4 * Copyright (C) 1991, 1992, 1999 Linus Torvalds
8 #include <linux/file.h>
9 #include <linux/poll.h>
10 #include <linux/slab.h>
11 #include <linux/module.h>
12 #include <linux/init.h>
14 #include <linux/mount.h>
15 #include <linux/pipe_fs_i.h>
16 #include <linux/uio.h>
17 #include <linux/highmem.h>
18 #include <linux/pagemap.h>
19 #include <linux/audit.h>
20 #include <linux/syscalls.h>
22 #include <asm/uaccess.h>
23 #include <asm/ioctls.h>
26 * We use a start+len construction, which provides full use of the
28 * -- Florian Coosmann (FGC)
30 * Reads with count = 0 should always return 0.
31 * -- Julian Bradfield 1999-06-07.
33 * FIFOs and Pipes now generate SIGIO for both readers and writers.
34 * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16
36 * pipe_read & write cleanup
37 * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09
40 /* Drop the inode semaphore and wait for a pipe event, atomically */
41 void pipe_wait(struct pipe_inode_info
*pipe
)
46 * Pipes are system-local resources, so sleeping on them
47 * is considered a noninteractive wait:
49 prepare_to_wait(&pipe
->wait
, &wait
, TASK_INTERRUPTIBLE
);
51 mutex_unlock(&pipe
->inode
->i_mutex
);
53 finish_wait(&pipe
->wait
, &wait
);
55 mutex_lock(&pipe
->inode
->i_mutex
);
59 pipe_iov_copy_from_user(void *to
, struct iovec
*iov
, unsigned long len
,
67 copy
= min_t(unsigned long, len
, iov
->iov_len
);
70 if (__copy_from_user_inatomic(to
, iov
->iov_base
, copy
))
73 if (copy_from_user(to
, iov
->iov_base
, copy
))
78 iov
->iov_base
+= copy
;
85 pipe_iov_copy_to_user(struct iovec
*iov
, const void *from
, unsigned long len
,
93 copy
= min_t(unsigned long, len
, iov
->iov_len
);
96 if (__copy_to_user_inatomic(iov
->iov_base
, from
, copy
))
99 if (copy_to_user(iov
->iov_base
, from
, copy
))
104 iov
->iov_base
+= copy
;
105 iov
->iov_len
-= copy
;
111 * Attempt to pre-fault in the user memory, so we can use atomic copies.
112 * Returns the number of bytes not faulted in.
114 static int iov_fault_in_pages_write(struct iovec
*iov
, unsigned long len
)
116 while (!iov
->iov_len
)
120 unsigned long this_len
;
122 this_len
= min_t(unsigned long, len
, iov
->iov_len
);
123 if (fault_in_pages_writeable(iov
->iov_base
, this_len
))
134 * Pre-fault in the user memory, so we can use atomic copies.
136 static void iov_fault_in_pages_read(struct iovec
*iov
, unsigned long len
)
138 while (!iov
->iov_len
)
142 unsigned long this_len
;
144 this_len
= min_t(unsigned long, len
, iov
->iov_len
);
145 fault_in_pages_readable(iov
->iov_base
, this_len
);
151 static void anon_pipe_buf_release(struct pipe_inode_info
*pipe
,
152 struct pipe_buffer
*buf
)
154 struct page
*page
= buf
->page
;
157 * If nobody else uses this page, and we don't already have a
158 * temporary page, let's keep track of it as a one-deep
159 * allocation cache. (Otherwise just release our reference to it)
161 if (page_count(page
) == 1 && !pipe
->tmp_page
)
162 pipe
->tmp_page
= page
;
164 page_cache_release(page
);
168 * generic_pipe_buf_map - virtually map a pipe buffer
169 * @pipe: the pipe that the buffer belongs to
170 * @buf: the buffer that should be mapped
171 * @atomic: whether to use an atomic map
174 * This function returns a kernel virtual address mapping for the
175 * pipe_buffer passed in @buf. If @atomic is set, an atomic map is provided
176 * and the caller has to be careful not to fault before calling
177 * the unmap function.
179 * Note that this function occupies KM_USER0 if @atomic != 0.
181 void *generic_pipe_buf_map(struct pipe_inode_info
*pipe
,
182 struct pipe_buffer
*buf
, int atomic
)
185 buf
->flags
|= PIPE_BUF_FLAG_ATOMIC
;
186 return kmap_atomic(buf
->page
, KM_USER0
);
189 return kmap(buf
->page
);
193 * generic_pipe_buf_unmap - unmap a previously mapped pipe buffer
194 * @pipe: the pipe that the buffer belongs to
195 * @buf: the buffer that should be unmapped
196 * @map_data: the data that the mapping function returned
199 * This function undoes the mapping that ->map() provided.
201 void generic_pipe_buf_unmap(struct pipe_inode_info
*pipe
,
202 struct pipe_buffer
*buf
, void *map_data
)
204 if (buf
->flags
& PIPE_BUF_FLAG_ATOMIC
) {
205 buf
->flags
&= ~PIPE_BUF_FLAG_ATOMIC
;
206 kunmap_atomic(map_data
, KM_USER0
);
212 * generic_pipe_buf_steal - attempt to take ownership of a &pipe_buffer
213 * @pipe: the pipe that the buffer belongs to
214 * @buf: the buffer to attempt to steal
217 * This function attempts to steal the &struct page attached to
218 * @buf. If successful, this function returns 0 and returns with
219 * the page locked. The caller may then reuse the page for whatever
220 * he wishes; the typical use is insertion into a different file
223 int generic_pipe_buf_steal(struct pipe_inode_info
*pipe
,
224 struct pipe_buffer
*buf
)
226 struct page
*page
= buf
->page
;
229 * A reference of one is golden, that means that the owner of this
230 * page is the only one holding a reference to it. lock the page
233 if (page_count(page
) == 1) {
242 * generic_pipe_buf_get - get a reference to a &struct pipe_buffer
243 * @pipe: the pipe that the buffer belongs to
244 * @buf: the buffer to get a reference to
247 * This function grabs an extra reference to @buf. It's used in
248 * in the tee() system call, when we duplicate the buffers in one
251 void generic_pipe_buf_get(struct pipe_inode_info
*pipe
, struct pipe_buffer
*buf
)
253 page_cache_get(buf
->page
);
257 * generic_pipe_buf_confirm - verify contents of the pipe buffer
258 * @info: the pipe that the buffer belongs to
259 * @buf: the buffer to confirm
262 * This function does nothing, because the generic pipe code uses
263 * pages that are always good when inserted into the pipe.
265 int generic_pipe_buf_confirm(struct pipe_inode_info
*info
,
266 struct pipe_buffer
*buf
)
271 static const struct pipe_buf_operations anon_pipe_buf_ops
= {
273 .map
= generic_pipe_buf_map
,
274 .unmap
= generic_pipe_buf_unmap
,
275 .confirm
= generic_pipe_buf_confirm
,
276 .release
= anon_pipe_buf_release
,
277 .steal
= generic_pipe_buf_steal
,
278 .get
= generic_pipe_buf_get
,
282 pipe_read(struct kiocb
*iocb
, const struct iovec
*_iov
,
283 unsigned long nr_segs
, loff_t pos
)
285 struct file
*filp
= iocb
->ki_filp
;
286 struct inode
*inode
= filp
->f_path
.dentry
->d_inode
;
287 struct pipe_inode_info
*pipe
;
290 struct iovec
*iov
= (struct iovec
*)_iov
;
293 total_len
= iov_length(iov
, nr_segs
);
294 /* Null read succeeds. */
295 if (unlikely(total_len
== 0))
300 mutex_lock(&inode
->i_mutex
);
301 pipe
= inode
->i_pipe
;
303 int bufs
= pipe
->nrbufs
;
305 int curbuf
= pipe
->curbuf
;
306 struct pipe_buffer
*buf
= pipe
->bufs
+ curbuf
;
307 const struct pipe_buf_operations
*ops
= buf
->ops
;
309 size_t chars
= buf
->len
;
312 if (chars
> total_len
)
315 error
= ops
->confirm(pipe
, buf
);
322 atomic
= !iov_fault_in_pages_write(iov
, chars
);
324 addr
= ops
->map(pipe
, buf
, atomic
);
325 error
= pipe_iov_copy_to_user(iov
, addr
+ buf
->offset
, chars
, atomic
);
326 ops
->unmap(pipe
, buf
, addr
);
327 if (unlikely(error
)) {
329 * Just retry with the slow path if we failed.
340 buf
->offset
+= chars
;
344 ops
->release(pipe
, buf
);
345 curbuf
= (curbuf
+ 1) & (PIPE_BUFFERS
-1);
346 pipe
->curbuf
= curbuf
;
347 pipe
->nrbufs
= --bufs
;
352 break; /* common path: read succeeded */
354 if (bufs
) /* More to do? */
358 if (!pipe
->waiting_writers
) {
359 /* syscall merging: Usually we must not sleep
360 * if O_NONBLOCK is set, or if we got some data.
361 * But if a writer sleeps in kernel space, then
362 * we can wait for that data without violating POSIX.
366 if (filp
->f_flags
& O_NONBLOCK
) {
371 if (signal_pending(current
)) {
377 wake_up_interruptible_sync(&pipe
->wait
);
378 kill_fasync(&pipe
->fasync_writers
, SIGIO
, POLL_OUT
);
382 mutex_unlock(&inode
->i_mutex
);
384 /* Signal writers asynchronously that there is more room. */
386 wake_up_interruptible_sync(&pipe
->wait
);
387 kill_fasync(&pipe
->fasync_writers
, SIGIO
, POLL_OUT
);
395 pipe_write(struct kiocb
*iocb
, const struct iovec
*_iov
,
396 unsigned long nr_segs
, loff_t ppos
)
398 struct file
*filp
= iocb
->ki_filp
;
399 struct inode
*inode
= filp
->f_path
.dentry
->d_inode
;
400 struct pipe_inode_info
*pipe
;
403 struct iovec
*iov
= (struct iovec
*)_iov
;
407 total_len
= iov_length(iov
, nr_segs
);
408 /* Null write succeeds. */
409 if (unlikely(total_len
== 0))
414 mutex_lock(&inode
->i_mutex
);
415 pipe
= inode
->i_pipe
;
417 if (!pipe
->readers
) {
418 send_sig(SIGPIPE
, current
, 0);
423 /* We try to merge small writes */
424 chars
= total_len
& (PAGE_SIZE
-1); /* size of the last buffer */
425 if (pipe
->nrbufs
&& chars
!= 0) {
426 int lastbuf
= (pipe
->curbuf
+ pipe
->nrbufs
- 1) &
428 struct pipe_buffer
*buf
= pipe
->bufs
+ lastbuf
;
429 const struct pipe_buf_operations
*ops
= buf
->ops
;
430 int offset
= buf
->offset
+ buf
->len
;
432 if (ops
->can_merge
&& offset
+ chars
<= PAGE_SIZE
) {
433 int error
, atomic
= 1;
436 error
= ops
->confirm(pipe
, buf
);
440 iov_fault_in_pages_read(iov
, chars
);
442 addr
= ops
->map(pipe
, buf
, atomic
);
443 error
= pipe_iov_copy_from_user(offset
+ addr
, iov
,
445 ops
->unmap(pipe
, buf
, addr
);
466 if (!pipe
->readers
) {
467 send_sig(SIGPIPE
, current
, 0);
473 if (bufs
< PIPE_BUFFERS
) {
474 int newbuf
= (pipe
->curbuf
+ bufs
) & (PIPE_BUFFERS
-1);
475 struct pipe_buffer
*buf
= pipe
->bufs
+ newbuf
;
476 struct page
*page
= pipe
->tmp_page
;
478 int error
, atomic
= 1;
481 page
= alloc_page(GFP_HIGHUSER
);
482 if (unlikely(!page
)) {
483 ret
= ret
? : -ENOMEM
;
486 pipe
->tmp_page
= page
;
488 /* Always wake up, even if the copy fails. Otherwise
489 * we lock up (O_NONBLOCK-)readers that sleep due to
491 * FIXME! Is this really true?
495 if (chars
> total_len
)
498 iov_fault_in_pages_read(iov
, chars
);
501 src
= kmap_atomic(page
, KM_USER0
);
505 error
= pipe_iov_copy_from_user(src
, iov
, chars
,
508 kunmap_atomic(src
, KM_USER0
);
512 if (unlikely(error
)) {
523 /* Insert it into the buffer array */
525 buf
->ops
= &anon_pipe_buf_ops
;
528 pipe
->nrbufs
= ++bufs
;
529 pipe
->tmp_page
= NULL
;
535 if (bufs
< PIPE_BUFFERS
)
537 if (filp
->f_flags
& O_NONBLOCK
) {
542 if (signal_pending(current
)) {
548 wake_up_interruptible_sync(&pipe
->wait
);
549 kill_fasync(&pipe
->fasync_readers
, SIGIO
, POLL_IN
);
552 pipe
->waiting_writers
++;
554 pipe
->waiting_writers
--;
557 mutex_unlock(&inode
->i_mutex
);
559 wake_up_interruptible_sync(&pipe
->wait
);
560 kill_fasync(&pipe
->fasync_readers
, SIGIO
, POLL_IN
);
563 file_update_time(filp
);
568 bad_pipe_r(struct file
*filp
, char __user
*buf
, size_t count
, loff_t
*ppos
)
574 bad_pipe_w(struct file
*filp
, const char __user
*buf
, size_t count
,
580 static long pipe_ioctl(struct file
*filp
, unsigned int cmd
, unsigned long arg
)
582 struct inode
*inode
= filp
->f_path
.dentry
->d_inode
;
583 struct pipe_inode_info
*pipe
;
584 int count
, buf
, nrbufs
;
588 mutex_lock(&inode
->i_mutex
);
589 pipe
= inode
->i_pipe
;
592 nrbufs
= pipe
->nrbufs
;
593 while (--nrbufs
>= 0) {
594 count
+= pipe
->bufs
[buf
].len
;
595 buf
= (buf
+1) & (PIPE_BUFFERS
-1);
597 mutex_unlock(&inode
->i_mutex
);
599 return put_user(count
, (int __user
*)arg
);
605 /* No kernel lock held - fine */
607 pipe_poll(struct file
*filp
, poll_table
*wait
)
610 struct inode
*inode
= filp
->f_path
.dentry
->d_inode
;
611 struct pipe_inode_info
*pipe
= inode
->i_pipe
;
614 poll_wait(filp
, &pipe
->wait
, wait
);
616 /* Reading only -- no need for acquiring the semaphore. */
617 nrbufs
= pipe
->nrbufs
;
619 if (filp
->f_mode
& FMODE_READ
) {
620 mask
= (nrbufs
> 0) ? POLLIN
| POLLRDNORM
: 0;
621 if (!pipe
->writers
&& filp
->f_version
!= pipe
->w_counter
)
625 if (filp
->f_mode
& FMODE_WRITE
) {
626 mask
|= (nrbufs
< PIPE_BUFFERS
) ? POLLOUT
| POLLWRNORM
: 0;
628 * Most Unices do not set POLLERR for FIFOs but on Linux they
629 * behave exactly like pipes for poll().
639 pipe_release(struct inode
*inode
, int decr
, int decw
)
641 struct pipe_inode_info
*pipe
;
643 mutex_lock(&inode
->i_mutex
);
644 pipe
= inode
->i_pipe
;
645 pipe
->readers
-= decr
;
646 pipe
->writers
-= decw
;
648 if (!pipe
->readers
&& !pipe
->writers
) {
649 free_pipe_info(inode
);
651 wake_up_interruptible_sync(&pipe
->wait
);
652 kill_fasync(&pipe
->fasync_readers
, SIGIO
, POLL_IN
);
653 kill_fasync(&pipe
->fasync_writers
, SIGIO
, POLL_OUT
);
655 mutex_unlock(&inode
->i_mutex
);
661 pipe_read_fasync(int fd
, struct file
*filp
, int on
)
663 struct inode
*inode
= filp
->f_path
.dentry
->d_inode
;
666 mutex_lock(&inode
->i_mutex
);
667 retval
= fasync_helper(fd
, filp
, on
, &inode
->i_pipe
->fasync_readers
);
668 mutex_unlock(&inode
->i_mutex
);
678 pipe_write_fasync(int fd
, struct file
*filp
, int on
)
680 struct inode
*inode
= filp
->f_path
.dentry
->d_inode
;
683 mutex_lock(&inode
->i_mutex
);
684 retval
= fasync_helper(fd
, filp
, on
, &inode
->i_pipe
->fasync_writers
);
685 mutex_unlock(&inode
->i_mutex
);
695 pipe_rdwr_fasync(int fd
, struct file
*filp
, int on
)
697 struct inode
*inode
= filp
->f_path
.dentry
->d_inode
;
698 struct pipe_inode_info
*pipe
= inode
->i_pipe
;
701 mutex_lock(&inode
->i_mutex
);
703 retval
= fasync_helper(fd
, filp
, on
, &pipe
->fasync_readers
);
706 retval
= fasync_helper(fd
, filp
, on
, &pipe
->fasync_writers
);
708 mutex_unlock(&inode
->i_mutex
);
718 pipe_read_release(struct inode
*inode
, struct file
*filp
)
720 pipe_read_fasync(-1, filp
, 0);
721 return pipe_release(inode
, 1, 0);
725 pipe_write_release(struct inode
*inode
, struct file
*filp
)
727 pipe_write_fasync(-1, filp
, 0);
728 return pipe_release(inode
, 0, 1);
732 pipe_rdwr_release(struct inode
*inode
, struct file
*filp
)
736 pipe_rdwr_fasync(-1, filp
, 0);
737 decr
= (filp
->f_mode
& FMODE_READ
) != 0;
738 decw
= (filp
->f_mode
& FMODE_WRITE
) != 0;
739 return pipe_release(inode
, decr
, decw
);
743 pipe_read_open(struct inode
*inode
, struct file
*filp
)
745 /* We could have perhaps used atomic_t, but this and friends
746 below are the only places. So it doesn't seem worthwhile. */
747 mutex_lock(&inode
->i_mutex
);
748 inode
->i_pipe
->readers
++;
749 mutex_unlock(&inode
->i_mutex
);
755 pipe_write_open(struct inode
*inode
, struct file
*filp
)
757 mutex_lock(&inode
->i_mutex
);
758 inode
->i_pipe
->writers
++;
759 mutex_unlock(&inode
->i_mutex
);
765 pipe_rdwr_open(struct inode
*inode
, struct file
*filp
)
767 mutex_lock(&inode
->i_mutex
);
768 if (filp
->f_mode
& FMODE_READ
)
769 inode
->i_pipe
->readers
++;
770 if (filp
->f_mode
& FMODE_WRITE
)
771 inode
->i_pipe
->writers
++;
772 mutex_unlock(&inode
->i_mutex
);
778 * The file_operations structs are not static because they
779 * are also used in linux/fs/fifo.c to do operations on FIFOs.
781 const struct file_operations read_fifo_fops
= {
783 .read
= do_sync_read
,
784 .aio_read
= pipe_read
,
787 .unlocked_ioctl
= pipe_ioctl
,
788 .open
= pipe_read_open
,
789 .release
= pipe_read_release
,
790 .fasync
= pipe_read_fasync
,
793 const struct file_operations write_fifo_fops
= {
796 .write
= do_sync_write
,
797 .aio_write
= pipe_write
,
799 .unlocked_ioctl
= pipe_ioctl
,
800 .open
= pipe_write_open
,
801 .release
= pipe_write_release
,
802 .fasync
= pipe_write_fasync
,
805 const struct file_operations rdwr_fifo_fops
= {
807 .read
= do_sync_read
,
808 .aio_read
= pipe_read
,
809 .write
= do_sync_write
,
810 .aio_write
= pipe_write
,
812 .unlocked_ioctl
= pipe_ioctl
,
813 .open
= pipe_rdwr_open
,
814 .release
= pipe_rdwr_release
,
815 .fasync
= pipe_rdwr_fasync
,
818 static const struct file_operations read_pipe_fops
= {
820 .read
= do_sync_read
,
821 .aio_read
= pipe_read
,
824 .unlocked_ioctl
= pipe_ioctl
,
825 .open
= pipe_read_open
,
826 .release
= pipe_read_release
,
827 .fasync
= pipe_read_fasync
,
830 static const struct file_operations write_pipe_fops
= {
833 .write
= do_sync_write
,
834 .aio_write
= pipe_write
,
836 .unlocked_ioctl
= pipe_ioctl
,
837 .open
= pipe_write_open
,
838 .release
= pipe_write_release
,
839 .fasync
= pipe_write_fasync
,
842 static const struct file_operations rdwr_pipe_fops
= {
844 .read
= do_sync_read
,
845 .aio_read
= pipe_read
,
846 .write
= do_sync_write
,
847 .aio_write
= pipe_write
,
849 .unlocked_ioctl
= pipe_ioctl
,
850 .open
= pipe_rdwr_open
,
851 .release
= pipe_rdwr_release
,
852 .fasync
= pipe_rdwr_fasync
,
855 struct pipe_inode_info
* alloc_pipe_info(struct inode
*inode
)
857 struct pipe_inode_info
*pipe
;
859 pipe
= kzalloc(sizeof(struct pipe_inode_info
), GFP_KERNEL
);
861 init_waitqueue_head(&pipe
->wait
);
862 pipe
->r_counter
= pipe
->w_counter
= 1;
869 void __free_pipe_info(struct pipe_inode_info
*pipe
)
873 for (i
= 0; i
< PIPE_BUFFERS
; i
++) {
874 struct pipe_buffer
*buf
= pipe
->bufs
+ i
;
876 buf
->ops
->release(pipe
, buf
);
879 __free_page(pipe
->tmp_page
);
883 void free_pipe_info(struct inode
*inode
)
885 __free_pipe_info(inode
->i_pipe
);
886 inode
->i_pipe
= NULL
;
889 static struct vfsmount
*pipe_mnt __read_mostly
;
890 static int pipefs_delete_dentry(struct dentry
*dentry
)
893 * At creation time, we pretended this dentry was hashed
894 * (by clearing DCACHE_UNHASHED bit in d_flags)
895 * At delete time, we restore the truth : not hashed.
896 * (so that dput() can proceed correctly)
898 dentry
->d_flags
|= DCACHE_UNHASHED
;
903 * pipefs_dname() is called from d_path().
905 static char *pipefs_dname(struct dentry
*dentry
, char *buffer
, int buflen
)
907 return dynamic_dname(dentry
, buffer
, buflen
, "pipe:[%lu]",
908 dentry
->d_inode
->i_ino
);
911 static struct dentry_operations pipefs_dentry_operations
= {
912 .d_delete
= pipefs_delete_dentry
,
913 .d_dname
= pipefs_dname
,
916 static struct inode
* get_pipe_inode(void)
918 struct inode
*inode
= new_inode(pipe_mnt
->mnt_sb
);
919 struct pipe_inode_info
*pipe
;
924 pipe
= alloc_pipe_info(inode
);
927 inode
->i_pipe
= pipe
;
929 pipe
->readers
= pipe
->writers
= 1;
930 inode
->i_fop
= &rdwr_pipe_fops
;
933 * Mark the inode dirty from the very beginning,
934 * that way it will never be moved to the dirty
935 * list because "mark_inode_dirty()" will think
936 * that it already _is_ on the dirty list.
938 inode
->i_state
= I_DIRTY
;
939 inode
->i_mode
= S_IFIFO
| S_IRUSR
| S_IWUSR
;
940 inode
->i_uid
= current
->fsuid
;
941 inode
->i_gid
= current
->fsgid
;
942 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
= CURRENT_TIME
;
953 struct file
*create_write_pipe(int flags
)
958 struct dentry
*dentry
;
959 struct qstr name
= { .name
= "" };
962 inode
= get_pipe_inode();
967 dentry
= d_alloc(pipe_mnt
->mnt_sb
->s_root
, &name
);
971 dentry
->d_op
= &pipefs_dentry_operations
;
973 * We dont want to publish this dentry into global dentry hash table.
974 * We pretend dentry is already hashed, by unsetting DCACHE_UNHASHED
975 * This permits a working /proc/$pid/fd/XXX on pipes
977 dentry
->d_flags
&= ~DCACHE_UNHASHED
;
978 d_instantiate(dentry
, inode
);
981 f
= alloc_file(pipe_mnt
, dentry
, FMODE_WRITE
, &write_pipe_fops
);
984 f
->f_mapping
= inode
->i_mapping
;
986 f
->f_flags
= O_WRONLY
| (flags
& O_NONBLOCK
);
992 free_pipe_info(inode
);
997 free_pipe_info(inode
);
1000 return ERR_PTR(err
);
1003 void free_write_pipe(struct file
*f
)
1005 free_pipe_info(f
->f_dentry
->d_inode
);
1006 path_put(&f
->f_path
);
1010 struct file
*create_read_pipe(struct file
*wrf
, int flags
)
1012 struct file
*f
= get_empty_filp();
1014 return ERR_PTR(-ENFILE
);
1016 /* Grab pipe from the writer */
1017 f
->f_path
= wrf
->f_path
;
1018 path_get(&wrf
->f_path
);
1019 f
->f_mapping
= wrf
->f_path
.dentry
->d_inode
->i_mapping
;
1022 f
->f_flags
= O_RDONLY
| (flags
& O_NONBLOCK
);
1023 f
->f_op
= &read_pipe_fops
;
1024 f
->f_mode
= FMODE_READ
;
1030 int do_pipe_flags(int *fd
, int flags
)
1032 struct file
*fw
, *fr
;
1036 if (flags
& ~(O_CLOEXEC
| O_NONBLOCK
))
1039 fw
= create_write_pipe(flags
);
1042 fr
= create_read_pipe(fw
, flags
);
1043 error
= PTR_ERR(fr
);
1045 goto err_write_pipe
;
1047 error
= get_unused_fd_flags(flags
);
1052 error
= get_unused_fd_flags(flags
);
1057 error
= audit_fd_pair(fdr
, fdw
);
1061 fd_install(fdr
, fr
);
1062 fd_install(fdw
, fw
);
1073 path_put(&fr
->f_path
);
1076 free_write_pipe(fw
);
1080 int do_pipe(int *fd
)
1082 return do_pipe_flags(fd
, 0);
1086 * sys_pipe() is the normal C calling standard for creating
1087 * a pipe. It's not the way Unix traditionally does this, though.
1089 asmlinkage
long __weak
sys_pipe2(int __user
*fildes
, int flags
)
1094 error
= do_pipe_flags(fd
, flags
);
1096 if (copy_to_user(fildes
, fd
, sizeof(fd
))) {
1105 asmlinkage
long __weak
sys_pipe(int __user
*fildes
)
1107 return sys_pipe2(fildes
, 0);
1111 * pipefs should _never_ be mounted by userland - too much of security hassle,
1112 * no real gain from having the whole whorehouse mounted. So we don't need
1113 * any operations on the root directory. However, we need a non-trivial
1114 * d_name - pipe: will go nicely and kill the special-casing in procfs.
1116 static int pipefs_get_sb(struct file_system_type
*fs_type
,
1117 int flags
, const char *dev_name
, void *data
,
1118 struct vfsmount
*mnt
)
1120 return get_sb_pseudo(fs_type
, "pipe:", NULL
, PIPEFS_MAGIC
, mnt
);
1123 static struct file_system_type pipe_fs_type
= {
1125 .get_sb
= pipefs_get_sb
,
1126 .kill_sb
= kill_anon_super
,
1129 static int __init
init_pipe_fs(void)
1131 int err
= register_filesystem(&pipe_fs_type
);
1134 pipe_mnt
= kern_mount(&pipe_fs_type
);
1135 if (IS_ERR(pipe_mnt
)) {
1136 err
= PTR_ERR(pipe_mnt
);
1137 unregister_filesystem(&pipe_fs_type
);
1143 static void __exit
exit_pipe_fs(void)
1145 unregister_filesystem(&pipe_fs_type
);
1149 fs_initcall(init_pipe_fs
);
1150 module_exit(exit_pipe_fs
);