->dmi_addr);
2343 e1000_mta_set(hw, hash_value);
2346 if (hw->mac_type == e1000_82542_rev2_0)
2347 e1000_leave_82542_rst(adapter);
2350 /* Need to wait a few seconds after link up to get diagnostic information from
2351 * the phy */
2353 static void
2354 e1000_update_phy_info(unsigned long data)
2356 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2357 e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2361 * e1000_82547_tx_fifo_stall - Timer Call-back
2362 * @data: pointer to adapter cast into an unsigned long
2365 static void
2366 e1000_82547_tx_fifo_stall(unsigned long data)
2368 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2369 struct net_device *netdev = adapter->netdev;
2370 uint32_t tctl;
2372 if (atomic_read(&adapter->tx_fifo_stall)) {
2373 if ((E1000_READ_REG(&adapter->hw, TDT) ==
2374 E1000_READ_REG(&adapter->hw, TDH)) &&
2375 (E1000_READ_REG(&adapter->hw, TDFT) ==
2376 E1000_READ_REG(&adapter->hw, TDFH)) &&
2377 (E1000_READ_REG(&adapter->hw, TDFTS) ==
2378 E1000_READ_REG(&adapter->hw, TDFHS))) {
2379 tctl = E1000_READ_REG(&adapter->hw, TCTL);
2380 E1000_WRITE_REG(&adapter->hw, TCTL,
2381 tctl & ~E1000_TCTL_EN);
2382 E1000_WRITE_REG(&adapter->hw, TDFT,
2383 adapter->tx_head_addr);
2384 E1000_WRITE_REG(&adapter->hw, TDFH,
2385 adapter->tx_head_addr);
2386 E1000_WRITE_REG(&adapter->hw, TDFTS,
2387 adapter->tx_head_addr);
2388 E1000_WRITE_REG(&adapter->hw, TDFHS,
2389 adapter->tx_head_addr);
2390 E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2391 E1000_WRITE_FLUSH(&adapter->hw);
2393 adapter->tx_fifo_head = 0;
2394 atomic_set(&adapter->tx_fifo_stall, 0);
2395 netif_wake_queue(netdev);
2396 } else {
2397 mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2403 * e1000_watchdog - Timer Call-back
2404 * @data: pointer to adapter cast into an unsigned long
2406 static void
2407 e1000_watchdog(unsigned long data)
2409 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2410 struct net_device *netdev = adapter->netdev;
2411 struct e1000_tx_ring *txdr = adapter->tx_ring;
2412 uint32_t link, tctl;
2413 int32_t ret_val;
2415 ret_val = e1000_check_for_link(&adapter->hw);
2416 if ((ret_val == E1000_ERR_PHY) &&
2417 (adapter->hw.phy_type == e1000_phy_igp_3) &&
2418 (E1000_READ_REG(&adapter->hw, CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
2419 /* See e1000_kumeran_lock_loss_workaround() */
2420 DPRINTK(LINK, INFO,
2421 "Gigabit has been disabled, downgrading speed\n");
2424 if (adapter->hw.mac_type == e1000_82573) {
2425 e1000_enable_tx_pkt_filtering(&adapter->hw);
2426 if (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)
2427 e1000_update_mng_vlan(adapter);
2430 if ((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
2431 !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE))
2432 link = !adapter->hw.serdes_link_down;
2433 else
2434 link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU;
2436 if (link) {
2437 if (!netif_carrier_ok(netdev)) {
2438 boolean_t txb2b = 1;
2439 e1000_get_speed_and_duplex(&adapter->hw,
2440 &adapter->link_speed,
2441 &adapter->link_duplex);
2443 DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s\n",
2444 adapter->link_speed,
2445 adapter->link_duplex == FULL_DUPLEX ?
2446 "Full Duplex" : "Half Duplex");
2448 /* tweak tx_queue_len according to speed/duplex
2449 * and adjust the timeout factor */
2450 netdev->tx_queue_len = adapter->tx_queue_len;
2451 adapter->tx_timeout_factor = 1;
2452 switch (adapter->link_speed) {
2453 case SPEED_10:
2454 txb2b = 0;
2455 netdev->tx_queue_len = 10;
2456 adapter->tx_timeout_factor = 8;
2457 break;
2458 case SPEED_100:
2459 txb2b = 0;
2460 netdev->tx_queue_len = 100;
2461 /* maybe add some timeout factor ? */
2462 break;
2465 if ((adapter->hw.mac_type == e1000_82571 ||
2466 adapter->hw.mac_type == e1000_82572) &&
2467 txb2b == 0) {
2468 uint32_t tarc0;
2469 tarc0 = E1000_READ_REG(&adapter->hw, TARC0);
2470 tarc0 &= ~(1 << 21);
2471 E1000_WRITE_REG(&adapter->hw, TARC0, tarc0);
2474 #ifdef NETIF_F_TSO
2475 /* disable TSO for pcie and 10/100 speeds, to avoid
2476 * some hardware issues */
2477 if (!adapter->tso_force &&
2478 adapter->hw.bus_type == e1000_bus_type_pci_express){
2479 switch (adapter->link_speed) {
2480 case SPEED_10:
2481 case SPEED_100:
2482 DPRINTK(PROBE,INFO,
2483 "10/100 speed: disabling TSO\n");
2484 netdev->features &= ~NETIF_F_TSO;
2485 #ifdef NETIF_F_TSO6
2486 netdev->features &= ~NETIF_F_TSO6;
2487 #endif
2488 break;
2489 case SPEED_1000:
2490 netdev->features |= NETIF_F_TSO;
2491 #ifdef NETIF_F_TSO6
2492 netdev->features |= NETIF_F_TSO6;
2493 #endif
2494 break;
2495 default:
2496 /* oops */
2497 break;
2500 #endif
2502 /* enable transmits in the hardware, need to do this
2503 * after setting TARC0 */
2504 tctl = E1000_READ_REG(&adapter->hw, TCTL);
2505 tctl |= E1000_TCTL_EN;
2506 E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2508 netif_carrier_on(netdev);
2509 netif_wake_queue(netdev);
2510 mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2511 adapter->smartspeed = 0;
2513 } else {
2514 if (netif_carrier_ok(netdev)) {
2515 adapter->link_speed = 0;
2516 adapter->link_duplex = 0;
2517 DPRINTK(LINK, INFO, "NIC Link is Down\n");
2518 netif_carrier_off(netdev);
2519 netif_stop_queue(netdev);
2520 mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2522 /* 80003ES2LAN workaround--
2523 * For packet buffer work-around on link down event;
2524 * disable receives in the ISR and
2525 * reset device here in the watchdog
2527 if (adapter->hw.mac_type == e1000_80003es2lan)
2528 /* reset device */
2529 schedule_work(&adapter->reset_task);
2532 e1000_smartspeed(adapter);
2535 e1000_update_stats(adapter);
2537 adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2538 adapter->tpt_old = adapter->stats.tpt;
2539 adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old;
2540 adapter->colc_old = adapter->stats.colc;
2542 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2543 adapter->gorcl_old = adapter->stats.gorcl;
2544 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2545 adapter->gotcl_old = adapter->stats.gotcl;
2547 e1000_update_adaptive(&adapter->hw);
2549 if (!netif_carrier_ok(netdev)) {
2550 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2551 /* We've lost link, so the controller stops DMA,
2552 * but we've got queued Tx work that's never going
2553 * to get done, so reset controller to flush Tx.
2554 * (Do the reset outside of interrupt context). */
2555 adapter->tx_timeout_count++;
2556 schedule_work(&adapter->reset_task);
2560 /* Dynamic mode for Interrupt Throttle Rate (ITR) */
2561 if (adapter->hw.mac_type >= e1000_82540 && adapter->itr == 1) {
2562 /* Symmetric Tx/Rx gets a reduced ITR=2000; Total
2563 * asymmetrical Tx or Rx gets ITR=8000; everyone
2564 * else is between 2000-8000. */
2565 uint32_t goc = (adapter->gotcl + adapter->gorcl) / 10000;
2566 uint32_t dif = (adapter->gotcl > adapter->gorcl ?
2567 adapter->gotcl - adapter->gorcl :
2568 adapter->gorcl - adapter->gotcl) / 10000;
2569 uint32_t itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2570 E1000_WRITE_REG(&adapter->hw, ITR, 1000000000 / (itr * 256));
2573 /* Cause software interrupt to ensure rx ring is cleaned */
2574 E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0);
2576 /* Force detection of hung controller every watchdog period */
2577 adapter->detect_tx_hung = TRUE;
2579 /* With 82571 controllers, LAA may be overwritten due to controller
2580 * reset from the other port. Set the appropriate LAA in RAR[0] */
2581 if (adapter->hw.mac_type == e1000_82571 && adapter->hw.laa_is_present)
2582 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2584 /* Reset the timer */
2585 mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
2588 #define E1000_TX_FLAGS_CSUM 0x00000001
2589 #define E1000_TX_FLAGS_VLAN 0x00000002
2590 #define E1000_TX_FLAGS_TSO 0x00000004
2591 #define E1000_TX_FLAGS_IPV4 0x00000008
2592 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2593 #define E1000_TX_FLAGS_VLAN_SHIFT 16
2595 static int
2596 e1000_tso(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2597 struct sk_buff *skb)
2599 #ifdef NETIF_F_TSO
2600 struct e1000_context_desc *context_desc;
2601 struct e1000_buffer *buffer_info;
2602 unsigned int i;
2603 uint32_t cmd_length = 0;
2604 uint16_t ipcse = 0, tucse, mss;
2605 uint8_t ipcss, ipcso, tucss, tucso, hdr_len;
2606 int err;
2608 if (skb_is_gso(skb)) {
2609 if (skb_header_cloned(skb)) {
2610 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2611 if (err)
2612 return err;
2615 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
2616 mss = skb_shinfo(skb)->gso_size;
2617 if (skb->protocol == htons(ETH_P_IP)) {
2618 skb->nh.iph->tot_len = 0;
2619 skb->nh.iph->check = 0;
2620 skb->h.th->check =
2621 ~csum_tcpudp_magic(skb->nh.iph->saddr,
2622 skb->nh.iph->daddr,
2624 IPPROTO_TCP,
2626 cmd_length = E1000_TXD_CMD_IP;
2627 ipcse = skb->h.raw - skb->data - 1;
2628 #ifdef NETIF_F_TSO6
2629 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2630 skb->nh.ipv6h->payload_len = 0;
2631 skb->h.th->check =
2632 ~csum_ipv6_magic(&skb->nh.ipv6h->saddr,
2633 &skb->nh.ipv6h->daddr,
2635 IPPROTO_TCP,
2637 ipcse = 0;
2638 #endif
2640 ipcss = skb->nh.raw - skb->data;
2641 ipcso = (void *)&(skb->nh.iph->check) - (void *)skb->data;
2642 tucss = skb->h.raw - skb->data;
2643 tucso = (void *)&(skb->h.th->check) - (void *)skb->data;
2644 tucse = 0;
2646 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2647 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2649 i = tx_ring->next_to_use;
2650 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2651 buffer_info = &tx_ring->buffer_info[i];
2653 context_desc->lower_setup.ip_fields.ipcss = ipcss;
2654 context_desc->lower_setup.ip_fields.ipcso = ipcso;
2655 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
2656 context_desc->upper_setup.tcp_fields.tucss = tucss;
2657 context_desc->upper_setup.tcp_fields.tucso = tucso;
2658 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2659 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
2660 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2661 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2663 buffer_info->time_stamp = jiffies;
2665 if (++i == tx_ring->count) i = 0;
2666 tx_ring->next_to_use = i;
2668 return TRUE;
2670 #endif
2672 return FALSE;
2675 static boolean_t
2676 e1000_tx_csum(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2677 struct sk_buff *skb)
2679 struct e1000_context_desc *context_desc;
2680 struct e1000_buffer *buffer_info;
2681 unsigned int i;
2682 uint8_t css;
2684 if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
2685 css = skb->h.raw - skb->data;
2687 i = tx_ring->next_to_use;
2688 buffer_info = &tx_ring->buffer_info[i];
2689 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2691 context_desc->upper_setup.tcp_fields.tucss = css;
2692 context_desc->upper_setup.tcp_fields.tucso = css + skb->csum;
2693 context_desc->upper_setup.tcp_fields.tucse = 0;
2694 context_desc->tcp_seg_setup.data = 0;
2695 context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
2697 buffer_info->time_stamp = jiffies;
2699 if (unlikely(++i == tx_ring->count)) i = 0;
2700 tx_ring->next_to_use = i;
2702 return TRUE;
2705 return FALSE;
2708 #define E1000_MAX_TXD_PWR 12
2709 #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
2711 static int
2712 e1000_tx_map(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2713 struct sk_buff *skb, unsigned int first, unsigned int max_per_txd,
2714 unsigned int nr_frags, unsigned int mss)
2716 struct e1000_buffer *buffer_info;
2717 unsigned int len = skb->len;
2718 unsigned int offset = 0, size, count = 0, i;
2719 unsigned int f;
2720 len -= skb->data_len;
2722 i = tx_ring->next_to_use;
2724 while (len) {
2725 buffer_info = &tx_ring->buffer_info[i];
2726 size = min(len, max_per_txd);
2727 #ifdef NETIF_F_TSO
2728 /* Workaround for Controller erratum --
2729 * descriptor for non-tso packet in a linear SKB that follows a
2730 * tso gets written back prematurely before the data is fully
2731 * DMA'd to the controller */
2732 if (!skb->data_len && tx_ring->last_tx_tso &&
2733 !skb_is_gso(skb)) {
2734 tx_ring->last_tx_tso = 0;
2735 size -= 4;
2738 /* Workaround for premature desc write-backs
2739 * in TSO mode. Append 4-byte sentinel desc */
2740 if (unlikely(mss && !nr_frags && size == len && size > 8))
2741 size -= 4;
2742 #endif
2743 /* work-around for errata 10 and it applies
2744 * to all controllers in PCI-X mode
2745 * The fix is to make sure that the first descriptor of a
2746 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2748 if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
2749 (size > 2015) && count == 0))
2750 size = 2015;
2752 /* Workaround for potential 82544 hang in PCI-X. Avoid
2753 * terminating buffers within evenly-aligned dwords. */
2754 if (unlikely(adapter->pcix_82544 &&
2755 !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2756 size > 4))
2757 size -= 4;
2759 buffer_info->length = size;
2760 buffer_info->dma =
2761 pci_map_single(adapter->pdev,
2762 skb->data + offset,
2763 size,
2764 PCI_DMA_TODEVICE);
2765 buffer_info->time_stamp = jiffies;
2767 len -= size;
2768 offset += size;
2769 count++;
2770 if (unlikely(++i == tx_ring->count)) i = 0;
2773 for (f = 0; f < nr_frags; f++) {
2774 struct skb_frag_struct *frag;
2776 frag = &skb_shinfo(skb)->frags[f];
2777 len = frag->size;
2778 offset = frag->page_offset;
2780 while (len) {
2781 buffer_info = &tx_ring->buffer_info[i];
2782 size = min(len, max_per_txd);
2783 #ifdef NETIF_F_TSO
2784 /* Workaround for premature desc write-backs
2785 * in TSO mode. Append 4-byte sentinel desc */
2786 if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
2787 size -= 4;
2788 #endif
2789 /* Workaround for potential 82544 hang in PCI-X.
2790 * Avoid terminating buffers within evenly-aligned
2791 * dwords. */
2792 if (unlikely(adapter->pcix_82544 &&
2793 !((unsigned long)(frag->page+offset+size-1) & 4) &&
2794 size > 4))
2795 size -= 4;
2797 buffer_info->length = size;
2798 buffer_info->dma =
2799 pci_map_page(adapter->pdev,
2800 frag->page,
2801 offset,
2802 size,
2803 PCI_DMA_TODEVICE);
2804 buffer_info->time_stamp = jiffies;
2806 len -= size;
2807 offset += size;
2808 count++;
2809 if (unlikely(++i == tx_ring->count)) i = 0;
2813 i = (i == 0) ? tx_ring->count - 1 : i - 1;
2814 tx_ring->buffer_info[i].skb = skb;
2815 tx_ring->buffer_info[first].next_to_watch = i;
2817 return count;
2820 static void
2821 e1000_tx_queue(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2822 int tx_flags, int count)
2824 struct e1000_tx_desc *tx_desc = NULL;
2825 struct e1000_buffer *buffer_info;
2826 uint32_t txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2827 unsigned int i;
2829 if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2830 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2831 E1000_TXD_CMD_TSE;
2832 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2834 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2835 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2838 if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2839 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2840 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2843 if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2844 txd_lower |= E1000_TXD_CMD_VLE;
2845 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2848 i = tx_ring->next_to_use;
2850 while (count--) {
2851 buffer_info = &tx_ring->buffer_info[i];
2852 tx_desc = E1000_TX_DESC(*tx_ring, i);
2853 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
2854 tx_desc->lower.data =
2855 cpu_to_le32(txd_lower | buffer_info->length);
2856 tx_desc->upper.data = cpu_to_le32(txd_upper);
2857 if (unlikely(++i == tx_ring->count)) i = 0;
2860 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
2862 /* Force memory writes to complete before letting h/w
2863 * know there are new descriptors to fetch. (Only
2864 * applicable for weak-ordered memory model archs,
2865 * such as IA-64). */
2866 wmb();
2868 tx_ring->next_to_use = i;
2869 writel(i, adapter->hw.hw_addr + tx_ring->tdt);
2870 /* we need this if more than one processor can write to our tail
2871 * at a time, it syncronizes IO on IA64/Altix systems */
2872 mmiowb();
2876 * 82547 workaround to avoid controller hang in half-duplex environment.
2877 * The workaround is to avoid queuing a large packet that would span
2878 * the internal Tx FIFO ring boundary by notifying the stack to resend
2879 * the packet at a later time. This gives the Tx FIFO an opportunity to
2880 * flush all packets. When that occurs, we reset the Tx FIFO pointers
2881 * to the beginning of the Tx FIFO.
2884 #define E1000_FIFO_HDR 0x10
2885 #define E1000_82547_PAD_LEN 0x3E0
2887 static int
2888 e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb)
2890 uint32_t fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
2891 uint32_t skb_fifo_len = skb->len + E1000_FIFO_HDR;
2893 E1000_ROUNDUP(skb_fifo_len, E1000_FIFO_HDR);
2895 if (adapter->link_duplex != HALF_DUPLEX)
2896 goto no_fifo_stall_required;
2898 if (atomic_read(&adapter->tx_fifo_stall))
2899 return 1;
2901 if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
2902 atomic_set(&adapter->tx_fifo_stall, 1);
2903 return 1;
2906 no_fifo_stall_required:
2907 adapter->tx_fifo_head += skb_fifo_len;
2908 if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
2909 adapter->tx_fifo_head -= adapter->tx_fifo_size;
2910 return 0;
2913 #define MINIMUM_DHCP_PACKET_SIZE 282
2914 static int
2915 e1000_transfer_dhcp_info(struct e1000_adapter *adapter, struct sk_buff *skb)
2917 struct e1000_hw *hw = &adapter->hw;
2918 uint16_t length, offset;
2919 if (vlan_tx_tag_present(skb)) {
2920 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
2921 ( adapter->hw.mng_cookie.status &
2922 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
2923 return 0;
2925 if (skb->len > MINIMUM_DHCP_PACKET_SIZE) {
2926 struct ethhdr *eth = (struct ethhdr *) skb->data;
2927 if ((htons(ETH_P_IP) == eth->h_proto)) {
2928 const struct iphdr *ip =
2929 (struct iphdr *)((uint8_t *)skb->data+14);
2930 if (IPPROTO_UDP == ip->protocol) {
2931 struct udphdr *udp =
2932 (struct udphdr *)((uint8_t *)ip +
2933 (ip->ihl << 2));
2934 if (ntohs(udp->dest) == 67) {
2935 offset = (uint8_t *)udp + 8 - skb->data;
2936 length = skb->len - offset;
2938 return e1000_mng_write_dhcp_info(hw,
2939 (uint8_t *)udp + 8,
2940 length);
2945 return 0;
2948 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
2950 struct e1000_adapter *adapter = netdev_priv(netdev);
2951 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
2953 netif_stop_queue(netdev);
2954 /* Herbert's original patch had:
2955 * smp_mb__after_netif_stop_queue();
2956 * but since that doesn't exist yet, just open code it. */
2957 smp_mb();
2959 /* We need to check again in a case another CPU has just
2960 * made room available. */
2961 if (likely(E1000_DESC_UNUSED(tx_ring) < size))
2962 return -EBUSY;
2964 /* A reprieve! */
2965 netif_start_queue(netdev);
2966 return 0;
2969 static int e1000_maybe_stop_tx(struct net_device *netdev,
2970 struct e1000_tx_ring *tx_ring, int size)
2972 if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
2973 return 0;
2974 return __e1000_maybe_stop_tx(netdev, size);
2977 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
2978 static int
2979 e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2981 struct e1000_adapter *adapter = netdev_priv(netdev);
2982 struct e1000_tx_ring *tx_ring;
2983 unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
2984 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
2985 unsigned int tx_flags = 0;
2986 unsigned int len = skb->len;
2987 unsigned long flags;
2988 unsigned int nr_frags = 0;
2989 unsigned int mss = 0;
2990 int count = 0;
2991 int tso;
2992 unsigned int f;
2993 len -= skb->data_len;
2995 /* This goes back to the question of how to logically map a tx queue
2996 * to a flow. Right now, performance is impacted slightly negatively
2997 * if using multiple tx queues. If the stack breaks away from a
2998 * single qdisc implementation, we can look at this again. */
2999 tx_ring = adapter->tx_ring;
3001 if (unlikely(skb->len <= 0)) {
3002 dev_kfree_skb_any(skb);
3003 return NETDEV_TX_OK;
3006 /* 82571 and newer doesn't need the workaround that limited descriptor
3007 * length to 4kB */
3008 if (adapter->hw.mac_type >= e1000_82571)
3009 max_per_txd = 8192;
3011 #ifdef NETIF_F_TSO
3012 mss = skb_shinfo(skb)->gso_size;
3013 /* The controller does a simple calculation to
3014 * make sure there is enough room in the FIFO before
3015 * initiating the DMA for each buffer. The calc is:
3016 * 4 = ceil(buffer len/mss). To make sure we don't
3017 * overrun the FIFO, adjust the max buffer len if mss
3018 * drops. */
3019 if (mss) {
3020 uint8_t hdr_len;
3021 max_per_txd = min(mss << 2, max_per_txd);
3022 max_txd_pwr = fls(max_per_txd) - 1;
3024 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
3025 * points to just header, pull a few bytes of payload from
3026 * frags into skb->data */
3027 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
3028 if (skb->data_len && (hdr_len == (skb->len - skb->data_len))) {
3029 switch (adapter->hw.mac_type) {
3030 unsigned int pull_size;
3031 case e1000_82571:
3032 case e1000_82572:
3033 case e1000_82573:
3034 case e1000_ich8lan:
3035 pull_size = min((unsigned int)4, skb->data_len);
3036 if (!__pskb_pull_tail(skb, pull_size)) {
3037 DPRINTK(DRV, ERR,
3038 "__pskb_pull_tail failed.\n");
3039 dev_kfree_skb_any(skb);
3040 return NETDEV_TX_OK;
3042 len = skb->len - skb->data_len;
3043 break;
3044 default:
3045 /* do nothing */
3046 break;
3051 /* reserve a descriptor for the offload context */
3052 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3053 count++;
3054 count++;
3055 #else
3056 if (skb->ip_summed == CHECKSUM_PARTIAL)
3057 count++;
3058 #endif
3060 #ifdef NETIF_F_TSO
3061 /* Controller Erratum workaround */
3062 if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3063 count++;
3064 #endif
3066 count += TXD_USE_COUNT(len, max_txd_pwr);
3068 if (adapter->pcix_82544)
3069 count++;
3071 /* work-around for errata 10 and it applies to all controllers
3072 * in PCI-X mode, so add one more descriptor to the count
3074 if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
3075 (len > 2015)))
3076 count++;
3078 nr_frags = skb_shinfo(skb)->nr_frags;
3079 for (f = 0; f < nr_frags; f++)
3080 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
3081 max_txd_pwr);
3082 if (adapter->pcix_82544)
3083 count += nr_frags;
3086 if (adapter->hw.tx_pkt_filtering &&
3087 (adapter->hw.mac_type == e1000_82573))
3088 e1000_transfer_dhcp_info(adapter, skb);
3090 local_irq_save(flags);
3091 if (!spin_trylock(&tx_ring->tx_lock)) {
3092 /* Collision - tell upper layer to requeue */
3093 local_irq_restore(flags);
3094 return NETDEV_TX_LOCKED;
3097 /* need: count + 2 desc gap to keep tail from touching
3098 * head, otherwise try next time */
3099 if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2))) {
3100 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3101 return NETDEV_TX_BUSY;
3104 if (unlikely(adapter->hw.mac_type == e1000_82547)) {
3105 if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
3106 netif_stop_queue(netdev);
3107 mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
3108 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3109 return NETDEV_TX_BUSY;
3113 if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
3114 tx_flags |= E1000_TX_FLAGS_VLAN;
3115 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3118 first = tx_ring->next_to_use;
3120 tso = e1000_tso(adapter, tx_ring, skb);
3121 if (tso < 0) {
3122 dev_kfree_skb_any(skb);
3123 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3124 return NETDEV_TX_OK;
3127 if (likely(tso)) {
3128 tx_ring->last_tx_tso = 1;
3129 tx_flags |= E1000_TX_FLAGS_TSO;
3130 } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3131 tx_flags |= E1000_TX_FLAGS_CSUM;
3133 /* Old method was to assume IPv4 packet by default if TSO was enabled.
3134 * 82571 hardware supports TSO capabilities for IPv6 as well...
3135 * no longer assume, we must. */
3136 if (likely(skb->protocol == htons(ETH_P_IP)))
3137 tx_flags |= E1000_TX_FLAGS_IPV4;
3139 e1000_tx_queue(adapter, tx_ring, tx_flags,
3140 e1000_tx_map(adapter, tx_ring, skb, first,
3141 max_per_txd, nr_frags, mss));
3143 netdev->trans_start = jiffies;
3145 /* Make sure there is space in the ring for the next send. */
3146 e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3148 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3149 return NETDEV_TX_OK;
3153 * e1000_tx_timeout - Respond to a Tx Hang
3154 * @netdev: network interface device structure
3157 static void
3158 e1000_tx_timeout(struct net_device *netdev)
3160 struct e1000_adapter *adapter = netdev_priv(netdev);
3162 /* Do the reset outside of interrupt context */
3163 adapter->tx_timeout_count++;
3164 schedule_work(&adapter->reset_task);
3167 static void
3168 e1000_reset_task(struct net_device *netdev)
3170 struct e1000_adapter *adapter = netdev_priv(netdev);
3172 e1000_reinit_locked(adapter);
3176 * e1000_get_stats - Get System Network Statistics
3177 * @netdev: network interface device structure
3179 * Returns the address of the device statistics structure.
3180 * The statistics are actually updated from the timer callback.
3183 static struct net_device_stats *
3184 e1000_get_stats(struct net_device *netdev)
3186 struct e1000_adapter *adapter = netdev_priv(netdev);
3188 /* only return the current stats */
3189 return &adapter->net_stats;
3193 * e1000_change_mtu - Change the Maximum Transfer Unit
3194 * @netdev: network interface device structure
3195 * @new_mtu: new value for maximum frame size
3197 * Returns 0 on success, negative on failure
3200 static int
3201 e1000_change_mtu(struct net_device *netdev, int new_mtu)
3203 struct e1000_adapter *adapter = netdev_priv(netdev);
3204 int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3205 uint16_t eeprom_data = 0;
3207 if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3208 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3209 DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
3210 return -EINVAL;
3213 /* Adapter-specific max frame size limits. */
3214 switch (adapter->hw.mac_type) {
3215 case e1000_undefined ... e1000_82542_rev2_1:
3216 case e1000_ich8lan:
3217 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3218 DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
3219 return -EINVAL;
3221 break;
3222 case e1000_82573:
3223 /* Jumbo Frames not supported if:
3224 * - this is not an 82573L device
3225 * - ASPM is enabled in any way (0x1A bits 3:2) */
3226 e1000_read_eeprom(&adapter->hw, EEPROM_INIT_3GIO_3, 1,
3227 &eeprom_data);
3228 if ((adapter->hw.device_id != E1000_DEV_ID_82573L) ||
3229 (eeprom_data & EEPROM_WORD1A_ASPM_MASK)) {
3230 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3231 DPRINTK(PROBE, ERR,
3232 "Jumbo Frames not supported.\n");
3233 return -EINVAL;
3235 break;
3237 /* ERT will be enabled later to enable wire speed receives */
3239 /* fall through to get support */
3240 case e1000_82571:
3241 case e1000_82572:
3242 case e1000_80003es2lan:
3243 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3244 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3245 DPRINTK(PROBE, ERR, "MTU > 9216 not supported.\n");
3246 return -EINVAL;
3248 break;
3249 default:
3250 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3251 break;
3254 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3255 * means we reserve 2 more, this pushes us to allocate from the next
3256 * larger slab size
3257 * i.e. RXBUFFER_2048 --> size-4096 slab */
3259 if (max_frame <= E1000_RXBUFFER_256)
3260 adapter->rx_buffer_len = E1000_RXBUFFER_256;
3261 else if (max_frame <= E1000_RXBUFFER_512)
3262 adapter->rx_buffer_len = E1000_RXBUFFER_512;
3263 else if (max_frame <= E1000_RXBUFFER_1024)
3264 adapter->rx_buffer_len = E1000_RXBUFFER_1024;
3265 else if (max_frame <= E1000_RXBUFFER_2048)
3266 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3267 else if (max_frame <= E1000_RXBUFFER_4096)
3268 adapter->rx_buffer_len = E1000_RXBUFFER_4096;
3269 else if (max_frame <= E1000_RXBUFFER_8192)
3270 adapter->rx_buffer_len = E1000_RXBUFFER_8192;
3271 else if (max_frame <= E1000_RXBUFFER_16384)
3272 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3274 /* adjust allocation if LPE protects us, and we aren't using SBP */
3275 if (!adapter->hw.tbi_compatibility_on &&
3276 ((max_frame == MAXIMUM_ETHERNET_FRAME_SIZE) ||
3277 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3278 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3280 netdev->mtu = new_mtu;
3282 if (netif_running(netdev))
3283 e1000_reinit_locked(adapter);
3285 adapter->hw.max_frame_size = max_frame;
3287 return 0;
3291 * e1000_update_stats - Update the board statistics counters
3292 * @adapter: board private structure
3295 void
3296 e1000_update_stats(struct e1000_adapter *adapter)
3298 struct e1000_hw *hw = &adapter->hw;
3299 struct pci_dev *pdev = adapter->pdev;
3300 unsigned long flags;
3301 uint16_t phy_tmp;
3303 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3306 * Prevent stats update while adapter is being reset, or if the pci
3307 * connection is down.
3309 if (adapter->link_speed == 0)
3310 return;
3311 if (pdev->error_state && pdev->error_state != pci_channel_io_normal)
3312 return;
3314 spin_lock_irqsave(&adapter->stats_lock, flags);
3316 /* these counters are modified from e1000_adjust_tbi_stats,
3317 * called from the interrupt context, so they must only
3318 * be written while holding adapter->stats_lock
3321 adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS);
3322 adapter->stats.gprc += E1000_READ_REG(hw, GPRC);
3323 adapter->stats.gorcl += E1000_READ_REG(hw, GORCL);
3324 adapter->stats.gorch += E1000_READ_REG(hw, GORCH);
3325 adapter->stats.bprc += E1000_READ_REG(hw, BPRC);
3326 adapter->stats.mprc += E1000_READ_REG(hw, MPRC);
3327 adapter->stats.roc += E1000_READ_REG(hw, ROC);
3329 if (adapter->hw.mac_type != e1000_ich8lan) {
3330 adapter->stats.prc64 += E1000_READ_REG(hw, PRC64);
3331 adapter->stats.prc127 += E1000_READ_REG(hw, PRC127);
3332 adapter->stats.prc255 += E1000_READ_REG(hw, PRC255);
3333 adapter->stats.prc511 += E1000_READ_REG(hw, PRC511);
3334 adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023);
3335 adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522);
3338 adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS);
3339 adapter->stats.mpc += E1000_READ_REG(hw, MPC);
3340 adapter->stats.scc += E1000_READ_REG(hw, SCC);
3341 adapter->stats.ecol += E1000_READ_REG(hw, ECOL);
3342 adapter->stats.mcc += E1000_READ_REG(hw, MCC);
3343 adapter->stats.latecol += E1000_READ_REG(hw, LATECOL);
3344 adapter->stats.dc += E1000_READ_REG(hw, DC);
3345 adapter->stats.sec += E1000_READ_REG(hw, SEC);
3346 adapter->stats.rlec += E1000_READ_REG(hw, RLEC);
3347 adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC);
3348 adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC);
3349 adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC);
3350 adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC);
3351 adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC);
3352 adapter->stats.gptc += E1000_READ_REG(hw, GPTC);
3353 adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL);
3354 adapter->stats.gotch += E1000_READ_REG(hw, GOTCH);
3355 adapter->stats.rnbc += E1000_READ_REG(hw, RNBC);
3356 adapter->stats.ruc += E1000_READ_REG(hw, RUC);
3357 adapter->stats.rfc += E1000_READ_REG(hw, RFC);
3358 adapter->stats.rjc += E1000_READ_REG(hw, RJC);
3359 adapter->stats.torl += E1000_READ_REG(hw, TORL);
3360 adapter->stats.torh += E1000_READ_REG(hw, TORH);
3361 adapter->stats.totl += E1000_READ_REG(hw, TOTL);
3362 adapter->stats.toth += E1000_READ_REG(hw, TOTH);
3363 adapter->stats.tpr += E1000_READ_REG(hw, TPR);
3365 if (adapter->hw.mac_type != e1000_ich8lan) {
3366 adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64);
3367 adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127);
3368 adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255);
3369 adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511);
3370 adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023);
3371 adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522);
3374 adapter->stats.mptc += E1000_READ_REG(hw, MPTC);
3375 adapter->stats.bptc += E1000_READ_REG(hw, BPTC);
3377 /* used for adaptive IFS */
3379 hw->tx_packet_delta = E1000_READ_REG(hw, TPT);
3380 adapter->stats.tpt += hw->tx_packet_delta;
3381 hw->collision_delta = E1000_READ_REG(hw, COLC);
3382 adapter->stats.colc += hw->collision_delta;
3384 if (hw->mac_type >= e1000_82543) {
3385 adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC);
3386 adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC);
3387 adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS);
3388 adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR);
3389 adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC);
3390 adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC);
3392 if (hw->mac_type > e1000_82547_rev_2) {
3393 adapter->stats.iac += E1000_READ_REG(hw, IAC);
3394 adapter->stats.icrxoc += E1000_READ_REG(hw, ICRXOC);
3396 if (adapter->hw.mac_type != e1000_ich8lan) {
3397 adapter->stats.icrxptc += E1000_READ_REG(hw, ICRXPTC);
3398 adapter->stats.icrxatc += E1000_READ_REG(hw, ICRXATC);
3399 adapter->stats.ictxptc += E1000_READ_REG(hw, ICTXPTC);
3400 adapter->stats.ictxatc += E1000_READ_REG(hw, ICTXATC);
3401 adapter->stats.ictxqec += E1000_READ_REG(hw, ICTXQEC);
3402 adapter->stats.ictxqmtc += E1000_READ_REG(hw, ICTXQMTC);
3403 adapter->stats.icrxdmtc += E1000_READ_REG(hw, ICRXDMTC);
3407 /* Fill out the OS statistics structure */
3408 adapter->net_stats.rx_packets = adapter->stats.gprc;
3409 adapter->net_stats.tx_packets = adapter->stats.gptc;
3410 adapter->net_stats.rx_bytes = adapter->stats.gorcl;
3411 adapter->net_stats.tx_bytes = adapter->stats.gotcl;
3412 adapter->net_stats.multicast = adapter->stats.mprc;
3413 adapter->net_stats.collisions = adapter->stats.colc;
3415 /* Rx Errors */
3417 /* RLEC on some newer hardware can be incorrect so build
3418 * our own version based on RUC and ROC */
3419 adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3420 adapter->stats.crcerrs + adapter->stats.algnerrc +
3421 adapter->stats.ruc + adapter->stats.roc +
3422 adapter->stats.cexterr;
3423 adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3424 adapter->net_stats.rx_length_errors = adapter->stats.rlerrc;
3425 adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3426 adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3427 adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3429 /* Tx Errors */
3430 adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3431 adapter->net_stats.tx_errors = adapter->stats.txerrc;
3432 adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3433 adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3434 adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3436 /* Tx Dropped needs to be maintained elsewhere */
3438 /* Phy Stats */
3439 if (hw->media_type == e1000_media_type_copper) {
3440 if ((adapter->link_speed == SPEED_1000) &&
3441 (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3442 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3443 adapter->phy_stats.idle_errors += phy_tmp;
3446 if ((hw->mac_type <= e1000_82546) &&
3447 (hw->phy_type == e1000_phy_m88) &&
3448 !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3449 adapter->phy_stats.receive_errors += phy_tmp;
3452 spin_unlock_irqrestore(&adapter->stats_lock, flags);
3456 * e1000_intr - Interrupt Handler
3457 * @irq: interrupt number
3458 * @data: pointer to a network interface device structure
3461 static irqreturn_t
3462 e1000_intr(int irq, void *data)
3464 struct net_device *netdev = data;
3465 struct e1000_adapter *adapter = netdev_priv(netdev);
3466 struct e1000_hw *hw = &adapter->hw;
3467 uint32_t rctl, icr = E1000_READ_REG(hw, ICR);
3468 #ifndef CONFIG_E1000_NAPI
3469 int i;
3470 #else
3471 /* Interrupt Auto-Mask...upon reading ICR,
3472 * interrupts are masked. No need for the
3473 * IMC write, but it does mean we should
3474 * account for it ASAP. */
3475 if (likely(hw->mac_type >= e1000_82571))
3476 atomic_inc(&adapter->irq_sem);
3477 #endif
3479 if (unlikely(!icr)) {
3480 #ifdef CONFIG_E1000_NAPI
3481 if (hw->mac_type >= e1000_82571)
3482 e1000_irq_enable(adapter);
3483 #endif
3484 return IRQ_NONE; /* Not our interrupt */
3487 if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3488 hw->get_link_status = 1;
3489 /* 80003ES2LAN workaround--
3490 * For packet buffer work-around on link down event;
3491 * disable receives here in the ISR and
3492 * reset adapter in watchdog
3494 if (netif_carrier_ok(netdev) &&
3495 (adapter->hw.mac_type == e1000_80003es2lan)) {
3496 /* disable receives */
3497 rctl = E1000_READ_REG(hw, RCTL);
3498 E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
3500 /* guard against interrupt when we're going down */
3501 if (!test_bit(__E1000_DOWN, &adapter->flags))
3502 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3505 #ifdef CONFIG_E1000_NAPI
3506 if (unlikely(hw->mac_type < e1000_82571)) {
3507 atomic_inc(&adapter->irq_sem);
3508 E1000_WRITE_REG(hw, IMC, ~0);
3509 E1000_WRITE_FLUSH(hw);
3511 if (likely(netif_rx_schedule_prep(netdev)))
3512 __netif_rx_schedule(netdev);
3513 else
3514 /* this really should not happen! if it does it is basically a
3515 * bug, but not a hard error, so enable ints and continue */
3516 e1000_irq_enable(adapter);
3517 #else
3518 /* Writing IMC and IMS is needed for 82547.
3519 * Due to Hub Link bus being occupied, an interrupt
3520 * de-assertion message is not able to be sent.
3521 * When an interrupt assertion message is generated later,
3522 * two messages are re-ordered and sent out.
3523 * That causes APIC to think 82547 is in de-assertion
3524 * state, while 82547 is in assertion state, resulting
3525 * in dead lock. Writing IMC forces 82547 into
3526 * de-assertion state.
3528 if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2) {
3529 atomic_inc(&adapter->irq_sem);
3530 E1000_WRITE_REG(hw, IMC, ~0);
3533 for (i = 0; i < E1000_MAX_INTR; i++)
3534 if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) &
3535 !e1000_clean_tx_irq(adapter, adapter->tx_ring)))
3536 break;
3538 if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)
3539 e1000_irq_enable(adapter);
3541 #endif
3542 return IRQ_HANDLED;
3545 #ifdef CONFIG_E1000_NAPI
3547 * e1000_clean - NAPI Rx polling callback
3548 * @adapter: board private structure
3551 static int
3552 e1000_clean(struct net_device *poll_dev, int *budget)
3554 struct e1000_adapter *adapter;
3555 int work_to_do = min(*budget, poll_dev->quota);
3556 int tx_cleaned = 0, work_done = 0;
3558 /* Must NOT use netdev_priv macro here. */
3559 adapter = poll_dev->priv;
3561 /* Keep link state information with original netdev */
3562 if (!netif_carrier_ok(poll_dev))
3563 goto quit_polling;
3565 /* e1000_clean is called per-cpu. This lock protects
3566 * tx_ring[0] from being cleaned by multiple cpus
3567 * simultaneously. A failure obtaining the lock means
3568 * tx_ring[0] is currently being cleaned anyway. */
3569 if (spin_trylock(&adapter->tx_queue_lock)) {
3570 tx_cleaned = e1000_clean_tx_irq(adapter,
3571 &adapter->tx_ring[0]);
3572 spin_unlock(&adapter->tx_queue_lock);
3575 adapter->clean_rx(adapter, &adapter->rx_ring[0],
3576 &work_done, work_to_do);
3578 *budget -= work_done;
3579 poll_dev->quota -= work_done;
3581 /* If no Tx and not enough Rx work done, exit the polling mode */
3582 if ((!tx_cleaned && (work_done == 0)) ||
3583 !netif_running(poll_dev)) {
3584 quit_polling:
3585 netif_rx_complete(poll_dev);
3586 e1000_irq_enable(adapter);
3587 return 0;
3590 return 1;
3593 #endif
3595 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3596 * @adapter: board private structure
3599 static boolean_t
3600 e1000_clean_tx_irq(struct e1000_adapter *adapter,
3601 struct e1000_tx_ring *tx_ring)
3603 struct net_device *netdev = adapter->netdev;
3604 struct e1000_tx_desc *tx_desc, *eop_desc;
3605 struct e1000_buffer *buffer_info;
3606 unsigned int i, eop;
3607 #ifdef CONFIG_E1000_NAPI
3608 unsigned int count = 0;
3609 #endif
3610 boolean_t cleaned = FALSE;
3612 i = tx_ring->next_to_clean;
3613 eop = tx_ring->buffer_info[i].next_to_watch;
3614 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3616 while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
3617 for (cleaned = FALSE; !cleaned; ) {
3618 tx_desc = E1000_TX_DESC(*tx_ring, i);
3619 buffer_info = &tx_ring->buffer_info[i];
3620 cleaned = (i == eop);
3622 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3623 memset(tx_desc, 0, sizeof(struct e1000_tx_desc));
3625 if (unlikely(++i == tx_ring->count)) i = 0;
3628 eop = tx_ring->buffer_info[i].next_to_watch;
3629 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3630 #ifdef CONFIG_E1000_NAPI
3631 #define E1000_TX_WEIGHT 64
3632 /* weight of a sort for tx, to avoid endless transmit cleanup */
3633 if (count++ == E1000_TX_WEIGHT) break;
3634 #endif
3637 tx_ring->next_to_clean = i;
3639 #define TX_WAKE_THRESHOLD 32
3640 if (unlikely(cleaned && netif_carrier_ok(netdev) &&
3641 E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3642 /* Make sure that anybody stopping the queue after this
3643 * sees the new next_to_clean.
3645 smp_mb();
3646 if (netif_queue_stopped(netdev))
3647 netif_wake_queue(netdev);
3650 if (adapter->detect_tx_hung) {
3651 /* Detect a transmit hang in hardware, this serializes the
3652 * check with the clearing of time_stamp and movement of i */
3653 adapter->detect_tx_hung = FALSE;
3654 if (tx_ring->buffer_info[eop].dma &&
3655 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3656 (adapter->tx_timeout_factor * HZ))
3657 && !(E1000_READ_REG(&adapter->hw, STATUS) &
3658 E1000_STATUS_TXOFF)) {
3660 /* detected Tx unit hang */
3661 DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
3662 " Tx Queue <%lu>\n"
3663 " TDH <%x>\n"
3664 " TDT <%x>\n"
3665 " next_to_use <%x>\n"
3666 " next_to_clean <%x>\n"
3667 "buffer_info[next_to_clean]\n"
3668 " time_stamp <%lx>\n"
3669 " next_to_watch <%x>\n"
3670 " jiffies <%lx>\n"
3671 " next_to_watch.status <%x>\n",
3672 (unsigned long)((tx_ring - adapter->tx_ring) /
3673 sizeof(struct e1000_tx_ring)),
3674 readl(adapter->hw.hw_addr + tx_ring->tdh),
3675 readl(adapter->hw.hw_addr + tx_ring->tdt),
3676 tx_ring->next_to_use,
3677 tx_ring->next_to_clean,
3678 tx_ring->buffer_info[eop].time_stamp,
3679 eop,
3680 jiffies,
3681 eop_desc->upper.fields.status);
3682 netif_stop_queue(netdev);
3685 return cleaned;
3689 * e1000_rx_checksum - Receive Checksum Offload for 82543
3690 * @adapter: board private structure
3691 * @status_err: receive descriptor status and error fields
3692 * @csum: receive descriptor csum field
3693 * @sk_buff: socket buffer with received data
3696 static void
3697 e1000_rx_checksum(struct e1000_adapter *adapter,
3698 uint32_t status_err, uint32_t csum,
3699 struct sk_buff *skb)
3701 uint16_t status = (uint16_t)status_err;
3702 uint8_t errors = (uint8_t)(status_err >> 24);
3703 skb->ip_summed = CHECKSUM_NONE;
3705 /* 82543 or newer only */
3706 if (unlikely(adapter->hw.mac_type < e1000_82543)) return;
3707 /* Ignore Checksum bit is set */
3708 if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3709 /* TCP/UDP checksum error bit is set */
3710 if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3711 /* let the stack verify checksum errors */
3712 adapter->hw_csum_err++;
3713 return;
3715 /* TCP/UDP Checksum has not been calculated */
3716 if (adapter->hw.mac_type <= e1000_82547_rev_2) {
3717 if (!(status & E1000_RXD_STAT_TCPCS))
3718 return;
3719 } else {
3720 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
3721 return;
3723 /* It must be a TCP or UDP packet with a valid checksum */
3724 if (likely(status & E1000_RXD_STAT_TCPCS)) {
3725 /* TCP checksum is good */
3726 skb->ip_summed = CHECKSUM_UNNECESSARY;
3727 } else if (adapter->hw.mac_type > e1000_82547_rev_2) {
3728 /* IP fragment with UDP payload */
3729 /* Hardware complements the payload checksum, so we undo it
3730 * and then put the value in host order for further stack use.
3732 csum = ntohl(csum ^ 0xFFFF);
3733 skb->csum = csum;
3734 skb->ip_summed = CHECKSUM_COMPLETE;
3736 adapter->hw_csum_good++;
3740 * e1000_clean_rx_irq - Send received data up the network stack; legacy
3741 * @adapter: board private structure
3744 static boolean_t
3745 #ifdef CONFIG_E1000_NAPI
3746 e1000_clean_rx_irq(struct e1000_adapter *adapter,
3747 struct e1000_rx_ring *rx_ring,
3748 int *work_done, int work_to_do)
3749 #else
3750 e1000_clean_rx_irq(struct e1000_adapter *adapter,
3751 struct e1000_rx_ring *rx_ring)
3752 #endif
3754 struct net_device *netdev = adapter->netdev;
3755 struct pci_dev *pdev = adapter->pdev;
3756 struct e1000_rx_desc *rx_desc, *next_rxd;
3757 struct e1000_buffer *buffer_info, *next_buffer;
3758 unsigned long flags;
3759 uint32_t length;
3760 uint8_t last_byte;
3761 unsigned int i;
3762 int cleaned_count = 0;
3763 boolean_t cleaned = FALSE;
3765 i = rx_ring->next_to_clean;
3766 rx_desc = E1000_RX_DESC(*rx_ring, i);
3767 buffer_info = &rx_ring->buffer_info[i];
3769 while (rx_desc->status & E1000_RXD_STAT_DD) {
3770 struct sk_buff *skb;
3771 u8 status;
3773 #ifdef CONFIG_E1000_NAPI
3774 if (*work_done >= work_to_do)
3775 break;
3776 (*work_done)++;
3777 #endif
3778 status = rx_desc->status;
3779 skb = buffer_info->skb;
3780 buffer_info->skb = NULL;
3782 prefetch(skb->data - NET_IP_ALIGN);
3784 if (++i == rx_ring->count) i = 0;
3785 next_rxd = E1000_RX_DESC(*rx_ring, i);
3786 prefetch(next_rxd);
3788 next_buffer = &rx_ring->buffer_info[i];
3790 cleaned = TRUE;
3791 cleaned_count++;
3792 pci_unmap_single(pdev,
3793 buffer_info->dma,
3794 buffer_info->length,
3795 PCI_DMA_FROMDEVICE);
3797 length = le16_to_cpu(rx_desc->length);
3799 if (unlikely(!(status & E1000_RXD_STAT_EOP))) {
3800 /* All receives must fit into a single buffer */
3801 E1000_DBG("%s: Receive packet consumed multiple"
3802 " buffers\n", netdev->name);
3803 /* recycle */
3804 buffer_info->skb = skb;
3805 goto next_desc;
3808 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
3809 last_byte = *(skb->data + length - 1);
3810 if (TBI_ACCEPT(&adapter->hw, status,
3811 rx_desc->errors, length, last_byte)) {
3812 spin_lock_irqsave(&adapter->stats_lock, flags);
3813 e1000_tbi_adjust_stats(&adapter->hw,
3814 &adapter->stats,
3815 length, skb->data);
3816 spin_unlock_irqrestore(&adapter->stats_lock,
3817 flags);
3818 length--;
3819 } else {
3820 /* recycle */
3821 buffer_info->skb = skb;
3822 goto next_desc;
3826 /* adjust length to remove Ethernet CRC, this must be
3827 * done after the TBI_ACCEPT workaround above */
3828 length -= 4;
3830 /* code added for copybreak, this should improve
3831 * performance for small packets with large amounts
3832 * of reassembly being done in the stack */
3833 #define E1000_CB_LENGTH 256
3834 if (length < E1000_CB_LENGTH) {
3835 struct sk_buff *new_skb =
3836 netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
3837 if (new_skb) {
3838 skb_reserve(new_skb, NET_IP_ALIGN);
3839 memcpy(new_skb->data - NET_IP_ALIGN,
3840 skb->data - NET_IP_ALIGN,
3841 length + NET_IP_ALIGN);
3842 /* save the skb in buffer_info as good */
3843 buffer_info->skb = skb;
3844 skb = new_skb;
3846 /* else just continue with the old one */
3848 /* end copybreak code */
3849 skb_put(skb, length);
3851 /* Receive Checksum Offload */
3852 e1000_rx_checksum(adapter,
3853 (uint32_t)(status) |
3854 ((uint32_t)(rx_desc->errors) << 24),
3855 le16_to_cpu(rx_desc->csum), skb);
3857 skb->protocol = eth_type_trans(skb, netdev);
3858 #ifdef CONFIG_E1000_NAPI
3859 if (unlikely(adapter->vlgrp &&
3860 (status & E1000_RXD_STAT_VP))) {
3861 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3862 le16_to_cpu(rx_desc->special) &
3863 E1000_RXD_SPC_VLAN_MASK);
3864 } else {
3865 netif_receive_skb(skb);
3867 #else /* CONFIG_E1000_NAPI */
3868 if (unlikely(adapter->vlgrp &&
3869 (status & E1000_RXD_STAT_VP))) {
3870 vlan_hwaccel_rx(skb, adapter->vlgrp,
3871 le16_to_cpu(rx_desc->special) &
3872 E1000_RXD_SPC_VLAN_MASK);
3873 } else {
3874 netif_rx(skb);
3876 #endif /* CONFIG_E1000_NAPI */
3877 netdev->last_rx = jiffies;
3879 next_desc:
3880 rx_desc->status = 0;
3882 /* return some buffers to hardware, one at a time is too slow */
3883 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
3884 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3885 cleaned_count = 0;
3888 /* use prefetched values */
3889 rx_desc = next_rxd;
3890 buffer_info = next_buffer;
3892 rx_ring->next_to_clean = i;
3894 cleaned_count = E1000_DESC_UNUSED(rx_ring);
3895 if (cleaned_count)
3896 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3898 return cleaned;
3902 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
3903 * @adapter: board private structure
3906 static boolean_t
3907 #ifdef CONFIG_E1000_NAPI
3908 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
3909 struct e1000_rx_ring *rx_ring,
3910 int *work_done, int work_to_do)
3911 #else
3912 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
3913 struct e1000_rx_ring *rx_ring)
3914 #endif
3916 union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
3917 struct net_device *netdev = adapter->netdev;
3918 struct pci_dev *pdev = adapter->pdev;
3919 struct e1000_buffer *buffer_info, *next_buffer;
3920 struct e1000_ps_page *ps_page;
3921 struct e1000_ps_page_dma *ps_page_dma;
3922 struct sk_buff *skb;
3923 unsigned int i, j;
3924 uint32_t length, staterr;
3925 int cleaned_count = 0;
3926 boolean_t cleaned = FALSE;
3928 i = rx_ring->next_to_clean;
3929 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
3930 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
3931 buffer_info = &rx_ring->buffer_info[i];
3933 while (staterr & E1000_RXD_STAT_DD) {
3934 ps_page = &rx_ring->ps_page[i];
3935 ps_page_dma = &rx_ring->ps_page_dma[i];
3936 #ifdef CONFIG_E1000_NAPI
3937 if (unlikely(*work_done >= work_to_do))
3938 break;
3939 (*work_done)++;
3940 #endif
3941 skb = buffer_info->skb;
3943 /* in the packet split case this is header only */
3944 prefetch(skb->data - NET_IP_ALIGN);
3946 if (++i == rx_ring->count) i = 0;
3947 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
3948 prefetch(next_rxd);
3950 next_buffer = &rx_ring->buffer_info[i];
3952 cleaned = TRUE;
3953 cleaned_count++;
3954 pci_unmap_single(pdev, buffer_info->dma,
3955 buffer_info->length,
3956 PCI_DMA_FROMDEVICE);
3958 if (unlikely(!(staterr & E1000_RXD_STAT_EOP))) {
3959 E1000_DBG("%s: Packet Split buffers didn't pick up"
3960 " the full packet\n", netdev->name);
3961 dev_kfree_skb_irq(skb);
3962 goto next_desc;
3965 if (unlikely(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
3966 dev_kfree_skb_irq(skb);
3967 goto next_desc;
3970 length = le16_to_cpu(rx_desc->wb.middle.length0);
3972 if (unlikely(!length)) {
3973 E1000_DBG("%s: Last part of the packet spanning"
3974 " multiple descriptors\n", netdev->name);
3975 dev_kfree_skb_irq(skb);
3976 goto next_desc;
3979 /* Good Receive */
3980 skb_put(skb, length);
3983 /* this looks ugly, but it seems compiler issues make it
3984 more efficient than reusing j */
3985 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
3987 /* page alloc/put takes too long and effects small packet
3988 * throughput, so unsplit small packets and save the alloc/put*/
3989 if (l1 && ((length + l1) <= adapter->rx_ps_bsize0)) {
3990 u8 *vaddr;
3991 /* there is no documentation about how to call
3992 * kmap_atomic, so we can't hold the mapping
3993 * very long */
3994 pci_dma_sync_single_for_cpu(pdev,
3995 ps_page_dma->ps_page_dma[0],
3996 PAGE_SIZE,
3997 PCI_DMA_FROMDEVICE);
3998 vaddr = kmap_atomic(ps_page->ps_page[0],
3999 KM_SKB_DATA_SOFTIRQ);
4000 memcpy(skb->tail, vaddr, l1);
4001 kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
4002 pci_dma_sync_single_for_device(pdev,
4003 ps_page_dma->ps_page_dma[0],
4004 PAGE_SIZE, PCI_DMA_FROMDEVICE);
4005 /* remove the CRC */
4006 l1 -= 4;
4007 skb_put(skb, l1);
4008 goto copydone;
4009 } /* if */
4012 for (j = 0; j < adapter->rx_ps_pages; j++) {
4013 if (!(length= le16_to_cpu(rx_desc->wb.upper.length[j])))
4014 break;
4015 pci_unmap_page(pdev, ps_page_dma->ps_page_dma[j],
4016 PAGE_SIZE, PCI_DMA_FROMDEVICE);
4017 ps_page_dma->ps_page_dma[j] = 0;
4018 skb_fill_page_desc(skb, j, ps_page->ps_page[j], 0,
4019 length);
4020 ps_page->ps_page[j] = NULL;
4021 skb->len += length;
4022 skb->data_len += length;
4023 skb->truesize += length;
4026 /* strip the ethernet crc, problem is we're using pages now so
4027 * this whole operation can get a little cpu intensive */
4028 pskb_trim(skb, skb->len - 4);
4030 copydone:
4031 e1000_rx_checksum(adapter, staterr,
4032 le16_to_cpu(rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
4033 skb->protocol = eth_type_trans(skb, netdev);
4035 if (likely(rx_desc->wb.upper.header_status &
4036 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP)))
4037 adapter->rx_hdr_split++;
4038 #ifdef CONFIG_E1000_NAPI
4039 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
4040 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
4041 le16_to_cpu(rx_desc->wb.middle.vlan) &
4042 E1000_RXD_SPC_VLAN_MASK);
4043 } else {
4044 netif_receive_skb(skb);
4046 #else /* CONFIG_E1000_NAPI */
4047 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
4048 vlan_hwaccel_rx(skb, adapter->vlgrp,
4049 le16_to_cpu(rx_desc->wb.middle.vlan) &
4050 E1000_RXD_SPC_VLAN_MASK);
4051 } else {
4052 netif_rx(skb);
4054 #endif /* CONFIG_E1000_NAPI */
4055 netdev->last_rx = jiffies;
4057 next_desc:
4058 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
4059 buffer_info->skb = NULL;
4061 /* return some buffers to hardware, one at a time is too slow */
4062 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4063 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4064 cleaned_count = 0;
4067 /* use prefetched values */
4068 rx_desc = next_rxd;
4069 buffer_info = next_buffer;
4071 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
4073 rx_ring->next_to_clean = i;
4075 cleaned_count = E1000_DESC_UNUSED(rx_ring);
4076 if (cleaned_count)
4077 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4079 return cleaned;
4083 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4084 * @adapter: address of board private structure
4087 static void
4088 e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4089 struct e1000_rx_ring *rx_ring,
4090 int cleaned_count)
4092 struct net_device *netdev = adapter->netdev;
4093 struct pci_dev *pdev = adapter->pdev;
4094 struct e1000_rx_desc *rx_desc;
4095 struct e1000_buffer *buffer_info;
4096 struct sk_buff *skb;
4097 unsigned int i;
4098 unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
4100 i = rx_ring->next_to_use;
4101 buffer_info = &rx_ring->buffer_info[i];
4103 while (cleaned_count--) {
4104 skb = buffer_info->skb;
4105 if (skb) {
4106 skb_trim(skb, 0);
4107 goto map_skb;
4110 skb = netdev_alloc_skb(netdev, bufsz);
4111 if (unlikely(!skb)) {
4112 /* Better luck next round */
4113 adapter->alloc_rx_buff_failed++;
4114 break;
4117 /* Fix for errata 23, can't cross 64kB boundary */
4118 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4119 struct sk_buff *oldskb = skb;
4120 DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
4121 "at %p\n", bufsz, skb->data);
4122 /* Try again, without freeing the previous */
4123 skb = netdev_alloc_skb(netdev, bufsz);
4124 /* Failed allocation, critical failure */
4125 if (!skb) {
4126 dev_kfree_skb(oldskb);
4127 break;
4130 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4131 /* give up */
4132 dev_kfree_skb(skb);
4133 dev_kfree_skb(oldskb);
4134 break; /* while !buffer_info->skb */
4137 /* Use new allocation */
4138 dev_kfree_skb(oldskb);
4140 /* Make buffer alignment 2 beyond a 16 byte boundary
4141 * this will result in a 16 byte aligned IP header after
4142 * the 14 byte MAC header is removed
4144 skb_reserve(skb, NET_IP_ALIGN);
4146 buffer_info->skb = skb;
4147 buffer_info->length = adapter->rx_buffer_len;
4148 map_skb:
4149 buffer_info->dma = pci_map_single(pdev,
4150 skb->data,
4151 adapter->rx_buffer_len,
4152 PCI_DMA_FROMDEVICE);
4154 /* Fix for errata 23, can't cross 64kB boundary */
4155 if (!e1000_check_64k_bound(adapter,
4156 (void *)(unsigned long)buffer_info->dma,
4157 adapter->rx_buffer_len)) {
4158 DPRINTK(RX_ERR, ERR,
4159 "dma align check failed: %u bytes at %p\n",
4160 adapter->rx_buffer_len,
4161 (void *)(unsigned long)buffer_info->dma);
4162 dev_kfree_skb(skb);
4163 buffer_info->skb = NULL;
4165 pci_unmap_single(pdev, buffer_info->dma,
4166 adapter->rx_buffer_len,
4167 PCI_DMA_FROMDEVICE);
4169 break; /* while !buffer_info->skb */
4171 rx_desc = E1000_RX_DESC(*rx_ring, i);
4172 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4174 if (unlikely(++i == rx_ring->count))
4175 i = 0;
4176 buffer_info = &rx_ring->buffer_info[i];
4179 if (likely(rx_ring->next_to_use != i)) {
4180 rx_ring->next_to_use = i;
4181 if (unlikely(i-- == 0))
4182 i = (rx_ring->count - 1);
4184 /* Force memory writes to complete before letting h/w
4185 * know there are new descriptors to fetch. (Only
4186 * applicable for weak-ordered memory model archs,
4187 * such as IA-64). */
4188 wmb();
4189 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4194 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
4195 * @adapter: address of board private structure
4198 static void
4199 e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
4200 struct e1000_rx_ring *rx_ring,
4201 int cleaned_count)
4203 struct net_device *netdev = adapter->netdev;
4204 struct pci_dev *pdev = adapter->pdev;
4205 union e1000_rx_desc_packet_split *rx_desc;
4206 struct e1000_buffer *buffer_info;
4207 struct e1000_ps_page *ps_page;
4208 struct e1000_ps_page_dma *ps_page_dma;
4209 struct sk_buff *skb;
4210 unsigned int i, j;
4212 i = rx_ring->next_to_use;
4213 buffer_info = &rx_ring->buffer_info[i];
4214 ps_page = &rx_ring->ps_page[i];
4215 ps_page_dma = &rx_ring->ps_page_dma[i];
4217 while (cleaned_count--) {
4218 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
4220 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
4221 if (j < adapter->rx_ps_pages) {
4222 if (likely(!ps_page->ps_page[j])) {
4223 ps_page->ps_page[j] =
4224 alloc_page(GFP_ATOMIC);
4225 if (unlikely(!ps_page->ps_page[j])) {
4226 adapter->alloc_rx_buff_failed++;
4227 goto no_buffers;
4229 ps_page_dma->ps_page_dma[j] =
4230 pci_map_page(pdev,
4231 ps_page->ps_page[j],
4232 0, PAGE_SIZE,
4233 PCI_DMA_FROMDEVICE);
4235 /* Refresh the desc even if buffer_addrs didn't
4236 * change because each write-back erases
4237 * this info.
4239 rx_desc->read.buffer_addr[j+1] =
4240 cpu_to_le64(ps_page_dma->ps_page_dma[j]);
4241 } else
4242 rx_desc->read.buffer_addr[j+1] = ~0;
4245 skb = netdev_alloc_skb(netdev,
4246 adapter->rx_ps_bsize0 + NET_IP_ALIGN);
4248 if (unlikely(!skb)) {
4249 adapter->alloc_rx_buff_failed++;
4250 break;
4253 /* Make buffer alignment 2 beyond a 16 byte boundary
4254 * this will result in a 16 byte aligned IP header after
4255 * the 14 byte MAC header is removed
4257 skb_reserve(skb, NET_IP_ALIGN);
4259 buffer_info->skb = skb;
4260 buffer_info->length = adapter->rx_ps_bsize0;
4261 buffer_info->dma = pci_map_single(pdev, skb->data,
4262 adapter->rx_ps_bsize0,
4263 PCI_DMA_FROMDEVICE);
4265 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
4267 if (unlikely(++i == rx_ring->count)) i = 0;
4268 buffer_info = &rx_ring->buffer_info[i];
4269 ps_page = &rx_ring->ps_page[i];
4270 ps_page_dma = &rx_ring->ps_page_dma[i];
4273 no_buffers:
4274 if (likely(rx_ring->next_to_use != i)) {
4275 rx_ring->next_to_use = i;
4276 if (unlikely(i-- == 0)) i = (rx_ring->count - 1);
4278 /* Force memory writes to complete before letting h/w
4279 * know there are new descriptors to fetch. (Only
4280 * applicable for weak-ordered memory model archs,
4281 * such as IA-64). */
4282 wmb();
4283 /* Hardware increments by 16 bytes, but packet split
4284 * descriptors are 32 bytes...so we increment tail
4285 * twice as much.
4287 writel(i<<1, adapter->hw.hw_addr + rx_ring->rdt);
4292 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4293 * @adapter:
4296 static void
4297 e1000_smartspeed(struct e1000_adapter *adapter)
4299 uint16_t phy_status;
4300 uint16_t phy_ctrl;
4302 if ((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg ||
4303 !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
4304 return;
4306 if (adapter->smartspeed == 0) {
4307 /* If Master/Slave config fault is asserted twice,
4308 * we assume back-to-back */
4309 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4310 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4311 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4312 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4313 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4314 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4315 phy_ctrl &= ~CR_1000T_MS_ENABLE;
4316 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL,
4317 phy_ctrl);
4318 adapter->smartspeed++;
4319 if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4320 !e1000_read_phy_reg(&adapter->hw, PHY_CTRL,
4321 &phy_ctrl)) {
4322 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4323 MII_CR_RESTART_AUTO_NEG);
4324 e1000_write_phy_reg(&adapter->hw, PHY_CTRL,
4325 phy_ctrl);
4328 return;
4329 } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4330 /* If still no link, perhaps using 2/3 pair cable */
4331 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4332 phy_ctrl |= CR_1000T_MS_ENABLE;
4333 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl);
4334 if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4335 !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) {
4336 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4337 MII_CR_RESTART_AUTO_NEG);
4338 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl);
4341 /* Restart process after E1000_SMARTSPEED_MAX iterations */
4342 if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4343 adapter->smartspeed = 0;
4347 * e1000_ioctl -
4348 * @netdev:
4349 * @ifreq:
4350 * @cmd:
4353 static int
4354 e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4356 switch (cmd) {
4357 case SIOCGMIIPHY:
4358 case SIOCGMIIREG:
4359 case SIOCSMIIREG:
4360 return e1000_mii_ioctl(netdev, ifr, cmd);
4361 default:
4362 return -EOPNOTSUPP;
4367 * e1000_mii_ioctl -
4368 * @netdev:
4369 * @ifreq:
4370 * @cmd:
4373 static int
4374 e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4376 struct e1000_adapter *adapter = netdev_priv(netdev);
4377 struct mii_ioctl_data *data = if_mii(ifr);
4378 int retval;
4379 uint16_t mii_reg;
4380 uint16_t spddplx;
4381 unsigned long flags;
4383 if (adapter->hw.media_type != e1000_media_type_copper)
4384 return -EOPNOTSUPP;
4386 switch (cmd) {
4387 case SIOCGMIIPHY:
4388 data->phy_id = adapter->hw.phy_addr;
4389 break;
4390 case SIOCGMIIREG:
4391 if (!capable(CAP_NET_ADMIN))
4392 return -EPERM;
4393 spin_lock_irqsave(&adapter->stats_lock, flags);
4394 if (e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
4395 &data->val_out)) {
4396 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4397 return -EIO;
4399 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4400 break;
4401 case SIOCSMIIREG:
4402 if (!capable(CAP_NET_ADMIN))
4403 return -EPERM;
4404 if (data->reg_num & ~(0x1F))
4405 return -EFAULT;
4406 mii_reg = data->val_in;
4407 spin_lock_irqsave(&adapter->stats_lock, flags);
4408 if (e1000_write_phy_reg(&adapter->hw, data->reg_num,
4409 mii_reg)) {
4410 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4411 return -EIO;
4413 if (adapter->hw.media_type == e1000_media_type_copper) {
4414 switch (data->reg_num) {
4415 case PHY_CTRL:
4416 if (mii_reg & MII_CR_POWER_DOWN)
4417 break;
4418 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4419 adapter->hw.autoneg = 1;
4420 adapter->hw.autoneg_advertised = 0x2F;
4421 } else {
4422 if (mii_reg & 0x40)
4423 spddplx = SPEED_1000;
4424 else if (mii_reg & 0x2000)
4425 spddplx = SPEED_100;
4426 else
4427 spddplx = SPEED_10;
4428 spddplx += (mii_reg & 0x100)
4429 ? DUPLEX_FULL :
4430 DUPLEX_HALF;
4431 retval = e1000_set_spd_dplx(adapter,
4432 spddplx);
4433 if (retval) {
4434 spin_unlock_irqrestore(
4435 &adapter->stats_lock,
4436 flags);
4437 return retval;
4440 if (netif_running(adapter->netdev))
4441 e1000_reinit_locked(adapter);
4442 else
4443 e1000_reset(adapter);
4444 break;
4445 case M88E1000_PHY_SPEC_CTRL:
4446 case M88E1000_EXT_PHY_SPEC_CTRL:
4447 if (e1000_phy_reset(&adapter->hw)) {
4448 spin_unlock_irqrestore(
4449 &adapter->stats_lock, flags);
4450 return -EIO;
4452 break;
4454 } else {
4455 switch (data->reg_num) {
4456 case PHY_CTRL:
4457 if (mii_reg & MII_CR_POWER_DOWN)
4458 break;
4459 if (netif_running(adapter->netdev))
4460 e1000_reinit_locked(adapter);
4461 else
4462 e1000_reset(adapter);
4463 break;
4466 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4467 break;
4468 default:
4469 return -EOPNOTSUPP;
4471 return E1000_SUCCESS;
4474 void
4475 e1000_pci_set_mwi(struct e1000_hw *hw)
4477 struct e1000_adapter *adapter = hw->back;
4478 int ret_val = pci_set_mwi(adapter->pdev);
4480 if (ret_val)
4481 DPRINTK(PROBE, ERR, "Error in setting MWI\n");
4484 void
4485 e1000_pci_clear_mwi(struct e1000_hw *hw)
4487 struct e1000_adapter *adapter = hw->back;
4489 pci_clear_mwi(adapter->pdev);
4492 void
4493 e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4495 struct e1000_adapter *adapter = hw->back;
4497 pci_read_config_word(adapter->pdev, reg, value);
4500 void
4501 e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4503 struct e1000_adapter *adapter = hw->back;
4505 pci_write_config_word(adapter->pdev, reg, *value);
4508 int32_t
4509 e1000_read_pcie_cap_reg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4511 struct e1000_adapter *adapter = hw->back;
4512 uint16_t cap_offset;
4514 cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
4515 if (!cap_offset)
4516 return -E1000_ERR_CONFIG;
4518 pci_read_config_word(adapter->pdev, cap_offset + reg, value);
4520 return E1000_SUCCESS;
4523 void
4524 e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value)
4526 outl(value, port);
4529 static void
4530 e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
4532 struct e1000_adapter *adapter = netdev_priv(netdev);
4533 uint32_t ctrl, rctl;
4535 e1000_irq_disable(adapter);
4536 adapter->vlgrp = grp;
4538 if (grp) {
4539 /* enable VLAN tag insert/strip */
4540 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4541 ctrl |= E1000_CTRL_VME;
4542 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4544 if (adapter->hw.mac_type != e1000_ich8lan) {
4545 /* enable VLAN receive filtering */
4546 rctl = E1000_READ_REG(&adapter->hw, RCTL);
4547 rctl |= E1000_RCTL_VFE;
4548 rctl &= ~E1000_RCTL_CFIEN;
4549 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4550 e1000_update_mng_vlan(adapter);
4552 } else {
4553 /* disable VLAN tag insert/strip */
4554 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4555 ctrl &= ~E1000_CTRL_VME;
4556 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4558 if (adapter->hw.mac_type != e1000_ich8lan) {
4559 /* disable VLAN filtering */
4560 rctl = E1000_READ_REG(&adapter->hw, RCTL);
4561 rctl &= ~E1000_RCTL_VFE;
4562 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4563 if (adapter->mng_vlan_id !=
4564 (uint16_t)E1000_MNG_VLAN_NONE) {
4565 e1000_vlan_rx_kill_vid(netdev,
4566 adapter->mng_vlan_id);
4567 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4572 e1000_irq_enable(adapter);
4575 static void
4576 e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid)
4578 struct e1000_adapter *adapter = netdev_priv(netdev);
4579 uint32_t vfta, index;
4581 if ((adapter->hw.mng_cookie.status &
4582 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4583 (vid == adapter->mng_vlan_id))
4584 return;
4585 /* add VID to filter table */
4586 index = (vid >> 5) & 0x7F;
4587 vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4588 vfta |= (1 << (vid & 0x1F));
4589 e1000_write_vfta(&adapter->hw, index, vfta);
4592 static void
4593 e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid)
4595 struct e1000_adapter *adapter = netdev_priv(netdev);
4596 uint32_t vfta, index;
4598 e1000_irq_disable(adapter);
4600 if (adapter->vlgrp)
4601 adapter->vlgrp->vlan_devices[vid] = NULL;
4603 e1000_irq_enable(adapter);
4605 if ((adapter->hw.mng_cookie.status &
4606 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4607 (vid == adapter->mng_vlan_id)) {
4608 /* release control to f/w */
4609 e1000_release_hw_control(adapter);
4610 return;
4613 /* remove VID from filter table */
4614 index = (vid >> 5) & 0x7F;
4615 vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4616 vfta &= ~(1 << (vid & 0x1F));
4617 e1000_write_vfta(&adapter->hw, index, vfta);
4620 static void
4621 e1000_restore_vlan(struct e1000_adapter *adapter)
4623 e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4625 if (adapter->vlgrp) {
4626 uint16_t vid;
4627 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4628 if (!adapter->vlgrp->vlan_devices[vid])
4629 continue;
4630 e1000_vlan_rx_add_vid(adapter->netdev, vid);
4636 e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx)
4638 adapter->hw.autoneg = 0;
4640 /* Fiber NICs only allow 1000 gbps Full duplex */
4641 if ((adapter->hw.media_type == e1000_media_type_fiber) &&
4642 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4643 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4644 return -EINVAL;
4647 switch (spddplx) {
4648 case SPEED_10 + DUPLEX_HALF:
4649 adapter->hw.forced_speed_duplex = e1000_10_half;
4650 break;
4651 case SPEED_10 + DUPLEX_FULL:
4652 adapter->hw.forced_speed_duplex = e1000_10_full;
4653 break;
4654 case SPEED_100 + DUPLEX_HALF:
4655 adapter->hw.forced_speed_duplex = e1000_100_half;
4656 break;
4657 case SPEED_100 + DUPLEX_FULL:
4658 adapter->hw.forced_speed_duplex = e1000_100_full;
4659 break;
4660 case SPEED_1000 + DUPLEX_FULL:
4661 adapter->hw.autoneg = 1;
4662 adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
4663 break;
4664 case SPEED_1000 + DUPLEX_HALF: /* not supported */
4665 default:
4666 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4667 return -EINVAL;
4669 return 0;
4672 #ifdef CONFIG_PM
4673 /* Save/restore 16 or 64 dwords of PCI config space depending on which
4674 * bus we're on (PCI(X) vs. PCI-E)
4676 #define PCIE_CONFIG_SPACE_LEN 256
4677 #define PCI_CONFIG_SPACE_LEN 64
4678 static int
4679 e1000_pci_save_state(struct e1000_adapter *adapter)
4681 struct pci_dev *dev = adapter->pdev;
4682 int size;
4683 int i;
4685 if (adapter->hw.mac_type >= e1000_82571)
4686 size = PCIE_CONFIG_SPACE_LEN;
4687 else
4688 size = PCI_CONFIG_SPACE_LEN;
4690 WARN_ON(adapter->config_space != NULL);
4692 adapter->config_space = kmalloc(size, GFP_KERNEL);
4693 if (!adapter->config_space) {
4694 DPRINTK(PROBE, ERR, "unable to allocate %d bytes\n", size);
4695 return -ENOMEM;
4697 for (i = 0; i < (size / 4); i++)
4698 pci_read_config_dword(dev, i * 4, &adapter->config_space[i]);
4699 return 0;
4702 static void
4703 e1000_pci_restore_state(struct e1000_adapter *adapter)
4705 struct pci_dev *dev = adapter->pdev;
4706 int size;
4707 int i;
4709 if (adapter->config_space == NULL)
4710 return;
4712 if (adapter->hw.mac_type >= e1000_82571)
4713 size = PCIE_CONFIG_SPACE_LEN;
4714 else
4715 size = PCI_CONFIG_SPACE_LEN;
4716 for (i = 0; i < (size / 4); i++)
4717 pci_write_config_dword(dev, i * 4, adapter->config_space[i]);
4718 kfree(adapter->config_space);
4719 adapter->config_space = NULL;
4720 return;
4722 #endif /* CONFIG_PM */
4724 static int
4725 e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4727 struct net_device *netdev = pci_get_drvdata(pdev);
4728 struct e1000_adapter *adapter = netdev_priv(netdev);
4729 uint32_t ctrl, ctrl_ext, rctl, manc, status;
4730 uint32_t wufc = adapter->wol;
4731 #ifdef CONFIG_PM
4732 int retval = 0;
4733 #endif
4735 netif_device_detach(netdev);
4737 if (netif_running(netdev)) {
4738 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
4739 e1000_down(adapter);
4742 #ifdef CONFIG_PM
4743 /* Implement our own version of pci_save_state(pdev) because pci-
4744 * express adapters have 256-byte config spaces. */
4745 retval = e1000_pci_save_state(adapter);
4746 if (retval)
4747 return retval;
4748 #endif
4750 status = E1000_READ_REG(&adapter->hw, STATUS);
4751 if (status & E1000_STATUS_LU)
4752 wufc &= ~E1000_WUFC_LNKC;
4754 if (wufc) {
4755 e1000_setup_rctl(adapter);
4756 e1000_set_multi(netdev);
4758 /* turn on all-multi mode if wake on multicast is enabled */
4759 if (wufc & E1000_WUFC_MC) {
4760 rctl = E1000_READ_REG(&adapter->hw, RCTL);
4761 rctl |= E1000_RCTL_MPE;
4762 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4765 if (adapter->hw.mac_type >= e1000_82540) {
4766 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4767 /* advertise wake from D3Cold */
4768 #define E1000_CTRL_ADVD3WUC 0x00100000
4769 /* phy power management enable */
4770 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4771 ctrl |= E1000_CTRL_ADVD3WUC |
4772 E1000_CTRL_EN_PHY_PWR_MGMT;
4773 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4776 if (adapter->hw.media_type == e1000_media_type_fiber ||
4777 adapter->hw.media_type == e1000_media_type_internal_serdes) {
4778 /* keep the laser running in D3 */
4779 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
4780 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4781 E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext);
4784 /* Allow time for pending master requests to run */
4785 e1000_disable_pciex_master(&adapter->hw);
4787 E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN);
4788 E1000_WRITE_REG(&adapter->hw, WUFC, wufc);
4789 pci_enable_wake(pdev, PCI_D3hot, 1);
4790 pci_enable_wake(pdev, PCI_D3cold, 1);
4791 } else {
4792 E1000_WRITE_REG(&adapter->hw, WUC, 0);
4793 E1000_WRITE_REG(&adapter->hw, WUFC, 0);
4794 pci_enable_wake(pdev, PCI_D3hot, 0);
4795 pci_enable_wake(pdev, PCI_D3cold, 0);
4798 if (adapter->hw.mac_type >= e1000_82540 &&
4799 adapter->hw.mac_type < e1000_82571 &&
4800 adapter->hw.media_type == e1000_media_type_copper) {
4801 manc = E1000_READ_REG(&adapter->hw, MANC);
4802 if (manc & E1000_MANC_SMBUS_EN) {
4803 manc |= E1000_MANC_ARP_EN;
4804 E1000_WRITE_REG(&adapter->hw, MANC, manc);
4805 pci_enable_wake(pdev, PCI_D3hot, 1);
4806 pci_enable_wake(pdev, PCI_D3cold, 1);
4810 if (adapter->hw.phy_type == e1000_phy_igp_3)
4811 e1000_phy_powerdown_workaround(&adapter->hw);
4813 if (netif_running(netdev))
4814 e1000_free_irq(adapter);
4816 /* Release control of h/w to f/w. If f/w is AMT enabled, this
4817 * would have already happened in close and is redundant. */
4818 e1000_release_hw_control(adapter);
4820 pci_disable_device(pdev);
4822 pci_set_power_state(pdev, pci_choose_state(pdev, state));
4824 return 0;
4827 #ifdef CONFIG_PM
4828 static int
4829 e1000_resume(struct pci_dev *pdev)
4831 struct net_device *netdev = pci_get_drvdata(pdev);
4832 struct e1000_adapter *adapter = netdev_priv(netdev);
4833 uint32_t manc, err;
4835 pci_set_power_state(pdev, PCI_D0);
4836 e1000_pci_restore_state(adapter);
4837 if ((err = pci_enable_device(pdev))) {
4838 printk(KERN_ERR "e1000: Cannot enable PCI device from suspend\n");
4839 return err;
4841 pci_set_master(pdev);
4843 pci_enable_wake(pdev, PCI_D3hot, 0);
4844 pci_enable_wake(pdev, PCI_D3cold, 0);
4846 if (netif_running(netdev) && (err = e1000_request_irq(adapter)))
4847 return err;
4849 e1000_power_up_phy(adapter);
4850 e1000_reset(adapter);
4851 E1000_WRITE_REG(&adapter->hw, WUS, ~0);
4853 if (netif_running(netdev))
4854 e1000_up(adapter);
4856 netif_device_attach(netdev);
4858 if (adapter->hw.mac_type >= e1000_82540 &&
4859 adapter->hw.mac_type < e1000_82571 &&
4860 adapter->hw.media_type == e1000_media_type_copper) {
4861 manc = E1000_READ_REG(&adapter->hw, MANC);
4862 manc &= ~(E1000_MANC_ARP_EN);
4863 E1000_WRITE_REG(&adapter->hw, MANC, manc);
4866 /* If the controller is 82573 and f/w is AMT, do not set
4867 * DRV_LOAD until the interface is up. For all other cases,
4868 * let the f/w know that the h/w is now under the control
4869 * of the driver. */
4870 if (adapter->hw.mac_type != e1000_82573 ||
4871 !e1000_check_mng_mode(&adapter->hw))
4872 e1000_get_hw_control(adapter);
4874 return 0;
4876 #endif
4878 static void e1000_shutdown(struct pci_dev *pdev)
4880 e1000_suspend(pdev, PMSG_SUSPEND);
4883 #ifdef CONFIG_NET_POLL_CONTROLLER
4885 * Polling 'interrupt' - used by things like netconsole to send skbs
4886 * without having to re-enable interrupts. It's not called while
4887 * the interrupt routine is executing.
4889 static void
4890 e1000_netpoll(struct net_device *netdev)
4892 struct e1000_adapter *adapter = netdev_priv(netdev);
4894 disable_irq(adapter->pdev->irq);
4895 e1000_intr(adapter->pdev->irq, netdev);
4896 e1000_clean_tx_irq(adapter, adapter->tx_ring);
4897 #ifndef CONFIG_E1000_NAPI
4898 adapter->clean_rx(adapter, adapter->rx_ring);
4899 #endif
4900 enable_irq(adapter->pdev->irq);
4902 #endif
4905 * e1000_io_error_detected - called when PCI error is detected
4906 * @pdev: Pointer to PCI device
4907 * @state: The current pci conneection state
4909 * This function is called after a PCI bus error affecting
4910 * this device has been detected.
4912 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
4914 struct net_device *netdev = pci_get_drvdata(pdev);
4915 struct e1000_adapter *adapter = netdev->priv;
4917 netif_device_detach(netdev);
4919 if (netif_running(netdev))
4920 e1000_down(adapter);
4921 pci_disable_device(pdev);
4923 /* Request a slot slot reset. */
4924 return PCI_ERS_RESULT_NEED_RESET;
4928 * e1000_io_slot_reset - called after the pci bus has been reset.
4929 * @pdev: Pointer to PCI device
4931 * Restart the card from scratch, as if from a cold-boot. Implementation
4932 * resembles the first-half of the e1000_resume routine.
4934 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
4936 struct net_device *netdev = pci_get_drvdata(pdev);
4937 struct e1000_adapter *adapter = netdev->priv;
4939 if (pci_enable_device(pdev)) {
4940 printk(KERN_ERR "e1000: Cannot re-enable PCI device after reset.\n");
4941 return PCI_ERS_RESULT_DISCONNECT;
4943 pci_set_master(pdev);
4945 pci_enable_wake(pdev, PCI_D3hot, 0);
4946 pci_enable_wake(pdev, PCI_D3cold, 0);
4948 e1000_reset(adapter);
4949 E1000_WRITE_REG(&adapter->hw, WUS, ~0);
4951 return PCI_ERS_RESULT_RECOVERED;
4955 * e1000_io_resume - called when traffic can start flowing again.
4956 * @pdev: Pointer to PCI device
4958 * This callback is called when the error recovery driver tells us that
4959 * its OK to resume normal operation. Implementation resembles the
4960 * second-half of the e1000_resume routine.
4962 static void e1000_io_resume(struct pci_dev *pdev)
4964 struct net_device *netdev = pci_get_drvdata(pdev);
4965 struct e1000_adapter *adapter = netdev->priv;
4966 uint32_t manc, swsm;
4968 if (netif_running(netdev)) {
4969 if (e1000_up(adapter)) {
4970 printk("e1000: can't bring device back up after reset\n");
4971 return;
4975 netif_device_attach(netdev);
4977 if (adapter->hw.mac_type >= e1000_82540 &&
4978 adapter->hw.mac_type < e1000_82571 &&
4979 adapter->hw.media_type == e1000_media_type_copper) {
4980 manc = E1000_READ_REG(&adapter->hw, MANC);
4981 manc &= ~(E1000_MANC_ARP_EN);
4982 E1000_WRITE_REG(&adapter->hw, MANC, manc);
4985 switch (adapter->hw.mac_type) {
4986 case e1000_82573:
4987 swsm = E1000_READ_REG(&adapter->hw, SWSM);
4988 E1000_WRITE_REG(&adapter->hw, SWSM,
4989 swsm | E1000_SWSM_DRV_LOAD);
4990 break;
4991 default:
4992 break;
4995 if (netif_running(netdev))
4996 mod_timer(&adapter->watchdog_timer, jiffies);
4999 /* e1000_main.c */