2 * Definitions for the 'struct sk_buff' memory handlers.
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
17 #include <linux/kernel.h>
18 #include <linux/compiler.h>
19 #include <linux/time.h>
20 #include <linux/cache.h>
22 #include <asm/atomic.h>
23 #include <asm/types.h>
24 #include <linux/spinlock.h>
25 #include <linux/net.h>
26 #include <linux/textsearch.h>
27 #include <net/checksum.h>
28 #include <linux/rcupdate.h>
29 #include <linux/dmaengine.h>
30 #include <linux/hrtimer.h>
32 #define HAVE_ALLOC_SKB /* For the drivers to know */
33 #define HAVE_ALIGNABLE_SKB /* Ditto 8) */
35 /* Don't change this without changing skb_csum_unnecessary! */
36 #define CHECKSUM_NONE 0
37 #define CHECKSUM_UNNECESSARY 1
38 #define CHECKSUM_COMPLETE 2
39 #define CHECKSUM_PARTIAL 3
41 #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
42 ~(SMP_CACHE_BYTES - 1))
43 #define SKB_WITH_OVERHEAD(X) \
44 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
45 #define SKB_MAX_ORDER(X, ORDER) \
46 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
47 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
48 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
50 /* A. Checksumming of received packets by device.
52 * NONE: device failed to checksum this packet.
53 * skb->csum is undefined.
55 * UNNECESSARY: device parsed packet and wouldbe verified checksum.
56 * skb->csum is undefined.
57 * It is bad option, but, unfortunately, many of vendors do this.
58 * Apparently with secret goal to sell you new device, when you
59 * will add new protocol to your host. F.e. IPv6. 8)
61 * COMPLETE: the most generic way. Device supplied checksum of _all_
62 * the packet as seen by netif_rx in skb->csum.
63 * NOTE: Even if device supports only some protocols, but
64 * is able to produce some skb->csum, it MUST use COMPLETE,
67 * PARTIAL: identical to the case for output below. This may occur
68 * on a packet received directly from another Linux OS, e.g.,
69 * a virtualised Linux kernel on the same host. The packet can
70 * be treated in the same way as UNNECESSARY except that on
71 * output (i.e., forwarding) the checksum must be filled in
72 * by the OS or the hardware.
74 * B. Checksumming on output.
76 * NONE: skb is checksummed by protocol or csum is not required.
78 * PARTIAL: device is required to csum packet as seen by hard_start_xmit
79 * from skb->csum_start to the end and to record the checksum
80 * at skb->csum_start + skb->csum_offset.
82 * Device must show its capabilities in dev->features, set
83 * at device setup time.
84 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
86 * NETIF_F_NO_CSUM - loopback or reliable single hop media.
87 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
88 * TCP/UDP over IPv4. Sigh. Vendors like this
89 * way by an unknown reason. Though, see comment above
90 * about CHECKSUM_UNNECESSARY. 8)
91 * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
93 * Any questions? No questions, good. --ANK
98 struct pipe_inode_info
;
100 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
101 struct nf_conntrack
{
106 #ifdef CONFIG_BRIDGE_NETFILTER
107 struct nf_bridge_info
{
109 struct net_device
*physindev
;
110 struct net_device
*physoutdev
;
112 unsigned long data
[32 / sizeof(unsigned long)];
116 struct sk_buff_head
{
117 /* These two members must be first. */
118 struct sk_buff
*next
;
119 struct sk_buff
*prev
;
127 /* To allow 64K frame to be packed as single skb without frag_list */
128 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
130 typedef struct skb_frag_struct skb_frag_t
;
132 struct skb_frag_struct
{
138 /* This data is invariant across clones and lives at
139 * the end of the header data, ie. at skb->end.
141 struct skb_shared_info
{
143 unsigned short nr_frags
;
144 unsigned short gso_size
;
145 /* Warning: this field is not always filled in (UFO)! */
146 unsigned short gso_segs
;
147 unsigned short gso_type
;
149 #ifdef CONFIG_HAS_DMA
150 unsigned int num_dma_maps
;
152 struct sk_buff
*frag_list
;
153 skb_frag_t frags
[MAX_SKB_FRAGS
];
154 #ifdef CONFIG_HAS_DMA
155 dma_addr_t dma_maps
[MAX_SKB_FRAGS
+ 1];
159 /* We divide dataref into two halves. The higher 16 bits hold references
160 * to the payload part of skb->data. The lower 16 bits hold references to
161 * the entire skb->data. A clone of a headerless skb holds the length of
162 * the header in skb->hdr_len.
164 * All users must obey the rule that the skb->data reference count must be
165 * greater than or equal to the payload reference count.
167 * Holding a reference to the payload part means that the user does not
168 * care about modifications to the header part of skb->data.
170 #define SKB_DATAREF_SHIFT 16
171 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
175 SKB_FCLONE_UNAVAILABLE
,
181 SKB_GSO_TCPV4
= 1 << 0,
182 SKB_GSO_UDP
= 1 << 1,
184 /* This indicates the skb is from an untrusted source. */
185 SKB_GSO_DODGY
= 1 << 2,
187 /* This indicates the tcp segment has CWR set. */
188 SKB_GSO_TCP_ECN
= 1 << 3,
190 SKB_GSO_TCPV6
= 1 << 4,
193 #if BITS_PER_LONG > 32
194 #define NET_SKBUFF_DATA_USES_OFFSET 1
197 #ifdef NET_SKBUFF_DATA_USES_OFFSET
198 typedef unsigned int sk_buff_data_t
;
200 typedef unsigned char *sk_buff_data_t
;
204 * struct sk_buff - socket buffer
205 * @next: Next buffer in list
206 * @prev: Previous buffer in list
207 * @sk: Socket we are owned by
208 * @tstamp: Time we arrived
209 * @dev: Device we arrived on/are leaving by
210 * @transport_header: Transport layer header
211 * @network_header: Network layer header
212 * @mac_header: Link layer header
213 * @dst: destination entry
214 * @sp: the security path, used for xfrm
215 * @cb: Control buffer. Free for use by every layer. Put private vars here
216 * @len: Length of actual data
217 * @data_len: Data length
218 * @mac_len: Length of link layer header
219 * @hdr_len: writable header length of cloned skb
220 * @csum: Checksum (must include start/offset pair)
221 * @csum_start: Offset from skb->head where checksumming should start
222 * @csum_offset: Offset from csum_start where checksum should be stored
223 * @local_df: allow local fragmentation
224 * @cloned: Head may be cloned (check refcnt to be sure)
225 * @nohdr: Payload reference only, must not modify header
226 * @pkt_type: Packet class
227 * @fclone: skbuff clone status
228 * @ip_summed: Driver fed us an IP checksum
229 * @priority: Packet queueing priority
230 * @users: User count - see {datagram,tcp}.c
231 * @protocol: Packet protocol from driver
232 * @truesize: Buffer size
233 * @head: Head of buffer
234 * @data: Data head pointer
235 * @tail: Tail pointer
237 * @destructor: Destruct function
238 * @mark: Generic packet mark
239 * @nfct: Associated connection, if any
240 * @ipvs_property: skbuff is owned by ipvs
241 * @peeked: this packet has been seen already, so stats have been
242 * done for it, don't do them again
243 * @nf_trace: netfilter packet trace flag
244 * @nfctinfo: Relationship of this skb to the connection
245 * @nfct_reasm: netfilter conntrack re-assembly pointer
246 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
247 * @iif: ifindex of device we arrived on
248 * @queue_mapping: Queue mapping for multiqueue devices
249 * @tc_index: Traffic control index
250 * @tc_verd: traffic control verdict
251 * @ndisc_nodetype: router type (from link layer)
252 * @do_not_encrypt: set to prevent encryption of this frame
253 * @dma_cookie: a cookie to one of several possible DMA operations
254 * done by skb DMA functions
255 * @secmark: security marking
256 * @vlan_tci: vlan tag control information
260 /* These two members must be first. */
261 struct sk_buff
*next
;
262 struct sk_buff
*prev
;
266 struct net_device
*dev
;
269 struct dst_entry
*dst
;
270 struct rtable
*rtable
;
275 * This is the control buffer. It is free to use for every
276 * layer. Please put your private variables there. If you
277 * want to keep them across layers you have to do a skb_clone()
278 * first. This is owned by whoever has the skb queued ATM.
306 void (*destructor
)(struct sk_buff
*skb
);
307 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
308 struct nf_conntrack
*nfct
;
309 struct sk_buff
*nfct_reasm
;
311 #ifdef CONFIG_BRIDGE_NETFILTER
312 struct nf_bridge_info
*nf_bridge
;
317 #ifdef CONFIG_NET_SCHED
318 __u16 tc_index
; /* traffic control index */
319 #ifdef CONFIG_NET_CLS_ACT
320 __u16 tc_verd
; /* traffic control verdict */
323 #ifdef CONFIG_IPV6_NDISC_NODETYPE
324 __u8 ndisc_nodetype
:2;
326 #if defined(CONFIG_MAC80211) || defined(CONFIG_MAC80211_MODULE)
327 __u8 do_not_encrypt
:1;
329 /* 0/13/14 bit hole */
331 #ifdef CONFIG_NET_DMA
332 dma_cookie_t dma_cookie
;
334 #ifdef CONFIG_NETWORK_SECMARK
342 sk_buff_data_t transport_header
;
343 sk_buff_data_t network_header
;
344 sk_buff_data_t mac_header
;
345 /* These elements must be at the end, see alloc_skb() for details. */
350 unsigned int truesize
;
356 * Handling routines are only of interest to the kernel
358 #include <linux/slab.h>
360 #include <asm/system.h>
362 #ifdef CONFIG_HAS_DMA
363 #include <linux/dma-mapping.h>
364 extern int skb_dma_map(struct device
*dev
, struct sk_buff
*skb
,
365 enum dma_data_direction dir
);
366 extern void skb_dma_unmap(struct device
*dev
, struct sk_buff
*skb
,
367 enum dma_data_direction dir
);
370 extern void kfree_skb(struct sk_buff
*skb
);
371 extern void __kfree_skb(struct sk_buff
*skb
);
372 extern struct sk_buff
*__alloc_skb(unsigned int size
,
373 gfp_t priority
, int fclone
, int node
);
374 static inline struct sk_buff
*alloc_skb(unsigned int size
,
377 return __alloc_skb(size
, priority
, 0, -1);
380 static inline struct sk_buff
*alloc_skb_fclone(unsigned int size
,
383 return __alloc_skb(size
, priority
, 1, -1);
386 extern int skb_recycle_check(struct sk_buff
*skb
, int skb_size
);
388 extern struct sk_buff
*skb_morph(struct sk_buff
*dst
, struct sk_buff
*src
);
389 extern struct sk_buff
*skb_clone(struct sk_buff
*skb
,
391 extern struct sk_buff
*skb_copy(const struct sk_buff
*skb
,
393 extern struct sk_buff
*pskb_copy(struct sk_buff
*skb
,
395 extern int pskb_expand_head(struct sk_buff
*skb
,
396 int nhead
, int ntail
,
398 extern struct sk_buff
*skb_realloc_headroom(struct sk_buff
*skb
,
399 unsigned int headroom
);
400 extern struct sk_buff
*skb_copy_expand(const struct sk_buff
*skb
,
401 int newheadroom
, int newtailroom
,
403 extern int skb_to_sgvec(struct sk_buff
*skb
,
404 struct scatterlist
*sg
, int offset
,
406 extern int skb_cow_data(struct sk_buff
*skb
, int tailbits
,
407 struct sk_buff
**trailer
);
408 extern int skb_pad(struct sk_buff
*skb
, int pad
);
409 #define dev_kfree_skb(a) kfree_skb(a)
410 extern void skb_over_panic(struct sk_buff
*skb
, int len
,
412 extern void skb_under_panic(struct sk_buff
*skb
, int len
,
414 extern void skb_truesize_bug(struct sk_buff
*skb
);
416 static inline void skb_truesize_check(struct sk_buff
*skb
)
418 int len
= sizeof(struct sk_buff
) + skb
->len
;
420 if (unlikely((int)skb
->truesize
< len
))
421 skb_truesize_bug(skb
);
424 extern int skb_append_datato_frags(struct sock
*sk
, struct sk_buff
*skb
,
425 int getfrag(void *from
, char *to
, int offset
,
426 int len
,int odd
, struct sk_buff
*skb
),
427 void *from
, int length
);
434 __u32 stepped_offset
;
435 struct sk_buff
*root_skb
;
436 struct sk_buff
*cur_skb
;
440 extern void skb_prepare_seq_read(struct sk_buff
*skb
,
441 unsigned int from
, unsigned int to
,
442 struct skb_seq_state
*st
);
443 extern unsigned int skb_seq_read(unsigned int consumed
, const u8
**data
,
444 struct skb_seq_state
*st
);
445 extern void skb_abort_seq_read(struct skb_seq_state
*st
);
447 extern unsigned int skb_find_text(struct sk_buff
*skb
, unsigned int from
,
448 unsigned int to
, struct ts_config
*config
,
449 struct ts_state
*state
);
451 #ifdef NET_SKBUFF_DATA_USES_OFFSET
452 static inline unsigned char *skb_end_pointer(const struct sk_buff
*skb
)
454 return skb
->head
+ skb
->end
;
457 static inline unsigned char *skb_end_pointer(const struct sk_buff
*skb
)
464 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
467 * skb_queue_empty - check if a queue is empty
470 * Returns true if the queue is empty, false otherwise.
472 static inline int skb_queue_empty(const struct sk_buff_head
*list
)
474 return list
->next
== (struct sk_buff
*)list
;
478 * skb_queue_is_last - check if skb is the last entry in the queue
482 * Returns true if @skb is the last buffer on the list.
484 static inline bool skb_queue_is_last(const struct sk_buff_head
*list
,
485 const struct sk_buff
*skb
)
487 return (skb
->next
== (struct sk_buff
*) list
);
491 * skb_queue_next - return the next packet in the queue
493 * @skb: current buffer
495 * Return the next packet in @list after @skb. It is only valid to
496 * call this if skb_queue_is_last() evaluates to false.
498 static inline struct sk_buff
*skb_queue_next(const struct sk_buff_head
*list
,
499 const struct sk_buff
*skb
)
501 /* This BUG_ON may seem severe, but if we just return then we
502 * are going to dereference garbage.
504 BUG_ON(skb_queue_is_last(list
, skb
));
509 * skb_get - reference buffer
510 * @skb: buffer to reference
512 * Makes another reference to a socket buffer and returns a pointer
515 static inline struct sk_buff
*skb_get(struct sk_buff
*skb
)
517 atomic_inc(&skb
->users
);
522 * If users == 1, we are the only owner and are can avoid redundant
527 * skb_cloned - is the buffer a clone
528 * @skb: buffer to check
530 * Returns true if the buffer was generated with skb_clone() and is
531 * one of multiple shared copies of the buffer. Cloned buffers are
532 * shared data so must not be written to under normal circumstances.
534 static inline int skb_cloned(const struct sk_buff
*skb
)
536 return skb
->cloned
&&
537 (atomic_read(&skb_shinfo(skb
)->dataref
) & SKB_DATAREF_MASK
) != 1;
541 * skb_header_cloned - is the header a clone
542 * @skb: buffer to check
544 * Returns true if modifying the header part of the buffer requires
545 * the data to be copied.
547 static inline int skb_header_cloned(const struct sk_buff
*skb
)
554 dataref
= atomic_read(&skb_shinfo(skb
)->dataref
);
555 dataref
= (dataref
& SKB_DATAREF_MASK
) - (dataref
>> SKB_DATAREF_SHIFT
);
560 * skb_header_release - release reference to header
561 * @skb: buffer to operate on
563 * Drop a reference to the header part of the buffer. This is done
564 * by acquiring a payload reference. You must not read from the header
565 * part of skb->data after this.
567 static inline void skb_header_release(struct sk_buff
*skb
)
571 atomic_add(1 << SKB_DATAREF_SHIFT
, &skb_shinfo(skb
)->dataref
);
575 * skb_shared - is the buffer shared
576 * @skb: buffer to check
578 * Returns true if more than one person has a reference to this
581 static inline int skb_shared(const struct sk_buff
*skb
)
583 return atomic_read(&skb
->users
) != 1;
587 * skb_share_check - check if buffer is shared and if so clone it
588 * @skb: buffer to check
589 * @pri: priority for memory allocation
591 * If the buffer is shared the buffer is cloned and the old copy
592 * drops a reference. A new clone with a single reference is returned.
593 * If the buffer is not shared the original buffer is returned. When
594 * being called from interrupt status or with spinlocks held pri must
597 * NULL is returned on a memory allocation failure.
599 static inline struct sk_buff
*skb_share_check(struct sk_buff
*skb
,
602 might_sleep_if(pri
& __GFP_WAIT
);
603 if (skb_shared(skb
)) {
604 struct sk_buff
*nskb
= skb_clone(skb
, pri
);
612 * Copy shared buffers into a new sk_buff. We effectively do COW on
613 * packets to handle cases where we have a local reader and forward
614 * and a couple of other messy ones. The normal one is tcpdumping
615 * a packet thats being forwarded.
619 * skb_unshare - make a copy of a shared buffer
620 * @skb: buffer to check
621 * @pri: priority for memory allocation
623 * If the socket buffer is a clone then this function creates a new
624 * copy of the data, drops a reference count on the old copy and returns
625 * the new copy with the reference count at 1. If the buffer is not a clone
626 * the original buffer is returned. When called with a spinlock held or
627 * from interrupt state @pri must be %GFP_ATOMIC
629 * %NULL is returned on a memory allocation failure.
631 static inline struct sk_buff
*skb_unshare(struct sk_buff
*skb
,
634 might_sleep_if(pri
& __GFP_WAIT
);
635 if (skb_cloned(skb
)) {
636 struct sk_buff
*nskb
= skb_copy(skb
, pri
);
637 kfree_skb(skb
); /* Free our shared copy */
645 * @list_: list to peek at
647 * Peek an &sk_buff. Unlike most other operations you _MUST_
648 * be careful with this one. A peek leaves the buffer on the
649 * list and someone else may run off with it. You must hold
650 * the appropriate locks or have a private queue to do this.
652 * Returns %NULL for an empty list or a pointer to the head element.
653 * The reference count is not incremented and the reference is therefore
654 * volatile. Use with caution.
656 static inline struct sk_buff
*skb_peek(struct sk_buff_head
*list_
)
658 struct sk_buff
*list
= ((struct sk_buff
*)list_
)->next
;
659 if (list
== (struct sk_buff
*)list_
)
666 * @list_: list to peek at
668 * Peek an &sk_buff. Unlike most other operations you _MUST_
669 * be careful with this one. A peek leaves the buffer on the
670 * list and someone else may run off with it. You must hold
671 * the appropriate locks or have a private queue to do this.
673 * Returns %NULL for an empty list or a pointer to the tail element.
674 * The reference count is not incremented and the reference is therefore
675 * volatile. Use with caution.
677 static inline struct sk_buff
*skb_peek_tail(struct sk_buff_head
*list_
)
679 struct sk_buff
*list
= ((struct sk_buff
*)list_
)->prev
;
680 if (list
== (struct sk_buff
*)list_
)
686 * skb_queue_len - get queue length
687 * @list_: list to measure
689 * Return the length of an &sk_buff queue.
691 static inline __u32
skb_queue_len(const struct sk_buff_head
*list_
)
697 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
698 * @list: queue to initialize
700 * This initializes only the list and queue length aspects of
701 * an sk_buff_head object. This allows to initialize the list
702 * aspects of an sk_buff_head without reinitializing things like
703 * the spinlock. It can also be used for on-stack sk_buff_head
704 * objects where the spinlock is known to not be used.
706 static inline void __skb_queue_head_init(struct sk_buff_head
*list
)
708 list
->prev
= list
->next
= (struct sk_buff
*)list
;
713 * This function creates a split out lock class for each invocation;
714 * this is needed for now since a whole lot of users of the skb-queue
715 * infrastructure in drivers have different locking usage (in hardirq)
716 * than the networking core (in softirq only). In the long run either the
717 * network layer or drivers should need annotation to consolidate the
718 * main types of usage into 3 classes.
720 static inline void skb_queue_head_init(struct sk_buff_head
*list
)
722 spin_lock_init(&list
->lock
);
723 __skb_queue_head_init(list
);
726 static inline void skb_queue_head_init_class(struct sk_buff_head
*list
,
727 struct lock_class_key
*class)
729 skb_queue_head_init(list
);
730 lockdep_set_class(&list
->lock
, class);
734 * Insert an sk_buff on a list.
736 * The "__skb_xxxx()" functions are the non-atomic ones that
737 * can only be called with interrupts disabled.
739 extern void skb_insert(struct sk_buff
*old
, struct sk_buff
*newsk
, struct sk_buff_head
*list
);
740 static inline void __skb_insert(struct sk_buff
*newsk
,
741 struct sk_buff
*prev
, struct sk_buff
*next
,
742 struct sk_buff_head
*list
)
746 next
->prev
= prev
->next
= newsk
;
750 static inline void __skb_queue_splice(const struct sk_buff_head
*list
,
751 struct sk_buff
*prev
,
752 struct sk_buff
*next
)
754 struct sk_buff
*first
= list
->next
;
755 struct sk_buff
*last
= list
->prev
;
765 * skb_queue_splice - join two skb lists, this is designed for stacks
766 * @list: the new list to add
767 * @head: the place to add it in the first list
769 static inline void skb_queue_splice(const struct sk_buff_head
*list
,
770 struct sk_buff_head
*head
)
772 if (!skb_queue_empty(list
)) {
773 __skb_queue_splice(list
, (struct sk_buff
*) head
, head
->next
);
774 head
->qlen
+= list
->qlen
;
779 * skb_queue_splice - join two skb lists and reinitialise the emptied list
780 * @list: the new list to add
781 * @head: the place to add it in the first list
783 * The list at @list is reinitialised
785 static inline void skb_queue_splice_init(struct sk_buff_head
*list
,
786 struct sk_buff_head
*head
)
788 if (!skb_queue_empty(list
)) {
789 __skb_queue_splice(list
, (struct sk_buff
*) head
, head
->next
);
790 head
->qlen
+= list
->qlen
;
791 __skb_queue_head_init(list
);
796 * skb_queue_splice_tail - join two skb lists, each list being a queue
797 * @list: the new list to add
798 * @head: the place to add it in the first list
800 static inline void skb_queue_splice_tail(const struct sk_buff_head
*list
,
801 struct sk_buff_head
*head
)
803 if (!skb_queue_empty(list
)) {
804 __skb_queue_splice(list
, head
->prev
, (struct sk_buff
*) head
);
805 head
->qlen
+= list
->qlen
;
810 * skb_queue_splice_tail - join two skb lists and reinitialise the emptied list
811 * @list: the new list to add
812 * @head: the place to add it in the first list
814 * Each of the lists is a queue.
815 * The list at @list is reinitialised
817 static inline void skb_queue_splice_tail_init(struct sk_buff_head
*list
,
818 struct sk_buff_head
*head
)
820 if (!skb_queue_empty(list
)) {
821 __skb_queue_splice(list
, head
->prev
, (struct sk_buff
*) head
);
822 head
->qlen
+= list
->qlen
;
823 __skb_queue_head_init(list
);
828 * __skb_queue_after - queue a buffer at the list head
830 * @prev: place after this buffer
831 * @newsk: buffer to queue
833 * Queue a buffer int the middle of a list. This function takes no locks
834 * and you must therefore hold required locks before calling it.
836 * A buffer cannot be placed on two lists at the same time.
838 static inline void __skb_queue_after(struct sk_buff_head
*list
,
839 struct sk_buff
*prev
,
840 struct sk_buff
*newsk
)
842 __skb_insert(newsk
, prev
, prev
->next
, list
);
845 extern void skb_append(struct sk_buff
*old
, struct sk_buff
*newsk
,
846 struct sk_buff_head
*list
);
848 static inline void __skb_queue_before(struct sk_buff_head
*list
,
849 struct sk_buff
*next
,
850 struct sk_buff
*newsk
)
852 __skb_insert(newsk
, next
->prev
, next
, list
);
856 * __skb_queue_head - queue a buffer at the list head
858 * @newsk: buffer to queue
860 * Queue a buffer at the start of a list. This function takes no locks
861 * and you must therefore hold required locks before calling it.
863 * A buffer cannot be placed on two lists at the same time.
865 extern void skb_queue_head(struct sk_buff_head
*list
, struct sk_buff
*newsk
);
866 static inline void __skb_queue_head(struct sk_buff_head
*list
,
867 struct sk_buff
*newsk
)
869 __skb_queue_after(list
, (struct sk_buff
*)list
, newsk
);
873 * __skb_queue_tail - queue a buffer at the list tail
875 * @newsk: buffer to queue
877 * Queue a buffer at the end of a list. This function takes no locks
878 * and you must therefore hold required locks before calling it.
880 * A buffer cannot be placed on two lists at the same time.
882 extern void skb_queue_tail(struct sk_buff_head
*list
, struct sk_buff
*newsk
);
883 static inline void __skb_queue_tail(struct sk_buff_head
*list
,
884 struct sk_buff
*newsk
)
886 __skb_queue_before(list
, (struct sk_buff
*)list
, newsk
);
890 * remove sk_buff from list. _Must_ be called atomically, and with
893 extern void skb_unlink(struct sk_buff
*skb
, struct sk_buff_head
*list
);
894 static inline void __skb_unlink(struct sk_buff
*skb
, struct sk_buff_head
*list
)
896 struct sk_buff
*next
, *prev
;
901 skb
->next
= skb
->prev
= NULL
;
907 * __skb_dequeue - remove from the head of the queue
908 * @list: list to dequeue from
910 * Remove the head of the list. This function does not take any locks
911 * so must be used with appropriate locks held only. The head item is
912 * returned or %NULL if the list is empty.
914 extern struct sk_buff
*skb_dequeue(struct sk_buff_head
*list
);
915 static inline struct sk_buff
*__skb_dequeue(struct sk_buff_head
*list
)
917 struct sk_buff
*skb
= skb_peek(list
);
919 __skb_unlink(skb
, list
);
924 * __skb_dequeue_tail - remove from the tail of the queue
925 * @list: list to dequeue from
927 * Remove the tail of the list. This function does not take any locks
928 * so must be used with appropriate locks held only. The tail item is
929 * returned or %NULL if the list is empty.
931 extern struct sk_buff
*skb_dequeue_tail(struct sk_buff_head
*list
);
932 static inline struct sk_buff
*__skb_dequeue_tail(struct sk_buff_head
*list
)
934 struct sk_buff
*skb
= skb_peek_tail(list
);
936 __skb_unlink(skb
, list
);
941 static inline int skb_is_nonlinear(const struct sk_buff
*skb
)
943 return skb
->data_len
;
946 static inline unsigned int skb_headlen(const struct sk_buff
*skb
)
948 return skb
->len
- skb
->data_len
;
951 static inline int skb_pagelen(const struct sk_buff
*skb
)
955 for (i
= (int)skb_shinfo(skb
)->nr_frags
- 1; i
>= 0; i
--)
956 len
+= skb_shinfo(skb
)->frags
[i
].size
;
957 return len
+ skb_headlen(skb
);
960 static inline void skb_fill_page_desc(struct sk_buff
*skb
, int i
,
961 struct page
*page
, int off
, int size
)
963 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
966 frag
->page_offset
= off
;
968 skb_shinfo(skb
)->nr_frags
= i
+ 1;
971 extern void skb_add_rx_frag(struct sk_buff
*skb
, int i
, struct page
*page
,
974 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
975 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_shinfo(skb)->frag_list)
976 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
978 #ifdef NET_SKBUFF_DATA_USES_OFFSET
979 static inline unsigned char *skb_tail_pointer(const struct sk_buff
*skb
)
981 return skb
->head
+ skb
->tail
;
984 static inline void skb_reset_tail_pointer(struct sk_buff
*skb
)
986 skb
->tail
= skb
->data
- skb
->head
;
989 static inline void skb_set_tail_pointer(struct sk_buff
*skb
, const int offset
)
991 skb_reset_tail_pointer(skb
);
994 #else /* NET_SKBUFF_DATA_USES_OFFSET */
995 static inline unsigned char *skb_tail_pointer(const struct sk_buff
*skb
)
1000 static inline void skb_reset_tail_pointer(struct sk_buff
*skb
)
1002 skb
->tail
= skb
->data
;
1005 static inline void skb_set_tail_pointer(struct sk_buff
*skb
, const int offset
)
1007 skb
->tail
= skb
->data
+ offset
;
1010 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1013 * Add data to an sk_buff
1015 extern unsigned char *skb_put(struct sk_buff
*skb
, unsigned int len
);
1016 static inline unsigned char *__skb_put(struct sk_buff
*skb
, unsigned int len
)
1018 unsigned char *tmp
= skb_tail_pointer(skb
);
1019 SKB_LINEAR_ASSERT(skb
);
1025 extern unsigned char *skb_push(struct sk_buff
*skb
, unsigned int len
);
1026 static inline unsigned char *__skb_push(struct sk_buff
*skb
, unsigned int len
)
1033 extern unsigned char *skb_pull(struct sk_buff
*skb
, unsigned int len
);
1034 static inline unsigned char *__skb_pull(struct sk_buff
*skb
, unsigned int len
)
1037 BUG_ON(skb
->len
< skb
->data_len
);
1038 return skb
->data
+= len
;
1041 extern unsigned char *__pskb_pull_tail(struct sk_buff
*skb
, int delta
);
1043 static inline unsigned char *__pskb_pull(struct sk_buff
*skb
, unsigned int len
)
1045 if (len
> skb_headlen(skb
) &&
1046 !__pskb_pull_tail(skb
, len
- skb_headlen(skb
)))
1049 return skb
->data
+= len
;
1052 static inline unsigned char *pskb_pull(struct sk_buff
*skb
, unsigned int len
)
1054 return unlikely(len
> skb
->len
) ? NULL
: __pskb_pull(skb
, len
);
1057 static inline int pskb_may_pull(struct sk_buff
*skb
, unsigned int len
)
1059 if (likely(len
<= skb_headlen(skb
)))
1061 if (unlikely(len
> skb
->len
))
1063 return __pskb_pull_tail(skb
, len
- skb_headlen(skb
)) != NULL
;
1067 * skb_headroom - bytes at buffer head
1068 * @skb: buffer to check
1070 * Return the number of bytes of free space at the head of an &sk_buff.
1072 static inline unsigned int skb_headroom(const struct sk_buff
*skb
)
1074 return skb
->data
- skb
->head
;
1078 * skb_tailroom - bytes at buffer end
1079 * @skb: buffer to check
1081 * Return the number of bytes of free space at the tail of an sk_buff
1083 static inline int skb_tailroom(const struct sk_buff
*skb
)
1085 return skb_is_nonlinear(skb
) ? 0 : skb
->end
- skb
->tail
;
1089 * skb_reserve - adjust headroom
1090 * @skb: buffer to alter
1091 * @len: bytes to move
1093 * Increase the headroom of an empty &sk_buff by reducing the tail
1094 * room. This is only allowed for an empty buffer.
1096 static inline void skb_reserve(struct sk_buff
*skb
, int len
)
1102 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1103 static inline unsigned char *skb_transport_header(const struct sk_buff
*skb
)
1105 return skb
->head
+ skb
->transport_header
;
1108 static inline void skb_reset_transport_header(struct sk_buff
*skb
)
1110 skb
->transport_header
= skb
->data
- skb
->head
;
1113 static inline void skb_set_transport_header(struct sk_buff
*skb
,
1116 skb_reset_transport_header(skb
);
1117 skb
->transport_header
+= offset
;
1120 static inline unsigned char *skb_network_header(const struct sk_buff
*skb
)
1122 return skb
->head
+ skb
->network_header
;
1125 static inline void skb_reset_network_header(struct sk_buff
*skb
)
1127 skb
->network_header
= skb
->data
- skb
->head
;
1130 static inline void skb_set_network_header(struct sk_buff
*skb
, const int offset
)
1132 skb_reset_network_header(skb
);
1133 skb
->network_header
+= offset
;
1136 static inline unsigned char *skb_mac_header(const struct sk_buff
*skb
)
1138 return skb
->head
+ skb
->mac_header
;
1141 static inline int skb_mac_header_was_set(const struct sk_buff
*skb
)
1143 return skb
->mac_header
!= ~0U;
1146 static inline void skb_reset_mac_header(struct sk_buff
*skb
)
1148 skb
->mac_header
= skb
->data
- skb
->head
;
1151 static inline void skb_set_mac_header(struct sk_buff
*skb
, const int offset
)
1153 skb_reset_mac_header(skb
);
1154 skb
->mac_header
+= offset
;
1157 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1159 static inline unsigned char *skb_transport_header(const struct sk_buff
*skb
)
1161 return skb
->transport_header
;
1164 static inline void skb_reset_transport_header(struct sk_buff
*skb
)
1166 skb
->transport_header
= skb
->data
;
1169 static inline void skb_set_transport_header(struct sk_buff
*skb
,
1172 skb
->transport_header
= skb
->data
+ offset
;
1175 static inline unsigned char *skb_network_header(const struct sk_buff
*skb
)
1177 return skb
->network_header
;
1180 static inline void skb_reset_network_header(struct sk_buff
*skb
)
1182 skb
->network_header
= skb
->data
;
1185 static inline void skb_set_network_header(struct sk_buff
*skb
, const int offset
)
1187 skb
->network_header
= skb
->data
+ offset
;
1190 static inline unsigned char *skb_mac_header(const struct sk_buff
*skb
)
1192 return skb
->mac_header
;
1195 static inline int skb_mac_header_was_set(const struct sk_buff
*skb
)
1197 return skb
->mac_header
!= NULL
;
1200 static inline void skb_reset_mac_header(struct sk_buff
*skb
)
1202 skb
->mac_header
= skb
->data
;
1205 static inline void skb_set_mac_header(struct sk_buff
*skb
, const int offset
)
1207 skb
->mac_header
= skb
->data
+ offset
;
1209 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1211 static inline int skb_transport_offset(const struct sk_buff
*skb
)
1213 return skb_transport_header(skb
) - skb
->data
;
1216 static inline u32
skb_network_header_len(const struct sk_buff
*skb
)
1218 return skb
->transport_header
- skb
->network_header
;
1221 static inline int skb_network_offset(const struct sk_buff
*skb
)
1223 return skb_network_header(skb
) - skb
->data
;
1227 * CPUs often take a performance hit when accessing unaligned memory
1228 * locations. The actual performance hit varies, it can be small if the
1229 * hardware handles it or large if we have to take an exception and fix it
1232 * Since an ethernet header is 14 bytes network drivers often end up with
1233 * the IP header at an unaligned offset. The IP header can be aligned by
1234 * shifting the start of the packet by 2 bytes. Drivers should do this
1237 * skb_reserve(NET_IP_ALIGN);
1239 * The downside to this alignment of the IP header is that the DMA is now
1240 * unaligned. On some architectures the cost of an unaligned DMA is high
1241 * and this cost outweighs the gains made by aligning the IP header.
1243 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1246 #ifndef NET_IP_ALIGN
1247 #define NET_IP_ALIGN 2
1251 * The networking layer reserves some headroom in skb data (via
1252 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1253 * the header has to grow. In the default case, if the header has to grow
1254 * 16 bytes or less we avoid the reallocation.
1256 * Unfortunately this headroom changes the DMA alignment of the resulting
1257 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1258 * on some architectures. An architecture can override this value,
1259 * perhaps setting it to a cacheline in size (since that will maintain
1260 * cacheline alignment of the DMA). It must be a power of 2.
1262 * Various parts of the networking layer expect at least 16 bytes of
1263 * headroom, you should not reduce this.
1266 #define NET_SKB_PAD 16
1269 extern int ___pskb_trim(struct sk_buff
*skb
, unsigned int len
);
1271 static inline void __skb_trim(struct sk_buff
*skb
, unsigned int len
)
1273 if (unlikely(skb
->data_len
)) {
1278 skb_set_tail_pointer(skb
, len
);
1281 extern void skb_trim(struct sk_buff
*skb
, unsigned int len
);
1283 static inline int __pskb_trim(struct sk_buff
*skb
, unsigned int len
)
1286 return ___pskb_trim(skb
, len
);
1287 __skb_trim(skb
, len
);
1291 static inline int pskb_trim(struct sk_buff
*skb
, unsigned int len
)
1293 return (len
< skb
->len
) ? __pskb_trim(skb
, len
) : 0;
1297 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1298 * @skb: buffer to alter
1301 * This is identical to pskb_trim except that the caller knows that
1302 * the skb is not cloned so we should never get an error due to out-
1305 static inline void pskb_trim_unique(struct sk_buff
*skb
, unsigned int len
)
1307 int err
= pskb_trim(skb
, len
);
1312 * skb_orphan - orphan a buffer
1313 * @skb: buffer to orphan
1315 * If a buffer currently has an owner then we call the owner's
1316 * destructor function and make the @skb unowned. The buffer continues
1317 * to exist but is no longer charged to its former owner.
1319 static inline void skb_orphan(struct sk_buff
*skb
)
1321 if (skb
->destructor
)
1322 skb
->destructor(skb
);
1323 skb
->destructor
= NULL
;
1328 * __skb_queue_purge - empty a list
1329 * @list: list to empty
1331 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1332 * the list and one reference dropped. This function does not take the
1333 * list lock and the caller must hold the relevant locks to use it.
1335 extern void skb_queue_purge(struct sk_buff_head
*list
);
1336 static inline void __skb_queue_purge(struct sk_buff_head
*list
)
1338 struct sk_buff
*skb
;
1339 while ((skb
= __skb_dequeue(list
)) != NULL
)
1344 * __dev_alloc_skb - allocate an skbuff for receiving
1345 * @length: length to allocate
1346 * @gfp_mask: get_free_pages mask, passed to alloc_skb
1348 * Allocate a new &sk_buff and assign it a usage count of one. The
1349 * buffer has unspecified headroom built in. Users should allocate
1350 * the headroom they think they need without accounting for the
1351 * built in space. The built in space is used for optimisations.
1353 * %NULL is returned if there is no free memory.
1355 static inline struct sk_buff
*__dev_alloc_skb(unsigned int length
,
1358 struct sk_buff
*skb
= alloc_skb(length
+ NET_SKB_PAD
, gfp_mask
);
1360 skb_reserve(skb
, NET_SKB_PAD
);
1364 extern struct sk_buff
*dev_alloc_skb(unsigned int length
);
1366 extern struct sk_buff
*__netdev_alloc_skb(struct net_device
*dev
,
1367 unsigned int length
, gfp_t gfp_mask
);
1370 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
1371 * @dev: network device to receive on
1372 * @length: length to allocate
1374 * Allocate a new &sk_buff and assign it a usage count of one. The
1375 * buffer has unspecified headroom built in. Users should allocate
1376 * the headroom they think they need without accounting for the
1377 * built in space. The built in space is used for optimisations.
1379 * %NULL is returned if there is no free memory. Although this function
1380 * allocates memory it can be called from an interrupt.
1382 static inline struct sk_buff
*netdev_alloc_skb(struct net_device
*dev
,
1383 unsigned int length
)
1385 return __netdev_alloc_skb(dev
, length
, GFP_ATOMIC
);
1388 extern struct page
*__netdev_alloc_page(struct net_device
*dev
, gfp_t gfp_mask
);
1391 * netdev_alloc_page - allocate a page for ps-rx on a specific device
1392 * @dev: network device to receive on
1394 * Allocate a new page node local to the specified device.
1396 * %NULL is returned if there is no free memory.
1398 static inline struct page
*netdev_alloc_page(struct net_device
*dev
)
1400 return __netdev_alloc_page(dev
, GFP_ATOMIC
);
1403 static inline void netdev_free_page(struct net_device
*dev
, struct page
*page
)
1409 * skb_clone_writable - is the header of a clone writable
1410 * @skb: buffer to check
1411 * @len: length up to which to write
1413 * Returns true if modifying the header part of the cloned buffer
1414 * does not requires the data to be copied.
1416 static inline int skb_clone_writable(struct sk_buff
*skb
, unsigned int len
)
1418 return !skb_header_cloned(skb
) &&
1419 skb_headroom(skb
) + len
<= skb
->hdr_len
;
1422 static inline int __skb_cow(struct sk_buff
*skb
, unsigned int headroom
,
1427 if (headroom
< NET_SKB_PAD
)
1428 headroom
= NET_SKB_PAD
;
1429 if (headroom
> skb_headroom(skb
))
1430 delta
= headroom
- skb_headroom(skb
);
1432 if (delta
|| cloned
)
1433 return pskb_expand_head(skb
, ALIGN(delta
, NET_SKB_PAD
), 0,
1439 * skb_cow - copy header of skb when it is required
1440 * @skb: buffer to cow
1441 * @headroom: needed headroom
1443 * If the skb passed lacks sufficient headroom or its data part
1444 * is shared, data is reallocated. If reallocation fails, an error
1445 * is returned and original skb is not changed.
1447 * The result is skb with writable area skb->head...skb->tail
1448 * and at least @headroom of space at head.
1450 static inline int skb_cow(struct sk_buff
*skb
, unsigned int headroom
)
1452 return __skb_cow(skb
, headroom
, skb_cloned(skb
));
1456 * skb_cow_head - skb_cow but only making the head writable
1457 * @skb: buffer to cow
1458 * @headroom: needed headroom
1460 * This function is identical to skb_cow except that we replace the
1461 * skb_cloned check by skb_header_cloned. It should be used when
1462 * you only need to push on some header and do not need to modify
1465 static inline int skb_cow_head(struct sk_buff
*skb
, unsigned int headroom
)
1467 return __skb_cow(skb
, headroom
, skb_header_cloned(skb
));
1471 * skb_padto - pad an skbuff up to a minimal size
1472 * @skb: buffer to pad
1473 * @len: minimal length
1475 * Pads up a buffer to ensure the trailing bytes exist and are
1476 * blanked. If the buffer already contains sufficient data it
1477 * is untouched. Otherwise it is extended. Returns zero on
1478 * success. The skb is freed on error.
1481 static inline int skb_padto(struct sk_buff
*skb
, unsigned int len
)
1483 unsigned int size
= skb
->len
;
1484 if (likely(size
>= len
))
1486 return skb_pad(skb
, len
- size
);
1489 static inline int skb_add_data(struct sk_buff
*skb
,
1490 char __user
*from
, int copy
)
1492 const int off
= skb
->len
;
1494 if (skb
->ip_summed
== CHECKSUM_NONE
) {
1496 __wsum csum
= csum_and_copy_from_user(from
, skb_put(skb
, copy
),
1499 skb
->csum
= csum_block_add(skb
->csum
, csum
, off
);
1502 } else if (!copy_from_user(skb_put(skb
, copy
), from
, copy
))
1505 __skb_trim(skb
, off
);
1509 static inline int skb_can_coalesce(struct sk_buff
*skb
, int i
,
1510 struct page
*page
, int off
)
1513 struct skb_frag_struct
*frag
= &skb_shinfo(skb
)->frags
[i
- 1];
1515 return page
== frag
->page
&&
1516 off
== frag
->page_offset
+ frag
->size
;
1521 static inline int __skb_linearize(struct sk_buff
*skb
)
1523 return __pskb_pull_tail(skb
, skb
->data_len
) ? 0 : -ENOMEM
;
1527 * skb_linearize - convert paged skb to linear one
1528 * @skb: buffer to linarize
1530 * If there is no free memory -ENOMEM is returned, otherwise zero
1531 * is returned and the old skb data released.
1533 static inline int skb_linearize(struct sk_buff
*skb
)
1535 return skb_is_nonlinear(skb
) ? __skb_linearize(skb
) : 0;
1539 * skb_linearize_cow - make sure skb is linear and writable
1540 * @skb: buffer to process
1542 * If there is no free memory -ENOMEM is returned, otherwise zero
1543 * is returned and the old skb data released.
1545 static inline int skb_linearize_cow(struct sk_buff
*skb
)
1547 return skb_is_nonlinear(skb
) || skb_cloned(skb
) ?
1548 __skb_linearize(skb
) : 0;
1552 * skb_postpull_rcsum - update checksum for received skb after pull
1553 * @skb: buffer to update
1554 * @start: start of data before pull
1555 * @len: length of data pulled
1557 * After doing a pull on a received packet, you need to call this to
1558 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
1559 * CHECKSUM_NONE so that it can be recomputed from scratch.
1562 static inline void skb_postpull_rcsum(struct sk_buff
*skb
,
1563 const void *start
, unsigned int len
)
1565 if (skb
->ip_summed
== CHECKSUM_COMPLETE
)
1566 skb
->csum
= csum_sub(skb
->csum
, csum_partial(start
, len
, 0));
1569 unsigned char *skb_pull_rcsum(struct sk_buff
*skb
, unsigned int len
);
1572 * pskb_trim_rcsum - trim received skb and update checksum
1573 * @skb: buffer to trim
1576 * This is exactly the same as pskb_trim except that it ensures the
1577 * checksum of received packets are still valid after the operation.
1580 static inline int pskb_trim_rcsum(struct sk_buff
*skb
, unsigned int len
)
1582 if (likely(len
>= skb
->len
))
1584 if (skb
->ip_summed
== CHECKSUM_COMPLETE
)
1585 skb
->ip_summed
= CHECKSUM_NONE
;
1586 return __pskb_trim(skb
, len
);
1589 #define skb_queue_walk(queue, skb) \
1590 for (skb = (queue)->next; \
1591 prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \
1594 #define skb_queue_walk_safe(queue, skb, tmp) \
1595 for (skb = (queue)->next, tmp = skb->next; \
1596 skb != (struct sk_buff *)(queue); \
1597 skb = tmp, tmp = skb->next)
1599 #define skb_queue_walk_from(queue, skb) \
1600 for (; prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \
1603 #define skb_queue_walk_from_safe(queue, skb, tmp) \
1604 for (tmp = skb->next; \
1605 skb != (struct sk_buff *)(queue); \
1606 skb = tmp, tmp = skb->next)
1608 #define skb_queue_reverse_walk(queue, skb) \
1609 for (skb = (queue)->prev; \
1610 prefetch(skb->prev), (skb != (struct sk_buff *)(queue)); \
1614 extern struct sk_buff
*__skb_recv_datagram(struct sock
*sk
, unsigned flags
,
1615 int *peeked
, int *err
);
1616 extern struct sk_buff
*skb_recv_datagram(struct sock
*sk
, unsigned flags
,
1617 int noblock
, int *err
);
1618 extern unsigned int datagram_poll(struct file
*file
, struct socket
*sock
,
1619 struct poll_table_struct
*wait
);
1620 extern int skb_copy_datagram_iovec(const struct sk_buff
*from
,
1621 int offset
, struct iovec
*to
,
1623 extern int skb_copy_and_csum_datagram_iovec(struct sk_buff
*skb
,
1626 extern int skb_copy_datagram_from_iovec(struct sk_buff
*skb
,
1630 extern void skb_free_datagram(struct sock
*sk
, struct sk_buff
*skb
);
1631 extern int skb_kill_datagram(struct sock
*sk
, struct sk_buff
*skb
,
1632 unsigned int flags
);
1633 extern __wsum
skb_checksum(const struct sk_buff
*skb
, int offset
,
1634 int len
, __wsum csum
);
1635 extern int skb_copy_bits(const struct sk_buff
*skb
, int offset
,
1637 extern int skb_store_bits(struct sk_buff
*skb
, int offset
,
1638 const void *from
, int len
);
1639 extern __wsum
skb_copy_and_csum_bits(const struct sk_buff
*skb
,
1640 int offset
, u8
*to
, int len
,
1642 extern int skb_splice_bits(struct sk_buff
*skb
,
1643 unsigned int offset
,
1644 struct pipe_inode_info
*pipe
,
1646 unsigned int flags
);
1647 extern void skb_copy_and_csum_dev(const struct sk_buff
*skb
, u8
*to
);
1648 extern void skb_split(struct sk_buff
*skb
,
1649 struct sk_buff
*skb1
, const u32 len
);
1651 extern struct sk_buff
*skb_segment(struct sk_buff
*skb
, int features
);
1653 static inline void *skb_header_pointer(const struct sk_buff
*skb
, int offset
,
1654 int len
, void *buffer
)
1656 int hlen
= skb_headlen(skb
);
1658 if (hlen
- offset
>= len
)
1659 return skb
->data
+ offset
;
1661 if (skb_copy_bits(skb
, offset
, buffer
, len
) < 0)
1667 static inline void skb_copy_from_linear_data(const struct sk_buff
*skb
,
1669 const unsigned int len
)
1671 memcpy(to
, skb
->data
, len
);
1674 static inline void skb_copy_from_linear_data_offset(const struct sk_buff
*skb
,
1675 const int offset
, void *to
,
1676 const unsigned int len
)
1678 memcpy(to
, skb
->data
+ offset
, len
);
1681 static inline void skb_copy_to_linear_data(struct sk_buff
*skb
,
1683 const unsigned int len
)
1685 memcpy(skb
->data
, from
, len
);
1688 static inline void skb_copy_to_linear_data_offset(struct sk_buff
*skb
,
1691 const unsigned int len
)
1693 memcpy(skb
->data
+ offset
, from
, len
);
1696 extern void skb_init(void);
1699 * skb_get_timestamp - get timestamp from a skb
1700 * @skb: skb to get stamp from
1701 * @stamp: pointer to struct timeval to store stamp in
1703 * Timestamps are stored in the skb as offsets to a base timestamp.
1704 * This function converts the offset back to a struct timeval and stores
1707 static inline void skb_get_timestamp(const struct sk_buff
*skb
, struct timeval
*stamp
)
1709 *stamp
= ktime_to_timeval(skb
->tstamp
);
1712 static inline void __net_timestamp(struct sk_buff
*skb
)
1714 skb
->tstamp
= ktime_get_real();
1717 static inline ktime_t
net_timedelta(ktime_t t
)
1719 return ktime_sub(ktime_get_real(), t
);
1722 static inline ktime_t
net_invalid_timestamp(void)
1724 return ktime_set(0, 0);
1727 extern __sum16
__skb_checksum_complete_head(struct sk_buff
*skb
, int len
);
1728 extern __sum16
__skb_checksum_complete(struct sk_buff
*skb
);
1730 static inline int skb_csum_unnecessary(const struct sk_buff
*skb
)
1732 return skb
->ip_summed
& CHECKSUM_UNNECESSARY
;
1736 * skb_checksum_complete - Calculate checksum of an entire packet
1737 * @skb: packet to process
1739 * This function calculates the checksum over the entire packet plus
1740 * the value of skb->csum. The latter can be used to supply the
1741 * checksum of a pseudo header as used by TCP/UDP. It returns the
1744 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
1745 * this function can be used to verify that checksum on received
1746 * packets. In that case the function should return zero if the
1747 * checksum is correct. In particular, this function will return zero
1748 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
1749 * hardware has already verified the correctness of the checksum.
1751 static inline __sum16
skb_checksum_complete(struct sk_buff
*skb
)
1753 return skb_csum_unnecessary(skb
) ?
1754 0 : __skb_checksum_complete(skb
);
1757 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1758 extern void nf_conntrack_destroy(struct nf_conntrack
*nfct
);
1759 static inline void nf_conntrack_put(struct nf_conntrack
*nfct
)
1761 if (nfct
&& atomic_dec_and_test(&nfct
->use
))
1762 nf_conntrack_destroy(nfct
);
1764 static inline void nf_conntrack_get(struct nf_conntrack
*nfct
)
1767 atomic_inc(&nfct
->use
);
1769 static inline void nf_conntrack_get_reasm(struct sk_buff
*skb
)
1772 atomic_inc(&skb
->users
);
1774 static inline void nf_conntrack_put_reasm(struct sk_buff
*skb
)
1780 #ifdef CONFIG_BRIDGE_NETFILTER
1781 static inline void nf_bridge_put(struct nf_bridge_info
*nf_bridge
)
1783 if (nf_bridge
&& atomic_dec_and_test(&nf_bridge
->use
))
1786 static inline void nf_bridge_get(struct nf_bridge_info
*nf_bridge
)
1789 atomic_inc(&nf_bridge
->use
);
1791 #endif /* CONFIG_BRIDGE_NETFILTER */
1792 static inline void nf_reset(struct sk_buff
*skb
)
1794 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1795 nf_conntrack_put(skb
->nfct
);
1797 nf_conntrack_put_reasm(skb
->nfct_reasm
);
1798 skb
->nfct_reasm
= NULL
;
1800 #ifdef CONFIG_BRIDGE_NETFILTER
1801 nf_bridge_put(skb
->nf_bridge
);
1802 skb
->nf_bridge
= NULL
;
1806 /* Note: This doesn't put any conntrack and bridge info in dst. */
1807 static inline void __nf_copy(struct sk_buff
*dst
, const struct sk_buff
*src
)
1809 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1810 dst
->nfct
= src
->nfct
;
1811 nf_conntrack_get(src
->nfct
);
1812 dst
->nfctinfo
= src
->nfctinfo
;
1813 dst
->nfct_reasm
= src
->nfct_reasm
;
1814 nf_conntrack_get_reasm(src
->nfct_reasm
);
1816 #ifdef CONFIG_BRIDGE_NETFILTER
1817 dst
->nf_bridge
= src
->nf_bridge
;
1818 nf_bridge_get(src
->nf_bridge
);
1822 static inline void nf_copy(struct sk_buff
*dst
, const struct sk_buff
*src
)
1824 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1825 nf_conntrack_put(dst
->nfct
);
1826 nf_conntrack_put_reasm(dst
->nfct_reasm
);
1828 #ifdef CONFIG_BRIDGE_NETFILTER
1829 nf_bridge_put(dst
->nf_bridge
);
1831 __nf_copy(dst
, src
);
1834 #ifdef CONFIG_NETWORK_SECMARK
1835 static inline void skb_copy_secmark(struct sk_buff
*to
, const struct sk_buff
*from
)
1837 to
->secmark
= from
->secmark
;
1840 static inline void skb_init_secmark(struct sk_buff
*skb
)
1845 static inline void skb_copy_secmark(struct sk_buff
*to
, const struct sk_buff
*from
)
1848 static inline void skb_init_secmark(struct sk_buff
*skb
)
1852 static inline void skb_set_queue_mapping(struct sk_buff
*skb
, u16 queue_mapping
)
1854 skb
->queue_mapping
= queue_mapping
;
1857 static inline u16
skb_get_queue_mapping(struct sk_buff
*skb
)
1859 return skb
->queue_mapping
;
1862 static inline void skb_copy_queue_mapping(struct sk_buff
*to
, const struct sk_buff
*from
)
1864 to
->queue_mapping
= from
->queue_mapping
;
1867 static inline int skb_is_gso(const struct sk_buff
*skb
)
1869 return skb_shinfo(skb
)->gso_size
;
1872 static inline int skb_is_gso_v6(const struct sk_buff
*skb
)
1874 return skb_shinfo(skb
)->gso_type
& SKB_GSO_TCPV6
;
1877 extern void __skb_warn_lro_forwarding(const struct sk_buff
*skb
);
1879 static inline bool skb_warn_if_lro(const struct sk_buff
*skb
)
1881 /* LRO sets gso_size but not gso_type, whereas if GSO is really
1882 * wanted then gso_type will be set. */
1883 struct skb_shared_info
*shinfo
= skb_shinfo(skb
);
1884 if (shinfo
->gso_size
!= 0 && unlikely(shinfo
->gso_type
== 0)) {
1885 __skb_warn_lro_forwarding(skb
);
1891 static inline void skb_forward_csum(struct sk_buff
*skb
)
1893 /* Unfortunately we don't support this one. Any brave souls? */
1894 if (skb
->ip_summed
== CHECKSUM_COMPLETE
)
1895 skb
->ip_summed
= CHECKSUM_NONE
;
1898 bool skb_partial_csum_set(struct sk_buff
*skb
, u16 start
, u16 off
);
1899 #endif /* __KERNEL__ */
1900 #endif /* _LINUX_SKBUFF_H */