ecryptfs: propagate key errors up at mount time
[linux-2.6/mini2440.git] / fs / dcache.c
blob3818d6ab76ca18e398f6d425b2879012f3a49ff2
1 /*
2 * fs/dcache.c
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
9 /*
10 * Notes on the allocation strategy:
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fdtable.h>
21 #include <linux/fs.h>
22 #include <linux/fsnotify.h>
23 #include <linux/slab.h>
24 #include <linux/init.h>
25 #include <linux/hash.h>
26 #include <linux/cache.h>
27 #include <linux/module.h>
28 #include <linux/mount.h>
29 #include <linux/file.h>
30 #include <asm/uaccess.h>
31 #include <linux/security.h>
32 #include <linux/seqlock.h>
33 #include <linux/swap.h>
34 #include <linux/bootmem.h>
35 #include "internal.h"
38 int sysctl_vfs_cache_pressure __read_mostly = 100;
39 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
41 __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lock);
42 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
44 EXPORT_SYMBOL(dcache_lock);
46 static struct kmem_cache *dentry_cache __read_mostly;
48 #define DNAME_INLINE_LEN (sizeof(struct dentry)-offsetof(struct dentry,d_iname))
51 * This is the single most critical data structure when it comes
52 * to the dcache: the hashtable for lookups. Somebody should try
53 * to make this good - I've just made it work.
55 * This hash-function tries to avoid losing too many bits of hash
56 * information, yet avoid using a prime hash-size or similar.
58 #define D_HASHBITS d_hash_shift
59 #define D_HASHMASK d_hash_mask
61 static unsigned int d_hash_mask __read_mostly;
62 static unsigned int d_hash_shift __read_mostly;
63 static struct hlist_head *dentry_hashtable __read_mostly;
65 /* Statistics gathering. */
66 struct dentry_stat_t dentry_stat = {
67 .age_limit = 45,
70 static void __d_free(struct dentry *dentry)
72 if (dname_external(dentry))
73 kfree(dentry->d_name.name);
74 kmem_cache_free(dentry_cache, dentry);
77 static void d_callback(struct rcu_head *head)
79 struct dentry * dentry = container_of(head, struct dentry, d_u.d_rcu);
80 __d_free(dentry);
84 * no dcache_lock, please. The caller must decrement dentry_stat.nr_dentry
85 * inside dcache_lock.
87 static void d_free(struct dentry *dentry)
89 if (dentry->d_op && dentry->d_op->d_release)
90 dentry->d_op->d_release(dentry);
91 /* if dentry was never inserted into hash, immediate free is OK */
92 if (hlist_unhashed(&dentry->d_hash))
93 __d_free(dentry);
94 else
95 call_rcu(&dentry->d_u.d_rcu, d_callback);
99 * Release the dentry's inode, using the filesystem
100 * d_iput() operation if defined.
102 static void dentry_iput(struct dentry * dentry)
103 __releases(dentry->d_lock)
104 __releases(dcache_lock)
106 struct inode *inode = dentry->d_inode;
107 if (inode) {
108 dentry->d_inode = NULL;
109 list_del_init(&dentry->d_alias);
110 spin_unlock(&dentry->d_lock);
111 spin_unlock(&dcache_lock);
112 if (!inode->i_nlink)
113 fsnotify_inoderemove(inode);
114 if (dentry->d_op && dentry->d_op->d_iput)
115 dentry->d_op->d_iput(dentry, inode);
116 else
117 iput(inode);
118 } else {
119 spin_unlock(&dentry->d_lock);
120 spin_unlock(&dcache_lock);
125 * dentry_lru_(add|add_tail|del|del_init) must be called with dcache_lock held.
127 static void dentry_lru_add(struct dentry *dentry)
129 list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
130 dentry->d_sb->s_nr_dentry_unused++;
131 dentry_stat.nr_unused++;
134 static void dentry_lru_add_tail(struct dentry *dentry)
136 list_add_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
137 dentry->d_sb->s_nr_dentry_unused++;
138 dentry_stat.nr_unused++;
141 static void dentry_lru_del(struct dentry *dentry)
143 if (!list_empty(&dentry->d_lru)) {
144 list_del(&dentry->d_lru);
145 dentry->d_sb->s_nr_dentry_unused--;
146 dentry_stat.nr_unused--;
150 static void dentry_lru_del_init(struct dentry *dentry)
152 if (likely(!list_empty(&dentry->d_lru))) {
153 list_del_init(&dentry->d_lru);
154 dentry->d_sb->s_nr_dentry_unused--;
155 dentry_stat.nr_unused--;
160 * d_kill - kill dentry and return parent
161 * @dentry: dentry to kill
163 * The dentry must already be unhashed and removed from the LRU.
165 * If this is the root of the dentry tree, return NULL.
167 static struct dentry *d_kill(struct dentry *dentry)
168 __releases(dentry->d_lock)
169 __releases(dcache_lock)
171 struct dentry *parent;
173 list_del(&dentry->d_u.d_child);
174 dentry_stat.nr_dentry--; /* For d_free, below */
175 /*drops the locks, at that point nobody can reach this dentry */
176 dentry_iput(dentry);
177 parent = dentry->d_parent;
178 d_free(dentry);
179 return dentry == parent ? NULL : parent;
183 * This is dput
185 * This is complicated by the fact that we do not want to put
186 * dentries that are no longer on any hash chain on the unused
187 * list: we'd much rather just get rid of them immediately.
189 * However, that implies that we have to traverse the dentry
190 * tree upwards to the parents which might _also_ now be
191 * scheduled for deletion (it may have been only waiting for
192 * its last child to go away).
194 * This tail recursion is done by hand as we don't want to depend
195 * on the compiler to always get this right (gcc generally doesn't).
196 * Real recursion would eat up our stack space.
200 * dput - release a dentry
201 * @dentry: dentry to release
203 * Release a dentry. This will drop the usage count and if appropriate
204 * call the dentry unlink method as well as removing it from the queues and
205 * releasing its resources. If the parent dentries were scheduled for release
206 * they too may now get deleted.
208 * no dcache lock, please.
211 void dput(struct dentry *dentry)
213 if (!dentry)
214 return;
216 repeat:
217 if (atomic_read(&dentry->d_count) == 1)
218 might_sleep();
219 if (!atomic_dec_and_lock(&dentry->d_count, &dcache_lock))
220 return;
222 spin_lock(&dentry->d_lock);
223 if (atomic_read(&dentry->d_count)) {
224 spin_unlock(&dentry->d_lock);
225 spin_unlock(&dcache_lock);
226 return;
230 * AV: ->d_delete() is _NOT_ allowed to block now.
232 if (dentry->d_op && dentry->d_op->d_delete) {
233 if (dentry->d_op->d_delete(dentry))
234 goto unhash_it;
236 /* Unreachable? Get rid of it */
237 if (d_unhashed(dentry))
238 goto kill_it;
239 if (list_empty(&dentry->d_lru)) {
240 dentry->d_flags |= DCACHE_REFERENCED;
241 dentry_lru_add(dentry);
243 spin_unlock(&dentry->d_lock);
244 spin_unlock(&dcache_lock);
245 return;
247 unhash_it:
248 __d_drop(dentry);
249 kill_it:
250 /* if dentry was on the d_lru list delete it from there */
251 dentry_lru_del(dentry);
252 dentry = d_kill(dentry);
253 if (dentry)
254 goto repeat;
258 * d_invalidate - invalidate a dentry
259 * @dentry: dentry to invalidate
261 * Try to invalidate the dentry if it turns out to be
262 * possible. If there are other dentries that can be
263 * reached through this one we can't delete it and we
264 * return -EBUSY. On success we return 0.
266 * no dcache lock.
269 int d_invalidate(struct dentry * dentry)
272 * If it's already been dropped, return OK.
274 spin_lock(&dcache_lock);
275 if (d_unhashed(dentry)) {
276 spin_unlock(&dcache_lock);
277 return 0;
280 * Check whether to do a partial shrink_dcache
281 * to get rid of unused child entries.
283 if (!list_empty(&dentry->d_subdirs)) {
284 spin_unlock(&dcache_lock);
285 shrink_dcache_parent(dentry);
286 spin_lock(&dcache_lock);
290 * Somebody else still using it?
292 * If it's a directory, we can't drop it
293 * for fear of somebody re-populating it
294 * with children (even though dropping it
295 * would make it unreachable from the root,
296 * we might still populate it if it was a
297 * working directory or similar).
299 spin_lock(&dentry->d_lock);
300 if (atomic_read(&dentry->d_count) > 1) {
301 if (dentry->d_inode && S_ISDIR(dentry->d_inode->i_mode)) {
302 spin_unlock(&dentry->d_lock);
303 spin_unlock(&dcache_lock);
304 return -EBUSY;
308 __d_drop(dentry);
309 spin_unlock(&dentry->d_lock);
310 spin_unlock(&dcache_lock);
311 return 0;
314 /* This should be called _only_ with dcache_lock held */
316 static inline struct dentry * __dget_locked(struct dentry *dentry)
318 atomic_inc(&dentry->d_count);
319 dentry_lru_del_init(dentry);
320 return dentry;
323 struct dentry * dget_locked(struct dentry *dentry)
325 return __dget_locked(dentry);
329 * d_find_alias - grab a hashed alias of inode
330 * @inode: inode in question
331 * @want_discon: flag, used by d_splice_alias, to request
332 * that only a DISCONNECTED alias be returned.
334 * If inode has a hashed alias, or is a directory and has any alias,
335 * acquire the reference to alias and return it. Otherwise return NULL.
336 * Notice that if inode is a directory there can be only one alias and
337 * it can be unhashed only if it has no children, or if it is the root
338 * of a filesystem.
340 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
341 * any other hashed alias over that one unless @want_discon is set,
342 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
345 static struct dentry * __d_find_alias(struct inode *inode, int want_discon)
347 struct list_head *head, *next, *tmp;
348 struct dentry *alias, *discon_alias=NULL;
350 head = &inode->i_dentry;
351 next = inode->i_dentry.next;
352 while (next != head) {
353 tmp = next;
354 next = tmp->next;
355 prefetch(next);
356 alias = list_entry(tmp, struct dentry, d_alias);
357 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
358 if (IS_ROOT(alias) &&
359 (alias->d_flags & DCACHE_DISCONNECTED))
360 discon_alias = alias;
361 else if (!want_discon) {
362 __dget_locked(alias);
363 return alias;
367 if (discon_alias)
368 __dget_locked(discon_alias);
369 return discon_alias;
372 struct dentry * d_find_alias(struct inode *inode)
374 struct dentry *de = NULL;
376 if (!list_empty(&inode->i_dentry)) {
377 spin_lock(&dcache_lock);
378 de = __d_find_alias(inode, 0);
379 spin_unlock(&dcache_lock);
381 return de;
385 * Try to kill dentries associated with this inode.
386 * WARNING: you must own a reference to inode.
388 void d_prune_aliases(struct inode *inode)
390 struct dentry *dentry;
391 restart:
392 spin_lock(&dcache_lock);
393 list_for_each_entry(dentry, &inode->i_dentry, d_alias) {
394 spin_lock(&dentry->d_lock);
395 if (!atomic_read(&dentry->d_count)) {
396 __dget_locked(dentry);
397 __d_drop(dentry);
398 spin_unlock(&dentry->d_lock);
399 spin_unlock(&dcache_lock);
400 dput(dentry);
401 goto restart;
403 spin_unlock(&dentry->d_lock);
405 spin_unlock(&dcache_lock);
409 * Throw away a dentry - free the inode, dput the parent. This requires that
410 * the LRU list has already been removed.
412 * Try to prune ancestors as well. This is necessary to prevent
413 * quadratic behavior of shrink_dcache_parent(), but is also expected
414 * to be beneficial in reducing dentry cache fragmentation.
416 static void prune_one_dentry(struct dentry * dentry)
417 __releases(dentry->d_lock)
418 __releases(dcache_lock)
419 __acquires(dcache_lock)
421 __d_drop(dentry);
422 dentry = d_kill(dentry);
425 * Prune ancestors. Locking is simpler than in dput(),
426 * because dcache_lock needs to be taken anyway.
428 spin_lock(&dcache_lock);
429 while (dentry) {
430 if (!atomic_dec_and_lock(&dentry->d_count, &dentry->d_lock))
431 return;
433 if (dentry->d_op && dentry->d_op->d_delete)
434 dentry->d_op->d_delete(dentry);
435 dentry_lru_del_init(dentry);
436 __d_drop(dentry);
437 dentry = d_kill(dentry);
438 spin_lock(&dcache_lock);
443 * Shrink the dentry LRU on a given superblock.
444 * @sb : superblock to shrink dentry LRU.
445 * @count: If count is NULL, we prune all dentries on superblock.
446 * @flags: If flags is non-zero, we need to do special processing based on
447 * which flags are set. This means we don't need to maintain multiple
448 * similar copies of this loop.
450 static void __shrink_dcache_sb(struct super_block *sb, int *count, int flags)
452 LIST_HEAD(referenced);
453 LIST_HEAD(tmp);
454 struct dentry *dentry;
455 int cnt = 0;
457 BUG_ON(!sb);
458 BUG_ON((flags & DCACHE_REFERENCED) && count == NULL);
459 spin_lock(&dcache_lock);
460 if (count != NULL)
461 /* called from prune_dcache() and shrink_dcache_parent() */
462 cnt = *count;
463 restart:
464 if (count == NULL)
465 list_splice_init(&sb->s_dentry_lru, &tmp);
466 else {
467 while (!list_empty(&sb->s_dentry_lru)) {
468 dentry = list_entry(sb->s_dentry_lru.prev,
469 struct dentry, d_lru);
470 BUG_ON(dentry->d_sb != sb);
472 spin_lock(&dentry->d_lock);
474 * If we are honouring the DCACHE_REFERENCED flag and
475 * the dentry has this flag set, don't free it. Clear
476 * the flag and put it back on the LRU.
478 if ((flags & DCACHE_REFERENCED)
479 && (dentry->d_flags & DCACHE_REFERENCED)) {
480 dentry->d_flags &= ~DCACHE_REFERENCED;
481 list_move_tail(&dentry->d_lru, &referenced);
482 spin_unlock(&dentry->d_lock);
483 } else {
484 list_move_tail(&dentry->d_lru, &tmp);
485 spin_unlock(&dentry->d_lock);
486 cnt--;
487 if (!cnt)
488 break;
492 while (!list_empty(&tmp)) {
493 dentry = list_entry(tmp.prev, struct dentry, d_lru);
494 dentry_lru_del_init(dentry);
495 spin_lock(&dentry->d_lock);
497 * We found an inuse dentry which was not removed from
498 * the LRU because of laziness during lookup. Do not free
499 * it - just keep it off the LRU list.
501 if (atomic_read(&dentry->d_count)) {
502 spin_unlock(&dentry->d_lock);
503 continue;
505 prune_one_dentry(dentry);
506 /* dentry->d_lock was dropped in prune_one_dentry() */
507 cond_resched_lock(&dcache_lock);
509 if (count == NULL && !list_empty(&sb->s_dentry_lru))
510 goto restart;
511 if (count != NULL)
512 *count = cnt;
513 if (!list_empty(&referenced))
514 list_splice(&referenced, &sb->s_dentry_lru);
515 spin_unlock(&dcache_lock);
519 * prune_dcache - shrink the dcache
520 * @count: number of entries to try to free
522 * Shrink the dcache. This is done when we need more memory, or simply when we
523 * need to unmount something (at which point we need to unuse all dentries).
525 * This function may fail to free any resources if all the dentries are in use.
527 static void prune_dcache(int count)
529 struct super_block *sb;
530 int w_count;
531 int unused = dentry_stat.nr_unused;
532 int prune_ratio;
533 int pruned;
535 if (unused == 0 || count == 0)
536 return;
537 spin_lock(&dcache_lock);
538 restart:
539 if (count >= unused)
540 prune_ratio = 1;
541 else
542 prune_ratio = unused / count;
543 spin_lock(&sb_lock);
544 list_for_each_entry(sb, &super_blocks, s_list) {
545 if (sb->s_nr_dentry_unused == 0)
546 continue;
547 sb->s_count++;
548 /* Now, we reclaim unused dentrins with fairness.
549 * We reclaim them same percentage from each superblock.
550 * We calculate number of dentries to scan on this sb
551 * as follows, but the implementation is arranged to avoid
552 * overflows:
553 * number of dentries to scan on this sb =
554 * count * (number of dentries on this sb /
555 * number of dentries in the machine)
557 spin_unlock(&sb_lock);
558 if (prune_ratio != 1)
559 w_count = (sb->s_nr_dentry_unused / prune_ratio) + 1;
560 else
561 w_count = sb->s_nr_dentry_unused;
562 pruned = w_count;
564 * We need to be sure this filesystem isn't being unmounted,
565 * otherwise we could race with generic_shutdown_super(), and
566 * end up holding a reference to an inode while the filesystem
567 * is unmounted. So we try to get s_umount, and make sure
568 * s_root isn't NULL.
570 if (down_read_trylock(&sb->s_umount)) {
571 if ((sb->s_root != NULL) &&
572 (!list_empty(&sb->s_dentry_lru))) {
573 spin_unlock(&dcache_lock);
574 __shrink_dcache_sb(sb, &w_count,
575 DCACHE_REFERENCED);
576 pruned -= w_count;
577 spin_lock(&dcache_lock);
579 up_read(&sb->s_umount);
581 spin_lock(&sb_lock);
582 count -= pruned;
584 * restart only when sb is no longer on the list and
585 * we have more work to do.
587 if (__put_super_and_need_restart(sb) && count > 0) {
588 spin_unlock(&sb_lock);
589 goto restart;
592 spin_unlock(&sb_lock);
593 spin_unlock(&dcache_lock);
597 * shrink_dcache_sb - shrink dcache for a superblock
598 * @sb: superblock
600 * Shrink the dcache for the specified super block. This
601 * is used to free the dcache before unmounting a file
602 * system
604 void shrink_dcache_sb(struct super_block * sb)
606 __shrink_dcache_sb(sb, NULL, 0);
610 * destroy a single subtree of dentries for unmount
611 * - see the comments on shrink_dcache_for_umount() for a description of the
612 * locking
614 static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
616 struct dentry *parent;
617 unsigned detached = 0;
619 BUG_ON(!IS_ROOT(dentry));
621 /* detach this root from the system */
622 spin_lock(&dcache_lock);
623 dentry_lru_del_init(dentry);
624 __d_drop(dentry);
625 spin_unlock(&dcache_lock);
627 for (;;) {
628 /* descend to the first leaf in the current subtree */
629 while (!list_empty(&dentry->d_subdirs)) {
630 struct dentry *loop;
632 /* this is a branch with children - detach all of them
633 * from the system in one go */
634 spin_lock(&dcache_lock);
635 list_for_each_entry(loop, &dentry->d_subdirs,
636 d_u.d_child) {
637 dentry_lru_del_init(loop);
638 __d_drop(loop);
639 cond_resched_lock(&dcache_lock);
641 spin_unlock(&dcache_lock);
643 /* move to the first child */
644 dentry = list_entry(dentry->d_subdirs.next,
645 struct dentry, d_u.d_child);
648 /* consume the dentries from this leaf up through its parents
649 * until we find one with children or run out altogether */
650 do {
651 struct inode *inode;
653 if (atomic_read(&dentry->d_count) != 0) {
654 printk(KERN_ERR
655 "BUG: Dentry %p{i=%lx,n=%s}"
656 " still in use (%d)"
657 " [unmount of %s %s]\n",
658 dentry,
659 dentry->d_inode ?
660 dentry->d_inode->i_ino : 0UL,
661 dentry->d_name.name,
662 atomic_read(&dentry->d_count),
663 dentry->d_sb->s_type->name,
664 dentry->d_sb->s_id);
665 BUG();
668 parent = dentry->d_parent;
669 if (parent == dentry)
670 parent = NULL;
671 else
672 atomic_dec(&parent->d_count);
674 list_del(&dentry->d_u.d_child);
675 detached++;
677 inode = dentry->d_inode;
678 if (inode) {
679 dentry->d_inode = NULL;
680 list_del_init(&dentry->d_alias);
681 if (dentry->d_op && dentry->d_op->d_iput)
682 dentry->d_op->d_iput(dentry, inode);
683 else
684 iput(inode);
687 d_free(dentry);
689 /* finished when we fall off the top of the tree,
690 * otherwise we ascend to the parent and move to the
691 * next sibling if there is one */
692 if (!parent)
693 goto out;
695 dentry = parent;
697 } while (list_empty(&dentry->d_subdirs));
699 dentry = list_entry(dentry->d_subdirs.next,
700 struct dentry, d_u.d_child);
702 out:
703 /* several dentries were freed, need to correct nr_dentry */
704 spin_lock(&dcache_lock);
705 dentry_stat.nr_dentry -= detached;
706 spin_unlock(&dcache_lock);
710 * destroy the dentries attached to a superblock on unmounting
711 * - we don't need to use dentry->d_lock, and only need dcache_lock when
712 * removing the dentry from the system lists and hashes because:
713 * - the superblock is detached from all mountings and open files, so the
714 * dentry trees will not be rearranged by the VFS
715 * - s_umount is write-locked, so the memory pressure shrinker will ignore
716 * any dentries belonging to this superblock that it comes across
717 * - the filesystem itself is no longer permitted to rearrange the dentries
718 * in this superblock
720 void shrink_dcache_for_umount(struct super_block *sb)
722 struct dentry *dentry;
724 if (down_read_trylock(&sb->s_umount))
725 BUG();
727 dentry = sb->s_root;
728 sb->s_root = NULL;
729 atomic_dec(&dentry->d_count);
730 shrink_dcache_for_umount_subtree(dentry);
732 while (!hlist_empty(&sb->s_anon)) {
733 dentry = hlist_entry(sb->s_anon.first, struct dentry, d_hash);
734 shrink_dcache_for_umount_subtree(dentry);
739 * Search for at least 1 mount point in the dentry's subdirs.
740 * We descend to the next level whenever the d_subdirs
741 * list is non-empty and continue searching.
745 * have_submounts - check for mounts over a dentry
746 * @parent: dentry to check.
748 * Return true if the parent or its subdirectories contain
749 * a mount point
752 int have_submounts(struct dentry *parent)
754 struct dentry *this_parent = parent;
755 struct list_head *next;
757 spin_lock(&dcache_lock);
758 if (d_mountpoint(parent))
759 goto positive;
760 repeat:
761 next = this_parent->d_subdirs.next;
762 resume:
763 while (next != &this_parent->d_subdirs) {
764 struct list_head *tmp = next;
765 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
766 next = tmp->next;
767 /* Have we found a mount point ? */
768 if (d_mountpoint(dentry))
769 goto positive;
770 if (!list_empty(&dentry->d_subdirs)) {
771 this_parent = dentry;
772 goto repeat;
776 * All done at this level ... ascend and resume the search.
778 if (this_parent != parent) {
779 next = this_parent->d_u.d_child.next;
780 this_parent = this_parent->d_parent;
781 goto resume;
783 spin_unlock(&dcache_lock);
784 return 0; /* No mount points found in tree */
785 positive:
786 spin_unlock(&dcache_lock);
787 return 1;
791 * Search the dentry child list for the specified parent,
792 * and move any unused dentries to the end of the unused
793 * list for prune_dcache(). We descend to the next level
794 * whenever the d_subdirs list is non-empty and continue
795 * searching.
797 * It returns zero iff there are no unused children,
798 * otherwise it returns the number of children moved to
799 * the end of the unused list. This may not be the total
800 * number of unused children, because select_parent can
801 * drop the lock and return early due to latency
802 * constraints.
804 static int select_parent(struct dentry * parent)
806 struct dentry *this_parent = parent;
807 struct list_head *next;
808 int found = 0;
810 spin_lock(&dcache_lock);
811 repeat:
812 next = this_parent->d_subdirs.next;
813 resume:
814 while (next != &this_parent->d_subdirs) {
815 struct list_head *tmp = next;
816 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
817 next = tmp->next;
819 dentry_lru_del_init(dentry);
821 * move only zero ref count dentries to the end
822 * of the unused list for prune_dcache
824 if (!atomic_read(&dentry->d_count)) {
825 dentry_lru_add_tail(dentry);
826 found++;
830 * We can return to the caller if we have found some (this
831 * ensures forward progress). We'll be coming back to find
832 * the rest.
834 if (found && need_resched())
835 goto out;
838 * Descend a level if the d_subdirs list is non-empty.
840 if (!list_empty(&dentry->d_subdirs)) {
841 this_parent = dentry;
842 goto repeat;
846 * All done at this level ... ascend and resume the search.
848 if (this_parent != parent) {
849 next = this_parent->d_u.d_child.next;
850 this_parent = this_parent->d_parent;
851 goto resume;
853 out:
854 spin_unlock(&dcache_lock);
855 return found;
859 * shrink_dcache_parent - prune dcache
860 * @parent: parent of entries to prune
862 * Prune the dcache to remove unused children of the parent dentry.
865 void shrink_dcache_parent(struct dentry * parent)
867 struct super_block *sb = parent->d_sb;
868 int found;
870 while ((found = select_parent(parent)) != 0)
871 __shrink_dcache_sb(sb, &found, 0);
875 * Scan `nr' dentries and return the number which remain.
877 * We need to avoid reentering the filesystem if the caller is performing a
878 * GFP_NOFS allocation attempt. One example deadlock is:
880 * ext2_new_block->getblk->GFP->shrink_dcache_memory->prune_dcache->
881 * prune_one_dentry->dput->dentry_iput->iput->inode->i_sb->s_op->put_inode->
882 * ext2_discard_prealloc->ext2_free_blocks->lock_super->DEADLOCK.
884 * In this case we return -1 to tell the caller that we baled.
886 static int shrink_dcache_memory(int nr, gfp_t gfp_mask)
888 if (nr) {
889 if (!(gfp_mask & __GFP_FS))
890 return -1;
891 prune_dcache(nr);
893 return (dentry_stat.nr_unused / 100) * sysctl_vfs_cache_pressure;
896 static struct shrinker dcache_shrinker = {
897 .shrink = shrink_dcache_memory,
898 .seeks = DEFAULT_SEEKS,
902 * d_alloc - allocate a dcache entry
903 * @parent: parent of entry to allocate
904 * @name: qstr of the name
906 * Allocates a dentry. It returns %NULL if there is insufficient memory
907 * available. On a success the dentry is returned. The name passed in is
908 * copied and the copy passed in may be reused after this call.
911 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
913 struct dentry *dentry;
914 char *dname;
916 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
917 if (!dentry)
918 return NULL;
920 if (name->len > DNAME_INLINE_LEN-1) {
921 dname = kmalloc(name->len + 1, GFP_KERNEL);
922 if (!dname) {
923 kmem_cache_free(dentry_cache, dentry);
924 return NULL;
926 } else {
927 dname = dentry->d_iname;
929 dentry->d_name.name = dname;
931 dentry->d_name.len = name->len;
932 dentry->d_name.hash = name->hash;
933 memcpy(dname, name->name, name->len);
934 dname[name->len] = 0;
936 atomic_set(&dentry->d_count, 1);
937 dentry->d_flags = DCACHE_UNHASHED;
938 spin_lock_init(&dentry->d_lock);
939 dentry->d_inode = NULL;
940 dentry->d_parent = NULL;
941 dentry->d_sb = NULL;
942 dentry->d_op = NULL;
943 dentry->d_fsdata = NULL;
944 dentry->d_mounted = 0;
945 #ifdef CONFIG_PROFILING
946 dentry->d_cookie = NULL;
947 #endif
948 INIT_HLIST_NODE(&dentry->d_hash);
949 INIT_LIST_HEAD(&dentry->d_lru);
950 INIT_LIST_HEAD(&dentry->d_subdirs);
951 INIT_LIST_HEAD(&dentry->d_alias);
953 if (parent) {
954 dentry->d_parent = dget(parent);
955 dentry->d_sb = parent->d_sb;
956 } else {
957 INIT_LIST_HEAD(&dentry->d_u.d_child);
960 spin_lock(&dcache_lock);
961 if (parent)
962 list_add(&dentry->d_u.d_child, &parent->d_subdirs);
963 dentry_stat.nr_dentry++;
964 spin_unlock(&dcache_lock);
966 return dentry;
969 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
971 struct qstr q;
973 q.name = name;
974 q.len = strlen(name);
975 q.hash = full_name_hash(q.name, q.len);
976 return d_alloc(parent, &q);
980 * d_instantiate - fill in inode information for a dentry
981 * @entry: dentry to complete
982 * @inode: inode to attach to this dentry
984 * Fill in inode information in the entry.
986 * This turns negative dentries into productive full members
987 * of society.
989 * NOTE! This assumes that the inode count has been incremented
990 * (or otherwise set) by the caller to indicate that it is now
991 * in use by the dcache.
994 void d_instantiate(struct dentry *entry, struct inode * inode)
996 BUG_ON(!list_empty(&entry->d_alias));
997 spin_lock(&dcache_lock);
998 if (inode)
999 list_add(&entry->d_alias, &inode->i_dentry);
1000 entry->d_inode = inode;
1001 fsnotify_d_instantiate(entry, inode);
1002 spin_unlock(&dcache_lock);
1003 security_d_instantiate(entry, inode);
1007 * d_instantiate_unique - instantiate a non-aliased dentry
1008 * @entry: dentry to instantiate
1009 * @inode: inode to attach to this dentry
1011 * Fill in inode information in the entry. On success, it returns NULL.
1012 * If an unhashed alias of "entry" already exists, then we return the
1013 * aliased dentry instead and drop one reference to inode.
1015 * Note that in order to avoid conflicts with rename() etc, the caller
1016 * had better be holding the parent directory semaphore.
1018 * This also assumes that the inode count has been incremented
1019 * (or otherwise set) by the caller to indicate that it is now
1020 * in use by the dcache.
1022 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1023 struct inode *inode)
1025 struct dentry *alias;
1026 int len = entry->d_name.len;
1027 const char *name = entry->d_name.name;
1028 unsigned int hash = entry->d_name.hash;
1030 if (!inode) {
1031 entry->d_inode = NULL;
1032 return NULL;
1035 list_for_each_entry(alias, &inode->i_dentry, d_alias) {
1036 struct qstr *qstr = &alias->d_name;
1038 if (qstr->hash != hash)
1039 continue;
1040 if (alias->d_parent != entry->d_parent)
1041 continue;
1042 if (qstr->len != len)
1043 continue;
1044 if (memcmp(qstr->name, name, len))
1045 continue;
1046 dget_locked(alias);
1047 return alias;
1050 list_add(&entry->d_alias, &inode->i_dentry);
1051 entry->d_inode = inode;
1052 fsnotify_d_instantiate(entry, inode);
1053 return NULL;
1056 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1058 struct dentry *result;
1060 BUG_ON(!list_empty(&entry->d_alias));
1062 spin_lock(&dcache_lock);
1063 result = __d_instantiate_unique(entry, inode);
1064 spin_unlock(&dcache_lock);
1066 if (!result) {
1067 security_d_instantiate(entry, inode);
1068 return NULL;
1071 BUG_ON(!d_unhashed(result));
1072 iput(inode);
1073 return result;
1076 EXPORT_SYMBOL(d_instantiate_unique);
1079 * d_alloc_root - allocate root dentry
1080 * @root_inode: inode to allocate the root for
1082 * Allocate a root ("/") dentry for the inode given. The inode is
1083 * instantiated and returned. %NULL is returned if there is insufficient
1084 * memory or the inode passed is %NULL.
1087 struct dentry * d_alloc_root(struct inode * root_inode)
1089 struct dentry *res = NULL;
1091 if (root_inode) {
1092 static const struct qstr name = { .name = "/", .len = 1 };
1094 res = d_alloc(NULL, &name);
1095 if (res) {
1096 res->d_sb = root_inode->i_sb;
1097 res->d_parent = res;
1098 d_instantiate(res, root_inode);
1101 return res;
1104 static inline struct hlist_head *d_hash(struct dentry *parent,
1105 unsigned long hash)
1107 hash += ((unsigned long) parent ^ GOLDEN_RATIO_PRIME) / L1_CACHE_BYTES;
1108 hash = hash ^ ((hash ^ GOLDEN_RATIO_PRIME) >> D_HASHBITS);
1109 return dentry_hashtable + (hash & D_HASHMASK);
1113 * d_alloc_anon - allocate an anonymous dentry
1114 * @inode: inode to allocate the dentry for
1116 * This is similar to d_alloc_root. It is used by filesystems when
1117 * creating a dentry for a given inode, often in the process of
1118 * mapping a filehandle to a dentry. The returned dentry may be
1119 * anonymous, or may have a full name (if the inode was already
1120 * in the cache). The file system may need to make further
1121 * efforts to connect this dentry into the dcache properly.
1123 * When called on a directory inode, we must ensure that
1124 * the inode only ever has one dentry. If a dentry is
1125 * found, that is returned instead of allocating a new one.
1127 * On successful return, the reference to the inode has been transferred
1128 * to the dentry. If %NULL is returned (indicating kmalloc failure),
1129 * the reference on the inode has not been released.
1132 struct dentry * d_alloc_anon(struct inode *inode)
1134 static const struct qstr anonstring = { .name = "" };
1135 struct dentry *tmp;
1136 struct dentry *res;
1138 if ((res = d_find_alias(inode))) {
1139 iput(inode);
1140 return res;
1143 tmp = d_alloc(NULL, &anonstring);
1144 if (!tmp)
1145 return NULL;
1147 tmp->d_parent = tmp; /* make sure dput doesn't croak */
1149 spin_lock(&dcache_lock);
1150 res = __d_find_alias(inode, 0);
1151 if (!res) {
1152 /* attach a disconnected dentry */
1153 res = tmp;
1154 tmp = NULL;
1155 spin_lock(&res->d_lock);
1156 res->d_sb = inode->i_sb;
1157 res->d_parent = res;
1158 res->d_inode = inode;
1159 res->d_flags |= DCACHE_DISCONNECTED;
1160 res->d_flags &= ~DCACHE_UNHASHED;
1161 list_add(&res->d_alias, &inode->i_dentry);
1162 hlist_add_head(&res->d_hash, &inode->i_sb->s_anon);
1163 spin_unlock(&res->d_lock);
1165 inode = NULL; /* don't drop reference */
1167 spin_unlock(&dcache_lock);
1169 if (inode)
1170 iput(inode);
1171 if (tmp)
1172 dput(tmp);
1173 return res;
1178 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1179 * @inode: the inode which may have a disconnected dentry
1180 * @dentry: a negative dentry which we want to point to the inode.
1182 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1183 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1184 * and return it, else simply d_add the inode to the dentry and return NULL.
1186 * This is needed in the lookup routine of any filesystem that is exportable
1187 * (via knfsd) so that we can build dcache paths to directories effectively.
1189 * If a dentry was found and moved, then it is returned. Otherwise NULL
1190 * is returned. This matches the expected return value of ->lookup.
1193 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1195 struct dentry *new = NULL;
1197 if (inode && S_ISDIR(inode->i_mode)) {
1198 spin_lock(&dcache_lock);
1199 new = __d_find_alias(inode, 1);
1200 if (new) {
1201 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
1202 fsnotify_d_instantiate(new, inode);
1203 spin_unlock(&dcache_lock);
1204 security_d_instantiate(new, inode);
1205 d_rehash(dentry);
1206 d_move(new, dentry);
1207 iput(inode);
1208 } else {
1209 /* d_instantiate takes dcache_lock, so we do it by hand */
1210 list_add(&dentry->d_alias, &inode->i_dentry);
1211 dentry->d_inode = inode;
1212 fsnotify_d_instantiate(dentry, inode);
1213 spin_unlock(&dcache_lock);
1214 security_d_instantiate(dentry, inode);
1215 d_rehash(dentry);
1217 } else
1218 d_add(dentry, inode);
1219 return new;
1224 * d_lookup - search for a dentry
1225 * @parent: parent dentry
1226 * @name: qstr of name we wish to find
1228 * Searches the children of the parent dentry for the name in question. If
1229 * the dentry is found its reference count is incremented and the dentry
1230 * is returned. The caller must use d_put to free the entry when it has
1231 * finished using it. %NULL is returned on failure.
1233 * __d_lookup is dcache_lock free. The hash list is protected using RCU.
1234 * Memory barriers are used while updating and doing lockless traversal.
1235 * To avoid races with d_move while rename is happening, d_lock is used.
1237 * Overflows in memcmp(), while d_move, are avoided by keeping the length
1238 * and name pointer in one structure pointed by d_qstr.
1240 * rcu_read_lock() and rcu_read_unlock() are used to disable preemption while
1241 * lookup is going on.
1243 * The dentry unused LRU is not updated even if lookup finds the required dentry
1244 * in there. It is updated in places such as prune_dcache, shrink_dcache_sb,
1245 * select_parent and __dget_locked. This laziness saves lookup from dcache_lock
1246 * acquisition.
1248 * d_lookup() is protected against the concurrent renames in some unrelated
1249 * directory using the seqlockt_t rename_lock.
1252 struct dentry * d_lookup(struct dentry * parent, struct qstr * name)
1254 struct dentry * dentry = NULL;
1255 unsigned long seq;
1257 do {
1258 seq = read_seqbegin(&rename_lock);
1259 dentry = __d_lookup(parent, name);
1260 if (dentry)
1261 break;
1262 } while (read_seqretry(&rename_lock, seq));
1263 return dentry;
1266 struct dentry * __d_lookup(struct dentry * parent, struct qstr * name)
1268 unsigned int len = name->len;
1269 unsigned int hash = name->hash;
1270 const unsigned char *str = name->name;
1271 struct hlist_head *head = d_hash(parent,hash);
1272 struct dentry *found = NULL;
1273 struct hlist_node *node;
1274 struct dentry *dentry;
1276 rcu_read_lock();
1278 hlist_for_each_entry_rcu(dentry, node, head, d_hash) {
1279 struct qstr *qstr;
1281 if (dentry->d_name.hash != hash)
1282 continue;
1283 if (dentry->d_parent != parent)
1284 continue;
1286 spin_lock(&dentry->d_lock);
1289 * Recheck the dentry after taking the lock - d_move may have
1290 * changed things. Don't bother checking the hash because we're
1291 * about to compare the whole name anyway.
1293 if (dentry->d_parent != parent)
1294 goto next;
1297 * It is safe to compare names since d_move() cannot
1298 * change the qstr (protected by d_lock).
1300 qstr = &dentry->d_name;
1301 if (parent->d_op && parent->d_op->d_compare) {
1302 if (parent->d_op->d_compare(parent, qstr, name))
1303 goto next;
1304 } else {
1305 if (qstr->len != len)
1306 goto next;
1307 if (memcmp(qstr->name, str, len))
1308 goto next;
1311 if (!d_unhashed(dentry)) {
1312 atomic_inc(&dentry->d_count);
1313 found = dentry;
1315 spin_unlock(&dentry->d_lock);
1316 break;
1317 next:
1318 spin_unlock(&dentry->d_lock);
1320 rcu_read_unlock();
1322 return found;
1326 * d_hash_and_lookup - hash the qstr then search for a dentry
1327 * @dir: Directory to search in
1328 * @name: qstr of name we wish to find
1330 * On hash failure or on lookup failure NULL is returned.
1332 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
1334 struct dentry *dentry = NULL;
1337 * Check for a fs-specific hash function. Note that we must
1338 * calculate the standard hash first, as the d_op->d_hash()
1339 * routine may choose to leave the hash value unchanged.
1341 name->hash = full_name_hash(name->name, name->len);
1342 if (dir->d_op && dir->d_op->d_hash) {
1343 if (dir->d_op->d_hash(dir, name) < 0)
1344 goto out;
1346 dentry = d_lookup(dir, name);
1347 out:
1348 return dentry;
1352 * d_validate - verify dentry provided from insecure source
1353 * @dentry: The dentry alleged to be valid child of @dparent
1354 * @dparent: The parent dentry (known to be valid)
1355 * @hash: Hash of the dentry
1356 * @len: Length of the name
1358 * An insecure source has sent us a dentry, here we verify it and dget() it.
1359 * This is used by ncpfs in its readdir implementation.
1360 * Zero is returned in the dentry is invalid.
1363 int d_validate(struct dentry *dentry, struct dentry *dparent)
1365 struct hlist_head *base;
1366 struct hlist_node *lhp;
1368 /* Check whether the ptr might be valid at all.. */
1369 if (!kmem_ptr_validate(dentry_cache, dentry))
1370 goto out;
1372 if (dentry->d_parent != dparent)
1373 goto out;
1375 spin_lock(&dcache_lock);
1376 base = d_hash(dparent, dentry->d_name.hash);
1377 hlist_for_each(lhp,base) {
1378 /* hlist_for_each_entry_rcu() not required for d_hash list
1379 * as it is parsed under dcache_lock
1381 if (dentry == hlist_entry(lhp, struct dentry, d_hash)) {
1382 __dget_locked(dentry);
1383 spin_unlock(&dcache_lock);
1384 return 1;
1387 spin_unlock(&dcache_lock);
1388 out:
1389 return 0;
1393 * When a file is deleted, we have two options:
1394 * - turn this dentry into a negative dentry
1395 * - unhash this dentry and free it.
1397 * Usually, we want to just turn this into
1398 * a negative dentry, but if anybody else is
1399 * currently using the dentry or the inode
1400 * we can't do that and we fall back on removing
1401 * it from the hash queues and waiting for
1402 * it to be deleted later when it has no users
1406 * d_delete - delete a dentry
1407 * @dentry: The dentry to delete
1409 * Turn the dentry into a negative dentry if possible, otherwise
1410 * remove it from the hash queues so it can be deleted later
1413 void d_delete(struct dentry * dentry)
1415 int isdir = 0;
1417 * Are we the only user?
1419 spin_lock(&dcache_lock);
1420 spin_lock(&dentry->d_lock);
1421 isdir = S_ISDIR(dentry->d_inode->i_mode);
1422 if (atomic_read(&dentry->d_count) == 1) {
1423 dentry_iput(dentry);
1424 fsnotify_nameremove(dentry, isdir);
1425 return;
1428 if (!d_unhashed(dentry))
1429 __d_drop(dentry);
1431 spin_unlock(&dentry->d_lock);
1432 spin_unlock(&dcache_lock);
1434 fsnotify_nameremove(dentry, isdir);
1437 static void __d_rehash(struct dentry * entry, struct hlist_head *list)
1440 entry->d_flags &= ~DCACHE_UNHASHED;
1441 hlist_add_head_rcu(&entry->d_hash, list);
1444 static void _d_rehash(struct dentry * entry)
1446 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
1450 * d_rehash - add an entry back to the hash
1451 * @entry: dentry to add to the hash
1453 * Adds a dentry to the hash according to its name.
1456 void d_rehash(struct dentry * entry)
1458 spin_lock(&dcache_lock);
1459 spin_lock(&entry->d_lock);
1460 _d_rehash(entry);
1461 spin_unlock(&entry->d_lock);
1462 spin_unlock(&dcache_lock);
1465 #define do_switch(x,y) do { \
1466 __typeof__ (x) __tmp = x; \
1467 x = y; y = __tmp; } while (0)
1470 * When switching names, the actual string doesn't strictly have to
1471 * be preserved in the target - because we're dropping the target
1472 * anyway. As such, we can just do a simple memcpy() to copy over
1473 * the new name before we switch.
1475 * Note that we have to be a lot more careful about getting the hash
1476 * switched - we have to switch the hash value properly even if it
1477 * then no longer matches the actual (corrupted) string of the target.
1478 * The hash value has to match the hash queue that the dentry is on..
1480 static void switch_names(struct dentry *dentry, struct dentry *target)
1482 if (dname_external(target)) {
1483 if (dname_external(dentry)) {
1485 * Both external: swap the pointers
1487 do_switch(target->d_name.name, dentry->d_name.name);
1488 } else {
1490 * dentry:internal, target:external. Steal target's
1491 * storage and make target internal.
1493 memcpy(target->d_iname, dentry->d_name.name,
1494 dentry->d_name.len + 1);
1495 dentry->d_name.name = target->d_name.name;
1496 target->d_name.name = target->d_iname;
1498 } else {
1499 if (dname_external(dentry)) {
1501 * dentry:external, target:internal. Give dentry's
1502 * storage to target and make dentry internal
1504 memcpy(dentry->d_iname, target->d_name.name,
1505 target->d_name.len + 1);
1506 target->d_name.name = dentry->d_name.name;
1507 dentry->d_name.name = dentry->d_iname;
1508 } else {
1510 * Both are internal. Just copy target to dentry
1512 memcpy(dentry->d_iname, target->d_name.name,
1513 target->d_name.len + 1);
1519 * We cannibalize "target" when moving dentry on top of it,
1520 * because it's going to be thrown away anyway. We could be more
1521 * polite about it, though.
1523 * This forceful removal will result in ugly /proc output if
1524 * somebody holds a file open that got deleted due to a rename.
1525 * We could be nicer about the deleted file, and let it show
1526 * up under the name it had before it was deleted rather than
1527 * under the original name of the file that was moved on top of it.
1531 * d_move_locked - move a dentry
1532 * @dentry: entry to move
1533 * @target: new dentry
1535 * Update the dcache to reflect the move of a file name. Negative
1536 * dcache entries should not be moved in this way.
1538 static void d_move_locked(struct dentry * dentry, struct dentry * target)
1540 struct hlist_head *list;
1542 if (!dentry->d_inode)
1543 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
1545 write_seqlock(&rename_lock);
1547 * XXXX: do we really need to take target->d_lock?
1549 if (target < dentry) {
1550 spin_lock(&target->d_lock);
1551 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1552 } else {
1553 spin_lock(&dentry->d_lock);
1554 spin_lock_nested(&target->d_lock, DENTRY_D_LOCK_NESTED);
1557 /* Move the dentry to the target hash queue, if on different bucket */
1558 if (d_unhashed(dentry))
1559 goto already_unhashed;
1561 hlist_del_rcu(&dentry->d_hash);
1563 already_unhashed:
1564 list = d_hash(target->d_parent, target->d_name.hash);
1565 __d_rehash(dentry, list);
1567 /* Unhash the target: dput() will then get rid of it */
1568 __d_drop(target);
1570 list_del(&dentry->d_u.d_child);
1571 list_del(&target->d_u.d_child);
1573 /* Switch the names.. */
1574 switch_names(dentry, target);
1575 do_switch(dentry->d_name.len, target->d_name.len);
1576 do_switch(dentry->d_name.hash, target->d_name.hash);
1578 /* ... and switch the parents */
1579 if (IS_ROOT(dentry)) {
1580 dentry->d_parent = target->d_parent;
1581 target->d_parent = target;
1582 INIT_LIST_HEAD(&target->d_u.d_child);
1583 } else {
1584 do_switch(dentry->d_parent, target->d_parent);
1586 /* And add them back to the (new) parent lists */
1587 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
1590 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
1591 spin_unlock(&target->d_lock);
1592 fsnotify_d_move(dentry);
1593 spin_unlock(&dentry->d_lock);
1594 write_sequnlock(&rename_lock);
1598 * d_move - move a dentry
1599 * @dentry: entry to move
1600 * @target: new dentry
1602 * Update the dcache to reflect the move of a file name. Negative
1603 * dcache entries should not be moved in this way.
1606 void d_move(struct dentry * dentry, struct dentry * target)
1608 spin_lock(&dcache_lock);
1609 d_move_locked(dentry, target);
1610 spin_unlock(&dcache_lock);
1614 * Helper that returns 1 if p1 is a parent of p2, else 0
1616 static int d_isparent(struct dentry *p1, struct dentry *p2)
1618 struct dentry *p;
1620 for (p = p2; p->d_parent != p; p = p->d_parent) {
1621 if (p->d_parent == p1)
1622 return 1;
1624 return 0;
1628 * This helper attempts to cope with remotely renamed directories
1630 * It assumes that the caller is already holding
1631 * dentry->d_parent->d_inode->i_mutex and the dcache_lock
1633 * Note: If ever the locking in lock_rename() changes, then please
1634 * remember to update this too...
1636 static struct dentry *__d_unalias(struct dentry *dentry, struct dentry *alias)
1637 __releases(dcache_lock)
1639 struct mutex *m1 = NULL, *m2 = NULL;
1640 struct dentry *ret;
1642 /* If alias and dentry share a parent, then no extra locks required */
1643 if (alias->d_parent == dentry->d_parent)
1644 goto out_unalias;
1646 /* Check for loops */
1647 ret = ERR_PTR(-ELOOP);
1648 if (d_isparent(alias, dentry))
1649 goto out_err;
1651 /* See lock_rename() */
1652 ret = ERR_PTR(-EBUSY);
1653 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
1654 goto out_err;
1655 m1 = &dentry->d_sb->s_vfs_rename_mutex;
1656 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
1657 goto out_err;
1658 m2 = &alias->d_parent->d_inode->i_mutex;
1659 out_unalias:
1660 d_move_locked(alias, dentry);
1661 ret = alias;
1662 out_err:
1663 spin_unlock(&dcache_lock);
1664 if (m2)
1665 mutex_unlock(m2);
1666 if (m1)
1667 mutex_unlock(m1);
1668 return ret;
1672 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
1673 * named dentry in place of the dentry to be replaced.
1675 static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
1677 struct dentry *dparent, *aparent;
1679 switch_names(dentry, anon);
1680 do_switch(dentry->d_name.len, anon->d_name.len);
1681 do_switch(dentry->d_name.hash, anon->d_name.hash);
1683 dparent = dentry->d_parent;
1684 aparent = anon->d_parent;
1686 dentry->d_parent = (aparent == anon) ? dentry : aparent;
1687 list_del(&dentry->d_u.d_child);
1688 if (!IS_ROOT(dentry))
1689 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
1690 else
1691 INIT_LIST_HEAD(&dentry->d_u.d_child);
1693 anon->d_parent = (dparent == dentry) ? anon : dparent;
1694 list_del(&anon->d_u.d_child);
1695 if (!IS_ROOT(anon))
1696 list_add(&anon->d_u.d_child, &anon->d_parent->d_subdirs);
1697 else
1698 INIT_LIST_HEAD(&anon->d_u.d_child);
1700 anon->d_flags &= ~DCACHE_DISCONNECTED;
1704 * d_materialise_unique - introduce an inode into the tree
1705 * @dentry: candidate dentry
1706 * @inode: inode to bind to the dentry, to which aliases may be attached
1708 * Introduces an dentry into the tree, substituting an extant disconnected
1709 * root directory alias in its place if there is one
1711 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
1713 struct dentry *actual;
1715 BUG_ON(!d_unhashed(dentry));
1717 spin_lock(&dcache_lock);
1719 if (!inode) {
1720 actual = dentry;
1721 dentry->d_inode = NULL;
1722 goto found_lock;
1725 if (S_ISDIR(inode->i_mode)) {
1726 struct dentry *alias;
1728 /* Does an aliased dentry already exist? */
1729 alias = __d_find_alias(inode, 0);
1730 if (alias) {
1731 actual = alias;
1732 /* Is this an anonymous mountpoint that we could splice
1733 * into our tree? */
1734 if (IS_ROOT(alias)) {
1735 spin_lock(&alias->d_lock);
1736 __d_materialise_dentry(dentry, alias);
1737 __d_drop(alias);
1738 goto found;
1740 /* Nope, but we must(!) avoid directory aliasing */
1741 actual = __d_unalias(dentry, alias);
1742 if (IS_ERR(actual))
1743 dput(alias);
1744 goto out_nolock;
1748 /* Add a unique reference */
1749 actual = __d_instantiate_unique(dentry, inode);
1750 if (!actual)
1751 actual = dentry;
1752 else if (unlikely(!d_unhashed(actual)))
1753 goto shouldnt_be_hashed;
1755 found_lock:
1756 spin_lock(&actual->d_lock);
1757 found:
1758 _d_rehash(actual);
1759 spin_unlock(&actual->d_lock);
1760 spin_unlock(&dcache_lock);
1761 out_nolock:
1762 if (actual == dentry) {
1763 security_d_instantiate(dentry, inode);
1764 return NULL;
1767 iput(inode);
1768 return actual;
1770 shouldnt_be_hashed:
1771 spin_unlock(&dcache_lock);
1772 BUG();
1775 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
1777 *buflen -= namelen;
1778 if (*buflen < 0)
1779 return -ENAMETOOLONG;
1780 *buffer -= namelen;
1781 memcpy(*buffer, str, namelen);
1782 return 0;
1785 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
1787 return prepend(buffer, buflen, name->name, name->len);
1791 * __d_path - return the path of a dentry
1792 * @path: the dentry/vfsmount to report
1793 * @root: root vfsmnt/dentry (may be modified by this function)
1794 * @buffer: buffer to return value in
1795 * @buflen: buffer length
1797 * Convert a dentry into an ASCII path name. If the entry has been deleted
1798 * the string " (deleted)" is appended. Note that this is ambiguous.
1800 * Returns the buffer or an error code if the path was too long.
1802 * "buflen" should be positive. Caller holds the dcache_lock.
1804 * If path is not reachable from the supplied root, then the value of
1805 * root is changed (without modifying refcounts).
1807 char *__d_path(const struct path *path, struct path *root,
1808 char *buffer, int buflen)
1810 struct dentry *dentry = path->dentry;
1811 struct vfsmount *vfsmnt = path->mnt;
1812 char *end = buffer + buflen;
1813 char *retval;
1815 spin_lock(&vfsmount_lock);
1816 prepend(&end, &buflen, "\0", 1);
1817 if (!IS_ROOT(dentry) && d_unhashed(dentry) &&
1818 (prepend(&end, &buflen, " (deleted)", 10) != 0))
1819 goto Elong;
1821 if (buflen < 1)
1822 goto Elong;
1823 /* Get '/' right */
1824 retval = end-1;
1825 *retval = '/';
1827 for (;;) {
1828 struct dentry * parent;
1830 if (dentry == root->dentry && vfsmnt == root->mnt)
1831 break;
1832 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
1833 /* Global root? */
1834 if (vfsmnt->mnt_parent == vfsmnt) {
1835 goto global_root;
1837 dentry = vfsmnt->mnt_mountpoint;
1838 vfsmnt = vfsmnt->mnt_parent;
1839 continue;
1841 parent = dentry->d_parent;
1842 prefetch(parent);
1843 if ((prepend_name(&end, &buflen, &dentry->d_name) != 0) ||
1844 (prepend(&end, &buflen, "/", 1) != 0))
1845 goto Elong;
1846 retval = end;
1847 dentry = parent;
1850 out:
1851 spin_unlock(&vfsmount_lock);
1852 return retval;
1854 global_root:
1855 retval += 1; /* hit the slash */
1856 if (prepend_name(&retval, &buflen, &dentry->d_name) != 0)
1857 goto Elong;
1858 root->mnt = vfsmnt;
1859 root->dentry = dentry;
1860 goto out;
1862 Elong:
1863 retval = ERR_PTR(-ENAMETOOLONG);
1864 goto out;
1868 * d_path - return the path of a dentry
1869 * @path: path to report
1870 * @buf: buffer to return value in
1871 * @buflen: buffer length
1873 * Convert a dentry into an ASCII path name. If the entry has been deleted
1874 * the string " (deleted)" is appended. Note that this is ambiguous.
1876 * Returns the buffer or an error code if the path was too long.
1878 * "buflen" should be positive.
1880 char *d_path(const struct path *path, char *buf, int buflen)
1882 char *res;
1883 struct path root;
1884 struct path tmp;
1887 * We have various synthetic filesystems that never get mounted. On
1888 * these filesystems dentries are never used for lookup purposes, and
1889 * thus don't need to be hashed. They also don't need a name until a
1890 * user wants to identify the object in /proc/pid/fd/. The little hack
1891 * below allows us to generate a name for these objects on demand:
1893 if (path->dentry->d_op && path->dentry->d_op->d_dname)
1894 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
1896 read_lock(&current->fs->lock);
1897 root = current->fs->root;
1898 path_get(&root);
1899 read_unlock(&current->fs->lock);
1900 spin_lock(&dcache_lock);
1901 tmp = root;
1902 res = __d_path(path, &tmp, buf, buflen);
1903 spin_unlock(&dcache_lock);
1904 path_put(&root);
1905 return res;
1909 * Helper function for dentry_operations.d_dname() members
1911 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
1912 const char *fmt, ...)
1914 va_list args;
1915 char temp[64];
1916 int sz;
1918 va_start(args, fmt);
1919 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
1920 va_end(args);
1922 if (sz > sizeof(temp) || sz > buflen)
1923 return ERR_PTR(-ENAMETOOLONG);
1925 buffer += buflen - sz;
1926 return memcpy(buffer, temp, sz);
1930 * Write full pathname from the root of the filesystem into the buffer.
1932 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
1934 char *end = buf + buflen;
1935 char *retval;
1937 spin_lock(&dcache_lock);
1938 prepend(&end, &buflen, "\0", 1);
1939 if (!IS_ROOT(dentry) && d_unhashed(dentry) &&
1940 (prepend(&end, &buflen, "//deleted", 9) != 0))
1941 goto Elong;
1942 if (buflen < 1)
1943 goto Elong;
1944 /* Get '/' right */
1945 retval = end-1;
1946 *retval = '/';
1948 while (!IS_ROOT(dentry)) {
1949 struct dentry *parent = dentry->d_parent;
1951 prefetch(parent);
1952 if ((prepend_name(&end, &buflen, &dentry->d_name) != 0) ||
1953 (prepend(&end, &buflen, "/", 1) != 0))
1954 goto Elong;
1956 retval = end;
1957 dentry = parent;
1959 spin_unlock(&dcache_lock);
1960 return retval;
1961 Elong:
1962 spin_unlock(&dcache_lock);
1963 return ERR_PTR(-ENAMETOOLONG);
1967 * NOTE! The user-level library version returns a
1968 * character pointer. The kernel system call just
1969 * returns the length of the buffer filled (which
1970 * includes the ending '\0' character), or a negative
1971 * error value. So libc would do something like
1973 * char *getcwd(char * buf, size_t size)
1975 * int retval;
1977 * retval = sys_getcwd(buf, size);
1978 * if (retval >= 0)
1979 * return buf;
1980 * errno = -retval;
1981 * return NULL;
1984 asmlinkage long sys_getcwd(char __user *buf, unsigned long size)
1986 int error;
1987 struct path pwd, root;
1988 char *page = (char *) __get_free_page(GFP_USER);
1990 if (!page)
1991 return -ENOMEM;
1993 read_lock(&current->fs->lock);
1994 pwd = current->fs->pwd;
1995 path_get(&pwd);
1996 root = current->fs->root;
1997 path_get(&root);
1998 read_unlock(&current->fs->lock);
2000 error = -ENOENT;
2001 /* Has the current directory has been unlinked? */
2002 spin_lock(&dcache_lock);
2003 if (IS_ROOT(pwd.dentry) || !d_unhashed(pwd.dentry)) {
2004 unsigned long len;
2005 struct path tmp = root;
2006 char * cwd;
2008 cwd = __d_path(&pwd, &tmp, page, PAGE_SIZE);
2009 spin_unlock(&dcache_lock);
2011 error = PTR_ERR(cwd);
2012 if (IS_ERR(cwd))
2013 goto out;
2015 error = -ERANGE;
2016 len = PAGE_SIZE + page - cwd;
2017 if (len <= size) {
2018 error = len;
2019 if (copy_to_user(buf, cwd, len))
2020 error = -EFAULT;
2022 } else
2023 spin_unlock(&dcache_lock);
2025 out:
2026 path_put(&pwd);
2027 path_put(&root);
2028 free_page((unsigned long) page);
2029 return error;
2033 * Test whether new_dentry is a subdirectory of old_dentry.
2035 * Trivially implemented using the dcache structure
2039 * is_subdir - is new dentry a subdirectory of old_dentry
2040 * @new_dentry: new dentry
2041 * @old_dentry: old dentry
2043 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2044 * Returns 0 otherwise.
2045 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2048 int is_subdir(struct dentry * new_dentry, struct dentry * old_dentry)
2050 int result;
2051 struct dentry * saved = new_dentry;
2052 unsigned long seq;
2054 /* need rcu_readlock to protect against the d_parent trashing due to
2055 * d_move
2057 rcu_read_lock();
2058 do {
2059 /* for restarting inner loop in case of seq retry */
2060 new_dentry = saved;
2061 result = 0;
2062 seq = read_seqbegin(&rename_lock);
2063 for (;;) {
2064 if (new_dentry != old_dentry) {
2065 struct dentry * parent = new_dentry->d_parent;
2066 if (parent == new_dentry)
2067 break;
2068 new_dentry = parent;
2069 continue;
2071 result = 1;
2072 break;
2074 } while (read_seqretry(&rename_lock, seq));
2075 rcu_read_unlock();
2077 return result;
2080 void d_genocide(struct dentry *root)
2082 struct dentry *this_parent = root;
2083 struct list_head *next;
2085 spin_lock(&dcache_lock);
2086 repeat:
2087 next = this_parent->d_subdirs.next;
2088 resume:
2089 while (next != &this_parent->d_subdirs) {
2090 struct list_head *tmp = next;
2091 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
2092 next = tmp->next;
2093 if (d_unhashed(dentry)||!dentry->d_inode)
2094 continue;
2095 if (!list_empty(&dentry->d_subdirs)) {
2096 this_parent = dentry;
2097 goto repeat;
2099 atomic_dec(&dentry->d_count);
2101 if (this_parent != root) {
2102 next = this_parent->d_u.d_child.next;
2103 atomic_dec(&this_parent->d_count);
2104 this_parent = this_parent->d_parent;
2105 goto resume;
2107 spin_unlock(&dcache_lock);
2111 * find_inode_number - check for dentry with name
2112 * @dir: directory to check
2113 * @name: Name to find.
2115 * Check whether a dentry already exists for the given name,
2116 * and return the inode number if it has an inode. Otherwise
2117 * 0 is returned.
2119 * This routine is used to post-process directory listings for
2120 * filesystems using synthetic inode numbers, and is necessary
2121 * to keep getcwd() working.
2124 ino_t find_inode_number(struct dentry *dir, struct qstr *name)
2126 struct dentry * dentry;
2127 ino_t ino = 0;
2129 dentry = d_hash_and_lookup(dir, name);
2130 if (dentry) {
2131 if (dentry->d_inode)
2132 ino = dentry->d_inode->i_ino;
2133 dput(dentry);
2135 return ino;
2138 static __initdata unsigned long dhash_entries;
2139 static int __init set_dhash_entries(char *str)
2141 if (!str)
2142 return 0;
2143 dhash_entries = simple_strtoul(str, &str, 0);
2144 return 1;
2146 __setup("dhash_entries=", set_dhash_entries);
2148 static void __init dcache_init_early(void)
2150 int loop;
2152 /* If hashes are distributed across NUMA nodes, defer
2153 * hash allocation until vmalloc space is available.
2155 if (hashdist)
2156 return;
2158 dentry_hashtable =
2159 alloc_large_system_hash("Dentry cache",
2160 sizeof(struct hlist_head),
2161 dhash_entries,
2163 HASH_EARLY,
2164 &d_hash_shift,
2165 &d_hash_mask,
2168 for (loop = 0; loop < (1 << d_hash_shift); loop++)
2169 INIT_HLIST_HEAD(&dentry_hashtable[loop]);
2172 static void __init dcache_init(void)
2174 int loop;
2177 * A constructor could be added for stable state like the lists,
2178 * but it is probably not worth it because of the cache nature
2179 * of the dcache.
2181 dentry_cache = KMEM_CACHE(dentry,
2182 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
2184 register_shrinker(&dcache_shrinker);
2186 /* Hash may have been set up in dcache_init_early */
2187 if (!hashdist)
2188 return;
2190 dentry_hashtable =
2191 alloc_large_system_hash("Dentry cache",
2192 sizeof(struct hlist_head),
2193 dhash_entries,
2196 &d_hash_shift,
2197 &d_hash_mask,
2200 for (loop = 0; loop < (1 << d_hash_shift); loop++)
2201 INIT_HLIST_HEAD(&dentry_hashtable[loop]);
2204 /* SLAB cache for __getname() consumers */
2205 struct kmem_cache *names_cachep __read_mostly;
2207 /* SLAB cache for file structures */
2208 struct kmem_cache *filp_cachep __read_mostly;
2210 EXPORT_SYMBOL(d_genocide);
2212 void __init vfs_caches_init_early(void)
2214 dcache_init_early();
2215 inode_init_early();
2218 void __init vfs_caches_init(unsigned long mempages)
2220 unsigned long reserve;
2222 /* Base hash sizes on available memory, with a reserve equal to
2223 150% of current kernel size */
2225 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
2226 mempages -= reserve;
2228 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
2229 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2231 filp_cachep = kmem_cache_create("filp", sizeof(struct file), 0,
2232 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2234 dcache_init();
2235 inode_init();
2236 files_init(mempages);
2237 mnt_init();
2238 bdev_cache_init();
2239 chrdev_init();
2242 EXPORT_SYMBOL(d_alloc);
2243 EXPORT_SYMBOL(d_alloc_anon);
2244 EXPORT_SYMBOL(d_alloc_root);
2245 EXPORT_SYMBOL(d_delete);
2246 EXPORT_SYMBOL(d_find_alias);
2247 EXPORT_SYMBOL(d_instantiate);
2248 EXPORT_SYMBOL(d_invalidate);
2249 EXPORT_SYMBOL(d_lookup);
2250 EXPORT_SYMBOL(d_move);
2251 EXPORT_SYMBOL_GPL(d_materialise_unique);
2252 EXPORT_SYMBOL(d_path);
2253 EXPORT_SYMBOL(d_prune_aliases);
2254 EXPORT_SYMBOL(d_rehash);
2255 EXPORT_SYMBOL(d_splice_alias);
2256 EXPORT_SYMBOL(d_validate);
2257 EXPORT_SYMBOL(dget_locked);
2258 EXPORT_SYMBOL(dput);
2259 EXPORT_SYMBOL(find_inode_number);
2260 EXPORT_SYMBOL(have_submounts);
2261 EXPORT_SYMBOL(names_cachep);
2262 EXPORT_SYMBOL(shrink_dcache_parent);
2263 EXPORT_SYMBOL(shrink_dcache_sb);