slab: clarify and fix calculate_slab_order()
[linux-2.6/mini2440.git] / mm / vmscan.c
blobb0af7593d01e315a83c79ec6841c9a4a3b91c1e1
1 /*
2 * linux/mm/vmscan.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/file.h>
23 #include <linux/writeback.h>
24 #include <linux/blkdev.h>
25 #include <linux/buffer_head.h> /* for try_to_release_page(),
26 buffer_heads_over_limit */
27 #include <linux/mm_inline.h>
28 #include <linux/pagevec.h>
29 #include <linux/backing-dev.h>
30 #include <linux/rmap.h>
31 #include <linux/topology.h>
32 #include <linux/cpu.h>
33 #include <linux/cpuset.h>
34 #include <linux/notifier.h>
35 #include <linux/rwsem.h>
37 #include <asm/tlbflush.h>
38 #include <asm/div64.h>
40 #include <linux/swapops.h>
42 /* possible outcome of pageout() */
43 typedef enum {
44 /* failed to write page out, page is locked */
45 PAGE_KEEP,
46 /* move page to the active list, page is locked */
47 PAGE_ACTIVATE,
48 /* page has been sent to the disk successfully, page is unlocked */
49 PAGE_SUCCESS,
50 /* page is clean and locked */
51 PAGE_CLEAN,
52 } pageout_t;
54 struct scan_control {
55 /* Ask refill_inactive_zone, or shrink_cache to scan this many pages */
56 unsigned long nr_to_scan;
58 /* Incremented by the number of inactive pages that were scanned */
59 unsigned long nr_scanned;
61 /* Incremented by the number of pages reclaimed */
62 unsigned long nr_reclaimed;
64 unsigned long nr_mapped; /* From page_state */
66 /* Ask shrink_caches, or shrink_zone to scan at this priority */
67 unsigned int priority;
69 /* This context's GFP mask */
70 gfp_t gfp_mask;
72 int may_writepage;
74 /* Can pages be swapped as part of reclaim? */
75 int may_swap;
77 /* This context's SWAP_CLUSTER_MAX. If freeing memory for
78 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
79 * In this context, it doesn't matter that we scan the
80 * whole list at once. */
81 int swap_cluster_max;
85 * The list of shrinker callbacks used by to apply pressure to
86 * ageable caches.
88 struct shrinker {
89 shrinker_t shrinker;
90 struct list_head list;
91 int seeks; /* seeks to recreate an obj */
92 long nr; /* objs pending delete */
95 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
97 #ifdef ARCH_HAS_PREFETCH
98 #define prefetch_prev_lru_page(_page, _base, _field) \
99 do { \
100 if ((_page)->lru.prev != _base) { \
101 struct page *prev; \
103 prev = lru_to_page(&(_page->lru)); \
104 prefetch(&prev->_field); \
106 } while (0)
107 #else
108 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
109 #endif
111 #ifdef ARCH_HAS_PREFETCHW
112 #define prefetchw_prev_lru_page(_page, _base, _field) \
113 do { \
114 if ((_page)->lru.prev != _base) { \
115 struct page *prev; \
117 prev = lru_to_page(&(_page->lru)); \
118 prefetchw(&prev->_field); \
120 } while (0)
121 #else
122 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
123 #endif
126 * From 0 .. 100. Higher means more swappy.
128 int vm_swappiness = 60;
129 static long total_memory;
131 static LIST_HEAD(shrinker_list);
132 static DECLARE_RWSEM(shrinker_rwsem);
135 * Add a shrinker callback to be called from the vm
137 struct shrinker *set_shrinker(int seeks, shrinker_t theshrinker)
139 struct shrinker *shrinker;
141 shrinker = kmalloc(sizeof(*shrinker), GFP_KERNEL);
142 if (shrinker) {
143 shrinker->shrinker = theshrinker;
144 shrinker->seeks = seeks;
145 shrinker->nr = 0;
146 down_write(&shrinker_rwsem);
147 list_add_tail(&shrinker->list, &shrinker_list);
148 up_write(&shrinker_rwsem);
150 return shrinker;
152 EXPORT_SYMBOL(set_shrinker);
155 * Remove one
157 void remove_shrinker(struct shrinker *shrinker)
159 down_write(&shrinker_rwsem);
160 list_del(&shrinker->list);
161 up_write(&shrinker_rwsem);
162 kfree(shrinker);
164 EXPORT_SYMBOL(remove_shrinker);
166 #define SHRINK_BATCH 128
168 * Call the shrink functions to age shrinkable caches
170 * Here we assume it costs one seek to replace a lru page and that it also
171 * takes a seek to recreate a cache object. With this in mind we age equal
172 * percentages of the lru and ageable caches. This should balance the seeks
173 * generated by these structures.
175 * If the vm encounted mapped pages on the LRU it increase the pressure on
176 * slab to avoid swapping.
178 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
180 * `lru_pages' represents the number of on-LRU pages in all the zones which
181 * are eligible for the caller's allocation attempt. It is used for balancing
182 * slab reclaim versus page reclaim.
184 * Returns the number of slab objects which we shrunk.
186 int shrink_slab(unsigned long scanned, gfp_t gfp_mask, unsigned long lru_pages)
188 struct shrinker *shrinker;
189 int ret = 0;
191 if (scanned == 0)
192 scanned = SWAP_CLUSTER_MAX;
194 if (!down_read_trylock(&shrinker_rwsem))
195 return 1; /* Assume we'll be able to shrink next time */
197 list_for_each_entry(shrinker, &shrinker_list, list) {
198 unsigned long long delta;
199 unsigned long total_scan;
200 unsigned long max_pass = (*shrinker->shrinker)(0, gfp_mask);
202 delta = (4 * scanned) / shrinker->seeks;
203 delta *= max_pass;
204 do_div(delta, lru_pages + 1);
205 shrinker->nr += delta;
206 if (shrinker->nr < 0) {
207 printk(KERN_ERR "%s: nr=%ld\n",
208 __FUNCTION__, shrinker->nr);
209 shrinker->nr = max_pass;
213 * Avoid risking looping forever due to too large nr value:
214 * never try to free more than twice the estimate number of
215 * freeable entries.
217 if (shrinker->nr > max_pass * 2)
218 shrinker->nr = max_pass * 2;
220 total_scan = shrinker->nr;
221 shrinker->nr = 0;
223 while (total_scan >= SHRINK_BATCH) {
224 long this_scan = SHRINK_BATCH;
225 int shrink_ret;
226 int nr_before;
228 nr_before = (*shrinker->shrinker)(0, gfp_mask);
229 shrink_ret = (*shrinker->shrinker)(this_scan, gfp_mask);
230 if (shrink_ret == -1)
231 break;
232 if (shrink_ret < nr_before)
233 ret += nr_before - shrink_ret;
234 mod_page_state(slabs_scanned, this_scan);
235 total_scan -= this_scan;
237 cond_resched();
240 shrinker->nr += total_scan;
242 up_read(&shrinker_rwsem);
243 return ret;
246 /* Called without lock on whether page is mapped, so answer is unstable */
247 static inline int page_mapping_inuse(struct page *page)
249 struct address_space *mapping;
251 /* Page is in somebody's page tables. */
252 if (page_mapped(page))
253 return 1;
255 /* Be more reluctant to reclaim swapcache than pagecache */
256 if (PageSwapCache(page))
257 return 1;
259 mapping = page_mapping(page);
260 if (!mapping)
261 return 0;
263 /* File is mmap'd by somebody? */
264 return mapping_mapped(mapping);
267 static inline int is_page_cache_freeable(struct page *page)
269 return page_count(page) - !!PagePrivate(page) == 2;
272 static int may_write_to_queue(struct backing_dev_info *bdi)
274 if (current->flags & PF_SWAPWRITE)
275 return 1;
276 if (!bdi_write_congested(bdi))
277 return 1;
278 if (bdi == current->backing_dev_info)
279 return 1;
280 return 0;
284 * We detected a synchronous write error writing a page out. Probably
285 * -ENOSPC. We need to propagate that into the address_space for a subsequent
286 * fsync(), msync() or close().
288 * The tricky part is that after writepage we cannot touch the mapping: nothing
289 * prevents it from being freed up. But we have a ref on the page and once
290 * that page is locked, the mapping is pinned.
292 * We're allowed to run sleeping lock_page() here because we know the caller has
293 * __GFP_FS.
295 static void handle_write_error(struct address_space *mapping,
296 struct page *page, int error)
298 lock_page(page);
299 if (page_mapping(page) == mapping) {
300 if (error == -ENOSPC)
301 set_bit(AS_ENOSPC, &mapping->flags);
302 else
303 set_bit(AS_EIO, &mapping->flags);
305 unlock_page(page);
309 * pageout is called by shrink_list() for each dirty page. Calls ->writepage().
311 static pageout_t pageout(struct page *page, struct address_space *mapping)
314 * If the page is dirty, only perform writeback if that write
315 * will be non-blocking. To prevent this allocation from being
316 * stalled by pagecache activity. But note that there may be
317 * stalls if we need to run get_block(). We could test
318 * PagePrivate for that.
320 * If this process is currently in generic_file_write() against
321 * this page's queue, we can perform writeback even if that
322 * will block.
324 * If the page is swapcache, write it back even if that would
325 * block, for some throttling. This happens by accident, because
326 * swap_backing_dev_info is bust: it doesn't reflect the
327 * congestion state of the swapdevs. Easy to fix, if needed.
328 * See swapfile.c:page_queue_congested().
330 if (!is_page_cache_freeable(page))
331 return PAGE_KEEP;
332 if (!mapping) {
334 * Some data journaling orphaned pages can have
335 * page->mapping == NULL while being dirty with clean buffers.
337 if (PagePrivate(page)) {
338 if (try_to_free_buffers(page)) {
339 ClearPageDirty(page);
340 printk("%s: orphaned page\n", __FUNCTION__);
341 return PAGE_CLEAN;
344 return PAGE_KEEP;
346 if (mapping->a_ops->writepage == NULL)
347 return PAGE_ACTIVATE;
348 if (!may_write_to_queue(mapping->backing_dev_info))
349 return PAGE_KEEP;
351 if (clear_page_dirty_for_io(page)) {
352 int res;
353 struct writeback_control wbc = {
354 .sync_mode = WB_SYNC_NONE,
355 .nr_to_write = SWAP_CLUSTER_MAX,
356 .nonblocking = 1,
357 .for_reclaim = 1,
360 SetPageReclaim(page);
361 res = mapping->a_ops->writepage(page, &wbc);
362 if (res < 0)
363 handle_write_error(mapping, page, res);
364 if (res == AOP_WRITEPAGE_ACTIVATE) {
365 ClearPageReclaim(page);
366 return PAGE_ACTIVATE;
368 if (!PageWriteback(page)) {
369 /* synchronous write or broken a_ops? */
370 ClearPageReclaim(page);
373 return PAGE_SUCCESS;
376 return PAGE_CLEAN;
379 static int remove_mapping(struct address_space *mapping, struct page *page)
381 if (!mapping)
382 return 0; /* truncate got there first */
384 write_lock_irq(&mapping->tree_lock);
387 * The non-racy check for busy page. It is critical to check
388 * PageDirty _after_ making sure that the page is freeable and
389 * not in use by anybody. (pagecache + us == 2)
391 if (unlikely(page_count(page) != 2))
392 goto cannot_free;
393 smp_rmb();
394 if (unlikely(PageDirty(page)))
395 goto cannot_free;
397 if (PageSwapCache(page)) {
398 swp_entry_t swap = { .val = page_private(page) };
399 __delete_from_swap_cache(page);
400 write_unlock_irq(&mapping->tree_lock);
401 swap_free(swap);
402 __put_page(page); /* The pagecache ref */
403 return 1;
406 __remove_from_page_cache(page);
407 write_unlock_irq(&mapping->tree_lock);
408 __put_page(page);
409 return 1;
411 cannot_free:
412 write_unlock_irq(&mapping->tree_lock);
413 return 0;
417 * shrink_list adds the number of reclaimed pages to sc->nr_reclaimed
419 static int shrink_list(struct list_head *page_list, struct scan_control *sc)
421 LIST_HEAD(ret_pages);
422 struct pagevec freed_pvec;
423 int pgactivate = 0;
424 int reclaimed = 0;
426 cond_resched();
428 pagevec_init(&freed_pvec, 1);
429 while (!list_empty(page_list)) {
430 struct address_space *mapping;
431 struct page *page;
432 int may_enter_fs;
433 int referenced;
435 cond_resched();
437 page = lru_to_page(page_list);
438 list_del(&page->lru);
440 if (TestSetPageLocked(page))
441 goto keep;
443 BUG_ON(PageActive(page));
445 sc->nr_scanned++;
447 if (!sc->may_swap && page_mapped(page))
448 goto keep_locked;
450 /* Double the slab pressure for mapped and swapcache pages */
451 if (page_mapped(page) || PageSwapCache(page))
452 sc->nr_scanned++;
454 if (PageWriteback(page))
455 goto keep_locked;
457 referenced = page_referenced(page, 1);
458 /* In active use or really unfreeable? Activate it. */
459 if (referenced && page_mapping_inuse(page))
460 goto activate_locked;
462 #ifdef CONFIG_SWAP
464 * Anonymous process memory has backing store?
465 * Try to allocate it some swap space here.
467 if (PageAnon(page) && !PageSwapCache(page)) {
468 if (!sc->may_swap)
469 goto keep_locked;
470 if (!add_to_swap(page, GFP_ATOMIC))
471 goto activate_locked;
473 #endif /* CONFIG_SWAP */
475 mapping = page_mapping(page);
476 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
477 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
480 * The page is mapped into the page tables of one or more
481 * processes. Try to unmap it here.
483 if (page_mapped(page) && mapping) {
485 * No unmapping if we do not swap
487 if (!sc->may_swap)
488 goto keep_locked;
490 switch (try_to_unmap(page, 0)) {
491 case SWAP_FAIL:
492 goto activate_locked;
493 case SWAP_AGAIN:
494 goto keep_locked;
495 case SWAP_SUCCESS:
496 ; /* try to free the page below */
500 if (PageDirty(page)) {
501 if (referenced)
502 goto keep_locked;
503 if (!may_enter_fs)
504 goto keep_locked;
505 if (!sc->may_writepage)
506 goto keep_locked;
508 /* Page is dirty, try to write it out here */
509 switch(pageout(page, mapping)) {
510 case PAGE_KEEP:
511 goto keep_locked;
512 case PAGE_ACTIVATE:
513 goto activate_locked;
514 case PAGE_SUCCESS:
515 if (PageWriteback(page) || PageDirty(page))
516 goto keep;
518 * A synchronous write - probably a ramdisk. Go
519 * ahead and try to reclaim the page.
521 if (TestSetPageLocked(page))
522 goto keep;
523 if (PageDirty(page) || PageWriteback(page))
524 goto keep_locked;
525 mapping = page_mapping(page);
526 case PAGE_CLEAN:
527 ; /* try to free the page below */
532 * If the page has buffers, try to free the buffer mappings
533 * associated with this page. If we succeed we try to free
534 * the page as well.
536 * We do this even if the page is PageDirty().
537 * try_to_release_page() does not perform I/O, but it is
538 * possible for a page to have PageDirty set, but it is actually
539 * clean (all its buffers are clean). This happens if the
540 * buffers were written out directly, with submit_bh(). ext3
541 * will do this, as well as the blockdev mapping.
542 * try_to_release_page() will discover that cleanness and will
543 * drop the buffers and mark the page clean - it can be freed.
545 * Rarely, pages can have buffers and no ->mapping. These are
546 * the pages which were not successfully invalidated in
547 * truncate_complete_page(). We try to drop those buffers here
548 * and if that worked, and the page is no longer mapped into
549 * process address space (page_count == 1) it can be freed.
550 * Otherwise, leave the page on the LRU so it is swappable.
552 if (PagePrivate(page)) {
553 if (!try_to_release_page(page, sc->gfp_mask))
554 goto activate_locked;
555 if (!mapping && page_count(page) == 1)
556 goto free_it;
559 if (!remove_mapping(mapping, page))
560 goto keep_locked;
562 free_it:
563 unlock_page(page);
564 reclaimed++;
565 if (!pagevec_add(&freed_pvec, page))
566 __pagevec_release_nonlru(&freed_pvec);
567 continue;
569 activate_locked:
570 SetPageActive(page);
571 pgactivate++;
572 keep_locked:
573 unlock_page(page);
574 keep:
575 list_add(&page->lru, &ret_pages);
576 BUG_ON(PageLRU(page));
578 list_splice(&ret_pages, page_list);
579 if (pagevec_count(&freed_pvec))
580 __pagevec_release_nonlru(&freed_pvec);
581 mod_page_state(pgactivate, pgactivate);
582 sc->nr_reclaimed += reclaimed;
583 return reclaimed;
586 #ifdef CONFIG_MIGRATION
587 static inline void move_to_lru(struct page *page)
589 list_del(&page->lru);
590 if (PageActive(page)) {
592 * lru_cache_add_active checks that
593 * the PG_active bit is off.
595 ClearPageActive(page);
596 lru_cache_add_active(page);
597 } else {
598 lru_cache_add(page);
600 put_page(page);
604 * Add isolated pages on the list back to the LRU.
606 * returns the number of pages put back.
608 int putback_lru_pages(struct list_head *l)
610 struct page *page;
611 struct page *page2;
612 int count = 0;
614 list_for_each_entry_safe(page, page2, l, lru) {
615 move_to_lru(page);
616 count++;
618 return count;
622 * Non migratable page
624 int fail_migrate_page(struct page *newpage, struct page *page)
626 return -EIO;
628 EXPORT_SYMBOL(fail_migrate_page);
631 * swapout a single page
632 * page is locked upon entry, unlocked on exit
634 static int swap_page(struct page *page)
636 struct address_space *mapping = page_mapping(page);
638 if (page_mapped(page) && mapping)
639 if (try_to_unmap(page, 1) != SWAP_SUCCESS)
640 goto unlock_retry;
642 if (PageDirty(page)) {
643 /* Page is dirty, try to write it out here */
644 switch(pageout(page, mapping)) {
645 case PAGE_KEEP:
646 case PAGE_ACTIVATE:
647 goto unlock_retry;
649 case PAGE_SUCCESS:
650 goto retry;
652 case PAGE_CLEAN:
653 ; /* try to free the page below */
657 if (PagePrivate(page)) {
658 if (!try_to_release_page(page, GFP_KERNEL) ||
659 (!mapping && page_count(page) == 1))
660 goto unlock_retry;
663 if (remove_mapping(mapping, page)) {
664 /* Success */
665 unlock_page(page);
666 return 0;
669 unlock_retry:
670 unlock_page(page);
672 retry:
673 return -EAGAIN;
675 EXPORT_SYMBOL(swap_page);
678 * Page migration was first developed in the context of the memory hotplug
679 * project. The main authors of the migration code are:
681 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
682 * Hirokazu Takahashi <taka@valinux.co.jp>
683 * Dave Hansen <haveblue@us.ibm.com>
684 * Christoph Lameter <clameter@sgi.com>
688 * Remove references for a page and establish the new page with the correct
689 * basic settings to be able to stop accesses to the page.
691 int migrate_page_remove_references(struct page *newpage,
692 struct page *page, int nr_refs)
694 struct address_space *mapping = page_mapping(page);
695 struct page **radix_pointer;
698 * Avoid doing any of the following work if the page count
699 * indicates that the page is in use or truncate has removed
700 * the page.
702 if (!mapping || page_mapcount(page) + nr_refs != page_count(page))
703 return 1;
706 * Establish swap ptes for anonymous pages or destroy pte
707 * maps for files.
709 * In order to reestablish file backed mappings the fault handlers
710 * will take the radix tree_lock which may then be used to stop
711 * processses from accessing this page until the new page is ready.
713 * A process accessing via a swap pte (an anonymous page) will take a
714 * page_lock on the old page which will block the process until the
715 * migration attempt is complete. At that time the PageSwapCache bit
716 * will be examined. If the page was migrated then the PageSwapCache
717 * bit will be clear and the operation to retrieve the page will be
718 * retried which will find the new page in the radix tree. Then a new
719 * direct mapping may be generated based on the radix tree contents.
721 * If the page was not migrated then the PageSwapCache bit
722 * is still set and the operation may continue.
724 try_to_unmap(page, 1);
727 * Give up if we were unable to remove all mappings.
729 if (page_mapcount(page))
730 return 1;
732 write_lock_irq(&mapping->tree_lock);
734 radix_pointer = (struct page **)radix_tree_lookup_slot(
735 &mapping->page_tree,
736 page_index(page));
738 if (!page_mapping(page) || page_count(page) != nr_refs ||
739 *radix_pointer != page) {
740 write_unlock_irq(&mapping->tree_lock);
741 return 1;
745 * Now we know that no one else is looking at the page.
747 * Certain minimal information about a page must be available
748 * in order for other subsystems to properly handle the page if they
749 * find it through the radix tree update before we are finished
750 * copying the page.
752 get_page(newpage);
753 newpage->index = page->index;
754 newpage->mapping = page->mapping;
755 if (PageSwapCache(page)) {
756 SetPageSwapCache(newpage);
757 set_page_private(newpage, page_private(page));
760 *radix_pointer = newpage;
761 __put_page(page);
762 write_unlock_irq(&mapping->tree_lock);
764 return 0;
766 EXPORT_SYMBOL(migrate_page_remove_references);
769 * Copy the page to its new location
771 void migrate_page_copy(struct page *newpage, struct page *page)
773 copy_highpage(newpage, page);
775 if (PageError(page))
776 SetPageError(newpage);
777 if (PageReferenced(page))
778 SetPageReferenced(newpage);
779 if (PageUptodate(page))
780 SetPageUptodate(newpage);
781 if (PageActive(page))
782 SetPageActive(newpage);
783 if (PageChecked(page))
784 SetPageChecked(newpage);
785 if (PageMappedToDisk(page))
786 SetPageMappedToDisk(newpage);
788 if (PageDirty(page)) {
789 clear_page_dirty_for_io(page);
790 set_page_dirty(newpage);
793 ClearPageSwapCache(page);
794 ClearPageActive(page);
795 ClearPagePrivate(page);
796 set_page_private(page, 0);
797 page->mapping = NULL;
800 * If any waiters have accumulated on the new page then
801 * wake them up.
803 if (PageWriteback(newpage))
804 end_page_writeback(newpage);
806 EXPORT_SYMBOL(migrate_page_copy);
809 * Common logic to directly migrate a single page suitable for
810 * pages that do not use PagePrivate.
812 * Pages are locked upon entry and exit.
814 int migrate_page(struct page *newpage, struct page *page)
816 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
818 if (migrate_page_remove_references(newpage, page, 2))
819 return -EAGAIN;
821 migrate_page_copy(newpage, page);
824 * Remove auxiliary swap entries and replace
825 * them with real ptes.
827 * Note that a real pte entry will allow processes that are not
828 * waiting on the page lock to use the new page via the page tables
829 * before the new page is unlocked.
831 remove_from_swap(newpage);
832 return 0;
834 EXPORT_SYMBOL(migrate_page);
837 * migrate_pages
839 * Two lists are passed to this function. The first list
840 * contains the pages isolated from the LRU to be migrated.
841 * The second list contains new pages that the pages isolated
842 * can be moved to. If the second list is NULL then all
843 * pages are swapped out.
845 * The function returns after 10 attempts or if no pages
846 * are movable anymore because to has become empty
847 * or no retryable pages exist anymore.
849 * Return: Number of pages not migrated when "to" ran empty.
851 int migrate_pages(struct list_head *from, struct list_head *to,
852 struct list_head *moved, struct list_head *failed)
854 int retry;
855 int nr_failed = 0;
856 int pass = 0;
857 struct page *page;
858 struct page *page2;
859 int swapwrite = current->flags & PF_SWAPWRITE;
860 int rc;
862 if (!swapwrite)
863 current->flags |= PF_SWAPWRITE;
865 redo:
866 retry = 0;
868 list_for_each_entry_safe(page, page2, from, lru) {
869 struct page *newpage = NULL;
870 struct address_space *mapping;
872 cond_resched();
874 rc = 0;
875 if (page_count(page) == 1)
876 /* page was freed from under us. So we are done. */
877 goto next;
879 if (to && list_empty(to))
880 break;
883 * Skip locked pages during the first two passes to give the
884 * functions holding the lock time to release the page. Later we
885 * use lock_page() to have a higher chance of acquiring the
886 * lock.
888 rc = -EAGAIN;
889 if (pass > 2)
890 lock_page(page);
891 else
892 if (TestSetPageLocked(page))
893 goto next;
896 * Only wait on writeback if we have already done a pass where
897 * we we may have triggered writeouts for lots of pages.
899 if (pass > 0) {
900 wait_on_page_writeback(page);
901 } else {
902 if (PageWriteback(page))
903 goto unlock_page;
907 * Anonymous pages must have swap cache references otherwise
908 * the information contained in the page maps cannot be
909 * preserved.
911 if (PageAnon(page) && !PageSwapCache(page)) {
912 if (!add_to_swap(page, GFP_KERNEL)) {
913 rc = -ENOMEM;
914 goto unlock_page;
918 if (!to) {
919 rc = swap_page(page);
920 goto next;
923 newpage = lru_to_page(to);
924 lock_page(newpage);
927 * Pages are properly locked and writeback is complete.
928 * Try to migrate the page.
930 mapping = page_mapping(page);
931 if (!mapping)
932 goto unlock_both;
934 if (mapping->a_ops->migratepage) {
936 * Most pages have a mapping and most filesystems
937 * should provide a migration function. Anonymous
938 * pages are part of swap space which also has its
939 * own migration function. This is the most common
940 * path for page migration.
942 rc = mapping->a_ops->migratepage(newpage, page);
943 goto unlock_both;
947 * Default handling if a filesystem does not provide
948 * a migration function. We can only migrate clean
949 * pages so try to write out any dirty pages first.
951 if (PageDirty(page)) {
952 switch (pageout(page, mapping)) {
953 case PAGE_KEEP:
954 case PAGE_ACTIVATE:
955 goto unlock_both;
957 case PAGE_SUCCESS:
958 unlock_page(newpage);
959 goto next;
961 case PAGE_CLEAN:
962 ; /* try to migrate the page below */
967 * Buffers are managed in a filesystem specific way.
968 * We must have no buffers or drop them.
970 if (!page_has_buffers(page) ||
971 try_to_release_page(page, GFP_KERNEL)) {
972 rc = migrate_page(newpage, page);
973 goto unlock_both;
977 * On early passes with mapped pages simply
978 * retry. There may be a lock held for some
979 * buffers that may go away. Later
980 * swap them out.
982 if (pass > 4) {
984 * Persistently unable to drop buffers..... As a
985 * measure of last resort we fall back to
986 * swap_page().
988 unlock_page(newpage);
989 newpage = NULL;
990 rc = swap_page(page);
991 goto next;
994 unlock_both:
995 unlock_page(newpage);
997 unlock_page:
998 unlock_page(page);
1000 next:
1001 if (rc == -EAGAIN) {
1002 retry++;
1003 } else if (rc) {
1004 /* Permanent failure */
1005 list_move(&page->lru, failed);
1006 nr_failed++;
1007 } else {
1008 if (newpage) {
1009 /* Successful migration. Return page to LRU */
1010 move_to_lru(newpage);
1012 list_move(&page->lru, moved);
1015 if (retry && pass++ < 10)
1016 goto redo;
1018 if (!swapwrite)
1019 current->flags &= ~PF_SWAPWRITE;
1021 return nr_failed + retry;
1025 * Isolate one page from the LRU lists and put it on the
1026 * indicated list with elevated refcount.
1028 * Result:
1029 * 0 = page not on LRU list
1030 * 1 = page removed from LRU list and added to the specified list.
1032 int isolate_lru_page(struct page *page)
1034 int ret = 0;
1036 if (PageLRU(page)) {
1037 struct zone *zone = page_zone(page);
1038 spin_lock_irq(&zone->lru_lock);
1039 if (TestClearPageLRU(page)) {
1040 ret = 1;
1041 get_page(page);
1042 if (PageActive(page))
1043 del_page_from_active_list(zone, page);
1044 else
1045 del_page_from_inactive_list(zone, page);
1047 spin_unlock_irq(&zone->lru_lock);
1050 return ret;
1052 #endif
1055 * zone->lru_lock is heavily contended. Some of the functions that
1056 * shrink the lists perform better by taking out a batch of pages
1057 * and working on them outside the LRU lock.
1059 * For pagecache intensive workloads, this function is the hottest
1060 * spot in the kernel (apart from copy_*_user functions).
1062 * Appropriate locks must be held before calling this function.
1064 * @nr_to_scan: The number of pages to look through on the list.
1065 * @src: The LRU list to pull pages off.
1066 * @dst: The temp list to put pages on to.
1067 * @scanned: The number of pages that were scanned.
1069 * returns how many pages were moved onto *@dst.
1071 static int isolate_lru_pages(int nr_to_scan, struct list_head *src,
1072 struct list_head *dst, int *scanned)
1074 int nr_taken = 0;
1075 struct page *page;
1076 int scan = 0;
1078 while (scan++ < nr_to_scan && !list_empty(src)) {
1079 page = lru_to_page(src);
1080 prefetchw_prev_lru_page(page, src, flags);
1082 if (!TestClearPageLRU(page))
1083 BUG();
1084 list_del(&page->lru);
1085 if (get_page_testone(page)) {
1087 * It is being freed elsewhere
1089 __put_page(page);
1090 SetPageLRU(page);
1091 list_add(&page->lru, src);
1092 continue;
1093 } else {
1094 list_add(&page->lru, dst);
1095 nr_taken++;
1099 *scanned = scan;
1100 return nr_taken;
1104 * shrink_cache() adds the number of pages reclaimed to sc->nr_reclaimed
1106 static void shrink_cache(struct zone *zone, struct scan_control *sc)
1108 LIST_HEAD(page_list);
1109 struct pagevec pvec;
1110 int max_scan = sc->nr_to_scan;
1112 pagevec_init(&pvec, 1);
1114 lru_add_drain();
1115 spin_lock_irq(&zone->lru_lock);
1116 while (max_scan > 0) {
1117 struct page *page;
1118 int nr_taken;
1119 int nr_scan;
1120 int nr_freed;
1122 nr_taken = isolate_lru_pages(sc->swap_cluster_max,
1123 &zone->inactive_list,
1124 &page_list, &nr_scan);
1125 zone->nr_inactive -= nr_taken;
1126 zone->pages_scanned += nr_scan;
1127 spin_unlock_irq(&zone->lru_lock);
1129 if (nr_taken == 0)
1130 goto done;
1132 max_scan -= nr_scan;
1133 nr_freed = shrink_list(&page_list, sc);
1135 local_irq_disable();
1136 if (current_is_kswapd()) {
1137 __mod_page_state_zone(zone, pgscan_kswapd, nr_scan);
1138 __mod_page_state(kswapd_steal, nr_freed);
1139 } else
1140 __mod_page_state_zone(zone, pgscan_direct, nr_scan);
1141 __mod_page_state_zone(zone, pgsteal, nr_freed);
1143 spin_lock(&zone->lru_lock);
1145 * Put back any unfreeable pages.
1147 while (!list_empty(&page_list)) {
1148 page = lru_to_page(&page_list);
1149 if (TestSetPageLRU(page))
1150 BUG();
1151 list_del(&page->lru);
1152 if (PageActive(page))
1153 add_page_to_active_list(zone, page);
1154 else
1155 add_page_to_inactive_list(zone, page);
1156 if (!pagevec_add(&pvec, page)) {
1157 spin_unlock_irq(&zone->lru_lock);
1158 __pagevec_release(&pvec);
1159 spin_lock_irq(&zone->lru_lock);
1163 spin_unlock_irq(&zone->lru_lock);
1164 done:
1165 pagevec_release(&pvec);
1169 * This moves pages from the active list to the inactive list.
1171 * We move them the other way if the page is referenced by one or more
1172 * processes, from rmap.
1174 * If the pages are mostly unmapped, the processing is fast and it is
1175 * appropriate to hold zone->lru_lock across the whole operation. But if
1176 * the pages are mapped, the processing is slow (page_referenced()) so we
1177 * should drop zone->lru_lock around each page. It's impossible to balance
1178 * this, so instead we remove the pages from the LRU while processing them.
1179 * It is safe to rely on PG_active against the non-LRU pages in here because
1180 * nobody will play with that bit on a non-LRU page.
1182 * The downside is that we have to touch page->_count against each page.
1183 * But we had to alter page->flags anyway.
1185 static void
1186 refill_inactive_zone(struct zone *zone, struct scan_control *sc)
1188 int pgmoved;
1189 int pgdeactivate = 0;
1190 int pgscanned;
1191 int nr_pages = sc->nr_to_scan;
1192 LIST_HEAD(l_hold); /* The pages which were snipped off */
1193 LIST_HEAD(l_inactive); /* Pages to go onto the inactive_list */
1194 LIST_HEAD(l_active); /* Pages to go onto the active_list */
1195 struct page *page;
1196 struct pagevec pvec;
1197 int reclaim_mapped = 0;
1199 if (unlikely(sc->may_swap)) {
1200 long mapped_ratio;
1201 long distress;
1202 long swap_tendency;
1205 * `distress' is a measure of how much trouble we're having
1206 * reclaiming pages. 0 -> no problems. 100 -> great trouble.
1208 distress = 100 >> zone->prev_priority;
1211 * The point of this algorithm is to decide when to start
1212 * reclaiming mapped memory instead of just pagecache. Work out
1213 * how much memory
1214 * is mapped.
1216 mapped_ratio = (sc->nr_mapped * 100) / total_memory;
1219 * Now decide how much we really want to unmap some pages. The
1220 * mapped ratio is downgraded - just because there's a lot of
1221 * mapped memory doesn't necessarily mean that page reclaim
1222 * isn't succeeding.
1224 * The distress ratio is important - we don't want to start
1225 * going oom.
1227 * A 100% value of vm_swappiness overrides this algorithm
1228 * altogether.
1230 swap_tendency = mapped_ratio / 2 + distress + vm_swappiness;
1233 * Now use this metric to decide whether to start moving mapped
1234 * memory onto the inactive list.
1236 if (swap_tendency >= 100)
1237 reclaim_mapped = 1;
1240 lru_add_drain();
1241 spin_lock_irq(&zone->lru_lock);
1242 pgmoved = isolate_lru_pages(nr_pages, &zone->active_list,
1243 &l_hold, &pgscanned);
1244 zone->pages_scanned += pgscanned;
1245 zone->nr_active -= pgmoved;
1246 spin_unlock_irq(&zone->lru_lock);
1248 while (!list_empty(&l_hold)) {
1249 cond_resched();
1250 page = lru_to_page(&l_hold);
1251 list_del(&page->lru);
1252 if (page_mapped(page)) {
1253 if (!reclaim_mapped ||
1254 (total_swap_pages == 0 && PageAnon(page)) ||
1255 page_referenced(page, 0)) {
1256 list_add(&page->lru, &l_active);
1257 continue;
1260 list_add(&page->lru, &l_inactive);
1263 pagevec_init(&pvec, 1);
1264 pgmoved = 0;
1265 spin_lock_irq(&zone->lru_lock);
1266 while (!list_empty(&l_inactive)) {
1267 page = lru_to_page(&l_inactive);
1268 prefetchw_prev_lru_page(page, &l_inactive, flags);
1269 if (TestSetPageLRU(page))
1270 BUG();
1271 if (!TestClearPageActive(page))
1272 BUG();
1273 list_move(&page->lru, &zone->inactive_list);
1274 pgmoved++;
1275 if (!pagevec_add(&pvec, page)) {
1276 zone->nr_inactive += pgmoved;
1277 spin_unlock_irq(&zone->lru_lock);
1278 pgdeactivate += pgmoved;
1279 pgmoved = 0;
1280 if (buffer_heads_over_limit)
1281 pagevec_strip(&pvec);
1282 __pagevec_release(&pvec);
1283 spin_lock_irq(&zone->lru_lock);
1286 zone->nr_inactive += pgmoved;
1287 pgdeactivate += pgmoved;
1288 if (buffer_heads_over_limit) {
1289 spin_unlock_irq(&zone->lru_lock);
1290 pagevec_strip(&pvec);
1291 spin_lock_irq(&zone->lru_lock);
1294 pgmoved = 0;
1295 while (!list_empty(&l_active)) {
1296 page = lru_to_page(&l_active);
1297 prefetchw_prev_lru_page(page, &l_active, flags);
1298 if (TestSetPageLRU(page))
1299 BUG();
1300 BUG_ON(!PageActive(page));
1301 list_move(&page->lru, &zone->active_list);
1302 pgmoved++;
1303 if (!pagevec_add(&pvec, page)) {
1304 zone->nr_active += pgmoved;
1305 pgmoved = 0;
1306 spin_unlock_irq(&zone->lru_lock);
1307 __pagevec_release(&pvec);
1308 spin_lock_irq(&zone->lru_lock);
1311 zone->nr_active += pgmoved;
1312 spin_unlock(&zone->lru_lock);
1314 __mod_page_state_zone(zone, pgrefill, pgscanned);
1315 __mod_page_state(pgdeactivate, pgdeactivate);
1316 local_irq_enable();
1318 pagevec_release(&pvec);
1322 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1324 static void
1325 shrink_zone(struct zone *zone, struct scan_control *sc)
1327 unsigned long nr_active;
1328 unsigned long nr_inactive;
1330 atomic_inc(&zone->reclaim_in_progress);
1333 * Add one to `nr_to_scan' just to make sure that the kernel will
1334 * slowly sift through the active list.
1336 zone->nr_scan_active += (zone->nr_active >> sc->priority) + 1;
1337 nr_active = zone->nr_scan_active;
1338 if (nr_active >= sc->swap_cluster_max)
1339 zone->nr_scan_active = 0;
1340 else
1341 nr_active = 0;
1343 zone->nr_scan_inactive += (zone->nr_inactive >> sc->priority) + 1;
1344 nr_inactive = zone->nr_scan_inactive;
1345 if (nr_inactive >= sc->swap_cluster_max)
1346 zone->nr_scan_inactive = 0;
1347 else
1348 nr_inactive = 0;
1350 while (nr_active || nr_inactive) {
1351 if (nr_active) {
1352 sc->nr_to_scan = min(nr_active,
1353 (unsigned long)sc->swap_cluster_max);
1354 nr_active -= sc->nr_to_scan;
1355 refill_inactive_zone(zone, sc);
1358 if (nr_inactive) {
1359 sc->nr_to_scan = min(nr_inactive,
1360 (unsigned long)sc->swap_cluster_max);
1361 nr_inactive -= sc->nr_to_scan;
1362 shrink_cache(zone, sc);
1366 throttle_vm_writeout();
1368 atomic_dec(&zone->reclaim_in_progress);
1372 * This is the direct reclaim path, for page-allocating processes. We only
1373 * try to reclaim pages from zones which will satisfy the caller's allocation
1374 * request.
1376 * We reclaim from a zone even if that zone is over pages_high. Because:
1377 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1378 * allocation or
1379 * b) The zones may be over pages_high but they must go *over* pages_high to
1380 * satisfy the `incremental min' zone defense algorithm.
1382 * Returns the number of reclaimed pages.
1384 * If a zone is deemed to be full of pinned pages then just give it a light
1385 * scan then give up on it.
1387 static void
1388 shrink_caches(struct zone **zones, struct scan_control *sc)
1390 int i;
1392 for (i = 0; zones[i] != NULL; i++) {
1393 struct zone *zone = zones[i];
1395 if (!populated_zone(zone))
1396 continue;
1398 if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
1399 continue;
1401 zone->temp_priority = sc->priority;
1402 if (zone->prev_priority > sc->priority)
1403 zone->prev_priority = sc->priority;
1405 if (zone->all_unreclaimable && sc->priority != DEF_PRIORITY)
1406 continue; /* Let kswapd poll it */
1408 shrink_zone(zone, sc);
1413 * This is the main entry point to direct page reclaim.
1415 * If a full scan of the inactive list fails to free enough memory then we
1416 * are "out of memory" and something needs to be killed.
1418 * If the caller is !__GFP_FS then the probability of a failure is reasonably
1419 * high - the zone may be full of dirty or under-writeback pages, which this
1420 * caller can't do much about. We kick pdflush and take explicit naps in the
1421 * hope that some of these pages can be written. But if the allocating task
1422 * holds filesystem locks which prevent writeout this might not work, and the
1423 * allocation attempt will fail.
1425 int try_to_free_pages(struct zone **zones, gfp_t gfp_mask)
1427 int priority;
1428 int ret = 0;
1429 int total_scanned = 0, total_reclaimed = 0;
1430 struct reclaim_state *reclaim_state = current->reclaim_state;
1431 struct scan_control sc;
1432 unsigned long lru_pages = 0;
1433 int i;
1435 sc.gfp_mask = gfp_mask;
1436 sc.may_writepage = !laptop_mode;
1437 sc.may_swap = 1;
1439 inc_page_state(allocstall);
1441 for (i = 0; zones[i] != NULL; i++) {
1442 struct zone *zone = zones[i];
1444 if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
1445 continue;
1447 zone->temp_priority = DEF_PRIORITY;
1448 lru_pages += zone->nr_active + zone->nr_inactive;
1451 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1452 sc.nr_mapped = read_page_state(nr_mapped);
1453 sc.nr_scanned = 0;
1454 sc.nr_reclaimed = 0;
1455 sc.priority = priority;
1456 sc.swap_cluster_max = SWAP_CLUSTER_MAX;
1457 if (!priority)
1458 disable_swap_token();
1459 shrink_caches(zones, &sc);
1460 shrink_slab(sc.nr_scanned, gfp_mask, lru_pages);
1461 if (reclaim_state) {
1462 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
1463 reclaim_state->reclaimed_slab = 0;
1465 total_scanned += sc.nr_scanned;
1466 total_reclaimed += sc.nr_reclaimed;
1467 if (total_reclaimed >= sc.swap_cluster_max) {
1468 ret = 1;
1469 goto out;
1473 * Try to write back as many pages as we just scanned. This
1474 * tends to cause slow streaming writers to write data to the
1475 * disk smoothly, at the dirtying rate, which is nice. But
1476 * that's undesirable in laptop mode, where we *want* lumpy
1477 * writeout. So in laptop mode, write out the whole world.
1479 if (total_scanned > sc.swap_cluster_max + sc.swap_cluster_max/2) {
1480 wakeup_pdflush(laptop_mode ? 0 : total_scanned);
1481 sc.may_writepage = 1;
1484 /* Take a nap, wait for some writeback to complete */
1485 if (sc.nr_scanned && priority < DEF_PRIORITY - 2)
1486 blk_congestion_wait(WRITE, HZ/10);
1488 out:
1489 for (i = 0; zones[i] != 0; i++) {
1490 struct zone *zone = zones[i];
1492 if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
1493 continue;
1495 zone->prev_priority = zone->temp_priority;
1497 return ret;
1501 * For kswapd, balance_pgdat() will work across all this node's zones until
1502 * they are all at pages_high.
1504 * If `nr_pages' is non-zero then it is the number of pages which are to be
1505 * reclaimed, regardless of the zone occupancies. This is a software suspend
1506 * special.
1508 * Returns the number of pages which were actually freed.
1510 * There is special handling here for zones which are full of pinned pages.
1511 * This can happen if the pages are all mlocked, or if they are all used by
1512 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
1513 * What we do is to detect the case where all pages in the zone have been
1514 * scanned twice and there has been zero successful reclaim. Mark the zone as
1515 * dead and from now on, only perform a short scan. Basically we're polling
1516 * the zone for when the problem goes away.
1518 * kswapd scans the zones in the highmem->normal->dma direction. It skips
1519 * zones which have free_pages > pages_high, but once a zone is found to have
1520 * free_pages <= pages_high, we scan that zone and the lower zones regardless
1521 * of the number of free pages in the lower zones. This interoperates with
1522 * the page allocator fallback scheme to ensure that aging of pages is balanced
1523 * across the zones.
1525 static int balance_pgdat(pg_data_t *pgdat, int nr_pages, int order)
1527 int to_free = nr_pages;
1528 int all_zones_ok;
1529 int priority;
1530 int i;
1531 int total_scanned, total_reclaimed;
1532 struct reclaim_state *reclaim_state = current->reclaim_state;
1533 struct scan_control sc;
1535 loop_again:
1536 total_scanned = 0;
1537 total_reclaimed = 0;
1538 sc.gfp_mask = GFP_KERNEL;
1539 sc.may_writepage = !laptop_mode;
1540 sc.may_swap = 1;
1541 sc.nr_mapped = read_page_state(nr_mapped);
1543 inc_page_state(pageoutrun);
1545 for (i = 0; i < pgdat->nr_zones; i++) {
1546 struct zone *zone = pgdat->node_zones + i;
1548 zone->temp_priority = DEF_PRIORITY;
1551 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1552 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
1553 unsigned long lru_pages = 0;
1555 /* The swap token gets in the way of swapout... */
1556 if (!priority)
1557 disable_swap_token();
1559 all_zones_ok = 1;
1561 if (nr_pages == 0) {
1563 * Scan in the highmem->dma direction for the highest
1564 * zone which needs scanning
1566 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
1567 struct zone *zone = pgdat->node_zones + i;
1569 if (!populated_zone(zone))
1570 continue;
1572 if (zone->all_unreclaimable &&
1573 priority != DEF_PRIORITY)
1574 continue;
1576 if (!zone_watermark_ok(zone, order,
1577 zone->pages_high, 0, 0)) {
1578 end_zone = i;
1579 goto scan;
1582 goto out;
1583 } else {
1584 end_zone = pgdat->nr_zones - 1;
1586 scan:
1587 for (i = 0; i <= end_zone; i++) {
1588 struct zone *zone = pgdat->node_zones + i;
1590 lru_pages += zone->nr_active + zone->nr_inactive;
1594 * Now scan the zone in the dma->highmem direction, stopping
1595 * at the last zone which needs scanning.
1597 * We do this because the page allocator works in the opposite
1598 * direction. This prevents the page allocator from allocating
1599 * pages behind kswapd's direction of progress, which would
1600 * cause too much scanning of the lower zones.
1602 for (i = 0; i <= end_zone; i++) {
1603 struct zone *zone = pgdat->node_zones + i;
1604 int nr_slab;
1606 if (!populated_zone(zone))
1607 continue;
1609 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1610 continue;
1612 if (nr_pages == 0) { /* Not software suspend */
1613 if (!zone_watermark_ok(zone, order,
1614 zone->pages_high, end_zone, 0))
1615 all_zones_ok = 0;
1617 zone->temp_priority = priority;
1618 if (zone->prev_priority > priority)
1619 zone->prev_priority = priority;
1620 sc.nr_scanned = 0;
1621 sc.nr_reclaimed = 0;
1622 sc.priority = priority;
1623 sc.swap_cluster_max = nr_pages? nr_pages : SWAP_CLUSTER_MAX;
1624 shrink_zone(zone, &sc);
1625 reclaim_state->reclaimed_slab = 0;
1626 nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
1627 lru_pages);
1628 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
1629 total_reclaimed += sc.nr_reclaimed;
1630 total_scanned += sc.nr_scanned;
1631 if (zone->all_unreclaimable)
1632 continue;
1633 if (nr_slab == 0 && zone->pages_scanned >=
1634 (zone->nr_active + zone->nr_inactive) * 4)
1635 zone->all_unreclaimable = 1;
1637 * If we've done a decent amount of scanning and
1638 * the reclaim ratio is low, start doing writepage
1639 * even in laptop mode
1641 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
1642 total_scanned > total_reclaimed+total_reclaimed/2)
1643 sc.may_writepage = 1;
1645 if (nr_pages && to_free > total_reclaimed)
1646 continue; /* swsusp: need to do more work */
1647 if (all_zones_ok)
1648 break; /* kswapd: all done */
1650 * OK, kswapd is getting into trouble. Take a nap, then take
1651 * another pass across the zones.
1653 if (total_scanned && priority < DEF_PRIORITY - 2)
1654 blk_congestion_wait(WRITE, HZ/10);
1657 * We do this so kswapd doesn't build up large priorities for
1658 * example when it is freeing in parallel with allocators. It
1659 * matches the direct reclaim path behaviour in terms of impact
1660 * on zone->*_priority.
1662 if ((total_reclaimed >= SWAP_CLUSTER_MAX) && (!nr_pages))
1663 break;
1665 out:
1666 for (i = 0; i < pgdat->nr_zones; i++) {
1667 struct zone *zone = pgdat->node_zones + i;
1669 zone->prev_priority = zone->temp_priority;
1671 if (!all_zones_ok) {
1672 cond_resched();
1673 goto loop_again;
1676 return total_reclaimed;
1680 * The background pageout daemon, started as a kernel thread
1681 * from the init process.
1683 * This basically trickles out pages so that we have _some_
1684 * free memory available even if there is no other activity
1685 * that frees anything up. This is needed for things like routing
1686 * etc, where we otherwise might have all activity going on in
1687 * asynchronous contexts that cannot page things out.
1689 * If there are applications that are active memory-allocators
1690 * (most normal use), this basically shouldn't matter.
1692 static int kswapd(void *p)
1694 unsigned long order;
1695 pg_data_t *pgdat = (pg_data_t*)p;
1696 struct task_struct *tsk = current;
1697 DEFINE_WAIT(wait);
1698 struct reclaim_state reclaim_state = {
1699 .reclaimed_slab = 0,
1701 cpumask_t cpumask;
1703 daemonize("kswapd%d", pgdat->node_id);
1704 cpumask = node_to_cpumask(pgdat->node_id);
1705 if (!cpus_empty(cpumask))
1706 set_cpus_allowed(tsk, cpumask);
1707 current->reclaim_state = &reclaim_state;
1710 * Tell the memory management that we're a "memory allocator",
1711 * and that if we need more memory we should get access to it
1712 * regardless (see "__alloc_pages()"). "kswapd" should
1713 * never get caught in the normal page freeing logic.
1715 * (Kswapd normally doesn't need memory anyway, but sometimes
1716 * you need a small amount of memory in order to be able to
1717 * page out something else, and this flag essentially protects
1718 * us from recursively trying to free more memory as we're
1719 * trying to free the first piece of memory in the first place).
1721 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
1723 order = 0;
1724 for ( ; ; ) {
1725 unsigned long new_order;
1727 try_to_freeze();
1729 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
1730 new_order = pgdat->kswapd_max_order;
1731 pgdat->kswapd_max_order = 0;
1732 if (order < new_order) {
1734 * Don't sleep if someone wants a larger 'order'
1735 * allocation
1737 order = new_order;
1738 } else {
1739 schedule();
1740 order = pgdat->kswapd_max_order;
1742 finish_wait(&pgdat->kswapd_wait, &wait);
1744 balance_pgdat(pgdat, 0, order);
1746 return 0;
1750 * A zone is low on free memory, so wake its kswapd task to service it.
1752 void wakeup_kswapd(struct zone *zone, int order)
1754 pg_data_t *pgdat;
1756 if (!populated_zone(zone))
1757 return;
1759 pgdat = zone->zone_pgdat;
1760 if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0))
1761 return;
1762 if (pgdat->kswapd_max_order < order)
1763 pgdat->kswapd_max_order = order;
1764 if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
1765 return;
1766 if (!waitqueue_active(&pgdat->kswapd_wait))
1767 return;
1768 wake_up_interruptible(&pgdat->kswapd_wait);
1771 #ifdef CONFIG_PM
1773 * Try to free `nr_pages' of memory, system-wide. Returns the number of freed
1774 * pages.
1776 int shrink_all_memory(int nr_pages)
1778 pg_data_t *pgdat;
1779 int nr_to_free = nr_pages;
1780 int ret = 0;
1781 struct reclaim_state reclaim_state = {
1782 .reclaimed_slab = 0,
1785 current->reclaim_state = &reclaim_state;
1786 for_each_pgdat(pgdat) {
1787 int freed;
1788 freed = balance_pgdat(pgdat, nr_to_free, 0);
1789 ret += freed;
1790 nr_to_free -= freed;
1791 if (nr_to_free <= 0)
1792 break;
1794 current->reclaim_state = NULL;
1795 return ret;
1797 #endif
1799 #ifdef CONFIG_HOTPLUG_CPU
1800 /* It's optimal to keep kswapds on the same CPUs as their memory, but
1801 not required for correctness. So if the last cpu in a node goes
1802 away, we get changed to run anywhere: as the first one comes back,
1803 restore their cpu bindings. */
1804 static int __devinit cpu_callback(struct notifier_block *nfb,
1805 unsigned long action,
1806 void *hcpu)
1808 pg_data_t *pgdat;
1809 cpumask_t mask;
1811 if (action == CPU_ONLINE) {
1812 for_each_pgdat(pgdat) {
1813 mask = node_to_cpumask(pgdat->node_id);
1814 if (any_online_cpu(mask) != NR_CPUS)
1815 /* One of our CPUs online: restore mask */
1816 set_cpus_allowed(pgdat->kswapd, mask);
1819 return NOTIFY_OK;
1821 #endif /* CONFIG_HOTPLUG_CPU */
1823 static int __init kswapd_init(void)
1825 pg_data_t *pgdat;
1826 swap_setup();
1827 for_each_pgdat(pgdat)
1828 pgdat->kswapd
1829 = find_task_by_pid(kernel_thread(kswapd, pgdat, CLONE_KERNEL));
1830 total_memory = nr_free_pagecache_pages();
1831 hotcpu_notifier(cpu_callback, 0);
1832 return 0;
1835 module_init(kswapd_init)
1837 #ifdef CONFIG_NUMA
1839 * Zone reclaim mode
1841 * If non-zero call zone_reclaim when the number of free pages falls below
1842 * the watermarks.
1844 * In the future we may add flags to the mode. However, the page allocator
1845 * should only have to check that zone_reclaim_mode != 0 before calling
1846 * zone_reclaim().
1848 int zone_reclaim_mode __read_mostly;
1850 #define RECLAIM_OFF 0
1851 #define RECLAIM_ZONE (1<<0) /* Run shrink_cache on the zone */
1852 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
1853 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
1854 #define RECLAIM_SLAB (1<<3) /* Do a global slab shrink if the zone is out of memory */
1857 * Mininum time between zone reclaim scans
1859 int zone_reclaim_interval __read_mostly = 30*HZ;
1862 * Priority for ZONE_RECLAIM. This determines the fraction of pages
1863 * of a node considered for each zone_reclaim. 4 scans 1/16th of
1864 * a zone.
1866 #define ZONE_RECLAIM_PRIORITY 4
1869 * Try to free up some pages from this zone through reclaim.
1871 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
1873 int nr_pages;
1874 struct task_struct *p = current;
1875 struct reclaim_state reclaim_state;
1876 struct scan_control sc;
1877 cpumask_t mask;
1878 int node_id;
1880 if (time_before(jiffies,
1881 zone->last_unsuccessful_zone_reclaim + zone_reclaim_interval))
1882 return 0;
1884 if (!(gfp_mask & __GFP_WAIT) ||
1885 zone->all_unreclaimable ||
1886 atomic_read(&zone->reclaim_in_progress) > 0)
1887 return 0;
1889 node_id = zone->zone_pgdat->node_id;
1890 mask = node_to_cpumask(node_id);
1891 if (!cpus_empty(mask) && node_id != numa_node_id())
1892 return 0;
1894 sc.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE);
1895 sc.may_swap = !!(zone_reclaim_mode & RECLAIM_SWAP);
1896 sc.nr_scanned = 0;
1897 sc.nr_reclaimed = 0;
1898 sc.priority = ZONE_RECLAIM_PRIORITY + 1;
1899 sc.nr_mapped = read_page_state(nr_mapped);
1900 sc.gfp_mask = gfp_mask;
1902 disable_swap_token();
1904 nr_pages = 1 << order;
1905 if (nr_pages > SWAP_CLUSTER_MAX)
1906 sc.swap_cluster_max = nr_pages;
1907 else
1908 sc.swap_cluster_max = SWAP_CLUSTER_MAX;
1910 cond_resched();
1912 * We need to be able to allocate from the reserves for RECLAIM_SWAP
1913 * and we also need to be able to write out pages for RECLAIM_WRITE
1914 * and RECLAIM_SWAP.
1916 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
1917 reclaim_state.reclaimed_slab = 0;
1918 p->reclaim_state = &reclaim_state;
1921 * Free memory by calling shrink zone with increasing priorities
1922 * until we have enough memory freed.
1924 do {
1925 sc.priority--;
1926 shrink_zone(zone, &sc);
1928 } while (sc.nr_reclaimed < nr_pages && sc.priority > 0);
1930 if (sc.nr_reclaimed < nr_pages && (zone_reclaim_mode & RECLAIM_SLAB)) {
1932 * shrink_slab does not currently allow us to determine
1933 * how many pages were freed in the zone. So we just
1934 * shake the slab and then go offnode for a single allocation.
1936 * shrink_slab will free memory on all zones and may take
1937 * a long time.
1939 shrink_slab(sc.nr_scanned, gfp_mask, order);
1942 p->reclaim_state = NULL;
1943 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
1945 if (sc.nr_reclaimed == 0)
1946 zone->last_unsuccessful_zone_reclaim = jiffies;
1948 return sc.nr_reclaimed >= nr_pages;
1950 #endif