do_wait: cleanup delay_group_leader() usage
[linux-2.6/mini2440.git] / kernel / exit.c
blob9ee229ea97e4dcb3c76716124601a9c3280974f1
1 /*
2 * linux/kernel/exit.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/mnt_namespace.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/binfmts.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pid_namespace.h>
25 #include <linux/ptrace.h>
26 #include <linux/profile.h>
27 #include <linux/mount.h>
28 #include <linux/proc_fs.h>
29 #include <linux/kthread.h>
30 #include <linux/mempolicy.h>
31 #include <linux/taskstats_kern.h>
32 #include <linux/delayacct.h>
33 #include <linux/freezer.h>
34 #include <linux/cgroup.h>
35 #include <linux/syscalls.h>
36 #include <linux/signal.h>
37 #include <linux/posix-timers.h>
38 #include <linux/cn_proc.h>
39 #include <linux/mutex.h>
40 #include <linux/futex.h>
41 #include <linux/compat.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
48 #include <asm/uaccess.h>
49 #include <asm/unistd.h>
50 #include <asm/pgtable.h>
51 #include <asm/mmu_context.h>
53 static void exit_mm(struct task_struct * tsk);
55 static void __unhash_process(struct task_struct *p)
57 nr_threads--;
58 detach_pid(p, PIDTYPE_PID);
59 if (thread_group_leader(p)) {
60 detach_pid(p, PIDTYPE_PGID);
61 detach_pid(p, PIDTYPE_SID);
63 list_del_rcu(&p->tasks);
64 __get_cpu_var(process_counts)--;
66 list_del_rcu(&p->thread_group);
67 remove_parent(p);
71 * This function expects the tasklist_lock write-locked.
73 static void __exit_signal(struct task_struct *tsk)
75 struct signal_struct *sig = tsk->signal;
76 struct sighand_struct *sighand;
78 BUG_ON(!sig);
79 BUG_ON(!atomic_read(&sig->count));
81 rcu_read_lock();
82 sighand = rcu_dereference(tsk->sighand);
83 spin_lock(&sighand->siglock);
85 posix_cpu_timers_exit(tsk);
86 if (atomic_dec_and_test(&sig->count))
87 posix_cpu_timers_exit_group(tsk);
88 else {
90 * If there is any task waiting for the group exit
91 * then notify it:
93 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count)
94 wake_up_process(sig->group_exit_task);
96 if (tsk == sig->curr_target)
97 sig->curr_target = next_thread(tsk);
99 * Accumulate here the counters for all threads but the
100 * group leader as they die, so they can be added into
101 * the process-wide totals when those are taken.
102 * The group leader stays around as a zombie as long
103 * as there are other threads. When it gets reaped,
104 * the exit.c code will add its counts into these totals.
105 * We won't ever get here for the group leader, since it
106 * will have been the last reference on the signal_struct.
108 sig->utime = cputime_add(sig->utime, tsk->utime);
109 sig->stime = cputime_add(sig->stime, tsk->stime);
110 sig->gtime = cputime_add(sig->gtime, tsk->gtime);
111 sig->min_flt += tsk->min_flt;
112 sig->maj_flt += tsk->maj_flt;
113 sig->nvcsw += tsk->nvcsw;
114 sig->nivcsw += tsk->nivcsw;
115 sig->inblock += task_io_get_inblock(tsk);
116 sig->oublock += task_io_get_oublock(tsk);
117 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
118 sig = NULL; /* Marker for below. */
121 __unhash_process(tsk);
123 tsk->signal = NULL;
124 tsk->sighand = NULL;
125 spin_unlock(&sighand->siglock);
126 rcu_read_unlock();
128 __cleanup_sighand(sighand);
129 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
130 flush_sigqueue(&tsk->pending);
131 if (sig) {
132 flush_sigqueue(&sig->shared_pending);
133 taskstats_tgid_free(sig);
134 __cleanup_signal(sig);
138 static void delayed_put_task_struct(struct rcu_head *rhp)
140 put_task_struct(container_of(rhp, struct task_struct, rcu));
143 void release_task(struct task_struct * p)
145 struct task_struct *leader;
146 int zap_leader;
147 repeat:
148 atomic_dec(&p->user->processes);
149 proc_flush_task(p);
150 write_lock_irq(&tasklist_lock);
151 ptrace_unlink(p);
152 BUG_ON(!list_empty(&p->ptrace_list) || !list_empty(&p->ptrace_children));
153 __exit_signal(p);
156 * If we are the last non-leader member of the thread
157 * group, and the leader is zombie, then notify the
158 * group leader's parent process. (if it wants notification.)
160 zap_leader = 0;
161 leader = p->group_leader;
162 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
163 BUG_ON(leader->exit_signal == -1);
164 do_notify_parent(leader, leader->exit_signal);
166 * If we were the last child thread and the leader has
167 * exited already, and the leader's parent ignores SIGCHLD,
168 * then we are the one who should release the leader.
170 * do_notify_parent() will have marked it self-reaping in
171 * that case.
173 zap_leader = (leader->exit_signal == -1);
176 write_unlock_irq(&tasklist_lock);
177 release_thread(p);
178 call_rcu(&p->rcu, delayed_put_task_struct);
180 p = leader;
181 if (unlikely(zap_leader))
182 goto repeat;
186 * This checks not only the pgrp, but falls back on the pid if no
187 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
188 * without this...
190 * The caller must hold rcu lock or the tasklist lock.
192 struct pid *session_of_pgrp(struct pid *pgrp)
194 struct task_struct *p;
195 struct pid *sid = NULL;
197 p = pid_task(pgrp, PIDTYPE_PGID);
198 if (p == NULL)
199 p = pid_task(pgrp, PIDTYPE_PID);
200 if (p != NULL)
201 sid = task_session(p);
203 return sid;
207 * Determine if a process group is "orphaned", according to the POSIX
208 * definition in 2.2.2.52. Orphaned process groups are not to be affected
209 * by terminal-generated stop signals. Newly orphaned process groups are
210 * to receive a SIGHUP and a SIGCONT.
212 * "I ask you, have you ever known what it is to be an orphan?"
214 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
216 struct task_struct *p;
217 int ret = 1;
219 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
220 if (p == ignored_task
221 || p->exit_state
222 || is_global_init(p->real_parent))
223 continue;
224 if (task_pgrp(p->real_parent) != pgrp &&
225 task_session(p->real_parent) == task_session(p)) {
226 ret = 0;
227 break;
229 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
230 return ret; /* (sighing) "Often!" */
233 int is_current_pgrp_orphaned(void)
235 int retval;
237 read_lock(&tasklist_lock);
238 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
239 read_unlock(&tasklist_lock);
241 return retval;
244 static int has_stopped_jobs(struct pid *pgrp)
246 int retval = 0;
247 struct task_struct *p;
249 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
250 if (!task_is_stopped(p))
251 continue;
252 retval = 1;
253 break;
254 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
255 return retval;
259 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
261 * If a kernel thread is launched as a result of a system call, or if
262 * it ever exits, it should generally reparent itself to kthreadd so it
263 * isn't in the way of other processes and is correctly cleaned up on exit.
265 * The various task state such as scheduling policy and priority may have
266 * been inherited from a user process, so we reset them to sane values here.
268 * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
270 static void reparent_to_kthreadd(void)
272 write_lock_irq(&tasklist_lock);
274 ptrace_unlink(current);
275 /* Reparent to init */
276 remove_parent(current);
277 current->real_parent = current->parent = kthreadd_task;
278 add_parent(current);
280 /* Set the exit signal to SIGCHLD so we signal init on exit */
281 current->exit_signal = SIGCHLD;
283 if (task_nice(current) < 0)
284 set_user_nice(current, 0);
285 /* cpus_allowed? */
286 /* rt_priority? */
287 /* signals? */
288 security_task_reparent_to_init(current);
289 memcpy(current->signal->rlim, init_task.signal->rlim,
290 sizeof(current->signal->rlim));
291 atomic_inc(&(INIT_USER->__count));
292 write_unlock_irq(&tasklist_lock);
293 switch_uid(INIT_USER);
296 void __set_special_pids(pid_t session, pid_t pgrp)
298 struct task_struct *curr = current->group_leader;
300 if (task_session_nr(curr) != session) {
301 detach_pid(curr, PIDTYPE_SID);
302 set_task_session(curr, session);
303 attach_pid(curr, PIDTYPE_SID, find_pid(session));
305 if (task_pgrp_nr(curr) != pgrp) {
306 detach_pid(curr, PIDTYPE_PGID);
307 set_task_pgrp(curr, pgrp);
308 attach_pid(curr, PIDTYPE_PGID, find_pid(pgrp));
312 static void set_special_pids(pid_t session, pid_t pgrp)
314 write_lock_irq(&tasklist_lock);
315 __set_special_pids(session, pgrp);
316 write_unlock_irq(&tasklist_lock);
320 * Let kernel threads use this to say that they
321 * allow a certain signal (since daemonize() will
322 * have disabled all of them by default).
324 int allow_signal(int sig)
326 if (!valid_signal(sig) || sig < 1)
327 return -EINVAL;
329 spin_lock_irq(&current->sighand->siglock);
330 sigdelset(&current->blocked, sig);
331 if (!current->mm) {
332 /* Kernel threads handle their own signals.
333 Let the signal code know it'll be handled, so
334 that they don't get converted to SIGKILL or
335 just silently dropped */
336 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
338 recalc_sigpending();
339 spin_unlock_irq(&current->sighand->siglock);
340 return 0;
343 EXPORT_SYMBOL(allow_signal);
345 int disallow_signal(int sig)
347 if (!valid_signal(sig) || sig < 1)
348 return -EINVAL;
350 spin_lock_irq(&current->sighand->siglock);
351 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
352 recalc_sigpending();
353 spin_unlock_irq(&current->sighand->siglock);
354 return 0;
357 EXPORT_SYMBOL(disallow_signal);
360 * Put all the gunge required to become a kernel thread without
361 * attached user resources in one place where it belongs.
364 void daemonize(const char *name, ...)
366 va_list args;
367 struct fs_struct *fs;
368 sigset_t blocked;
370 va_start(args, name);
371 vsnprintf(current->comm, sizeof(current->comm), name, args);
372 va_end(args);
375 * If we were started as result of loading a module, close all of the
376 * user space pages. We don't need them, and if we didn't close them
377 * they would be locked into memory.
379 exit_mm(current);
381 * We don't want to have TIF_FREEZE set if the system-wide hibernation
382 * or suspend transition begins right now.
384 current->flags |= PF_NOFREEZE;
386 set_special_pids(1, 1);
387 proc_clear_tty(current);
389 /* Block and flush all signals */
390 sigfillset(&blocked);
391 sigprocmask(SIG_BLOCK, &blocked, NULL);
392 flush_signals(current);
394 /* Become as one with the init task */
396 exit_fs(current); /* current->fs->count--; */
397 fs = init_task.fs;
398 current->fs = fs;
399 atomic_inc(&fs->count);
401 if (current->nsproxy != init_task.nsproxy) {
402 get_nsproxy(init_task.nsproxy);
403 switch_task_namespaces(current, init_task.nsproxy);
406 exit_files(current);
407 current->files = init_task.files;
408 atomic_inc(&current->files->count);
410 reparent_to_kthreadd();
413 EXPORT_SYMBOL(daemonize);
415 static void close_files(struct files_struct * files)
417 int i, j;
418 struct fdtable *fdt;
420 j = 0;
423 * It is safe to dereference the fd table without RCU or
424 * ->file_lock because this is the last reference to the
425 * files structure.
427 fdt = files_fdtable(files);
428 for (;;) {
429 unsigned long set;
430 i = j * __NFDBITS;
431 if (i >= fdt->max_fds)
432 break;
433 set = fdt->open_fds->fds_bits[j++];
434 while (set) {
435 if (set & 1) {
436 struct file * file = xchg(&fdt->fd[i], NULL);
437 if (file) {
438 filp_close(file, files);
439 cond_resched();
442 i++;
443 set >>= 1;
448 struct files_struct *get_files_struct(struct task_struct *task)
450 struct files_struct *files;
452 task_lock(task);
453 files = task->files;
454 if (files)
455 atomic_inc(&files->count);
456 task_unlock(task);
458 return files;
461 void fastcall put_files_struct(struct files_struct *files)
463 struct fdtable *fdt;
465 if (atomic_dec_and_test(&files->count)) {
466 close_files(files);
468 * Free the fd and fdset arrays if we expanded them.
469 * If the fdtable was embedded, pass files for freeing
470 * at the end of the RCU grace period. Otherwise,
471 * you can free files immediately.
473 fdt = files_fdtable(files);
474 if (fdt != &files->fdtab)
475 kmem_cache_free(files_cachep, files);
476 free_fdtable(fdt);
480 EXPORT_SYMBOL(put_files_struct);
482 void reset_files_struct(struct task_struct *tsk, struct files_struct *files)
484 struct files_struct *old;
486 old = tsk->files;
487 task_lock(tsk);
488 tsk->files = files;
489 task_unlock(tsk);
490 put_files_struct(old);
492 EXPORT_SYMBOL(reset_files_struct);
494 static void __exit_files(struct task_struct *tsk)
496 struct files_struct * files = tsk->files;
498 if (files) {
499 task_lock(tsk);
500 tsk->files = NULL;
501 task_unlock(tsk);
502 put_files_struct(files);
506 void exit_files(struct task_struct *tsk)
508 __exit_files(tsk);
511 static void __put_fs_struct(struct fs_struct *fs)
513 /* No need to hold fs->lock if we are killing it */
514 if (atomic_dec_and_test(&fs->count)) {
515 dput(fs->root);
516 mntput(fs->rootmnt);
517 dput(fs->pwd);
518 mntput(fs->pwdmnt);
519 if (fs->altroot) {
520 dput(fs->altroot);
521 mntput(fs->altrootmnt);
523 kmem_cache_free(fs_cachep, fs);
527 void put_fs_struct(struct fs_struct *fs)
529 __put_fs_struct(fs);
532 static void __exit_fs(struct task_struct *tsk)
534 struct fs_struct * fs = tsk->fs;
536 if (fs) {
537 task_lock(tsk);
538 tsk->fs = NULL;
539 task_unlock(tsk);
540 __put_fs_struct(fs);
544 void exit_fs(struct task_struct *tsk)
546 __exit_fs(tsk);
549 EXPORT_SYMBOL_GPL(exit_fs);
552 * Turn us into a lazy TLB process if we
553 * aren't already..
555 static void exit_mm(struct task_struct * tsk)
557 struct mm_struct *mm = tsk->mm;
559 mm_release(tsk, mm);
560 if (!mm)
561 return;
563 * Serialize with any possible pending coredump.
564 * We must hold mmap_sem around checking core_waiters
565 * and clearing tsk->mm. The core-inducing thread
566 * will increment core_waiters for each thread in the
567 * group with ->mm != NULL.
569 down_read(&mm->mmap_sem);
570 if (mm->core_waiters) {
571 up_read(&mm->mmap_sem);
572 down_write(&mm->mmap_sem);
573 if (!--mm->core_waiters)
574 complete(mm->core_startup_done);
575 up_write(&mm->mmap_sem);
577 wait_for_completion(&mm->core_done);
578 down_read(&mm->mmap_sem);
580 atomic_inc(&mm->mm_count);
581 BUG_ON(mm != tsk->active_mm);
582 /* more a memory barrier than a real lock */
583 task_lock(tsk);
584 tsk->mm = NULL;
585 up_read(&mm->mmap_sem);
586 enter_lazy_tlb(mm, current);
587 /* We don't want this task to be frozen prematurely */
588 clear_freeze_flag(tsk);
589 task_unlock(tsk);
590 mmput(mm);
593 static void
594 reparent_thread(struct task_struct *p, struct task_struct *father, int traced)
596 if (p->pdeath_signal)
597 /* We already hold the tasklist_lock here. */
598 group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
600 /* Move the child from its dying parent to the new one. */
601 if (unlikely(traced)) {
602 /* Preserve ptrace links if someone else is tracing this child. */
603 list_del_init(&p->ptrace_list);
604 if (p->parent != p->real_parent)
605 list_add(&p->ptrace_list, &p->real_parent->ptrace_children);
606 } else {
607 /* If this child is being traced, then we're the one tracing it
608 * anyway, so let go of it.
610 p->ptrace = 0;
611 remove_parent(p);
612 p->parent = p->real_parent;
613 add_parent(p);
615 if (task_is_traced(p)) {
617 * If it was at a trace stop, turn it into
618 * a normal stop since it's no longer being
619 * traced.
621 ptrace_untrace(p);
625 /* If this is a threaded reparent there is no need to
626 * notify anyone anything has happened.
628 if (p->real_parent->group_leader == father->group_leader)
629 return;
631 /* We don't want people slaying init. */
632 if (p->exit_signal != -1)
633 p->exit_signal = SIGCHLD;
635 /* If we'd notified the old parent about this child's death,
636 * also notify the new parent.
638 if (!traced && p->exit_state == EXIT_ZOMBIE &&
639 p->exit_signal != -1 && thread_group_empty(p))
640 do_notify_parent(p, p->exit_signal);
643 * process group orphan check
644 * Case ii: Our child is in a different pgrp
645 * than we are, and it was the only connection
646 * outside, so the child pgrp is now orphaned.
648 if ((task_pgrp(p) != task_pgrp(father)) &&
649 (task_session(p) == task_session(father))) {
650 struct pid *pgrp = task_pgrp(p);
652 if (will_become_orphaned_pgrp(pgrp, NULL) &&
653 has_stopped_jobs(pgrp)) {
654 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
655 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
661 * When we die, we re-parent all our children.
662 * Try to give them to another thread in our thread
663 * group, and if no such member exists, give it to
664 * the child reaper process (ie "init") in our pid
665 * space.
667 static void forget_original_parent(struct task_struct *father)
669 struct task_struct *p, *n, *reaper = father;
670 struct list_head ptrace_dead;
672 INIT_LIST_HEAD(&ptrace_dead);
674 write_lock_irq(&tasklist_lock);
676 do {
677 reaper = next_thread(reaper);
678 if (reaper == father) {
679 reaper = task_child_reaper(father);
680 break;
682 } while (reaper->flags & PF_EXITING);
685 * There are only two places where our children can be:
687 * - in our child list
688 * - in our ptraced child list
690 * Search them and reparent children.
692 list_for_each_entry_safe(p, n, &father->children, sibling) {
693 int ptrace;
695 ptrace = p->ptrace;
697 /* if father isn't the real parent, then ptrace must be enabled */
698 BUG_ON(father != p->real_parent && !ptrace);
700 if (father == p->real_parent) {
701 /* reparent with a reaper, real father it's us */
702 p->real_parent = reaper;
703 reparent_thread(p, father, 0);
704 } else {
705 /* reparent ptraced task to its real parent */
706 __ptrace_unlink (p);
707 if (p->exit_state == EXIT_ZOMBIE && p->exit_signal != -1 &&
708 thread_group_empty(p))
709 do_notify_parent(p, p->exit_signal);
713 * if the ptraced child is a zombie with exit_signal == -1
714 * we must collect it before we exit, or it will remain
715 * zombie forever since we prevented it from self-reap itself
716 * while it was being traced by us, to be able to see it in wait4.
718 if (unlikely(ptrace && p->exit_state == EXIT_ZOMBIE && p->exit_signal == -1))
719 list_add(&p->ptrace_list, &ptrace_dead);
722 list_for_each_entry_safe(p, n, &father->ptrace_children, ptrace_list) {
723 p->real_parent = reaper;
724 reparent_thread(p, father, 1);
727 write_unlock_irq(&tasklist_lock);
728 BUG_ON(!list_empty(&father->children));
729 BUG_ON(!list_empty(&father->ptrace_children));
731 list_for_each_entry_safe(p, n, &ptrace_dead, ptrace_list) {
732 list_del_init(&p->ptrace_list);
733 release_task(p);
739 * Send signals to all our closest relatives so that they know
740 * to properly mourn us..
742 static void exit_notify(struct task_struct *tsk)
744 int state;
745 struct task_struct *t;
746 struct pid *pgrp;
748 if (signal_pending(tsk) && !(tsk->signal->flags & SIGNAL_GROUP_EXIT)
749 && !thread_group_empty(tsk)) {
751 * This occurs when there was a race between our exit
752 * syscall and a group signal choosing us as the one to
753 * wake up. It could be that we are the only thread
754 * alerted to check for pending signals, but another thread
755 * should be woken now to take the signal since we will not.
756 * Now we'll wake all the threads in the group just to make
757 * sure someone gets all the pending signals.
759 spin_lock_irq(&tsk->sighand->siglock);
760 for (t = next_thread(tsk); t != tsk; t = next_thread(t))
761 if (!signal_pending(t) && !(t->flags & PF_EXITING))
762 recalc_sigpending_and_wake(t);
763 spin_unlock_irq(&tsk->sighand->siglock);
767 * This does two things:
769 * A. Make init inherit all the child processes
770 * B. Check to see if any process groups have become orphaned
771 * as a result of our exiting, and if they have any stopped
772 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
774 forget_original_parent(tsk);
775 exit_task_namespaces(tsk);
777 write_lock_irq(&tasklist_lock);
779 * Check to see if any process groups have become orphaned
780 * as a result of our exiting, and if they have any stopped
781 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
783 * Case i: Our father is in a different pgrp than we are
784 * and we were the only connection outside, so our pgrp
785 * is about to become orphaned.
787 t = tsk->real_parent;
789 pgrp = task_pgrp(tsk);
790 if ((task_pgrp(t) != pgrp) &&
791 (task_session(t) == task_session(tsk)) &&
792 will_become_orphaned_pgrp(pgrp, tsk) &&
793 has_stopped_jobs(pgrp)) {
794 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
795 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
798 /* Let father know we died
800 * Thread signals are configurable, but you aren't going to use
801 * that to send signals to arbitary processes.
802 * That stops right now.
804 * If the parent exec id doesn't match the exec id we saved
805 * when we started then we know the parent has changed security
806 * domain.
808 * If our self_exec id doesn't match our parent_exec_id then
809 * we have changed execution domain as these two values started
810 * the same after a fork.
812 if (tsk->exit_signal != SIGCHLD && tsk->exit_signal != -1 &&
813 ( tsk->parent_exec_id != t->self_exec_id ||
814 tsk->self_exec_id != tsk->parent_exec_id)
815 && !capable(CAP_KILL))
816 tsk->exit_signal = SIGCHLD;
819 /* If something other than our normal parent is ptracing us, then
820 * send it a SIGCHLD instead of honoring exit_signal. exit_signal
821 * only has special meaning to our real parent.
823 if (tsk->exit_signal != -1 && thread_group_empty(tsk)) {
824 int signal = tsk->parent == tsk->real_parent ? tsk->exit_signal : SIGCHLD;
825 do_notify_parent(tsk, signal);
826 } else if (tsk->ptrace) {
827 do_notify_parent(tsk, SIGCHLD);
830 state = EXIT_ZOMBIE;
831 if (tsk->exit_signal == -1 && likely(!tsk->ptrace))
832 state = EXIT_DEAD;
833 tsk->exit_state = state;
835 if (thread_group_leader(tsk) &&
836 tsk->signal->notify_count < 0 &&
837 tsk->signal->group_exit_task)
838 wake_up_process(tsk->signal->group_exit_task);
840 write_unlock_irq(&tasklist_lock);
842 /* If the process is dead, release it - nobody will wait for it */
843 if (state == EXIT_DEAD)
844 release_task(tsk);
847 #ifdef CONFIG_DEBUG_STACK_USAGE
848 static void check_stack_usage(void)
850 static DEFINE_SPINLOCK(low_water_lock);
851 static int lowest_to_date = THREAD_SIZE;
852 unsigned long *n = end_of_stack(current);
853 unsigned long free;
855 while (*n == 0)
856 n++;
857 free = (unsigned long)n - (unsigned long)end_of_stack(current);
859 if (free >= lowest_to_date)
860 return;
862 spin_lock(&low_water_lock);
863 if (free < lowest_to_date) {
864 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
865 "left\n",
866 current->comm, free);
867 lowest_to_date = free;
869 spin_unlock(&low_water_lock);
871 #else
872 static inline void check_stack_usage(void) {}
873 #endif
875 static inline void exit_child_reaper(struct task_struct *tsk)
877 if (likely(tsk->group_leader != task_child_reaper(tsk)))
878 return;
880 if (tsk->nsproxy->pid_ns == &init_pid_ns)
881 panic("Attempted to kill init!");
884 * @tsk is the last thread in the 'cgroup-init' and is exiting.
885 * Terminate all remaining processes in the namespace and reap them
886 * before exiting @tsk.
888 * Note that @tsk (last thread of cgroup-init) may not necessarily
889 * be the child-reaper (i.e main thread of cgroup-init) of the
890 * namespace i.e the child_reaper may have already exited.
892 * Even after a child_reaper exits, we let it inherit orphaned children,
893 * because, pid_ns->child_reaper remains valid as long as there is
894 * at least one living sub-thread in the cgroup init.
896 * This living sub-thread of the cgroup-init will be notified when
897 * a child inherited by the 'child-reaper' exits (do_notify_parent()
898 * uses __group_send_sig_info()). Further, when reaping child processes,
899 * do_wait() iterates over children of all living sub threads.
901 * i.e even though 'child_reaper' thread is listed as the parent of the
902 * orphaned children, any living sub-thread in the cgroup-init can
903 * perform the role of the child_reaper.
905 zap_pid_ns_processes(tsk->nsproxy->pid_ns);
908 fastcall NORET_TYPE void do_exit(long code)
910 struct task_struct *tsk = current;
911 int group_dead;
913 profile_task_exit(tsk);
915 WARN_ON(atomic_read(&tsk->fs_excl));
917 if (unlikely(in_interrupt()))
918 panic("Aiee, killing interrupt handler!");
919 if (unlikely(!tsk->pid))
920 panic("Attempted to kill the idle task!");
922 if (unlikely(current->ptrace & PT_TRACE_EXIT)) {
923 current->ptrace_message = code;
924 ptrace_notify((PTRACE_EVENT_EXIT << 8) | SIGTRAP);
928 * We're taking recursive faults here in do_exit. Safest is to just
929 * leave this task alone and wait for reboot.
931 if (unlikely(tsk->flags & PF_EXITING)) {
932 printk(KERN_ALERT
933 "Fixing recursive fault but reboot is needed!\n");
935 * We can do this unlocked here. The futex code uses
936 * this flag just to verify whether the pi state
937 * cleanup has been done or not. In the worst case it
938 * loops once more. We pretend that the cleanup was
939 * done as there is no way to return. Either the
940 * OWNER_DIED bit is set by now or we push the blocked
941 * task into the wait for ever nirwana as well.
943 tsk->flags |= PF_EXITPIDONE;
944 if (tsk->io_context)
945 exit_io_context();
946 set_current_state(TASK_UNINTERRUPTIBLE);
947 schedule();
950 tsk->flags |= PF_EXITING;
952 * tsk->flags are checked in the futex code to protect against
953 * an exiting task cleaning up the robust pi futexes.
955 smp_mb();
956 spin_unlock_wait(&tsk->pi_lock);
958 if (unlikely(in_atomic()))
959 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
960 current->comm, task_pid_nr(current),
961 preempt_count());
963 acct_update_integrals(tsk);
964 if (tsk->mm) {
965 update_hiwater_rss(tsk->mm);
966 update_hiwater_vm(tsk->mm);
968 group_dead = atomic_dec_and_test(&tsk->signal->live);
969 if (group_dead) {
970 exit_child_reaper(tsk);
971 hrtimer_cancel(&tsk->signal->real_timer);
972 exit_itimers(tsk->signal);
974 acct_collect(code, group_dead);
975 #ifdef CONFIG_FUTEX
976 if (unlikely(tsk->robust_list))
977 exit_robust_list(tsk);
978 #ifdef CONFIG_COMPAT
979 if (unlikely(tsk->compat_robust_list))
980 compat_exit_robust_list(tsk);
981 #endif
982 #endif
983 if (group_dead)
984 tty_audit_exit();
985 if (unlikely(tsk->audit_context))
986 audit_free(tsk);
988 tsk->exit_code = code;
989 taskstats_exit(tsk, group_dead);
991 exit_mm(tsk);
993 if (group_dead)
994 acct_process();
995 exit_sem(tsk);
996 __exit_files(tsk);
997 __exit_fs(tsk);
998 check_stack_usage();
999 exit_thread();
1000 cgroup_exit(tsk, 1);
1001 exit_keys(tsk);
1003 if (group_dead && tsk->signal->leader)
1004 disassociate_ctty(1);
1006 module_put(task_thread_info(tsk)->exec_domain->module);
1007 if (tsk->binfmt)
1008 module_put(tsk->binfmt->module);
1010 proc_exit_connector(tsk);
1011 exit_notify(tsk);
1012 #ifdef CONFIG_NUMA
1013 mpol_free(tsk->mempolicy);
1014 tsk->mempolicy = NULL;
1015 #endif
1016 #ifdef CONFIG_FUTEX
1018 * This must happen late, after the PID is not
1019 * hashed anymore:
1021 if (unlikely(!list_empty(&tsk->pi_state_list)))
1022 exit_pi_state_list(tsk);
1023 if (unlikely(current->pi_state_cache))
1024 kfree(current->pi_state_cache);
1025 #endif
1027 * Make sure we are holding no locks:
1029 debug_check_no_locks_held(tsk);
1031 * We can do this unlocked here. The futex code uses this flag
1032 * just to verify whether the pi state cleanup has been done
1033 * or not. In the worst case it loops once more.
1035 tsk->flags |= PF_EXITPIDONE;
1037 if (tsk->io_context)
1038 exit_io_context();
1040 if (tsk->splice_pipe)
1041 __free_pipe_info(tsk->splice_pipe);
1043 preempt_disable();
1044 /* causes final put_task_struct in finish_task_switch(). */
1045 tsk->state = TASK_DEAD;
1047 schedule();
1048 BUG();
1049 /* Avoid "noreturn function does return". */
1050 for (;;)
1051 cpu_relax(); /* For when BUG is null */
1054 EXPORT_SYMBOL_GPL(do_exit);
1056 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1058 if (comp)
1059 complete(comp);
1061 do_exit(code);
1064 EXPORT_SYMBOL(complete_and_exit);
1066 asmlinkage long sys_exit(int error_code)
1068 do_exit((error_code&0xff)<<8);
1072 * Take down every thread in the group. This is called by fatal signals
1073 * as well as by sys_exit_group (below).
1075 NORET_TYPE void
1076 do_group_exit(int exit_code)
1078 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1080 if (current->signal->flags & SIGNAL_GROUP_EXIT)
1081 exit_code = current->signal->group_exit_code;
1082 else if (!thread_group_empty(current)) {
1083 struct signal_struct *const sig = current->signal;
1084 struct sighand_struct *const sighand = current->sighand;
1085 spin_lock_irq(&sighand->siglock);
1086 if (signal_group_exit(sig))
1087 /* Another thread got here before we took the lock. */
1088 exit_code = sig->group_exit_code;
1089 else {
1090 sig->group_exit_code = exit_code;
1091 sig->flags = SIGNAL_GROUP_EXIT;
1092 zap_other_threads(current);
1094 spin_unlock_irq(&sighand->siglock);
1097 do_exit(exit_code);
1098 /* NOTREACHED */
1102 * this kills every thread in the thread group. Note that any externally
1103 * wait4()-ing process will get the correct exit code - even if this
1104 * thread is not the thread group leader.
1106 asmlinkage void sys_exit_group(int error_code)
1108 do_group_exit((error_code & 0xff) << 8);
1111 static int eligible_child(pid_t pid, int options, struct task_struct *p)
1113 int err;
1114 struct pid_namespace *ns;
1116 ns = current->nsproxy->pid_ns;
1117 if (pid > 0) {
1118 if (task_pid_nr_ns(p, ns) != pid)
1119 return 0;
1120 } else if (!pid) {
1121 if (task_pgrp_nr_ns(p, ns) != task_pgrp_vnr(current))
1122 return 0;
1123 } else if (pid != -1) {
1124 if (task_pgrp_nr_ns(p, ns) != -pid)
1125 return 0;
1129 * Do not consider detached threads that are
1130 * not ptraced:
1132 if (p->exit_signal == -1 && !p->ptrace)
1133 return 0;
1135 /* Wait for all children (clone and not) if __WALL is set;
1136 * otherwise, wait for clone children *only* if __WCLONE is
1137 * set; otherwise, wait for non-clone children *only*. (Note:
1138 * A "clone" child here is one that reports to its parent
1139 * using a signal other than SIGCHLD.) */
1140 if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
1141 && !(options & __WALL))
1142 return 0;
1144 err = security_task_wait(p);
1145 if (err)
1146 return err;
1148 return 1;
1151 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid,
1152 int why, int status,
1153 struct siginfo __user *infop,
1154 struct rusage __user *rusagep)
1156 int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
1158 put_task_struct(p);
1159 if (!retval)
1160 retval = put_user(SIGCHLD, &infop->si_signo);
1161 if (!retval)
1162 retval = put_user(0, &infop->si_errno);
1163 if (!retval)
1164 retval = put_user((short)why, &infop->si_code);
1165 if (!retval)
1166 retval = put_user(pid, &infop->si_pid);
1167 if (!retval)
1168 retval = put_user(uid, &infop->si_uid);
1169 if (!retval)
1170 retval = put_user(status, &infop->si_status);
1171 if (!retval)
1172 retval = pid;
1173 return retval;
1177 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1178 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1179 * the lock and this task is uninteresting. If we return nonzero, we have
1180 * released the lock and the system call should return.
1182 static int wait_task_zombie(struct task_struct *p, int noreap,
1183 struct siginfo __user *infop,
1184 int __user *stat_addr, struct rusage __user *ru)
1186 unsigned long state;
1187 int retval, status, traced;
1188 struct pid_namespace *ns;
1190 ns = current->nsproxy->pid_ns;
1192 if (unlikely(noreap)) {
1193 pid_t pid = task_pid_nr_ns(p, ns);
1194 uid_t uid = p->uid;
1195 int exit_code = p->exit_code;
1196 int why, status;
1198 if (unlikely(p->exit_state != EXIT_ZOMBIE))
1199 return 0;
1200 if (unlikely(p->exit_signal == -1 && p->ptrace == 0))
1201 return 0;
1202 get_task_struct(p);
1203 read_unlock(&tasklist_lock);
1204 if ((exit_code & 0x7f) == 0) {
1205 why = CLD_EXITED;
1206 status = exit_code >> 8;
1207 } else {
1208 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1209 status = exit_code & 0x7f;
1211 return wait_noreap_copyout(p, pid, uid, why,
1212 status, infop, ru);
1216 * Try to move the task's state to DEAD
1217 * only one thread is allowed to do this:
1219 state = xchg(&p->exit_state, EXIT_DEAD);
1220 if (state != EXIT_ZOMBIE) {
1221 BUG_ON(state != EXIT_DEAD);
1222 return 0;
1225 /* traced means p->ptrace, but not vice versa */
1226 traced = (p->real_parent != p->parent);
1228 if (likely(!traced)) {
1229 struct signal_struct *psig;
1230 struct signal_struct *sig;
1233 * The resource counters for the group leader are in its
1234 * own task_struct. Those for dead threads in the group
1235 * are in its signal_struct, as are those for the child
1236 * processes it has previously reaped. All these
1237 * accumulate in the parent's signal_struct c* fields.
1239 * We don't bother to take a lock here to protect these
1240 * p->signal fields, because they are only touched by
1241 * __exit_signal, which runs with tasklist_lock
1242 * write-locked anyway, and so is excluded here. We do
1243 * need to protect the access to p->parent->signal fields,
1244 * as other threads in the parent group can be right
1245 * here reaping other children at the same time.
1247 spin_lock_irq(&p->parent->sighand->siglock);
1248 psig = p->parent->signal;
1249 sig = p->signal;
1250 psig->cutime =
1251 cputime_add(psig->cutime,
1252 cputime_add(p->utime,
1253 cputime_add(sig->utime,
1254 sig->cutime)));
1255 psig->cstime =
1256 cputime_add(psig->cstime,
1257 cputime_add(p->stime,
1258 cputime_add(sig->stime,
1259 sig->cstime)));
1260 psig->cgtime =
1261 cputime_add(psig->cgtime,
1262 cputime_add(p->gtime,
1263 cputime_add(sig->gtime,
1264 sig->cgtime)));
1265 psig->cmin_flt +=
1266 p->min_flt + sig->min_flt + sig->cmin_flt;
1267 psig->cmaj_flt +=
1268 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1269 psig->cnvcsw +=
1270 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1271 psig->cnivcsw +=
1272 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1273 psig->cinblock +=
1274 task_io_get_inblock(p) +
1275 sig->inblock + sig->cinblock;
1276 psig->coublock +=
1277 task_io_get_oublock(p) +
1278 sig->oublock + sig->coublock;
1279 spin_unlock_irq(&p->parent->sighand->siglock);
1283 * Now we are sure this task is interesting, and no other
1284 * thread can reap it because we set its state to EXIT_DEAD.
1286 read_unlock(&tasklist_lock);
1288 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1289 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1290 ? p->signal->group_exit_code : p->exit_code;
1291 if (!retval && stat_addr)
1292 retval = put_user(status, stat_addr);
1293 if (!retval && infop)
1294 retval = put_user(SIGCHLD, &infop->si_signo);
1295 if (!retval && infop)
1296 retval = put_user(0, &infop->si_errno);
1297 if (!retval && infop) {
1298 int why;
1300 if ((status & 0x7f) == 0) {
1301 why = CLD_EXITED;
1302 status >>= 8;
1303 } else {
1304 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1305 status &= 0x7f;
1307 retval = put_user((short)why, &infop->si_code);
1308 if (!retval)
1309 retval = put_user(status, &infop->si_status);
1311 if (!retval && infop)
1312 retval = put_user(task_pid_nr_ns(p, ns), &infop->si_pid);
1313 if (!retval && infop)
1314 retval = put_user(p->uid, &infop->si_uid);
1315 if (!retval)
1316 retval = task_pid_nr_ns(p, ns);
1318 if (traced) {
1319 write_lock_irq(&tasklist_lock);
1320 /* We dropped tasklist, ptracer could die and untrace */
1321 ptrace_unlink(p);
1323 * If this is not a detached task, notify the parent.
1324 * If it's still not detached after that, don't release
1325 * it now.
1327 if (p->exit_signal != -1) {
1328 do_notify_parent(p, p->exit_signal);
1329 if (p->exit_signal != -1) {
1330 p->exit_state = EXIT_ZOMBIE;
1331 p = NULL;
1334 write_unlock_irq(&tasklist_lock);
1336 if (p != NULL)
1337 release_task(p);
1339 return retval;
1343 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold
1344 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1345 * the lock and this task is uninteresting. If we return nonzero, we have
1346 * released the lock and the system call should return.
1348 static int wait_task_stopped(struct task_struct *p,
1349 int noreap, struct siginfo __user *infop,
1350 int __user *stat_addr, struct rusage __user *ru)
1352 int retval, exit_code, why;
1353 uid_t uid = 0; /* unneeded, required by compiler */
1354 pid_t pid;
1356 exit_code = 0;
1357 spin_lock_irq(&p->sighand->siglock);
1359 if (unlikely(!task_is_stopped_or_traced(p)))
1360 goto unlock_sig;
1362 if (!(p->ptrace & PT_PTRACED) && p->signal->group_stop_count > 0)
1364 * A group stop is in progress and this is the group leader.
1365 * We won't report until all threads have stopped.
1367 goto unlock_sig;
1369 exit_code = p->exit_code;
1370 if (!exit_code)
1371 goto unlock_sig;
1373 if (!noreap)
1374 p->exit_code = 0;
1376 uid = p->uid;
1377 unlock_sig:
1378 spin_unlock_irq(&p->sighand->siglock);
1379 if (!exit_code)
1380 return 0;
1383 * Now we are pretty sure this task is interesting.
1384 * Make sure it doesn't get reaped out from under us while we
1385 * give up the lock and then examine it below. We don't want to
1386 * keep holding onto the tasklist_lock while we call getrusage and
1387 * possibly take page faults for user memory.
1389 get_task_struct(p);
1390 pid = task_pid_nr_ns(p, current->nsproxy->pid_ns);
1391 why = (p->ptrace & PT_PTRACED) ? CLD_TRAPPED : CLD_STOPPED;
1392 read_unlock(&tasklist_lock);
1394 if (unlikely(noreap))
1395 return wait_noreap_copyout(p, pid, uid,
1396 why, exit_code,
1397 infop, ru);
1399 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1400 if (!retval && stat_addr)
1401 retval = put_user((exit_code << 8) | 0x7f, stat_addr);
1402 if (!retval && infop)
1403 retval = put_user(SIGCHLD, &infop->si_signo);
1404 if (!retval && infop)
1405 retval = put_user(0, &infop->si_errno);
1406 if (!retval && infop)
1407 retval = put_user(why, &infop->si_code);
1408 if (!retval && infop)
1409 retval = put_user(exit_code, &infop->si_status);
1410 if (!retval && infop)
1411 retval = put_user(pid, &infop->si_pid);
1412 if (!retval && infop)
1413 retval = put_user(uid, &infop->si_uid);
1414 if (!retval)
1415 retval = pid;
1416 put_task_struct(p);
1418 BUG_ON(!retval);
1419 return retval;
1423 * Handle do_wait work for one task in a live, non-stopped state.
1424 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1425 * the lock and this task is uninteresting. If we return nonzero, we have
1426 * released the lock and the system call should return.
1428 static int wait_task_continued(struct task_struct *p, int noreap,
1429 struct siginfo __user *infop,
1430 int __user *stat_addr, struct rusage __user *ru)
1432 int retval;
1433 pid_t pid;
1434 uid_t uid;
1435 struct pid_namespace *ns;
1437 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1438 return 0;
1440 spin_lock_irq(&p->sighand->siglock);
1441 /* Re-check with the lock held. */
1442 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1443 spin_unlock_irq(&p->sighand->siglock);
1444 return 0;
1446 if (!noreap)
1447 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1448 spin_unlock_irq(&p->sighand->siglock);
1450 ns = current->nsproxy->pid_ns;
1451 pid = task_pid_nr_ns(p, ns);
1452 uid = p->uid;
1453 get_task_struct(p);
1454 read_unlock(&tasklist_lock);
1456 if (!infop) {
1457 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1458 put_task_struct(p);
1459 if (!retval && stat_addr)
1460 retval = put_user(0xffff, stat_addr);
1461 if (!retval)
1462 retval = task_pid_nr_ns(p, ns);
1463 } else {
1464 retval = wait_noreap_copyout(p, pid, uid,
1465 CLD_CONTINUED, SIGCONT,
1466 infop, ru);
1467 BUG_ON(retval == 0);
1470 return retval;
1473 static long do_wait(pid_t pid, int options, struct siginfo __user *infop,
1474 int __user *stat_addr, struct rusage __user *ru)
1476 DECLARE_WAITQUEUE(wait, current);
1477 struct task_struct *tsk;
1478 int flag, retval;
1479 int allowed, denied;
1481 add_wait_queue(&current->signal->wait_chldexit,&wait);
1482 repeat:
1484 * We will set this flag if we see any child that might later
1485 * match our criteria, even if we are not able to reap it yet.
1487 flag = 0;
1488 allowed = denied = 0;
1489 current->state = TASK_INTERRUPTIBLE;
1490 read_lock(&tasklist_lock);
1491 tsk = current;
1492 do {
1493 struct task_struct *p;
1495 list_for_each_entry(p, &tsk->children, sibling) {
1496 int ret = eligible_child(pid, options, p);
1497 if (!ret)
1498 continue;
1500 if (unlikely(ret < 0)) {
1501 denied = ret;
1502 continue;
1504 allowed = 1;
1506 retval = 0;
1507 if (task_is_stopped_or_traced(p)) {
1509 * It's stopped now, so it might later
1510 * continue, exit, or stop again.
1512 flag = 1;
1513 if (!(p->ptrace & PT_PTRACED) &&
1514 !(options & WUNTRACED))
1515 continue;
1517 retval = wait_task_stopped(p,
1518 (options & WNOWAIT), infop,
1519 stat_addr, ru);
1520 } else if (p->exit_state == EXIT_ZOMBIE &&
1521 !delay_group_leader(p)) {
1523 * We don't reap group leaders with subthreads.
1525 if (!likely(options & WEXITED))
1526 continue;
1527 retval = wait_task_zombie(p,
1528 (options & WNOWAIT), infop,
1529 stat_addr, ru);
1530 } else if (p->exit_state != EXIT_DEAD) {
1532 * It's running now, so it might later
1533 * exit, stop, or stop and then continue.
1535 flag = 1;
1536 if (!unlikely(options & WCONTINUED))
1537 continue;
1538 retval = wait_task_continued(p,
1539 (options & WNOWAIT), infop,
1540 stat_addr, ru);
1542 if (retval != 0) /* tasklist_lock released */
1543 goto end;
1545 if (!flag) {
1546 list_for_each_entry(p, &tsk->ptrace_children,
1547 ptrace_list) {
1548 if (!eligible_child(pid, options, p))
1549 continue;
1550 flag = 1;
1551 break;
1554 if (options & __WNOTHREAD)
1555 break;
1556 tsk = next_thread(tsk);
1557 BUG_ON(tsk->signal != current->signal);
1558 } while (tsk != current);
1560 read_unlock(&tasklist_lock);
1561 if (flag) {
1562 retval = 0;
1563 if (options & WNOHANG)
1564 goto end;
1565 retval = -ERESTARTSYS;
1566 if (signal_pending(current))
1567 goto end;
1568 schedule();
1569 goto repeat;
1571 retval = -ECHILD;
1572 if (unlikely(denied) && !allowed)
1573 retval = denied;
1574 end:
1575 current->state = TASK_RUNNING;
1576 remove_wait_queue(&current->signal->wait_chldexit,&wait);
1577 if (infop) {
1578 if (retval > 0)
1579 retval = 0;
1580 else {
1582 * For a WNOHANG return, clear out all the fields
1583 * we would set so the user can easily tell the
1584 * difference.
1586 if (!retval)
1587 retval = put_user(0, &infop->si_signo);
1588 if (!retval)
1589 retval = put_user(0, &infop->si_errno);
1590 if (!retval)
1591 retval = put_user(0, &infop->si_code);
1592 if (!retval)
1593 retval = put_user(0, &infop->si_pid);
1594 if (!retval)
1595 retval = put_user(0, &infop->si_uid);
1596 if (!retval)
1597 retval = put_user(0, &infop->si_status);
1600 return retval;
1603 asmlinkage long sys_waitid(int which, pid_t pid,
1604 struct siginfo __user *infop, int options,
1605 struct rusage __user *ru)
1607 long ret;
1609 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1610 return -EINVAL;
1611 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1612 return -EINVAL;
1614 switch (which) {
1615 case P_ALL:
1616 pid = -1;
1617 break;
1618 case P_PID:
1619 if (pid <= 0)
1620 return -EINVAL;
1621 break;
1622 case P_PGID:
1623 if (pid <= 0)
1624 return -EINVAL;
1625 pid = -pid;
1626 break;
1627 default:
1628 return -EINVAL;
1631 ret = do_wait(pid, options, infop, NULL, ru);
1633 /* avoid REGPARM breakage on x86: */
1634 prevent_tail_call(ret);
1635 return ret;
1638 asmlinkage long sys_wait4(pid_t pid, int __user *stat_addr,
1639 int options, struct rusage __user *ru)
1641 long ret;
1643 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1644 __WNOTHREAD|__WCLONE|__WALL))
1645 return -EINVAL;
1646 ret = do_wait(pid, options | WEXITED, NULL, stat_addr, ru);
1648 /* avoid REGPARM breakage on x86: */
1649 prevent_tail_call(ret);
1650 return ret;
1653 #ifdef __ARCH_WANT_SYS_WAITPID
1656 * sys_waitpid() remains for compatibility. waitpid() should be
1657 * implemented by calling sys_wait4() from libc.a.
1659 asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options)
1661 return sys_wait4(pid, stat_addr, options, NULL);
1664 #endif