4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_counter.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/kthread.h>
59 #include <linux/proc_fs.h>
60 #include <linux/seq_file.h>
61 #include <linux/sysctl.h>
62 #include <linux/syscalls.h>
63 #include <linux/times.h>
64 #include <linux/tsacct_kern.h>
65 #include <linux/kprobes.h>
66 #include <linux/delayacct.h>
67 #include <linux/reciprocal_div.h>
68 #include <linux/unistd.h>
69 #include <linux/pagemap.h>
70 #include <linux/hrtimer.h>
71 #include <linux/tick.h>
72 #include <linux/debugfs.h>
73 #include <linux/ctype.h>
74 #include <linux/ftrace.h>
77 #include <asm/irq_regs.h>
79 #include "sched_cpupri.h"
81 #define CREATE_TRACE_POINTS
82 #include <trace/events/sched.h>
85 * Convert user-nice values [ -20 ... 0 ... 19 ]
86 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
89 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
90 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
91 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
94 * 'User priority' is the nice value converted to something we
95 * can work with better when scaling various scheduler parameters,
96 * it's a [ 0 ... 39 ] range.
98 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
99 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
100 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
103 * Helpers for converting nanosecond timing to jiffy resolution
105 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
107 #define NICE_0_LOAD SCHED_LOAD_SCALE
108 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
111 * These are the 'tuning knobs' of the scheduler:
113 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
114 * Timeslices get refilled after they expire.
116 #define DEF_TIMESLICE (100 * HZ / 1000)
119 * single value that denotes runtime == period, ie unlimited time.
121 #define RUNTIME_INF ((u64)~0ULL)
125 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
);
128 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
129 * Since cpu_power is a 'constant', we can use a reciprocal divide.
131 static inline u32
sg_div_cpu_power(const struct sched_group
*sg
, u32 load
)
133 return reciprocal_divide(load
, sg
->reciprocal_cpu_power
);
137 * Each time a sched group cpu_power is changed,
138 * we must compute its reciprocal value
140 static inline void sg_inc_cpu_power(struct sched_group
*sg
, u32 val
)
142 sg
->__cpu_power
+= val
;
143 sg
->reciprocal_cpu_power
= reciprocal_value(sg
->__cpu_power
);
147 static inline int rt_policy(int policy
)
149 if (unlikely(policy
== SCHED_FIFO
|| policy
== SCHED_RR
))
154 static inline int task_has_rt_policy(struct task_struct
*p
)
156 return rt_policy(p
->policy
);
160 * This is the priority-queue data structure of the RT scheduling class:
162 struct rt_prio_array
{
163 DECLARE_BITMAP(bitmap
, MAX_RT_PRIO
+1); /* include 1 bit for delimiter */
164 struct list_head queue
[MAX_RT_PRIO
];
167 struct rt_bandwidth
{
168 /* nests inside the rq lock: */
169 spinlock_t rt_runtime_lock
;
172 struct hrtimer rt_period_timer
;
175 static struct rt_bandwidth def_rt_bandwidth
;
177 static int do_sched_rt_period_timer(struct rt_bandwidth
*rt_b
, int overrun
);
179 static enum hrtimer_restart
sched_rt_period_timer(struct hrtimer
*timer
)
181 struct rt_bandwidth
*rt_b
=
182 container_of(timer
, struct rt_bandwidth
, rt_period_timer
);
188 now
= hrtimer_cb_get_time(timer
);
189 overrun
= hrtimer_forward(timer
, now
, rt_b
->rt_period
);
194 idle
= do_sched_rt_period_timer(rt_b
, overrun
);
197 return idle
? HRTIMER_NORESTART
: HRTIMER_RESTART
;
201 void init_rt_bandwidth(struct rt_bandwidth
*rt_b
, u64 period
, u64 runtime
)
203 rt_b
->rt_period
= ns_to_ktime(period
);
204 rt_b
->rt_runtime
= runtime
;
206 spin_lock_init(&rt_b
->rt_runtime_lock
);
208 hrtimer_init(&rt_b
->rt_period_timer
,
209 CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
210 rt_b
->rt_period_timer
.function
= sched_rt_period_timer
;
213 static inline int rt_bandwidth_enabled(void)
215 return sysctl_sched_rt_runtime
>= 0;
218 static void start_rt_bandwidth(struct rt_bandwidth
*rt_b
)
222 if (!rt_bandwidth_enabled() || rt_b
->rt_runtime
== RUNTIME_INF
)
225 if (hrtimer_active(&rt_b
->rt_period_timer
))
228 spin_lock(&rt_b
->rt_runtime_lock
);
233 if (hrtimer_active(&rt_b
->rt_period_timer
))
236 now
= hrtimer_cb_get_time(&rt_b
->rt_period_timer
);
237 hrtimer_forward(&rt_b
->rt_period_timer
, now
, rt_b
->rt_period
);
239 soft
= hrtimer_get_softexpires(&rt_b
->rt_period_timer
);
240 hard
= hrtimer_get_expires(&rt_b
->rt_period_timer
);
241 delta
= ktime_to_ns(ktime_sub(hard
, soft
));
242 __hrtimer_start_range_ns(&rt_b
->rt_period_timer
, soft
, delta
,
243 HRTIMER_MODE_ABS
, 0);
245 spin_unlock(&rt_b
->rt_runtime_lock
);
248 #ifdef CONFIG_RT_GROUP_SCHED
249 static void destroy_rt_bandwidth(struct rt_bandwidth
*rt_b
)
251 hrtimer_cancel(&rt_b
->rt_period_timer
);
256 * sched_domains_mutex serializes calls to arch_init_sched_domains,
257 * detach_destroy_domains and partition_sched_domains.
259 static DEFINE_MUTEX(sched_domains_mutex
);
261 #ifdef CONFIG_GROUP_SCHED
263 #include <linux/cgroup.h>
267 static LIST_HEAD(task_groups
);
269 /* task group related information */
271 #ifdef CONFIG_CGROUP_SCHED
272 struct cgroup_subsys_state css
;
275 #ifdef CONFIG_USER_SCHED
279 #ifdef CONFIG_FAIR_GROUP_SCHED
280 /* schedulable entities of this group on each cpu */
281 struct sched_entity
**se
;
282 /* runqueue "owned" by this group on each cpu */
283 struct cfs_rq
**cfs_rq
;
284 unsigned long shares
;
287 #ifdef CONFIG_RT_GROUP_SCHED
288 struct sched_rt_entity
**rt_se
;
289 struct rt_rq
**rt_rq
;
291 struct rt_bandwidth rt_bandwidth
;
295 struct list_head list
;
297 struct task_group
*parent
;
298 struct list_head siblings
;
299 struct list_head children
;
302 #ifdef CONFIG_USER_SCHED
304 /* Helper function to pass uid information to create_sched_user() */
305 void set_tg_uid(struct user_struct
*user
)
307 user
->tg
->uid
= user
->uid
;
312 * Every UID task group (including init_task_group aka UID-0) will
313 * be a child to this group.
315 struct task_group root_task_group
;
317 #ifdef CONFIG_FAIR_GROUP_SCHED
318 /* Default task group's sched entity on each cpu */
319 static DEFINE_PER_CPU(struct sched_entity
, init_sched_entity
);
320 /* Default task group's cfs_rq on each cpu */
321 static DEFINE_PER_CPU(struct cfs_rq
, init_cfs_rq
) ____cacheline_aligned_in_smp
;
322 #endif /* CONFIG_FAIR_GROUP_SCHED */
324 #ifdef CONFIG_RT_GROUP_SCHED
325 static DEFINE_PER_CPU(struct sched_rt_entity
, init_sched_rt_entity
);
326 static DEFINE_PER_CPU(struct rt_rq
, init_rt_rq
) ____cacheline_aligned_in_smp
;
327 #endif /* CONFIG_RT_GROUP_SCHED */
328 #else /* !CONFIG_USER_SCHED */
329 #define root_task_group init_task_group
330 #endif /* CONFIG_USER_SCHED */
332 /* task_group_lock serializes add/remove of task groups and also changes to
333 * a task group's cpu shares.
335 static DEFINE_SPINLOCK(task_group_lock
);
338 static int root_task_group_empty(void)
340 return list_empty(&root_task_group
.children
);
344 #ifdef CONFIG_FAIR_GROUP_SCHED
345 #ifdef CONFIG_USER_SCHED
346 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
347 #else /* !CONFIG_USER_SCHED */
348 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
349 #endif /* CONFIG_USER_SCHED */
352 * A weight of 0 or 1 can cause arithmetics problems.
353 * A weight of a cfs_rq is the sum of weights of which entities
354 * are queued on this cfs_rq, so a weight of a entity should not be
355 * too large, so as the shares value of a task group.
356 * (The default weight is 1024 - so there's no practical
357 * limitation from this.)
360 #define MAX_SHARES (1UL << 18)
362 static int init_task_group_load
= INIT_TASK_GROUP_LOAD
;
365 /* Default task group.
366 * Every task in system belong to this group at bootup.
368 struct task_group init_task_group
;
370 /* return group to which a task belongs */
371 static inline struct task_group
*task_group(struct task_struct
*p
)
373 struct task_group
*tg
;
375 #ifdef CONFIG_USER_SCHED
377 tg
= __task_cred(p
)->user
->tg
;
379 #elif defined(CONFIG_CGROUP_SCHED)
380 tg
= container_of(task_subsys_state(p
, cpu_cgroup_subsys_id
),
381 struct task_group
, css
);
383 tg
= &init_task_group
;
388 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
389 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
)
391 #ifdef CONFIG_FAIR_GROUP_SCHED
392 p
->se
.cfs_rq
= task_group(p
)->cfs_rq
[cpu
];
393 p
->se
.parent
= task_group(p
)->se
[cpu
];
396 #ifdef CONFIG_RT_GROUP_SCHED
397 p
->rt
.rt_rq
= task_group(p
)->rt_rq
[cpu
];
398 p
->rt
.parent
= task_group(p
)->rt_se
[cpu
];
405 static int root_task_group_empty(void)
411 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
) { }
412 static inline struct task_group
*task_group(struct task_struct
*p
)
417 #endif /* CONFIG_GROUP_SCHED */
419 /* CFS-related fields in a runqueue */
421 struct load_weight load
;
422 unsigned long nr_running
;
427 struct rb_root tasks_timeline
;
428 struct rb_node
*rb_leftmost
;
430 struct list_head tasks
;
431 struct list_head
*balance_iterator
;
434 * 'curr' points to currently running entity on this cfs_rq.
435 * It is set to NULL otherwise (i.e when none are currently running).
437 struct sched_entity
*curr
, *next
, *last
;
439 unsigned int nr_spread_over
;
441 #ifdef CONFIG_FAIR_GROUP_SCHED
442 struct rq
*rq
; /* cpu runqueue to which this cfs_rq is attached */
445 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
446 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
447 * (like users, containers etc.)
449 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
450 * list is used during load balance.
452 struct list_head leaf_cfs_rq_list
;
453 struct task_group
*tg
; /* group that "owns" this runqueue */
457 * the part of load.weight contributed by tasks
459 unsigned long task_weight
;
462 * h_load = weight * f(tg)
464 * Where f(tg) is the recursive weight fraction assigned to
467 unsigned long h_load
;
470 * this cpu's part of tg->shares
472 unsigned long shares
;
475 * load.weight at the time we set shares
477 unsigned long rq_weight
;
482 /* Real-Time classes' related field in a runqueue: */
484 struct rt_prio_array active
;
485 unsigned long rt_nr_running
;
486 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
488 int curr
; /* highest queued rt task prio */
490 int next
; /* next highest */
495 unsigned long rt_nr_migratory
;
497 struct plist_head pushable_tasks
;
502 /* Nests inside the rq lock: */
503 spinlock_t rt_runtime_lock
;
505 #ifdef CONFIG_RT_GROUP_SCHED
506 unsigned long rt_nr_boosted
;
509 struct list_head leaf_rt_rq_list
;
510 struct task_group
*tg
;
511 struct sched_rt_entity
*rt_se
;
518 * We add the notion of a root-domain which will be used to define per-domain
519 * variables. Each exclusive cpuset essentially defines an island domain by
520 * fully partitioning the member cpus from any other cpuset. Whenever a new
521 * exclusive cpuset is created, we also create and attach a new root-domain
528 cpumask_var_t online
;
531 * The "RT overload" flag: it gets set if a CPU has more than
532 * one runnable RT task.
534 cpumask_var_t rto_mask
;
537 struct cpupri cpupri
;
539 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
541 * Preferred wake up cpu nominated by sched_mc balance that will be
542 * used when most cpus are idle in the system indicating overall very
543 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
545 unsigned int sched_mc_preferred_wakeup_cpu
;
550 * By default the system creates a single root-domain with all cpus as
551 * members (mimicking the global state we have today).
553 static struct root_domain def_root_domain
;
558 * This is the main, per-CPU runqueue data structure.
560 * Locking rule: those places that want to lock multiple runqueues
561 * (such as the load balancing or the thread migration code), lock
562 * acquire operations must be ordered by ascending &runqueue.
569 * nr_running and cpu_load should be in the same cacheline because
570 * remote CPUs use both these fields when doing load calculation.
572 unsigned long nr_running
;
573 #define CPU_LOAD_IDX_MAX 5
574 unsigned long cpu_load
[CPU_LOAD_IDX_MAX
];
576 unsigned long last_tick_seen
;
577 unsigned char in_nohz_recently
;
579 /* capture load from *all* tasks on this cpu: */
580 struct load_weight load
;
581 unsigned long nr_load_updates
;
583 u64 nr_migrations_in
;
588 #ifdef CONFIG_FAIR_GROUP_SCHED
589 /* list of leaf cfs_rq on this cpu: */
590 struct list_head leaf_cfs_rq_list
;
592 #ifdef CONFIG_RT_GROUP_SCHED
593 struct list_head leaf_rt_rq_list
;
597 * This is part of a global counter where only the total sum
598 * over all CPUs matters. A task can increase this counter on
599 * one CPU and if it got migrated afterwards it may decrease
600 * it on another CPU. Always updated under the runqueue lock:
602 unsigned long nr_uninterruptible
;
604 struct task_struct
*curr
, *idle
;
605 unsigned long next_balance
;
606 struct mm_struct
*prev_mm
;
613 struct root_domain
*rd
;
614 struct sched_domain
*sd
;
616 unsigned char idle_at_tick
;
617 /* For active balancing */
620 /* cpu of this runqueue: */
624 unsigned long avg_load_per_task
;
626 struct task_struct
*migration_thread
;
627 struct list_head migration_queue
;
630 /* calc_load related fields */
631 unsigned long calc_load_update
;
632 long calc_load_active
;
634 #ifdef CONFIG_SCHED_HRTICK
636 int hrtick_csd_pending
;
637 struct call_single_data hrtick_csd
;
639 struct hrtimer hrtick_timer
;
642 #ifdef CONFIG_SCHEDSTATS
644 struct sched_info rq_sched_info
;
645 unsigned long long rq_cpu_time
;
646 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
648 /* sys_sched_yield() stats */
649 unsigned int yld_count
;
651 /* schedule() stats */
652 unsigned int sched_switch
;
653 unsigned int sched_count
;
654 unsigned int sched_goidle
;
656 /* try_to_wake_up() stats */
657 unsigned int ttwu_count
;
658 unsigned int ttwu_local
;
661 unsigned int bkl_count
;
665 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq
, runqueues
);
667 static inline void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
, int sync
)
669 rq
->curr
->sched_class
->check_preempt_curr(rq
, p
, sync
);
672 static inline int cpu_of(struct rq
*rq
)
682 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
683 * See detach_destroy_domains: synchronize_sched for details.
685 * The domain tree of any CPU may only be accessed from within
686 * preempt-disabled sections.
688 #define for_each_domain(cpu, __sd) \
689 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
691 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
692 #define this_rq() (&__get_cpu_var(runqueues))
693 #define task_rq(p) cpu_rq(task_cpu(p))
694 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
696 inline void update_rq_clock(struct rq
*rq
)
698 rq
->clock
= sched_clock_cpu(cpu_of(rq
));
702 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
704 #ifdef CONFIG_SCHED_DEBUG
705 # define const_debug __read_mostly
707 # define const_debug static const
713 * Returns true if the current cpu runqueue is locked.
714 * This interface allows printk to be called with the runqueue lock
715 * held and know whether or not it is OK to wake up the klogd.
717 int runqueue_is_locked(void)
720 struct rq
*rq
= cpu_rq(cpu
);
723 ret
= spin_is_locked(&rq
->lock
);
729 * Debugging: various feature bits
732 #define SCHED_FEAT(name, enabled) \
733 __SCHED_FEAT_##name ,
736 #include "sched_features.h"
741 #define SCHED_FEAT(name, enabled) \
742 (1UL << __SCHED_FEAT_##name) * enabled |
744 const_debug
unsigned int sysctl_sched_features
=
745 #include "sched_features.h"
750 #ifdef CONFIG_SCHED_DEBUG
751 #define SCHED_FEAT(name, enabled) \
754 static __read_mostly
char *sched_feat_names
[] = {
755 #include "sched_features.h"
761 static int sched_feat_show(struct seq_file
*m
, void *v
)
765 for (i
= 0; sched_feat_names
[i
]; i
++) {
766 if (!(sysctl_sched_features
& (1UL << i
)))
768 seq_printf(m
, "%s ", sched_feat_names
[i
]);
776 sched_feat_write(struct file
*filp
, const char __user
*ubuf
,
777 size_t cnt
, loff_t
*ppos
)
787 if (copy_from_user(&buf
, ubuf
, cnt
))
792 if (strncmp(buf
, "NO_", 3) == 0) {
797 for (i
= 0; sched_feat_names
[i
]; i
++) {
798 int len
= strlen(sched_feat_names
[i
]);
800 if (strncmp(cmp
, sched_feat_names
[i
], len
) == 0) {
802 sysctl_sched_features
&= ~(1UL << i
);
804 sysctl_sched_features
|= (1UL << i
);
809 if (!sched_feat_names
[i
])
817 static int sched_feat_open(struct inode
*inode
, struct file
*filp
)
819 return single_open(filp
, sched_feat_show
, NULL
);
822 static struct file_operations sched_feat_fops
= {
823 .open
= sched_feat_open
,
824 .write
= sched_feat_write
,
827 .release
= single_release
,
830 static __init
int sched_init_debug(void)
832 debugfs_create_file("sched_features", 0644, NULL
, NULL
,
837 late_initcall(sched_init_debug
);
841 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
844 * Number of tasks to iterate in a single balance run.
845 * Limited because this is done with IRQs disabled.
847 const_debug
unsigned int sysctl_sched_nr_migrate
= 32;
850 * ratelimit for updating the group shares.
853 unsigned int sysctl_sched_shares_ratelimit
= 250000;
856 * Inject some fuzzyness into changing the per-cpu group shares
857 * this avoids remote rq-locks at the expense of fairness.
860 unsigned int sysctl_sched_shares_thresh
= 4;
863 * period over which we measure -rt task cpu usage in us.
866 unsigned int sysctl_sched_rt_period
= 1000000;
868 static __read_mostly
int scheduler_running
;
871 * part of the period that we allow rt tasks to run in us.
874 int sysctl_sched_rt_runtime
= 950000;
876 static inline u64
global_rt_period(void)
878 return (u64
)sysctl_sched_rt_period
* NSEC_PER_USEC
;
881 static inline u64
global_rt_runtime(void)
883 if (sysctl_sched_rt_runtime
< 0)
886 return (u64
)sysctl_sched_rt_runtime
* NSEC_PER_USEC
;
889 #ifndef prepare_arch_switch
890 # define prepare_arch_switch(next) do { } while (0)
892 #ifndef finish_arch_switch
893 # define finish_arch_switch(prev) do { } while (0)
896 static inline int task_current(struct rq
*rq
, struct task_struct
*p
)
898 return rq
->curr
== p
;
901 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
902 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
904 return task_current(rq
, p
);
907 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
911 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
913 #ifdef CONFIG_DEBUG_SPINLOCK
914 /* this is a valid case when another task releases the spinlock */
915 rq
->lock
.owner
= current
;
918 * If we are tracking spinlock dependencies then we have to
919 * fix up the runqueue lock - which gets 'carried over' from
922 spin_acquire(&rq
->lock
.dep_map
, 0, 0, _THIS_IP_
);
924 spin_unlock_irq(&rq
->lock
);
927 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
928 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
933 return task_current(rq
, p
);
937 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
941 * We can optimise this out completely for !SMP, because the
942 * SMP rebalancing from interrupt is the only thing that cares
947 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
948 spin_unlock_irq(&rq
->lock
);
950 spin_unlock(&rq
->lock
);
954 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
958 * After ->oncpu is cleared, the task can be moved to a different CPU.
959 * We must ensure this doesn't happen until the switch is completely
965 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
969 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
972 * __task_rq_lock - lock the runqueue a given task resides on.
973 * Must be called interrupts disabled.
975 static inline struct rq
*__task_rq_lock(struct task_struct
*p
)
979 struct rq
*rq
= task_rq(p
);
980 spin_lock(&rq
->lock
);
981 if (likely(rq
== task_rq(p
)))
983 spin_unlock(&rq
->lock
);
988 * task_rq_lock - lock the runqueue a given task resides on and disable
989 * interrupts. Note the ordering: we can safely lookup the task_rq without
990 * explicitly disabling preemption.
992 static struct rq
*task_rq_lock(struct task_struct
*p
, unsigned long *flags
)
998 local_irq_save(*flags
);
1000 spin_lock(&rq
->lock
);
1001 if (likely(rq
== task_rq(p
)))
1003 spin_unlock_irqrestore(&rq
->lock
, *flags
);
1007 void task_rq_unlock_wait(struct task_struct
*p
)
1009 struct rq
*rq
= task_rq(p
);
1011 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
1012 spin_unlock_wait(&rq
->lock
);
1015 static void __task_rq_unlock(struct rq
*rq
)
1016 __releases(rq
->lock
)
1018 spin_unlock(&rq
->lock
);
1021 static inline void task_rq_unlock(struct rq
*rq
, unsigned long *flags
)
1022 __releases(rq
->lock
)
1024 spin_unlock_irqrestore(&rq
->lock
, *flags
);
1028 * this_rq_lock - lock this runqueue and disable interrupts.
1030 static struct rq
*this_rq_lock(void)
1031 __acquires(rq
->lock
)
1035 local_irq_disable();
1037 spin_lock(&rq
->lock
);
1042 #ifdef CONFIG_SCHED_HRTICK
1044 * Use HR-timers to deliver accurate preemption points.
1046 * Its all a bit involved since we cannot program an hrt while holding the
1047 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1050 * When we get rescheduled we reprogram the hrtick_timer outside of the
1056 * - enabled by features
1057 * - hrtimer is actually high res
1059 static inline int hrtick_enabled(struct rq
*rq
)
1061 if (!sched_feat(HRTICK
))
1063 if (!cpu_active(cpu_of(rq
)))
1065 return hrtimer_is_hres_active(&rq
->hrtick_timer
);
1068 static void hrtick_clear(struct rq
*rq
)
1070 if (hrtimer_active(&rq
->hrtick_timer
))
1071 hrtimer_cancel(&rq
->hrtick_timer
);
1075 * High-resolution timer tick.
1076 * Runs from hardirq context with interrupts disabled.
1078 static enum hrtimer_restart
hrtick(struct hrtimer
*timer
)
1080 struct rq
*rq
= container_of(timer
, struct rq
, hrtick_timer
);
1082 WARN_ON_ONCE(cpu_of(rq
) != smp_processor_id());
1084 spin_lock(&rq
->lock
);
1085 update_rq_clock(rq
);
1086 rq
->curr
->sched_class
->task_tick(rq
, rq
->curr
, 1);
1087 spin_unlock(&rq
->lock
);
1089 return HRTIMER_NORESTART
;
1094 * called from hardirq (IPI) context
1096 static void __hrtick_start(void *arg
)
1098 struct rq
*rq
= arg
;
1100 spin_lock(&rq
->lock
);
1101 hrtimer_restart(&rq
->hrtick_timer
);
1102 rq
->hrtick_csd_pending
= 0;
1103 spin_unlock(&rq
->lock
);
1107 * Called to set the hrtick timer state.
1109 * called with rq->lock held and irqs disabled
1111 static void hrtick_start(struct rq
*rq
, u64 delay
)
1113 struct hrtimer
*timer
= &rq
->hrtick_timer
;
1114 ktime_t time
= ktime_add_ns(timer
->base
->get_time(), delay
);
1116 hrtimer_set_expires(timer
, time
);
1118 if (rq
== this_rq()) {
1119 hrtimer_restart(timer
);
1120 } else if (!rq
->hrtick_csd_pending
) {
1121 __smp_call_function_single(cpu_of(rq
), &rq
->hrtick_csd
, 0);
1122 rq
->hrtick_csd_pending
= 1;
1127 hotplug_hrtick(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
1129 int cpu
= (int)(long)hcpu
;
1132 case CPU_UP_CANCELED
:
1133 case CPU_UP_CANCELED_FROZEN
:
1134 case CPU_DOWN_PREPARE
:
1135 case CPU_DOWN_PREPARE_FROZEN
:
1137 case CPU_DEAD_FROZEN
:
1138 hrtick_clear(cpu_rq(cpu
));
1145 static __init
void init_hrtick(void)
1147 hotcpu_notifier(hotplug_hrtick
, 0);
1151 * Called to set the hrtick timer state.
1153 * called with rq->lock held and irqs disabled
1155 static void hrtick_start(struct rq
*rq
, u64 delay
)
1157 __hrtimer_start_range_ns(&rq
->hrtick_timer
, ns_to_ktime(delay
), 0,
1158 HRTIMER_MODE_REL
, 0);
1161 static inline void init_hrtick(void)
1164 #endif /* CONFIG_SMP */
1166 static void init_rq_hrtick(struct rq
*rq
)
1169 rq
->hrtick_csd_pending
= 0;
1171 rq
->hrtick_csd
.flags
= 0;
1172 rq
->hrtick_csd
.func
= __hrtick_start
;
1173 rq
->hrtick_csd
.info
= rq
;
1176 hrtimer_init(&rq
->hrtick_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
1177 rq
->hrtick_timer
.function
= hrtick
;
1179 #else /* CONFIG_SCHED_HRTICK */
1180 static inline void hrtick_clear(struct rq
*rq
)
1184 static inline void init_rq_hrtick(struct rq
*rq
)
1188 static inline void init_hrtick(void)
1191 #endif /* CONFIG_SCHED_HRTICK */
1194 * resched_task - mark a task 'to be rescheduled now'.
1196 * On UP this means the setting of the need_resched flag, on SMP it
1197 * might also involve a cross-CPU call to trigger the scheduler on
1202 #ifndef tsk_is_polling
1203 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1206 static void resched_task(struct task_struct
*p
)
1210 assert_spin_locked(&task_rq(p
)->lock
);
1212 if (test_tsk_need_resched(p
))
1215 set_tsk_need_resched(p
);
1218 if (cpu
== smp_processor_id())
1221 /* NEED_RESCHED must be visible before we test polling */
1223 if (!tsk_is_polling(p
))
1224 smp_send_reschedule(cpu
);
1227 static void resched_cpu(int cpu
)
1229 struct rq
*rq
= cpu_rq(cpu
);
1230 unsigned long flags
;
1232 if (!spin_trylock_irqsave(&rq
->lock
, flags
))
1234 resched_task(cpu_curr(cpu
));
1235 spin_unlock_irqrestore(&rq
->lock
, flags
);
1240 * When add_timer_on() enqueues a timer into the timer wheel of an
1241 * idle CPU then this timer might expire before the next timer event
1242 * which is scheduled to wake up that CPU. In case of a completely
1243 * idle system the next event might even be infinite time into the
1244 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1245 * leaves the inner idle loop so the newly added timer is taken into
1246 * account when the CPU goes back to idle and evaluates the timer
1247 * wheel for the next timer event.
1249 void wake_up_idle_cpu(int cpu
)
1251 struct rq
*rq
= cpu_rq(cpu
);
1253 if (cpu
== smp_processor_id())
1257 * This is safe, as this function is called with the timer
1258 * wheel base lock of (cpu) held. When the CPU is on the way
1259 * to idle and has not yet set rq->curr to idle then it will
1260 * be serialized on the timer wheel base lock and take the new
1261 * timer into account automatically.
1263 if (rq
->curr
!= rq
->idle
)
1267 * We can set TIF_RESCHED on the idle task of the other CPU
1268 * lockless. The worst case is that the other CPU runs the
1269 * idle task through an additional NOOP schedule()
1271 set_tsk_need_resched(rq
->idle
);
1273 /* NEED_RESCHED must be visible before we test polling */
1275 if (!tsk_is_polling(rq
->idle
))
1276 smp_send_reschedule(cpu
);
1278 #endif /* CONFIG_NO_HZ */
1280 #else /* !CONFIG_SMP */
1281 static void resched_task(struct task_struct
*p
)
1283 assert_spin_locked(&task_rq(p
)->lock
);
1284 set_tsk_need_resched(p
);
1286 #endif /* CONFIG_SMP */
1288 #if BITS_PER_LONG == 32
1289 # define WMULT_CONST (~0UL)
1291 # define WMULT_CONST (1UL << 32)
1294 #define WMULT_SHIFT 32
1297 * Shift right and round:
1299 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1302 * delta *= weight / lw
1304 static unsigned long
1305 calc_delta_mine(unsigned long delta_exec
, unsigned long weight
,
1306 struct load_weight
*lw
)
1310 if (!lw
->inv_weight
) {
1311 if (BITS_PER_LONG
> 32 && unlikely(lw
->weight
>= WMULT_CONST
))
1314 lw
->inv_weight
= 1 + (WMULT_CONST
-lw
->weight
/2)
1318 tmp
= (u64
)delta_exec
* weight
;
1320 * Check whether we'd overflow the 64-bit multiplication:
1322 if (unlikely(tmp
> WMULT_CONST
))
1323 tmp
= SRR(SRR(tmp
, WMULT_SHIFT
/2) * lw
->inv_weight
,
1326 tmp
= SRR(tmp
* lw
->inv_weight
, WMULT_SHIFT
);
1328 return (unsigned long)min(tmp
, (u64
)(unsigned long)LONG_MAX
);
1331 static inline void update_load_add(struct load_weight
*lw
, unsigned long inc
)
1337 static inline void update_load_sub(struct load_weight
*lw
, unsigned long dec
)
1344 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1345 * of tasks with abnormal "nice" values across CPUs the contribution that
1346 * each task makes to its run queue's load is weighted according to its
1347 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1348 * scaled version of the new time slice allocation that they receive on time
1352 #define WEIGHT_IDLEPRIO 3
1353 #define WMULT_IDLEPRIO 1431655765
1356 * Nice levels are multiplicative, with a gentle 10% change for every
1357 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1358 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1359 * that remained on nice 0.
1361 * The "10% effect" is relative and cumulative: from _any_ nice level,
1362 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1363 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1364 * If a task goes up by ~10% and another task goes down by ~10% then
1365 * the relative distance between them is ~25%.)
1367 static const int prio_to_weight
[40] = {
1368 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1369 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1370 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1371 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1372 /* 0 */ 1024, 820, 655, 526, 423,
1373 /* 5 */ 335, 272, 215, 172, 137,
1374 /* 10 */ 110, 87, 70, 56, 45,
1375 /* 15 */ 36, 29, 23, 18, 15,
1379 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1381 * In cases where the weight does not change often, we can use the
1382 * precalculated inverse to speed up arithmetics by turning divisions
1383 * into multiplications:
1385 static const u32 prio_to_wmult
[40] = {
1386 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1387 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1388 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1389 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1390 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1391 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1392 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1393 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1396 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
);
1399 * runqueue iterator, to support SMP load-balancing between different
1400 * scheduling classes, without having to expose their internal data
1401 * structures to the load-balancing proper:
1403 struct rq_iterator
{
1405 struct task_struct
*(*start
)(void *);
1406 struct task_struct
*(*next
)(void *);
1410 static unsigned long
1411 balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1412 unsigned long max_load_move
, struct sched_domain
*sd
,
1413 enum cpu_idle_type idle
, int *all_pinned
,
1414 int *this_best_prio
, struct rq_iterator
*iterator
);
1417 iter_move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1418 struct sched_domain
*sd
, enum cpu_idle_type idle
,
1419 struct rq_iterator
*iterator
);
1422 /* Time spent by the tasks of the cpu accounting group executing in ... */
1423 enum cpuacct_stat_index
{
1424 CPUACCT_STAT_USER
, /* ... user mode */
1425 CPUACCT_STAT_SYSTEM
, /* ... kernel mode */
1427 CPUACCT_STAT_NSTATS
,
1430 #ifdef CONFIG_CGROUP_CPUACCT
1431 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
);
1432 static void cpuacct_update_stats(struct task_struct
*tsk
,
1433 enum cpuacct_stat_index idx
, cputime_t val
);
1435 static inline void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
) {}
1436 static inline void cpuacct_update_stats(struct task_struct
*tsk
,
1437 enum cpuacct_stat_index idx
, cputime_t val
) {}
1440 static inline void inc_cpu_load(struct rq
*rq
, unsigned long load
)
1442 update_load_add(&rq
->load
, load
);
1445 static inline void dec_cpu_load(struct rq
*rq
, unsigned long load
)
1447 update_load_sub(&rq
->load
, load
);
1450 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1451 typedef int (*tg_visitor
)(struct task_group
*, void *);
1454 * Iterate the full tree, calling @down when first entering a node and @up when
1455 * leaving it for the final time.
1457 static int walk_tg_tree(tg_visitor down
, tg_visitor up
, void *data
)
1459 struct task_group
*parent
, *child
;
1463 parent
= &root_task_group
;
1465 ret
= (*down
)(parent
, data
);
1468 list_for_each_entry_rcu(child
, &parent
->children
, siblings
) {
1475 ret
= (*up
)(parent
, data
);
1480 parent
= parent
->parent
;
1489 static int tg_nop(struct task_group
*tg
, void *data
)
1496 static unsigned long source_load(int cpu
, int type
);
1497 static unsigned long target_load(int cpu
, int type
);
1498 static int task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
);
1500 static unsigned long cpu_avg_load_per_task(int cpu
)
1502 struct rq
*rq
= cpu_rq(cpu
);
1503 unsigned long nr_running
= ACCESS_ONCE(rq
->nr_running
);
1506 rq
->avg_load_per_task
= rq
->load
.weight
/ nr_running
;
1508 rq
->avg_load_per_task
= 0;
1510 return rq
->avg_load_per_task
;
1513 #ifdef CONFIG_FAIR_GROUP_SCHED
1515 static void __set_se_shares(struct sched_entity
*se
, unsigned long shares
);
1518 * Calculate and set the cpu's group shares.
1521 update_group_shares_cpu(struct task_group
*tg
, int cpu
,
1522 unsigned long sd_shares
, unsigned long sd_rq_weight
)
1524 unsigned long shares
;
1525 unsigned long rq_weight
;
1530 rq_weight
= tg
->cfs_rq
[cpu
]->rq_weight
;
1533 * \Sum shares * rq_weight
1534 * shares = -----------------------
1538 shares
= (sd_shares
* rq_weight
) / sd_rq_weight
;
1539 shares
= clamp_t(unsigned long, shares
, MIN_SHARES
, MAX_SHARES
);
1541 if (abs(shares
- tg
->se
[cpu
]->load
.weight
) >
1542 sysctl_sched_shares_thresh
) {
1543 struct rq
*rq
= cpu_rq(cpu
);
1544 unsigned long flags
;
1546 spin_lock_irqsave(&rq
->lock
, flags
);
1547 tg
->cfs_rq
[cpu
]->shares
= shares
;
1549 __set_se_shares(tg
->se
[cpu
], shares
);
1550 spin_unlock_irqrestore(&rq
->lock
, flags
);
1555 * Re-compute the task group their per cpu shares over the given domain.
1556 * This needs to be done in a bottom-up fashion because the rq weight of a
1557 * parent group depends on the shares of its child groups.
1559 static int tg_shares_up(struct task_group
*tg
, void *data
)
1561 unsigned long weight
, rq_weight
= 0;
1562 unsigned long shares
= 0;
1563 struct sched_domain
*sd
= data
;
1566 for_each_cpu(i
, sched_domain_span(sd
)) {
1568 * If there are currently no tasks on the cpu pretend there
1569 * is one of average load so that when a new task gets to
1570 * run here it will not get delayed by group starvation.
1572 weight
= tg
->cfs_rq
[i
]->load
.weight
;
1574 weight
= NICE_0_LOAD
;
1576 tg
->cfs_rq
[i
]->rq_weight
= weight
;
1577 rq_weight
+= weight
;
1578 shares
+= tg
->cfs_rq
[i
]->shares
;
1581 if ((!shares
&& rq_weight
) || shares
> tg
->shares
)
1582 shares
= tg
->shares
;
1584 if (!sd
->parent
|| !(sd
->parent
->flags
& SD_LOAD_BALANCE
))
1585 shares
= tg
->shares
;
1587 for_each_cpu(i
, sched_domain_span(sd
))
1588 update_group_shares_cpu(tg
, i
, shares
, rq_weight
);
1594 * Compute the cpu's hierarchical load factor for each task group.
1595 * This needs to be done in a top-down fashion because the load of a child
1596 * group is a fraction of its parents load.
1598 static int tg_load_down(struct task_group
*tg
, void *data
)
1601 long cpu
= (long)data
;
1604 load
= cpu_rq(cpu
)->load
.weight
;
1606 load
= tg
->parent
->cfs_rq
[cpu
]->h_load
;
1607 load
*= tg
->cfs_rq
[cpu
]->shares
;
1608 load
/= tg
->parent
->cfs_rq
[cpu
]->load
.weight
+ 1;
1611 tg
->cfs_rq
[cpu
]->h_load
= load
;
1616 static void update_shares(struct sched_domain
*sd
)
1618 u64 now
= cpu_clock(raw_smp_processor_id());
1619 s64 elapsed
= now
- sd
->last_update
;
1621 if (elapsed
>= (s64
)(u64
)sysctl_sched_shares_ratelimit
) {
1622 sd
->last_update
= now
;
1623 walk_tg_tree(tg_nop
, tg_shares_up
, sd
);
1627 static void update_shares_locked(struct rq
*rq
, struct sched_domain
*sd
)
1629 spin_unlock(&rq
->lock
);
1631 spin_lock(&rq
->lock
);
1634 static void update_h_load(long cpu
)
1636 walk_tg_tree(tg_load_down
, tg_nop
, (void *)cpu
);
1641 static inline void update_shares(struct sched_domain
*sd
)
1645 static inline void update_shares_locked(struct rq
*rq
, struct sched_domain
*sd
)
1651 #ifdef CONFIG_PREEMPT
1654 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1655 * way at the expense of forcing extra atomic operations in all
1656 * invocations. This assures that the double_lock is acquired using the
1657 * same underlying policy as the spinlock_t on this architecture, which
1658 * reduces latency compared to the unfair variant below. However, it
1659 * also adds more overhead and therefore may reduce throughput.
1661 static inline int _double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1662 __releases(this_rq
->lock
)
1663 __acquires(busiest
->lock
)
1664 __acquires(this_rq
->lock
)
1666 spin_unlock(&this_rq
->lock
);
1667 double_rq_lock(this_rq
, busiest
);
1674 * Unfair double_lock_balance: Optimizes throughput at the expense of
1675 * latency by eliminating extra atomic operations when the locks are
1676 * already in proper order on entry. This favors lower cpu-ids and will
1677 * grant the double lock to lower cpus over higher ids under contention,
1678 * regardless of entry order into the function.
1680 static int _double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1681 __releases(this_rq
->lock
)
1682 __acquires(busiest
->lock
)
1683 __acquires(this_rq
->lock
)
1687 if (unlikely(!spin_trylock(&busiest
->lock
))) {
1688 if (busiest
< this_rq
) {
1689 spin_unlock(&this_rq
->lock
);
1690 spin_lock(&busiest
->lock
);
1691 spin_lock_nested(&this_rq
->lock
, SINGLE_DEPTH_NESTING
);
1694 spin_lock_nested(&busiest
->lock
, SINGLE_DEPTH_NESTING
);
1699 #endif /* CONFIG_PREEMPT */
1702 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1704 static int double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1706 if (unlikely(!irqs_disabled())) {
1707 /* printk() doesn't work good under rq->lock */
1708 spin_unlock(&this_rq
->lock
);
1712 return _double_lock_balance(this_rq
, busiest
);
1715 static inline void double_unlock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1716 __releases(busiest
->lock
)
1718 spin_unlock(&busiest
->lock
);
1719 lock_set_subclass(&this_rq
->lock
.dep_map
, 0, _RET_IP_
);
1723 #ifdef CONFIG_FAIR_GROUP_SCHED
1724 static void cfs_rq_set_shares(struct cfs_rq
*cfs_rq
, unsigned long shares
)
1727 cfs_rq
->shares
= shares
;
1732 static void calc_load_account_active(struct rq
*this_rq
);
1734 #include "sched_stats.h"
1735 #include "sched_idletask.c"
1736 #include "sched_fair.c"
1737 #include "sched_rt.c"
1738 #ifdef CONFIG_SCHED_DEBUG
1739 # include "sched_debug.c"
1742 #define sched_class_highest (&rt_sched_class)
1743 #define for_each_class(class) \
1744 for (class = sched_class_highest; class; class = class->next)
1746 static void inc_nr_running(struct rq
*rq
)
1751 static void dec_nr_running(struct rq
*rq
)
1756 static void set_load_weight(struct task_struct
*p
)
1758 if (task_has_rt_policy(p
)) {
1759 p
->se
.load
.weight
= prio_to_weight
[0] * 2;
1760 p
->se
.load
.inv_weight
= prio_to_wmult
[0] >> 1;
1765 * SCHED_IDLE tasks get minimal weight:
1767 if (p
->policy
== SCHED_IDLE
) {
1768 p
->se
.load
.weight
= WEIGHT_IDLEPRIO
;
1769 p
->se
.load
.inv_weight
= WMULT_IDLEPRIO
;
1773 p
->se
.load
.weight
= prio_to_weight
[p
->static_prio
- MAX_RT_PRIO
];
1774 p
->se
.load
.inv_weight
= prio_to_wmult
[p
->static_prio
- MAX_RT_PRIO
];
1777 static void update_avg(u64
*avg
, u64 sample
)
1779 s64 diff
= sample
- *avg
;
1783 static void enqueue_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
1786 p
->se
.start_runtime
= p
->se
.sum_exec_runtime
;
1788 sched_info_queued(p
);
1789 p
->sched_class
->enqueue_task(rq
, p
, wakeup
);
1793 static void dequeue_task(struct rq
*rq
, struct task_struct
*p
, int sleep
)
1796 if (p
->se
.last_wakeup
) {
1797 update_avg(&p
->se
.avg_overlap
,
1798 p
->se
.sum_exec_runtime
- p
->se
.last_wakeup
);
1799 p
->se
.last_wakeup
= 0;
1801 update_avg(&p
->se
.avg_wakeup
,
1802 sysctl_sched_wakeup_granularity
);
1806 sched_info_dequeued(p
);
1807 p
->sched_class
->dequeue_task(rq
, p
, sleep
);
1812 * __normal_prio - return the priority that is based on the static prio
1814 static inline int __normal_prio(struct task_struct
*p
)
1816 return p
->static_prio
;
1820 * Calculate the expected normal priority: i.e. priority
1821 * without taking RT-inheritance into account. Might be
1822 * boosted by interactivity modifiers. Changes upon fork,
1823 * setprio syscalls, and whenever the interactivity
1824 * estimator recalculates.
1826 static inline int normal_prio(struct task_struct
*p
)
1830 if (task_has_rt_policy(p
))
1831 prio
= MAX_RT_PRIO
-1 - p
->rt_priority
;
1833 prio
= __normal_prio(p
);
1838 * Calculate the current priority, i.e. the priority
1839 * taken into account by the scheduler. This value might
1840 * be boosted by RT tasks, or might be boosted by
1841 * interactivity modifiers. Will be RT if the task got
1842 * RT-boosted. If not then it returns p->normal_prio.
1844 static int effective_prio(struct task_struct
*p
)
1846 p
->normal_prio
= normal_prio(p
);
1848 * If we are RT tasks or we were boosted to RT priority,
1849 * keep the priority unchanged. Otherwise, update priority
1850 * to the normal priority:
1852 if (!rt_prio(p
->prio
))
1853 return p
->normal_prio
;
1858 * activate_task - move a task to the runqueue.
1860 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
1862 if (task_contributes_to_load(p
))
1863 rq
->nr_uninterruptible
--;
1865 enqueue_task(rq
, p
, wakeup
);
1870 * deactivate_task - remove a task from the runqueue.
1872 static void deactivate_task(struct rq
*rq
, struct task_struct
*p
, int sleep
)
1874 if (task_contributes_to_load(p
))
1875 rq
->nr_uninterruptible
++;
1877 dequeue_task(rq
, p
, sleep
);
1882 * task_curr - is this task currently executing on a CPU?
1883 * @p: the task in question.
1885 inline int task_curr(const struct task_struct
*p
)
1887 return cpu_curr(task_cpu(p
)) == p
;
1890 static inline void __set_task_cpu(struct task_struct
*p
, unsigned int cpu
)
1892 set_task_rq(p
, cpu
);
1895 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1896 * successfuly executed on another CPU. We must ensure that updates of
1897 * per-task data have been completed by this moment.
1900 task_thread_info(p
)->cpu
= cpu
;
1904 static inline void check_class_changed(struct rq
*rq
, struct task_struct
*p
,
1905 const struct sched_class
*prev_class
,
1906 int oldprio
, int running
)
1908 if (prev_class
!= p
->sched_class
) {
1909 if (prev_class
->switched_from
)
1910 prev_class
->switched_from(rq
, p
, running
);
1911 p
->sched_class
->switched_to(rq
, p
, running
);
1913 p
->sched_class
->prio_changed(rq
, p
, oldprio
, running
);
1918 /* Used instead of source_load when we know the type == 0 */
1919 static unsigned long weighted_cpuload(const int cpu
)
1921 return cpu_rq(cpu
)->load
.weight
;
1925 * Is this task likely cache-hot:
1928 task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
)
1933 * Buddy candidates are cache hot:
1935 if (sched_feat(CACHE_HOT_BUDDY
) &&
1936 (&p
->se
== cfs_rq_of(&p
->se
)->next
||
1937 &p
->se
== cfs_rq_of(&p
->se
)->last
))
1940 if (p
->sched_class
!= &fair_sched_class
)
1943 if (sysctl_sched_migration_cost
== -1)
1945 if (sysctl_sched_migration_cost
== 0)
1948 delta
= now
- p
->se
.exec_start
;
1950 return delta
< (s64
)sysctl_sched_migration_cost
;
1954 void set_task_cpu(struct task_struct
*p
, unsigned int new_cpu
)
1956 int old_cpu
= task_cpu(p
);
1957 struct rq
*old_rq
= cpu_rq(old_cpu
), *new_rq
= cpu_rq(new_cpu
);
1958 struct cfs_rq
*old_cfsrq
= task_cfs_rq(p
),
1959 *new_cfsrq
= cpu_cfs_rq(old_cfsrq
, new_cpu
);
1962 clock_offset
= old_rq
->clock
- new_rq
->clock
;
1964 trace_sched_migrate_task(p
, new_cpu
);
1966 #ifdef CONFIG_SCHEDSTATS
1967 if (p
->se
.wait_start
)
1968 p
->se
.wait_start
-= clock_offset
;
1969 if (p
->se
.sleep_start
)
1970 p
->se
.sleep_start
-= clock_offset
;
1971 if (p
->se
.block_start
)
1972 p
->se
.block_start
-= clock_offset
;
1974 if (old_cpu
!= new_cpu
) {
1975 p
->se
.nr_migrations
++;
1976 new_rq
->nr_migrations_in
++;
1977 #ifdef CONFIG_SCHEDSTATS
1978 if (task_hot(p
, old_rq
->clock
, NULL
))
1979 schedstat_inc(p
, se
.nr_forced2_migrations
);
1981 perf_counter_task_migration(p
, new_cpu
);
1983 p
->se
.vruntime
-= old_cfsrq
->min_vruntime
-
1984 new_cfsrq
->min_vruntime
;
1986 __set_task_cpu(p
, new_cpu
);
1989 struct migration_req
{
1990 struct list_head list
;
1992 struct task_struct
*task
;
1995 struct completion done
;
1999 * The task's runqueue lock must be held.
2000 * Returns true if you have to wait for migration thread.
2003 migrate_task(struct task_struct
*p
, int dest_cpu
, struct migration_req
*req
)
2005 struct rq
*rq
= task_rq(p
);
2008 * If the task is not on a runqueue (and not running), then
2009 * it is sufficient to simply update the task's cpu field.
2011 if (!p
->se
.on_rq
&& !task_running(rq
, p
)) {
2012 set_task_cpu(p
, dest_cpu
);
2016 init_completion(&req
->done
);
2018 req
->dest_cpu
= dest_cpu
;
2019 list_add(&req
->list
, &rq
->migration_queue
);
2025 * wait_task_context_switch - wait for a thread to complete at least one
2028 * @p must not be current.
2030 void wait_task_context_switch(struct task_struct
*p
)
2032 unsigned long nvcsw
, nivcsw
, flags
;
2040 * The runqueue is assigned before the actual context
2041 * switch. We need to take the runqueue lock.
2043 * We could check initially without the lock but it is
2044 * very likely that we need to take the lock in every
2047 rq
= task_rq_lock(p
, &flags
);
2048 running
= task_running(rq
, p
);
2049 task_rq_unlock(rq
, &flags
);
2051 if (likely(!running
))
2054 * The switch count is incremented before the actual
2055 * context switch. We thus wait for two switches to be
2056 * sure at least one completed.
2058 if ((p
->nvcsw
- nvcsw
) > 1)
2060 if ((p
->nivcsw
- nivcsw
) > 1)
2068 * wait_task_inactive - wait for a thread to unschedule.
2070 * If @match_state is nonzero, it's the @p->state value just checked and
2071 * not expected to change. If it changes, i.e. @p might have woken up,
2072 * then return zero. When we succeed in waiting for @p to be off its CPU,
2073 * we return a positive number (its total switch count). If a second call
2074 * a short while later returns the same number, the caller can be sure that
2075 * @p has remained unscheduled the whole time.
2077 * The caller must ensure that the task *will* unschedule sometime soon,
2078 * else this function might spin for a *long* time. This function can't
2079 * be called with interrupts off, or it may introduce deadlock with
2080 * smp_call_function() if an IPI is sent by the same process we are
2081 * waiting to become inactive.
2083 unsigned long wait_task_inactive(struct task_struct
*p
, long match_state
)
2085 unsigned long flags
;
2092 * We do the initial early heuristics without holding
2093 * any task-queue locks at all. We'll only try to get
2094 * the runqueue lock when things look like they will
2100 * If the task is actively running on another CPU
2101 * still, just relax and busy-wait without holding
2104 * NOTE! Since we don't hold any locks, it's not
2105 * even sure that "rq" stays as the right runqueue!
2106 * But we don't care, since "task_running()" will
2107 * return false if the runqueue has changed and p
2108 * is actually now running somewhere else!
2110 while (task_running(rq
, p
)) {
2111 if (match_state
&& unlikely(p
->state
!= match_state
))
2117 * Ok, time to look more closely! We need the rq
2118 * lock now, to be *sure*. If we're wrong, we'll
2119 * just go back and repeat.
2121 rq
= task_rq_lock(p
, &flags
);
2122 trace_sched_wait_task(rq
, p
);
2123 running
= task_running(rq
, p
);
2124 on_rq
= p
->se
.on_rq
;
2126 if (!match_state
|| p
->state
== match_state
)
2127 ncsw
= p
->nvcsw
| LONG_MIN
; /* sets MSB */
2128 task_rq_unlock(rq
, &flags
);
2131 * If it changed from the expected state, bail out now.
2133 if (unlikely(!ncsw
))
2137 * Was it really running after all now that we
2138 * checked with the proper locks actually held?
2140 * Oops. Go back and try again..
2142 if (unlikely(running
)) {
2148 * It's not enough that it's not actively running,
2149 * it must be off the runqueue _entirely_, and not
2152 * So if it was still runnable (but just not actively
2153 * running right now), it's preempted, and we should
2154 * yield - it could be a while.
2156 if (unlikely(on_rq
)) {
2157 schedule_timeout_uninterruptible(1);
2162 * Ahh, all good. It wasn't running, and it wasn't
2163 * runnable, which means that it will never become
2164 * running in the future either. We're all done!
2173 * kick_process - kick a running thread to enter/exit the kernel
2174 * @p: the to-be-kicked thread
2176 * Cause a process which is running on another CPU to enter
2177 * kernel-mode, without any delay. (to get signals handled.)
2179 * NOTE: this function doesnt have to take the runqueue lock,
2180 * because all it wants to ensure is that the remote task enters
2181 * the kernel. If the IPI races and the task has been migrated
2182 * to another CPU then no harm is done and the purpose has been
2185 void kick_process(struct task_struct
*p
)
2191 if ((cpu
!= smp_processor_id()) && task_curr(p
))
2192 smp_send_reschedule(cpu
);
2197 * Return a low guess at the load of a migration-source cpu weighted
2198 * according to the scheduling class and "nice" value.
2200 * We want to under-estimate the load of migration sources, to
2201 * balance conservatively.
2203 static unsigned long source_load(int cpu
, int type
)
2205 struct rq
*rq
= cpu_rq(cpu
);
2206 unsigned long total
= weighted_cpuload(cpu
);
2208 if (type
== 0 || !sched_feat(LB_BIAS
))
2211 return min(rq
->cpu_load
[type
-1], total
);
2215 * Return a high guess at the load of a migration-target cpu weighted
2216 * according to the scheduling class and "nice" value.
2218 static unsigned long target_load(int cpu
, int type
)
2220 struct rq
*rq
= cpu_rq(cpu
);
2221 unsigned long total
= weighted_cpuload(cpu
);
2223 if (type
== 0 || !sched_feat(LB_BIAS
))
2226 return max(rq
->cpu_load
[type
-1], total
);
2230 * find_idlest_group finds and returns the least busy CPU group within the
2233 static struct sched_group
*
2234 find_idlest_group(struct sched_domain
*sd
, struct task_struct
*p
, int this_cpu
)
2236 struct sched_group
*idlest
= NULL
, *this = NULL
, *group
= sd
->groups
;
2237 unsigned long min_load
= ULONG_MAX
, this_load
= 0;
2238 int load_idx
= sd
->forkexec_idx
;
2239 int imbalance
= 100 + (sd
->imbalance_pct
-100)/2;
2242 unsigned long load
, avg_load
;
2246 /* Skip over this group if it has no CPUs allowed */
2247 if (!cpumask_intersects(sched_group_cpus(group
),
2251 local_group
= cpumask_test_cpu(this_cpu
,
2252 sched_group_cpus(group
));
2254 /* Tally up the load of all CPUs in the group */
2257 for_each_cpu(i
, sched_group_cpus(group
)) {
2258 /* Bias balancing toward cpus of our domain */
2260 load
= source_load(i
, load_idx
);
2262 load
= target_load(i
, load_idx
);
2267 /* Adjust by relative CPU power of the group */
2268 avg_load
= sg_div_cpu_power(group
,
2269 avg_load
* SCHED_LOAD_SCALE
);
2272 this_load
= avg_load
;
2274 } else if (avg_load
< min_load
) {
2275 min_load
= avg_load
;
2278 } while (group
= group
->next
, group
!= sd
->groups
);
2280 if (!idlest
|| 100*this_load
< imbalance
*min_load
)
2286 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2289 find_idlest_cpu(struct sched_group
*group
, struct task_struct
*p
, int this_cpu
)
2291 unsigned long load
, min_load
= ULONG_MAX
;
2295 /* Traverse only the allowed CPUs */
2296 for_each_cpu_and(i
, sched_group_cpus(group
), &p
->cpus_allowed
) {
2297 load
= weighted_cpuload(i
);
2299 if (load
< min_load
|| (load
== min_load
&& i
== this_cpu
)) {
2309 * sched_balance_self: balance the current task (running on cpu) in domains
2310 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2313 * Balance, ie. select the least loaded group.
2315 * Returns the target CPU number, or the same CPU if no balancing is needed.
2317 * preempt must be disabled.
2319 static int sched_balance_self(int cpu
, int flag
)
2321 struct task_struct
*t
= current
;
2322 struct sched_domain
*tmp
, *sd
= NULL
;
2324 for_each_domain(cpu
, tmp
) {
2326 * If power savings logic is enabled for a domain, stop there.
2328 if (tmp
->flags
& SD_POWERSAVINGS_BALANCE
)
2330 if (tmp
->flags
& flag
)
2338 struct sched_group
*group
;
2339 int new_cpu
, weight
;
2341 if (!(sd
->flags
& flag
)) {
2346 group
= find_idlest_group(sd
, t
, cpu
);
2352 new_cpu
= find_idlest_cpu(group
, t
, cpu
);
2353 if (new_cpu
== -1 || new_cpu
== cpu
) {
2354 /* Now try balancing at a lower domain level of cpu */
2359 /* Now try balancing at a lower domain level of new_cpu */
2361 weight
= cpumask_weight(sched_domain_span(sd
));
2363 for_each_domain(cpu
, tmp
) {
2364 if (weight
<= cpumask_weight(sched_domain_span(tmp
)))
2366 if (tmp
->flags
& flag
)
2369 /* while loop will break here if sd == NULL */
2375 #endif /* CONFIG_SMP */
2378 * task_oncpu_function_call - call a function on the cpu on which a task runs
2379 * @p: the task to evaluate
2380 * @func: the function to be called
2381 * @info: the function call argument
2383 * Calls the function @func when the task is currently running. This might
2384 * be on the current CPU, which just calls the function directly
2386 void task_oncpu_function_call(struct task_struct
*p
,
2387 void (*func
) (void *info
), void *info
)
2394 smp_call_function_single(cpu
, func
, info
, 1);
2399 * try_to_wake_up - wake up a thread
2400 * @p: the to-be-woken-up thread
2401 * @state: the mask of task states that can be woken
2402 * @sync: do a synchronous wakeup?
2404 * Put it on the run-queue if it's not already there. The "current"
2405 * thread is always on the run-queue (except when the actual
2406 * re-schedule is in progress), and as such you're allowed to do
2407 * the simpler "current->state = TASK_RUNNING" to mark yourself
2408 * runnable without the overhead of this.
2410 * returns failure only if the task is already active.
2412 static int try_to_wake_up(struct task_struct
*p
, unsigned int state
, int sync
)
2414 int cpu
, orig_cpu
, this_cpu
, success
= 0;
2415 unsigned long flags
;
2419 if (!sched_feat(SYNC_WAKEUPS
))
2423 if (sched_feat(LB_WAKEUP_UPDATE
) && !root_task_group_empty()) {
2424 struct sched_domain
*sd
;
2426 this_cpu
= raw_smp_processor_id();
2429 for_each_domain(this_cpu
, sd
) {
2430 if (cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
2439 rq
= task_rq_lock(p
, &flags
);
2440 update_rq_clock(rq
);
2441 old_state
= p
->state
;
2442 if (!(old_state
& state
))
2450 this_cpu
= smp_processor_id();
2453 if (unlikely(task_running(rq
, p
)))
2456 cpu
= p
->sched_class
->select_task_rq(p
, sync
);
2457 if (cpu
!= orig_cpu
) {
2458 set_task_cpu(p
, cpu
);
2459 task_rq_unlock(rq
, &flags
);
2460 /* might preempt at this point */
2461 rq
= task_rq_lock(p
, &flags
);
2462 old_state
= p
->state
;
2463 if (!(old_state
& state
))
2468 this_cpu
= smp_processor_id();
2472 #ifdef CONFIG_SCHEDSTATS
2473 schedstat_inc(rq
, ttwu_count
);
2474 if (cpu
== this_cpu
)
2475 schedstat_inc(rq
, ttwu_local
);
2477 struct sched_domain
*sd
;
2478 for_each_domain(this_cpu
, sd
) {
2479 if (cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
2480 schedstat_inc(sd
, ttwu_wake_remote
);
2485 #endif /* CONFIG_SCHEDSTATS */
2488 #endif /* CONFIG_SMP */
2489 schedstat_inc(p
, se
.nr_wakeups
);
2491 schedstat_inc(p
, se
.nr_wakeups_sync
);
2492 if (orig_cpu
!= cpu
)
2493 schedstat_inc(p
, se
.nr_wakeups_migrate
);
2494 if (cpu
== this_cpu
)
2495 schedstat_inc(p
, se
.nr_wakeups_local
);
2497 schedstat_inc(p
, se
.nr_wakeups_remote
);
2498 activate_task(rq
, p
, 1);
2502 * Only attribute actual wakeups done by this task.
2504 if (!in_interrupt()) {
2505 struct sched_entity
*se
= ¤t
->se
;
2506 u64 sample
= se
->sum_exec_runtime
;
2508 if (se
->last_wakeup
)
2509 sample
-= se
->last_wakeup
;
2511 sample
-= se
->start_runtime
;
2512 update_avg(&se
->avg_wakeup
, sample
);
2514 se
->last_wakeup
= se
->sum_exec_runtime
;
2518 trace_sched_wakeup(rq
, p
, success
);
2519 check_preempt_curr(rq
, p
, sync
);
2521 p
->state
= TASK_RUNNING
;
2523 if (p
->sched_class
->task_wake_up
)
2524 p
->sched_class
->task_wake_up(rq
, p
);
2527 task_rq_unlock(rq
, &flags
);
2533 * wake_up_process - Wake up a specific process
2534 * @p: The process to be woken up.
2536 * Attempt to wake up the nominated process and move it to the set of runnable
2537 * processes. Returns 1 if the process was woken up, 0 if it was already
2540 * It may be assumed that this function implies a write memory barrier before
2541 * changing the task state if and only if any tasks are woken up.
2543 int wake_up_process(struct task_struct
*p
)
2545 return try_to_wake_up(p
, TASK_ALL
, 0);
2547 EXPORT_SYMBOL(wake_up_process
);
2549 int wake_up_state(struct task_struct
*p
, unsigned int state
)
2551 return try_to_wake_up(p
, state
, 0);
2555 * Perform scheduler related setup for a newly forked process p.
2556 * p is forked by current.
2558 * __sched_fork() is basic setup used by init_idle() too:
2560 static void __sched_fork(struct task_struct
*p
)
2562 p
->se
.exec_start
= 0;
2563 p
->se
.sum_exec_runtime
= 0;
2564 p
->se
.prev_sum_exec_runtime
= 0;
2565 p
->se
.nr_migrations
= 0;
2566 p
->se
.last_wakeup
= 0;
2567 p
->se
.avg_overlap
= 0;
2568 p
->se
.start_runtime
= 0;
2569 p
->se
.avg_wakeup
= sysctl_sched_wakeup_granularity
;
2571 #ifdef CONFIG_SCHEDSTATS
2572 p
->se
.wait_start
= 0;
2573 p
->se
.sum_sleep_runtime
= 0;
2574 p
->se
.sleep_start
= 0;
2575 p
->se
.block_start
= 0;
2576 p
->se
.sleep_max
= 0;
2577 p
->se
.block_max
= 0;
2579 p
->se
.slice_max
= 0;
2583 INIT_LIST_HEAD(&p
->rt
.run_list
);
2585 INIT_LIST_HEAD(&p
->se
.group_node
);
2587 #ifdef CONFIG_PREEMPT_NOTIFIERS
2588 INIT_HLIST_HEAD(&p
->preempt_notifiers
);
2592 * We mark the process as running here, but have not actually
2593 * inserted it onto the runqueue yet. This guarantees that
2594 * nobody will actually run it, and a signal or other external
2595 * event cannot wake it up and insert it on the runqueue either.
2597 p
->state
= TASK_RUNNING
;
2601 * fork()/clone()-time setup:
2603 void sched_fork(struct task_struct
*p
, int clone_flags
)
2605 int cpu
= get_cpu();
2610 cpu
= sched_balance_self(cpu
, SD_BALANCE_FORK
);
2612 set_task_cpu(p
, cpu
);
2615 * Make sure we do not leak PI boosting priority to the child:
2617 p
->prio
= current
->normal_prio
;
2618 if (!rt_prio(p
->prio
))
2619 p
->sched_class
= &fair_sched_class
;
2621 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2622 if (likely(sched_info_on()))
2623 memset(&p
->sched_info
, 0, sizeof(p
->sched_info
));
2625 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2628 #ifdef CONFIG_PREEMPT
2629 /* Want to start with kernel preemption disabled. */
2630 task_thread_info(p
)->preempt_count
= 1;
2632 plist_node_init(&p
->pushable_tasks
, MAX_PRIO
);
2638 * wake_up_new_task - wake up a newly created task for the first time.
2640 * This function will do some initial scheduler statistics housekeeping
2641 * that must be done for every newly created context, then puts the task
2642 * on the runqueue and wakes it.
2644 void wake_up_new_task(struct task_struct
*p
, unsigned long clone_flags
)
2646 unsigned long flags
;
2649 rq
= task_rq_lock(p
, &flags
);
2650 BUG_ON(p
->state
!= TASK_RUNNING
);
2651 update_rq_clock(rq
);
2653 p
->prio
= effective_prio(p
);
2655 if (!p
->sched_class
->task_new
|| !current
->se
.on_rq
) {
2656 activate_task(rq
, p
, 0);
2659 * Let the scheduling class do new task startup
2660 * management (if any):
2662 p
->sched_class
->task_new(rq
, p
);
2665 trace_sched_wakeup_new(rq
, p
, 1);
2666 check_preempt_curr(rq
, p
, 0);
2668 if (p
->sched_class
->task_wake_up
)
2669 p
->sched_class
->task_wake_up(rq
, p
);
2671 task_rq_unlock(rq
, &flags
);
2674 #ifdef CONFIG_PREEMPT_NOTIFIERS
2677 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2678 * @notifier: notifier struct to register
2680 void preempt_notifier_register(struct preempt_notifier
*notifier
)
2682 hlist_add_head(¬ifier
->link
, ¤t
->preempt_notifiers
);
2684 EXPORT_SYMBOL_GPL(preempt_notifier_register
);
2687 * preempt_notifier_unregister - no longer interested in preemption notifications
2688 * @notifier: notifier struct to unregister
2690 * This is safe to call from within a preemption notifier.
2692 void preempt_notifier_unregister(struct preempt_notifier
*notifier
)
2694 hlist_del(¬ifier
->link
);
2696 EXPORT_SYMBOL_GPL(preempt_notifier_unregister
);
2698 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2700 struct preempt_notifier
*notifier
;
2701 struct hlist_node
*node
;
2703 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
2704 notifier
->ops
->sched_in(notifier
, raw_smp_processor_id());
2708 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2709 struct task_struct
*next
)
2711 struct preempt_notifier
*notifier
;
2712 struct hlist_node
*node
;
2714 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
2715 notifier
->ops
->sched_out(notifier
, next
);
2718 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2720 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2725 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2726 struct task_struct
*next
)
2730 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2733 * prepare_task_switch - prepare to switch tasks
2734 * @rq: the runqueue preparing to switch
2735 * @prev: the current task that is being switched out
2736 * @next: the task we are going to switch to.
2738 * This is called with the rq lock held and interrupts off. It must
2739 * be paired with a subsequent finish_task_switch after the context
2742 * prepare_task_switch sets up locking and calls architecture specific
2746 prepare_task_switch(struct rq
*rq
, struct task_struct
*prev
,
2747 struct task_struct
*next
)
2749 fire_sched_out_preempt_notifiers(prev
, next
);
2750 prepare_lock_switch(rq
, next
);
2751 prepare_arch_switch(next
);
2755 * finish_task_switch - clean up after a task-switch
2756 * @rq: runqueue associated with task-switch
2757 * @prev: the thread we just switched away from.
2759 * finish_task_switch must be called after the context switch, paired
2760 * with a prepare_task_switch call before the context switch.
2761 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2762 * and do any other architecture-specific cleanup actions.
2764 * Note that we may have delayed dropping an mm in context_switch(). If
2765 * so, we finish that here outside of the runqueue lock. (Doing it
2766 * with the lock held can cause deadlocks; see schedule() for
2769 static void finish_task_switch(struct rq
*rq
, struct task_struct
*prev
)
2770 __releases(rq
->lock
)
2772 struct mm_struct
*mm
= rq
->prev_mm
;
2775 int post_schedule
= 0;
2777 if (current
->sched_class
->needs_post_schedule
)
2778 post_schedule
= current
->sched_class
->needs_post_schedule(rq
);
2784 * A task struct has one reference for the use as "current".
2785 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2786 * schedule one last time. The schedule call will never return, and
2787 * the scheduled task must drop that reference.
2788 * The test for TASK_DEAD must occur while the runqueue locks are
2789 * still held, otherwise prev could be scheduled on another cpu, die
2790 * there before we look at prev->state, and then the reference would
2792 * Manfred Spraul <manfred@colorfullife.com>
2794 prev_state
= prev
->state
;
2795 finish_arch_switch(prev
);
2796 perf_counter_task_sched_in(current
, cpu_of(rq
));
2797 finish_lock_switch(rq
, prev
);
2800 current
->sched_class
->post_schedule(rq
);
2803 fire_sched_in_preempt_notifiers(current
);
2806 if (unlikely(prev_state
== TASK_DEAD
)) {
2808 * Remove function-return probe instances associated with this
2809 * task and put them back on the free list.
2811 kprobe_flush_task(prev
);
2812 put_task_struct(prev
);
2817 * schedule_tail - first thing a freshly forked thread must call.
2818 * @prev: the thread we just switched away from.
2820 asmlinkage
void schedule_tail(struct task_struct
*prev
)
2821 __releases(rq
->lock
)
2823 struct rq
*rq
= this_rq();
2825 finish_task_switch(rq
, prev
);
2826 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2827 /* In this case, finish_task_switch does not reenable preemption */
2830 if (current
->set_child_tid
)
2831 put_user(task_pid_vnr(current
), current
->set_child_tid
);
2835 * context_switch - switch to the new MM and the new
2836 * thread's register state.
2839 context_switch(struct rq
*rq
, struct task_struct
*prev
,
2840 struct task_struct
*next
)
2842 struct mm_struct
*mm
, *oldmm
;
2844 prepare_task_switch(rq
, prev
, next
);
2845 trace_sched_switch(rq
, prev
, next
);
2847 oldmm
= prev
->active_mm
;
2849 * For paravirt, this is coupled with an exit in switch_to to
2850 * combine the page table reload and the switch backend into
2853 arch_start_context_switch(prev
);
2855 if (unlikely(!mm
)) {
2856 next
->active_mm
= oldmm
;
2857 atomic_inc(&oldmm
->mm_count
);
2858 enter_lazy_tlb(oldmm
, next
);
2860 switch_mm(oldmm
, mm
, next
);
2862 if (unlikely(!prev
->mm
)) {
2863 prev
->active_mm
= NULL
;
2864 rq
->prev_mm
= oldmm
;
2867 * Since the runqueue lock will be released by the next
2868 * task (which is an invalid locking op but in the case
2869 * of the scheduler it's an obvious special-case), so we
2870 * do an early lockdep release here:
2872 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2873 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
2876 /* Here we just switch the register state and the stack. */
2877 switch_to(prev
, next
, prev
);
2881 * this_rq must be evaluated again because prev may have moved
2882 * CPUs since it called schedule(), thus the 'rq' on its stack
2883 * frame will be invalid.
2885 finish_task_switch(this_rq(), prev
);
2889 * nr_running, nr_uninterruptible and nr_context_switches:
2891 * externally visible scheduler statistics: current number of runnable
2892 * threads, current number of uninterruptible-sleeping threads, total
2893 * number of context switches performed since bootup.
2895 unsigned long nr_running(void)
2897 unsigned long i
, sum
= 0;
2899 for_each_online_cpu(i
)
2900 sum
+= cpu_rq(i
)->nr_running
;
2905 unsigned long nr_uninterruptible(void)
2907 unsigned long i
, sum
= 0;
2909 for_each_possible_cpu(i
)
2910 sum
+= cpu_rq(i
)->nr_uninterruptible
;
2913 * Since we read the counters lockless, it might be slightly
2914 * inaccurate. Do not allow it to go below zero though:
2916 if (unlikely((long)sum
< 0))
2922 unsigned long long nr_context_switches(void)
2925 unsigned long long sum
= 0;
2927 for_each_possible_cpu(i
)
2928 sum
+= cpu_rq(i
)->nr_switches
;
2933 unsigned long nr_iowait(void)
2935 unsigned long i
, sum
= 0;
2937 for_each_possible_cpu(i
)
2938 sum
+= atomic_read(&cpu_rq(i
)->nr_iowait
);
2943 /* Variables and functions for calc_load */
2944 static atomic_long_t calc_load_tasks
;
2945 static unsigned long calc_load_update
;
2946 unsigned long avenrun
[3];
2947 EXPORT_SYMBOL(avenrun
);
2950 * get_avenrun - get the load average array
2951 * @loads: pointer to dest load array
2952 * @offset: offset to add
2953 * @shift: shift count to shift the result left
2955 * These values are estimates at best, so no need for locking.
2957 void get_avenrun(unsigned long *loads
, unsigned long offset
, int shift
)
2959 loads
[0] = (avenrun
[0] + offset
) << shift
;
2960 loads
[1] = (avenrun
[1] + offset
) << shift
;
2961 loads
[2] = (avenrun
[2] + offset
) << shift
;
2964 static unsigned long
2965 calc_load(unsigned long load
, unsigned long exp
, unsigned long active
)
2968 load
+= active
* (FIXED_1
- exp
);
2969 return load
>> FSHIFT
;
2973 * calc_load - update the avenrun load estimates 10 ticks after the
2974 * CPUs have updated calc_load_tasks.
2976 void calc_global_load(void)
2978 unsigned long upd
= calc_load_update
+ 10;
2981 if (time_before(jiffies
, upd
))
2984 active
= atomic_long_read(&calc_load_tasks
);
2985 active
= active
> 0 ? active
* FIXED_1
: 0;
2987 avenrun
[0] = calc_load(avenrun
[0], EXP_1
, active
);
2988 avenrun
[1] = calc_load(avenrun
[1], EXP_5
, active
);
2989 avenrun
[2] = calc_load(avenrun
[2], EXP_15
, active
);
2991 calc_load_update
+= LOAD_FREQ
;
2995 * Either called from update_cpu_load() or from a cpu going idle
2997 static void calc_load_account_active(struct rq
*this_rq
)
2999 long nr_active
, delta
;
3001 nr_active
= this_rq
->nr_running
;
3002 nr_active
+= (long) this_rq
->nr_uninterruptible
;
3004 if (nr_active
!= this_rq
->calc_load_active
) {
3005 delta
= nr_active
- this_rq
->calc_load_active
;
3006 this_rq
->calc_load_active
= nr_active
;
3007 atomic_long_add(delta
, &calc_load_tasks
);
3012 * Externally visible per-cpu scheduler statistics:
3013 * cpu_nr_migrations(cpu) - number of migrations into that cpu
3015 u64
cpu_nr_migrations(int cpu
)
3017 return cpu_rq(cpu
)->nr_migrations_in
;
3021 * Update rq->cpu_load[] statistics. This function is usually called every
3022 * scheduler tick (TICK_NSEC).
3024 static void update_cpu_load(struct rq
*this_rq
)
3026 unsigned long this_load
= this_rq
->load
.weight
;
3029 this_rq
->nr_load_updates
++;
3031 /* Update our load: */
3032 for (i
= 0, scale
= 1; i
< CPU_LOAD_IDX_MAX
; i
++, scale
+= scale
) {
3033 unsigned long old_load
, new_load
;
3035 /* scale is effectively 1 << i now, and >> i divides by scale */
3037 old_load
= this_rq
->cpu_load
[i
];
3038 new_load
= this_load
;
3040 * Round up the averaging division if load is increasing. This
3041 * prevents us from getting stuck on 9 if the load is 10, for
3044 if (new_load
> old_load
)
3045 new_load
+= scale
-1;
3046 this_rq
->cpu_load
[i
] = (old_load
*(scale
-1) + new_load
) >> i
;
3049 if (time_after_eq(jiffies
, this_rq
->calc_load_update
)) {
3050 this_rq
->calc_load_update
+= LOAD_FREQ
;
3051 calc_load_account_active(this_rq
);
3058 * double_rq_lock - safely lock two runqueues
3060 * Note this does not disable interrupts like task_rq_lock,
3061 * you need to do so manually before calling.
3063 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
)
3064 __acquires(rq1
->lock
)
3065 __acquires(rq2
->lock
)
3067 BUG_ON(!irqs_disabled());
3069 spin_lock(&rq1
->lock
);
3070 __acquire(rq2
->lock
); /* Fake it out ;) */
3073 spin_lock(&rq1
->lock
);
3074 spin_lock_nested(&rq2
->lock
, SINGLE_DEPTH_NESTING
);
3076 spin_lock(&rq2
->lock
);
3077 spin_lock_nested(&rq1
->lock
, SINGLE_DEPTH_NESTING
);
3080 update_rq_clock(rq1
);
3081 update_rq_clock(rq2
);
3085 * double_rq_unlock - safely unlock two runqueues
3087 * Note this does not restore interrupts like task_rq_unlock,
3088 * you need to do so manually after calling.
3090 static void double_rq_unlock(struct rq
*rq1
, struct rq
*rq2
)
3091 __releases(rq1
->lock
)
3092 __releases(rq2
->lock
)
3094 spin_unlock(&rq1
->lock
);
3096 spin_unlock(&rq2
->lock
);
3098 __release(rq2
->lock
);
3102 * If dest_cpu is allowed for this process, migrate the task to it.
3103 * This is accomplished by forcing the cpu_allowed mask to only
3104 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
3105 * the cpu_allowed mask is restored.
3107 static void sched_migrate_task(struct task_struct
*p
, int dest_cpu
)
3109 struct migration_req req
;
3110 unsigned long flags
;
3113 rq
= task_rq_lock(p
, &flags
);
3114 if (!cpumask_test_cpu(dest_cpu
, &p
->cpus_allowed
)
3115 || unlikely(!cpu_active(dest_cpu
)))
3118 /* force the process onto the specified CPU */
3119 if (migrate_task(p
, dest_cpu
, &req
)) {
3120 /* Need to wait for migration thread (might exit: take ref). */
3121 struct task_struct
*mt
= rq
->migration_thread
;
3123 get_task_struct(mt
);
3124 task_rq_unlock(rq
, &flags
);
3125 wake_up_process(mt
);
3126 put_task_struct(mt
);
3127 wait_for_completion(&req
.done
);
3132 task_rq_unlock(rq
, &flags
);
3136 * sched_exec - execve() is a valuable balancing opportunity, because at
3137 * this point the task has the smallest effective memory and cache footprint.
3139 void sched_exec(void)
3141 int new_cpu
, this_cpu
= get_cpu();
3142 new_cpu
= sched_balance_self(this_cpu
, SD_BALANCE_EXEC
);
3144 if (new_cpu
!= this_cpu
)
3145 sched_migrate_task(current
, new_cpu
);
3149 * pull_task - move a task from a remote runqueue to the local runqueue.
3150 * Both runqueues must be locked.
3152 static void pull_task(struct rq
*src_rq
, struct task_struct
*p
,
3153 struct rq
*this_rq
, int this_cpu
)
3155 deactivate_task(src_rq
, p
, 0);
3156 set_task_cpu(p
, this_cpu
);
3157 activate_task(this_rq
, p
, 0);
3159 * Note that idle threads have a prio of MAX_PRIO, for this test
3160 * to be always true for them.
3162 check_preempt_curr(this_rq
, p
, 0);
3166 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3169 int can_migrate_task(struct task_struct
*p
, struct rq
*rq
, int this_cpu
,
3170 struct sched_domain
*sd
, enum cpu_idle_type idle
,
3173 int tsk_cache_hot
= 0;
3175 * We do not migrate tasks that are:
3176 * 1) running (obviously), or
3177 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3178 * 3) are cache-hot on their current CPU.
3180 if (!cpumask_test_cpu(this_cpu
, &p
->cpus_allowed
)) {
3181 schedstat_inc(p
, se
.nr_failed_migrations_affine
);
3186 if (task_running(rq
, p
)) {
3187 schedstat_inc(p
, se
.nr_failed_migrations_running
);
3192 * Aggressive migration if:
3193 * 1) task is cache cold, or
3194 * 2) too many balance attempts have failed.
3197 tsk_cache_hot
= task_hot(p
, rq
->clock
, sd
);
3198 if (!tsk_cache_hot
||
3199 sd
->nr_balance_failed
> sd
->cache_nice_tries
) {
3200 #ifdef CONFIG_SCHEDSTATS
3201 if (tsk_cache_hot
) {
3202 schedstat_inc(sd
, lb_hot_gained
[idle
]);
3203 schedstat_inc(p
, se
.nr_forced_migrations
);
3209 if (tsk_cache_hot
) {
3210 schedstat_inc(p
, se
.nr_failed_migrations_hot
);
3216 static unsigned long
3217 balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
3218 unsigned long max_load_move
, struct sched_domain
*sd
,
3219 enum cpu_idle_type idle
, int *all_pinned
,
3220 int *this_best_prio
, struct rq_iterator
*iterator
)
3222 int loops
= 0, pulled
= 0, pinned
= 0;
3223 struct task_struct
*p
;
3224 long rem_load_move
= max_load_move
;
3226 if (max_load_move
== 0)
3232 * Start the load-balancing iterator:
3234 p
= iterator
->start(iterator
->arg
);
3236 if (!p
|| loops
++ > sysctl_sched_nr_migrate
)
3239 if ((p
->se
.load
.weight
>> 1) > rem_load_move
||
3240 !can_migrate_task(p
, busiest
, this_cpu
, sd
, idle
, &pinned
)) {
3241 p
= iterator
->next(iterator
->arg
);
3245 pull_task(busiest
, p
, this_rq
, this_cpu
);
3247 rem_load_move
-= p
->se
.load
.weight
;
3249 #ifdef CONFIG_PREEMPT
3251 * NEWIDLE balancing is a source of latency, so preemptible kernels
3252 * will stop after the first task is pulled to minimize the critical
3255 if (idle
== CPU_NEWLY_IDLE
)
3260 * We only want to steal up to the prescribed amount of weighted load.
3262 if (rem_load_move
> 0) {
3263 if (p
->prio
< *this_best_prio
)
3264 *this_best_prio
= p
->prio
;
3265 p
= iterator
->next(iterator
->arg
);
3270 * Right now, this is one of only two places pull_task() is called,
3271 * so we can safely collect pull_task() stats here rather than
3272 * inside pull_task().
3274 schedstat_add(sd
, lb_gained
[idle
], pulled
);
3277 *all_pinned
= pinned
;
3279 return max_load_move
- rem_load_move
;
3283 * move_tasks tries to move up to max_load_move weighted load from busiest to
3284 * this_rq, as part of a balancing operation within domain "sd".
3285 * Returns 1 if successful and 0 otherwise.
3287 * Called with both runqueues locked.
3289 static int move_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
3290 unsigned long max_load_move
,
3291 struct sched_domain
*sd
, enum cpu_idle_type idle
,
3294 const struct sched_class
*class = sched_class_highest
;
3295 unsigned long total_load_moved
= 0;
3296 int this_best_prio
= this_rq
->curr
->prio
;
3300 class->load_balance(this_rq
, this_cpu
, busiest
,
3301 max_load_move
- total_load_moved
,
3302 sd
, idle
, all_pinned
, &this_best_prio
);
3303 class = class->next
;
3305 #ifdef CONFIG_PREEMPT
3307 * NEWIDLE balancing is a source of latency, so preemptible
3308 * kernels will stop after the first task is pulled to minimize
3309 * the critical section.
3311 if (idle
== CPU_NEWLY_IDLE
&& this_rq
->nr_running
)
3314 } while (class && max_load_move
> total_load_moved
);
3316 return total_load_moved
> 0;
3320 iter_move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
3321 struct sched_domain
*sd
, enum cpu_idle_type idle
,
3322 struct rq_iterator
*iterator
)
3324 struct task_struct
*p
= iterator
->start(iterator
->arg
);
3328 if (can_migrate_task(p
, busiest
, this_cpu
, sd
, idle
, &pinned
)) {
3329 pull_task(busiest
, p
, this_rq
, this_cpu
);
3331 * Right now, this is only the second place pull_task()
3332 * is called, so we can safely collect pull_task()
3333 * stats here rather than inside pull_task().
3335 schedstat_inc(sd
, lb_gained
[idle
]);
3339 p
= iterator
->next(iterator
->arg
);
3346 * move_one_task tries to move exactly one task from busiest to this_rq, as
3347 * part of active balancing operations within "domain".
3348 * Returns 1 if successful and 0 otherwise.
3350 * Called with both runqueues locked.
3352 static int move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
3353 struct sched_domain
*sd
, enum cpu_idle_type idle
)
3355 const struct sched_class
*class;
3357 for (class = sched_class_highest
; class; class = class->next
)
3358 if (class->move_one_task(this_rq
, this_cpu
, busiest
, sd
, idle
))
3363 /********** Helpers for find_busiest_group ************************/
3365 * sd_lb_stats - Structure to store the statistics of a sched_domain
3366 * during load balancing.
3368 struct sd_lb_stats
{
3369 struct sched_group
*busiest
; /* Busiest group in this sd */
3370 struct sched_group
*this; /* Local group in this sd */
3371 unsigned long total_load
; /* Total load of all groups in sd */
3372 unsigned long total_pwr
; /* Total power of all groups in sd */
3373 unsigned long avg_load
; /* Average load across all groups in sd */
3375 /** Statistics of this group */
3376 unsigned long this_load
;
3377 unsigned long this_load_per_task
;
3378 unsigned long this_nr_running
;
3380 /* Statistics of the busiest group */
3381 unsigned long max_load
;
3382 unsigned long busiest_load_per_task
;
3383 unsigned long busiest_nr_running
;
3385 int group_imb
; /* Is there imbalance in this sd */
3386 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3387 int power_savings_balance
; /* Is powersave balance needed for this sd */
3388 struct sched_group
*group_min
; /* Least loaded group in sd */
3389 struct sched_group
*group_leader
; /* Group which relieves group_min */
3390 unsigned long min_load_per_task
; /* load_per_task in group_min */
3391 unsigned long leader_nr_running
; /* Nr running of group_leader */
3392 unsigned long min_nr_running
; /* Nr running of group_min */
3397 * sg_lb_stats - stats of a sched_group required for load_balancing
3399 struct sg_lb_stats
{
3400 unsigned long avg_load
; /*Avg load across the CPUs of the group */
3401 unsigned long group_load
; /* Total load over the CPUs of the group */
3402 unsigned long sum_nr_running
; /* Nr tasks running in the group */
3403 unsigned long sum_weighted_load
; /* Weighted load of group's tasks */
3404 unsigned long group_capacity
;
3405 int group_imb
; /* Is there an imbalance in the group ? */
3409 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3410 * @group: The group whose first cpu is to be returned.
3412 static inline unsigned int group_first_cpu(struct sched_group
*group
)
3414 return cpumask_first(sched_group_cpus(group
));
3418 * get_sd_load_idx - Obtain the load index for a given sched domain.
3419 * @sd: The sched_domain whose load_idx is to be obtained.
3420 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3422 static inline int get_sd_load_idx(struct sched_domain
*sd
,
3423 enum cpu_idle_type idle
)
3429 load_idx
= sd
->busy_idx
;
3432 case CPU_NEWLY_IDLE
:
3433 load_idx
= sd
->newidle_idx
;
3436 load_idx
= sd
->idle_idx
;
3444 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3446 * init_sd_power_savings_stats - Initialize power savings statistics for
3447 * the given sched_domain, during load balancing.
3449 * @sd: Sched domain whose power-savings statistics are to be initialized.
3450 * @sds: Variable containing the statistics for sd.
3451 * @idle: Idle status of the CPU at which we're performing load-balancing.
3453 static inline void init_sd_power_savings_stats(struct sched_domain
*sd
,
3454 struct sd_lb_stats
*sds
, enum cpu_idle_type idle
)
3457 * Busy processors will not participate in power savings
3460 if (idle
== CPU_NOT_IDLE
|| !(sd
->flags
& SD_POWERSAVINGS_BALANCE
))
3461 sds
->power_savings_balance
= 0;
3463 sds
->power_savings_balance
= 1;
3464 sds
->min_nr_running
= ULONG_MAX
;
3465 sds
->leader_nr_running
= 0;
3470 * update_sd_power_savings_stats - Update the power saving stats for a
3471 * sched_domain while performing load balancing.
3473 * @group: sched_group belonging to the sched_domain under consideration.
3474 * @sds: Variable containing the statistics of the sched_domain
3475 * @local_group: Does group contain the CPU for which we're performing
3477 * @sgs: Variable containing the statistics of the group.
3479 static inline void update_sd_power_savings_stats(struct sched_group
*group
,
3480 struct sd_lb_stats
*sds
, int local_group
, struct sg_lb_stats
*sgs
)
3483 if (!sds
->power_savings_balance
)
3487 * If the local group is idle or completely loaded
3488 * no need to do power savings balance at this domain
3490 if (local_group
&& (sds
->this_nr_running
>= sgs
->group_capacity
||
3491 !sds
->this_nr_running
))
3492 sds
->power_savings_balance
= 0;
3495 * If a group is already running at full capacity or idle,
3496 * don't include that group in power savings calculations
3498 if (!sds
->power_savings_balance
||
3499 sgs
->sum_nr_running
>= sgs
->group_capacity
||
3500 !sgs
->sum_nr_running
)
3504 * Calculate the group which has the least non-idle load.
3505 * This is the group from where we need to pick up the load
3508 if ((sgs
->sum_nr_running
< sds
->min_nr_running
) ||
3509 (sgs
->sum_nr_running
== sds
->min_nr_running
&&
3510 group_first_cpu(group
) > group_first_cpu(sds
->group_min
))) {
3511 sds
->group_min
= group
;
3512 sds
->min_nr_running
= sgs
->sum_nr_running
;
3513 sds
->min_load_per_task
= sgs
->sum_weighted_load
/
3514 sgs
->sum_nr_running
;
3518 * Calculate the group which is almost near its
3519 * capacity but still has some space to pick up some load
3520 * from other group and save more power
3522 if (sgs
->sum_nr_running
> sgs
->group_capacity
- 1)
3525 if (sgs
->sum_nr_running
> sds
->leader_nr_running
||
3526 (sgs
->sum_nr_running
== sds
->leader_nr_running
&&
3527 group_first_cpu(group
) < group_first_cpu(sds
->group_leader
))) {
3528 sds
->group_leader
= group
;
3529 sds
->leader_nr_running
= sgs
->sum_nr_running
;
3534 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3535 * @sds: Variable containing the statistics of the sched_domain
3536 * under consideration.
3537 * @this_cpu: Cpu at which we're currently performing load-balancing.
3538 * @imbalance: Variable to store the imbalance.
3541 * Check if we have potential to perform some power-savings balance.
3542 * If yes, set the busiest group to be the least loaded group in the
3543 * sched_domain, so that it's CPUs can be put to idle.
3545 * Returns 1 if there is potential to perform power-savings balance.
3548 static inline int check_power_save_busiest_group(struct sd_lb_stats
*sds
,
3549 int this_cpu
, unsigned long *imbalance
)
3551 if (!sds
->power_savings_balance
)
3554 if (sds
->this != sds
->group_leader
||
3555 sds
->group_leader
== sds
->group_min
)
3558 *imbalance
= sds
->min_load_per_task
;
3559 sds
->busiest
= sds
->group_min
;
3561 if (sched_mc_power_savings
>= POWERSAVINGS_BALANCE_WAKEUP
) {
3562 cpu_rq(this_cpu
)->rd
->sched_mc_preferred_wakeup_cpu
=
3563 group_first_cpu(sds
->group_leader
);
3569 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3570 static inline void init_sd_power_savings_stats(struct sched_domain
*sd
,
3571 struct sd_lb_stats
*sds
, enum cpu_idle_type idle
)
3576 static inline void update_sd_power_savings_stats(struct sched_group
*group
,
3577 struct sd_lb_stats
*sds
, int local_group
, struct sg_lb_stats
*sgs
)
3582 static inline int check_power_save_busiest_group(struct sd_lb_stats
*sds
,
3583 int this_cpu
, unsigned long *imbalance
)
3587 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3591 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3592 * @group: sched_group whose statistics are to be updated.
3593 * @this_cpu: Cpu for which load balance is currently performed.
3594 * @idle: Idle status of this_cpu
3595 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3596 * @sd_idle: Idle status of the sched_domain containing group.
3597 * @local_group: Does group contain this_cpu.
3598 * @cpus: Set of cpus considered for load balancing.
3599 * @balance: Should we balance.
3600 * @sgs: variable to hold the statistics for this group.
3602 static inline void update_sg_lb_stats(struct sched_group
*group
, int this_cpu
,
3603 enum cpu_idle_type idle
, int load_idx
, int *sd_idle
,
3604 int local_group
, const struct cpumask
*cpus
,
3605 int *balance
, struct sg_lb_stats
*sgs
)
3607 unsigned long load
, max_cpu_load
, min_cpu_load
;
3609 unsigned int balance_cpu
= -1, first_idle_cpu
= 0;
3610 unsigned long sum_avg_load_per_task
;
3611 unsigned long avg_load_per_task
;
3614 balance_cpu
= group_first_cpu(group
);
3616 /* Tally up the load of all CPUs in the group */
3617 sum_avg_load_per_task
= avg_load_per_task
= 0;
3619 min_cpu_load
= ~0UL;
3621 for_each_cpu_and(i
, sched_group_cpus(group
), cpus
) {
3622 struct rq
*rq
= cpu_rq(i
);
3624 if (*sd_idle
&& rq
->nr_running
)
3627 /* Bias balancing toward cpus of our domain */
3629 if (idle_cpu(i
) && !first_idle_cpu
) {
3634 load
= target_load(i
, load_idx
);
3636 load
= source_load(i
, load_idx
);
3637 if (load
> max_cpu_load
)
3638 max_cpu_load
= load
;
3639 if (min_cpu_load
> load
)
3640 min_cpu_load
= load
;
3643 sgs
->group_load
+= load
;
3644 sgs
->sum_nr_running
+= rq
->nr_running
;
3645 sgs
->sum_weighted_load
+= weighted_cpuload(i
);
3647 sum_avg_load_per_task
+= cpu_avg_load_per_task(i
);
3651 * First idle cpu or the first cpu(busiest) in this sched group
3652 * is eligible for doing load balancing at this and above
3653 * domains. In the newly idle case, we will allow all the cpu's
3654 * to do the newly idle load balance.
3656 if (idle
!= CPU_NEWLY_IDLE
&& local_group
&&
3657 balance_cpu
!= this_cpu
&& balance
) {
3662 /* Adjust by relative CPU power of the group */
3663 sgs
->avg_load
= sg_div_cpu_power(group
,
3664 sgs
->group_load
* SCHED_LOAD_SCALE
);
3668 * Consider the group unbalanced when the imbalance is larger
3669 * than the average weight of two tasks.
3671 * APZ: with cgroup the avg task weight can vary wildly and
3672 * might not be a suitable number - should we keep a
3673 * normalized nr_running number somewhere that negates
3676 avg_load_per_task
= sg_div_cpu_power(group
,
3677 sum_avg_load_per_task
* SCHED_LOAD_SCALE
);
3679 if ((max_cpu_load
- min_cpu_load
) > 2*avg_load_per_task
)
3682 sgs
->group_capacity
= group
->__cpu_power
/ SCHED_LOAD_SCALE
;
3687 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3688 * @sd: sched_domain whose statistics are to be updated.
3689 * @this_cpu: Cpu for which load balance is currently performed.
3690 * @idle: Idle status of this_cpu
3691 * @sd_idle: Idle status of the sched_domain containing group.
3692 * @cpus: Set of cpus considered for load balancing.
3693 * @balance: Should we balance.
3694 * @sds: variable to hold the statistics for this sched_domain.
3696 static inline void update_sd_lb_stats(struct sched_domain
*sd
, int this_cpu
,
3697 enum cpu_idle_type idle
, int *sd_idle
,
3698 const struct cpumask
*cpus
, int *balance
,
3699 struct sd_lb_stats
*sds
)
3701 struct sched_group
*group
= sd
->groups
;
3702 struct sg_lb_stats sgs
;
3705 init_sd_power_savings_stats(sd
, sds
, idle
);
3706 load_idx
= get_sd_load_idx(sd
, idle
);
3711 local_group
= cpumask_test_cpu(this_cpu
,
3712 sched_group_cpus(group
));
3713 memset(&sgs
, 0, sizeof(sgs
));
3714 update_sg_lb_stats(group
, this_cpu
, idle
, load_idx
, sd_idle
,
3715 local_group
, cpus
, balance
, &sgs
);
3717 if (local_group
&& balance
&& !(*balance
))
3720 sds
->total_load
+= sgs
.group_load
;
3721 sds
->total_pwr
+= group
->__cpu_power
;
3724 sds
->this_load
= sgs
.avg_load
;
3726 sds
->this_nr_running
= sgs
.sum_nr_running
;
3727 sds
->this_load_per_task
= sgs
.sum_weighted_load
;
3728 } else if (sgs
.avg_load
> sds
->max_load
&&
3729 (sgs
.sum_nr_running
> sgs
.group_capacity
||
3731 sds
->max_load
= sgs
.avg_load
;
3732 sds
->busiest
= group
;
3733 sds
->busiest_nr_running
= sgs
.sum_nr_running
;
3734 sds
->busiest_load_per_task
= sgs
.sum_weighted_load
;
3735 sds
->group_imb
= sgs
.group_imb
;
3738 update_sd_power_savings_stats(group
, sds
, local_group
, &sgs
);
3739 group
= group
->next
;
3740 } while (group
!= sd
->groups
);
3745 * fix_small_imbalance - Calculate the minor imbalance that exists
3746 * amongst the groups of a sched_domain, during
3748 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3749 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3750 * @imbalance: Variable to store the imbalance.
3752 static inline void fix_small_imbalance(struct sd_lb_stats
*sds
,
3753 int this_cpu
, unsigned long *imbalance
)
3755 unsigned long tmp
, pwr_now
= 0, pwr_move
= 0;
3756 unsigned int imbn
= 2;
3758 if (sds
->this_nr_running
) {
3759 sds
->this_load_per_task
/= sds
->this_nr_running
;
3760 if (sds
->busiest_load_per_task
>
3761 sds
->this_load_per_task
)
3764 sds
->this_load_per_task
=
3765 cpu_avg_load_per_task(this_cpu
);
3767 if (sds
->max_load
- sds
->this_load
+ sds
->busiest_load_per_task
>=
3768 sds
->busiest_load_per_task
* imbn
) {
3769 *imbalance
= sds
->busiest_load_per_task
;
3774 * OK, we don't have enough imbalance to justify moving tasks,
3775 * however we may be able to increase total CPU power used by
3779 pwr_now
+= sds
->busiest
->__cpu_power
*
3780 min(sds
->busiest_load_per_task
, sds
->max_load
);
3781 pwr_now
+= sds
->this->__cpu_power
*
3782 min(sds
->this_load_per_task
, sds
->this_load
);
3783 pwr_now
/= SCHED_LOAD_SCALE
;
3785 /* Amount of load we'd subtract */
3786 tmp
= sg_div_cpu_power(sds
->busiest
,
3787 sds
->busiest_load_per_task
* SCHED_LOAD_SCALE
);
3788 if (sds
->max_load
> tmp
)
3789 pwr_move
+= sds
->busiest
->__cpu_power
*
3790 min(sds
->busiest_load_per_task
, sds
->max_load
- tmp
);
3792 /* Amount of load we'd add */
3793 if (sds
->max_load
* sds
->busiest
->__cpu_power
<
3794 sds
->busiest_load_per_task
* SCHED_LOAD_SCALE
)
3795 tmp
= sg_div_cpu_power(sds
->this,
3796 sds
->max_load
* sds
->busiest
->__cpu_power
);
3798 tmp
= sg_div_cpu_power(sds
->this,
3799 sds
->busiest_load_per_task
* SCHED_LOAD_SCALE
);
3800 pwr_move
+= sds
->this->__cpu_power
*
3801 min(sds
->this_load_per_task
, sds
->this_load
+ tmp
);
3802 pwr_move
/= SCHED_LOAD_SCALE
;
3804 /* Move if we gain throughput */
3805 if (pwr_move
> pwr_now
)
3806 *imbalance
= sds
->busiest_load_per_task
;
3810 * calculate_imbalance - Calculate the amount of imbalance present within the
3811 * groups of a given sched_domain during load balance.
3812 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3813 * @this_cpu: Cpu for which currently load balance is being performed.
3814 * @imbalance: The variable to store the imbalance.
3816 static inline void calculate_imbalance(struct sd_lb_stats
*sds
, int this_cpu
,
3817 unsigned long *imbalance
)
3819 unsigned long max_pull
;
3821 * In the presence of smp nice balancing, certain scenarios can have
3822 * max load less than avg load(as we skip the groups at or below
3823 * its cpu_power, while calculating max_load..)
3825 if (sds
->max_load
< sds
->avg_load
) {
3827 return fix_small_imbalance(sds
, this_cpu
, imbalance
);
3830 /* Don't want to pull so many tasks that a group would go idle */
3831 max_pull
= min(sds
->max_load
- sds
->avg_load
,
3832 sds
->max_load
- sds
->busiest_load_per_task
);
3834 /* How much load to actually move to equalise the imbalance */
3835 *imbalance
= min(max_pull
* sds
->busiest
->__cpu_power
,
3836 (sds
->avg_load
- sds
->this_load
) * sds
->this->__cpu_power
)
3840 * if *imbalance is less than the average load per runnable task
3841 * there is no gaurantee that any tasks will be moved so we'll have
3842 * a think about bumping its value to force at least one task to be
3845 if (*imbalance
< sds
->busiest_load_per_task
)
3846 return fix_small_imbalance(sds
, this_cpu
, imbalance
);
3849 /******* find_busiest_group() helpers end here *********************/
3852 * find_busiest_group - Returns the busiest group within the sched_domain
3853 * if there is an imbalance. If there isn't an imbalance, and
3854 * the user has opted for power-savings, it returns a group whose
3855 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3856 * such a group exists.
3858 * Also calculates the amount of weighted load which should be moved
3859 * to restore balance.
3861 * @sd: The sched_domain whose busiest group is to be returned.
3862 * @this_cpu: The cpu for which load balancing is currently being performed.
3863 * @imbalance: Variable which stores amount of weighted load which should
3864 * be moved to restore balance/put a group to idle.
3865 * @idle: The idle status of this_cpu.
3866 * @sd_idle: The idleness of sd
3867 * @cpus: The set of CPUs under consideration for load-balancing.
3868 * @balance: Pointer to a variable indicating if this_cpu
3869 * is the appropriate cpu to perform load balancing at this_level.
3871 * Returns: - the busiest group if imbalance exists.
3872 * - If no imbalance and user has opted for power-savings balance,
3873 * return the least loaded group whose CPUs can be
3874 * put to idle by rebalancing its tasks onto our group.
3876 static struct sched_group
*
3877 find_busiest_group(struct sched_domain
*sd
, int this_cpu
,
3878 unsigned long *imbalance
, enum cpu_idle_type idle
,
3879 int *sd_idle
, const struct cpumask
*cpus
, int *balance
)
3881 struct sd_lb_stats sds
;
3883 memset(&sds
, 0, sizeof(sds
));
3886 * Compute the various statistics relavent for load balancing at
3889 update_sd_lb_stats(sd
, this_cpu
, idle
, sd_idle
, cpus
,
3892 /* Cases where imbalance does not exist from POV of this_cpu */
3893 /* 1) this_cpu is not the appropriate cpu to perform load balancing
3895 * 2) There is no busy sibling group to pull from.
3896 * 3) This group is the busiest group.
3897 * 4) This group is more busy than the avg busieness at this
3899 * 5) The imbalance is within the specified limit.
3900 * 6) Any rebalance would lead to ping-pong
3902 if (balance
&& !(*balance
))
3905 if (!sds
.busiest
|| sds
.busiest_nr_running
== 0)
3908 if (sds
.this_load
>= sds
.max_load
)
3911 sds
.avg_load
= (SCHED_LOAD_SCALE
* sds
.total_load
) / sds
.total_pwr
;
3913 if (sds
.this_load
>= sds
.avg_load
)
3916 if (100 * sds
.max_load
<= sd
->imbalance_pct
* sds
.this_load
)
3919 sds
.busiest_load_per_task
/= sds
.busiest_nr_running
;
3921 sds
.busiest_load_per_task
=
3922 min(sds
.busiest_load_per_task
, sds
.avg_load
);
3925 * We're trying to get all the cpus to the average_load, so we don't
3926 * want to push ourselves above the average load, nor do we wish to
3927 * reduce the max loaded cpu below the average load, as either of these
3928 * actions would just result in more rebalancing later, and ping-pong
3929 * tasks around. Thus we look for the minimum possible imbalance.
3930 * Negative imbalances (*we* are more loaded than anyone else) will
3931 * be counted as no imbalance for these purposes -- we can't fix that
3932 * by pulling tasks to us. Be careful of negative numbers as they'll
3933 * appear as very large values with unsigned longs.
3935 if (sds
.max_load
<= sds
.busiest_load_per_task
)
3938 /* Looks like there is an imbalance. Compute it */
3939 calculate_imbalance(&sds
, this_cpu
, imbalance
);
3944 * There is no obvious imbalance. But check if we can do some balancing
3947 if (check_power_save_busiest_group(&sds
, this_cpu
, imbalance
))
3955 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3958 find_busiest_queue(struct sched_group
*group
, enum cpu_idle_type idle
,
3959 unsigned long imbalance
, const struct cpumask
*cpus
)
3961 struct rq
*busiest
= NULL
, *rq
;
3962 unsigned long max_load
= 0;
3965 for_each_cpu(i
, sched_group_cpus(group
)) {
3968 if (!cpumask_test_cpu(i
, cpus
))
3972 wl
= weighted_cpuload(i
);
3974 if (rq
->nr_running
== 1 && wl
> imbalance
)
3977 if (wl
> max_load
) {
3987 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3988 * so long as it is large enough.
3990 #define MAX_PINNED_INTERVAL 512
3992 /* Working cpumask for load_balance and load_balance_newidle. */
3993 static DEFINE_PER_CPU(cpumask_var_t
, load_balance_tmpmask
);
3996 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3997 * tasks if there is an imbalance.
3999 static int load_balance(int this_cpu
, struct rq
*this_rq
,
4000 struct sched_domain
*sd
, enum cpu_idle_type idle
,
4003 int ld_moved
, all_pinned
= 0, active_balance
= 0, sd_idle
= 0;
4004 struct sched_group
*group
;
4005 unsigned long imbalance
;
4007 unsigned long flags
;
4008 struct cpumask
*cpus
= __get_cpu_var(load_balance_tmpmask
);
4010 cpumask_setall(cpus
);
4013 * When power savings policy is enabled for the parent domain, idle
4014 * sibling can pick up load irrespective of busy siblings. In this case,
4015 * let the state of idle sibling percolate up as CPU_IDLE, instead of
4016 * portraying it as CPU_NOT_IDLE.
4018 if (idle
!= CPU_NOT_IDLE
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
4019 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
4022 schedstat_inc(sd
, lb_count
[idle
]);
4026 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, idle
, &sd_idle
,
4033 schedstat_inc(sd
, lb_nobusyg
[idle
]);
4037 busiest
= find_busiest_queue(group
, idle
, imbalance
, cpus
);
4039 schedstat_inc(sd
, lb_nobusyq
[idle
]);
4043 BUG_ON(busiest
== this_rq
);
4045 schedstat_add(sd
, lb_imbalance
[idle
], imbalance
);
4048 if (busiest
->nr_running
> 1) {
4050 * Attempt to move tasks. If find_busiest_group has found
4051 * an imbalance but busiest->nr_running <= 1, the group is
4052 * still unbalanced. ld_moved simply stays zero, so it is
4053 * correctly treated as an imbalance.
4055 local_irq_save(flags
);
4056 double_rq_lock(this_rq
, busiest
);
4057 ld_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
4058 imbalance
, sd
, idle
, &all_pinned
);
4059 double_rq_unlock(this_rq
, busiest
);
4060 local_irq_restore(flags
);
4063 * some other cpu did the load balance for us.
4065 if (ld_moved
&& this_cpu
!= smp_processor_id())
4066 resched_cpu(this_cpu
);
4068 /* All tasks on this runqueue were pinned by CPU affinity */
4069 if (unlikely(all_pinned
)) {
4070 cpumask_clear_cpu(cpu_of(busiest
), cpus
);
4071 if (!cpumask_empty(cpus
))
4078 schedstat_inc(sd
, lb_failed
[idle
]);
4079 sd
->nr_balance_failed
++;
4081 if (unlikely(sd
->nr_balance_failed
> sd
->cache_nice_tries
+2)) {
4083 spin_lock_irqsave(&busiest
->lock
, flags
);
4085 /* don't kick the migration_thread, if the curr
4086 * task on busiest cpu can't be moved to this_cpu
4088 if (!cpumask_test_cpu(this_cpu
,
4089 &busiest
->curr
->cpus_allowed
)) {
4090 spin_unlock_irqrestore(&busiest
->lock
, flags
);
4092 goto out_one_pinned
;
4095 if (!busiest
->active_balance
) {
4096 busiest
->active_balance
= 1;
4097 busiest
->push_cpu
= this_cpu
;
4100 spin_unlock_irqrestore(&busiest
->lock
, flags
);
4102 wake_up_process(busiest
->migration_thread
);
4105 * We've kicked active balancing, reset the failure
4108 sd
->nr_balance_failed
= sd
->cache_nice_tries
+1;
4111 sd
->nr_balance_failed
= 0;
4113 if (likely(!active_balance
)) {
4114 /* We were unbalanced, so reset the balancing interval */
4115 sd
->balance_interval
= sd
->min_interval
;
4118 * If we've begun active balancing, start to back off. This
4119 * case may not be covered by the all_pinned logic if there
4120 * is only 1 task on the busy runqueue (because we don't call
4123 if (sd
->balance_interval
< sd
->max_interval
)
4124 sd
->balance_interval
*= 2;
4127 if (!ld_moved
&& !sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
4128 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
4134 schedstat_inc(sd
, lb_balanced
[idle
]);
4136 sd
->nr_balance_failed
= 0;
4139 /* tune up the balancing interval */
4140 if ((all_pinned
&& sd
->balance_interval
< MAX_PINNED_INTERVAL
) ||
4141 (sd
->balance_interval
< sd
->max_interval
))
4142 sd
->balance_interval
*= 2;
4144 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
4145 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
4156 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4157 * tasks if there is an imbalance.
4159 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
4160 * this_rq is locked.
4163 load_balance_newidle(int this_cpu
, struct rq
*this_rq
, struct sched_domain
*sd
)
4165 struct sched_group
*group
;
4166 struct rq
*busiest
= NULL
;
4167 unsigned long imbalance
;
4171 struct cpumask
*cpus
= __get_cpu_var(load_balance_tmpmask
);
4173 cpumask_setall(cpus
);
4176 * When power savings policy is enabled for the parent domain, idle
4177 * sibling can pick up load irrespective of busy siblings. In this case,
4178 * let the state of idle sibling percolate up as IDLE, instead of
4179 * portraying it as CPU_NOT_IDLE.
4181 if (sd
->flags
& SD_SHARE_CPUPOWER
&&
4182 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
4185 schedstat_inc(sd
, lb_count
[CPU_NEWLY_IDLE
]);
4187 update_shares_locked(this_rq
, sd
);
4188 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, CPU_NEWLY_IDLE
,
4189 &sd_idle
, cpus
, NULL
);
4191 schedstat_inc(sd
, lb_nobusyg
[CPU_NEWLY_IDLE
]);
4195 busiest
= find_busiest_queue(group
, CPU_NEWLY_IDLE
, imbalance
, cpus
);
4197 schedstat_inc(sd
, lb_nobusyq
[CPU_NEWLY_IDLE
]);
4201 BUG_ON(busiest
== this_rq
);
4203 schedstat_add(sd
, lb_imbalance
[CPU_NEWLY_IDLE
], imbalance
);
4206 if (busiest
->nr_running
> 1) {
4207 /* Attempt to move tasks */
4208 double_lock_balance(this_rq
, busiest
);
4209 /* this_rq->clock is already updated */
4210 update_rq_clock(busiest
);
4211 ld_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
4212 imbalance
, sd
, CPU_NEWLY_IDLE
,
4214 double_unlock_balance(this_rq
, busiest
);
4216 if (unlikely(all_pinned
)) {
4217 cpumask_clear_cpu(cpu_of(busiest
), cpus
);
4218 if (!cpumask_empty(cpus
))
4224 int active_balance
= 0;
4226 schedstat_inc(sd
, lb_failed
[CPU_NEWLY_IDLE
]);
4227 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
4228 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
4231 if (sched_mc_power_savings
< POWERSAVINGS_BALANCE_WAKEUP
)
4234 if (sd
->nr_balance_failed
++ < 2)
4238 * The only task running in a non-idle cpu can be moved to this
4239 * cpu in an attempt to completely freeup the other CPU
4240 * package. The same method used to move task in load_balance()
4241 * have been extended for load_balance_newidle() to speedup
4242 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4244 * The package power saving logic comes from
4245 * find_busiest_group(). If there are no imbalance, then
4246 * f_b_g() will return NULL. However when sched_mc={1,2} then
4247 * f_b_g() will select a group from which a running task may be
4248 * pulled to this cpu in order to make the other package idle.
4249 * If there is no opportunity to make a package idle and if
4250 * there are no imbalance, then f_b_g() will return NULL and no
4251 * action will be taken in load_balance_newidle().
4253 * Under normal task pull operation due to imbalance, there
4254 * will be more than one task in the source run queue and
4255 * move_tasks() will succeed. ld_moved will be true and this
4256 * active balance code will not be triggered.
4259 /* Lock busiest in correct order while this_rq is held */
4260 double_lock_balance(this_rq
, busiest
);
4263 * don't kick the migration_thread, if the curr
4264 * task on busiest cpu can't be moved to this_cpu
4266 if (!cpumask_test_cpu(this_cpu
, &busiest
->curr
->cpus_allowed
)) {
4267 double_unlock_balance(this_rq
, busiest
);
4272 if (!busiest
->active_balance
) {
4273 busiest
->active_balance
= 1;
4274 busiest
->push_cpu
= this_cpu
;
4278 double_unlock_balance(this_rq
, busiest
);
4280 * Should not call ttwu while holding a rq->lock
4282 spin_unlock(&this_rq
->lock
);
4284 wake_up_process(busiest
->migration_thread
);
4285 spin_lock(&this_rq
->lock
);
4288 sd
->nr_balance_failed
= 0;
4290 update_shares_locked(this_rq
, sd
);
4294 schedstat_inc(sd
, lb_balanced
[CPU_NEWLY_IDLE
]);
4295 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
4296 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
4298 sd
->nr_balance_failed
= 0;
4304 * idle_balance is called by schedule() if this_cpu is about to become
4305 * idle. Attempts to pull tasks from other CPUs.
4307 static void idle_balance(int this_cpu
, struct rq
*this_rq
)
4309 struct sched_domain
*sd
;
4310 int pulled_task
= 0;
4311 unsigned long next_balance
= jiffies
+ HZ
;
4313 for_each_domain(this_cpu
, sd
) {
4314 unsigned long interval
;
4316 if (!(sd
->flags
& SD_LOAD_BALANCE
))
4319 if (sd
->flags
& SD_BALANCE_NEWIDLE
)
4320 /* If we've pulled tasks over stop searching: */
4321 pulled_task
= load_balance_newidle(this_cpu
, this_rq
,
4324 interval
= msecs_to_jiffies(sd
->balance_interval
);
4325 if (time_after(next_balance
, sd
->last_balance
+ interval
))
4326 next_balance
= sd
->last_balance
+ interval
;
4330 if (pulled_task
|| time_after(jiffies
, this_rq
->next_balance
)) {
4332 * We are going idle. next_balance may be set based on
4333 * a busy processor. So reset next_balance.
4335 this_rq
->next_balance
= next_balance
;
4340 * active_load_balance is run by migration threads. It pushes running tasks
4341 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4342 * running on each physical CPU where possible, and avoids physical /
4343 * logical imbalances.
4345 * Called with busiest_rq locked.
4347 static void active_load_balance(struct rq
*busiest_rq
, int busiest_cpu
)
4349 int target_cpu
= busiest_rq
->push_cpu
;
4350 struct sched_domain
*sd
;
4351 struct rq
*target_rq
;
4353 /* Is there any task to move? */
4354 if (busiest_rq
->nr_running
<= 1)
4357 target_rq
= cpu_rq(target_cpu
);
4360 * This condition is "impossible", if it occurs
4361 * we need to fix it. Originally reported by
4362 * Bjorn Helgaas on a 128-cpu setup.
4364 BUG_ON(busiest_rq
== target_rq
);
4366 /* move a task from busiest_rq to target_rq */
4367 double_lock_balance(busiest_rq
, target_rq
);
4368 update_rq_clock(busiest_rq
);
4369 update_rq_clock(target_rq
);
4371 /* Search for an sd spanning us and the target CPU. */
4372 for_each_domain(target_cpu
, sd
) {
4373 if ((sd
->flags
& SD_LOAD_BALANCE
) &&
4374 cpumask_test_cpu(busiest_cpu
, sched_domain_span(sd
)))
4379 schedstat_inc(sd
, alb_count
);
4381 if (move_one_task(target_rq
, target_cpu
, busiest_rq
,
4383 schedstat_inc(sd
, alb_pushed
);
4385 schedstat_inc(sd
, alb_failed
);
4387 double_unlock_balance(busiest_rq
, target_rq
);
4392 atomic_t load_balancer
;
4393 cpumask_var_t cpu_mask
;
4394 cpumask_var_t ilb_grp_nohz_mask
;
4395 } nohz ____cacheline_aligned
= {
4396 .load_balancer
= ATOMIC_INIT(-1),
4399 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4401 * lowest_flag_domain - Return lowest sched_domain containing flag.
4402 * @cpu: The cpu whose lowest level of sched domain is to
4404 * @flag: The flag to check for the lowest sched_domain
4405 * for the given cpu.
4407 * Returns the lowest sched_domain of a cpu which contains the given flag.
4409 static inline struct sched_domain
*lowest_flag_domain(int cpu
, int flag
)
4411 struct sched_domain
*sd
;
4413 for_each_domain(cpu
, sd
)
4414 if (sd
&& (sd
->flags
& flag
))
4421 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4422 * @cpu: The cpu whose domains we're iterating over.
4423 * @sd: variable holding the value of the power_savings_sd
4425 * @flag: The flag to filter the sched_domains to be iterated.
4427 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4428 * set, starting from the lowest sched_domain to the highest.
4430 #define for_each_flag_domain(cpu, sd, flag) \
4431 for (sd = lowest_flag_domain(cpu, flag); \
4432 (sd && (sd->flags & flag)); sd = sd->parent)
4435 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4436 * @ilb_group: group to be checked for semi-idleness
4438 * Returns: 1 if the group is semi-idle. 0 otherwise.
4440 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4441 * and atleast one non-idle CPU. This helper function checks if the given
4442 * sched_group is semi-idle or not.
4444 static inline int is_semi_idle_group(struct sched_group
*ilb_group
)
4446 cpumask_and(nohz
.ilb_grp_nohz_mask
, nohz
.cpu_mask
,
4447 sched_group_cpus(ilb_group
));
4450 * A sched_group is semi-idle when it has atleast one busy cpu
4451 * and atleast one idle cpu.
4453 if (cpumask_empty(nohz
.ilb_grp_nohz_mask
))
4456 if (cpumask_equal(nohz
.ilb_grp_nohz_mask
, sched_group_cpus(ilb_group
)))
4462 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4463 * @cpu: The cpu which is nominating a new idle_load_balancer.
4465 * Returns: Returns the id of the idle load balancer if it exists,
4466 * Else, returns >= nr_cpu_ids.
4468 * This algorithm picks the idle load balancer such that it belongs to a
4469 * semi-idle powersavings sched_domain. The idea is to try and avoid
4470 * completely idle packages/cores just for the purpose of idle load balancing
4471 * when there are other idle cpu's which are better suited for that job.
4473 static int find_new_ilb(int cpu
)
4475 struct sched_domain
*sd
;
4476 struct sched_group
*ilb_group
;
4479 * Have idle load balancer selection from semi-idle packages only
4480 * when power-aware load balancing is enabled
4482 if (!(sched_smt_power_savings
|| sched_mc_power_savings
))
4486 * Optimize for the case when we have no idle CPUs or only one
4487 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4489 if (cpumask_weight(nohz
.cpu_mask
) < 2)
4492 for_each_flag_domain(cpu
, sd
, SD_POWERSAVINGS_BALANCE
) {
4493 ilb_group
= sd
->groups
;
4496 if (is_semi_idle_group(ilb_group
))
4497 return cpumask_first(nohz
.ilb_grp_nohz_mask
);
4499 ilb_group
= ilb_group
->next
;
4501 } while (ilb_group
!= sd
->groups
);
4505 return cpumask_first(nohz
.cpu_mask
);
4507 #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4508 static inline int find_new_ilb(int call_cpu
)
4510 return cpumask_first(nohz
.cpu_mask
);
4515 * This routine will try to nominate the ilb (idle load balancing)
4516 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4517 * load balancing on behalf of all those cpus. If all the cpus in the system
4518 * go into this tickless mode, then there will be no ilb owner (as there is
4519 * no need for one) and all the cpus will sleep till the next wakeup event
4522 * For the ilb owner, tick is not stopped. And this tick will be used
4523 * for idle load balancing. ilb owner will still be part of
4526 * While stopping the tick, this cpu will become the ilb owner if there
4527 * is no other owner. And will be the owner till that cpu becomes busy
4528 * or if all cpus in the system stop their ticks at which point
4529 * there is no need for ilb owner.
4531 * When the ilb owner becomes busy, it nominates another owner, during the
4532 * next busy scheduler_tick()
4534 int select_nohz_load_balancer(int stop_tick
)
4536 int cpu
= smp_processor_id();
4539 cpu_rq(cpu
)->in_nohz_recently
= 1;
4541 if (!cpu_active(cpu
)) {
4542 if (atomic_read(&nohz
.load_balancer
) != cpu
)
4546 * If we are going offline and still the leader,
4549 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
, -1) != cpu
)
4555 cpumask_set_cpu(cpu
, nohz
.cpu_mask
);
4557 /* time for ilb owner also to sleep */
4558 if (cpumask_weight(nohz
.cpu_mask
) == num_online_cpus()) {
4559 if (atomic_read(&nohz
.load_balancer
) == cpu
)
4560 atomic_set(&nohz
.load_balancer
, -1);
4564 if (atomic_read(&nohz
.load_balancer
) == -1) {
4565 /* make me the ilb owner */
4566 if (atomic_cmpxchg(&nohz
.load_balancer
, -1, cpu
) == -1)
4568 } else if (atomic_read(&nohz
.load_balancer
) == cpu
) {
4571 if (!(sched_smt_power_savings
||
4572 sched_mc_power_savings
))
4575 * Check to see if there is a more power-efficient
4578 new_ilb
= find_new_ilb(cpu
);
4579 if (new_ilb
< nr_cpu_ids
&& new_ilb
!= cpu
) {
4580 atomic_set(&nohz
.load_balancer
, -1);
4581 resched_cpu(new_ilb
);
4587 if (!cpumask_test_cpu(cpu
, nohz
.cpu_mask
))
4590 cpumask_clear_cpu(cpu
, nohz
.cpu_mask
);
4592 if (atomic_read(&nohz
.load_balancer
) == cpu
)
4593 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
, -1) != cpu
)
4600 static DEFINE_SPINLOCK(balancing
);
4603 * It checks each scheduling domain to see if it is due to be balanced,
4604 * and initiates a balancing operation if so.
4606 * Balancing parameters are set up in arch_init_sched_domains.
4608 static void rebalance_domains(int cpu
, enum cpu_idle_type idle
)
4611 struct rq
*rq
= cpu_rq(cpu
);
4612 unsigned long interval
;
4613 struct sched_domain
*sd
;
4614 /* Earliest time when we have to do rebalance again */
4615 unsigned long next_balance
= jiffies
+ 60*HZ
;
4616 int update_next_balance
= 0;
4619 for_each_domain(cpu
, sd
) {
4620 if (!(sd
->flags
& SD_LOAD_BALANCE
))
4623 interval
= sd
->balance_interval
;
4624 if (idle
!= CPU_IDLE
)
4625 interval
*= sd
->busy_factor
;
4627 /* scale ms to jiffies */
4628 interval
= msecs_to_jiffies(interval
);
4629 if (unlikely(!interval
))
4631 if (interval
> HZ
*NR_CPUS
/10)
4632 interval
= HZ
*NR_CPUS
/10;
4634 need_serialize
= sd
->flags
& SD_SERIALIZE
;
4636 if (need_serialize
) {
4637 if (!spin_trylock(&balancing
))
4641 if (time_after_eq(jiffies
, sd
->last_balance
+ interval
)) {
4642 if (load_balance(cpu
, rq
, sd
, idle
, &balance
)) {
4644 * We've pulled tasks over so either we're no
4645 * longer idle, or one of our SMT siblings is
4648 idle
= CPU_NOT_IDLE
;
4650 sd
->last_balance
= jiffies
;
4653 spin_unlock(&balancing
);
4655 if (time_after(next_balance
, sd
->last_balance
+ interval
)) {
4656 next_balance
= sd
->last_balance
+ interval
;
4657 update_next_balance
= 1;
4661 * Stop the load balance at this level. There is another
4662 * CPU in our sched group which is doing load balancing more
4670 * next_balance will be updated only when there is a need.
4671 * When the cpu is attached to null domain for ex, it will not be
4674 if (likely(update_next_balance
))
4675 rq
->next_balance
= next_balance
;
4679 * run_rebalance_domains is triggered when needed from the scheduler tick.
4680 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4681 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4683 static void run_rebalance_domains(struct softirq_action
*h
)
4685 int this_cpu
= smp_processor_id();
4686 struct rq
*this_rq
= cpu_rq(this_cpu
);
4687 enum cpu_idle_type idle
= this_rq
->idle_at_tick
?
4688 CPU_IDLE
: CPU_NOT_IDLE
;
4690 rebalance_domains(this_cpu
, idle
);
4694 * If this cpu is the owner for idle load balancing, then do the
4695 * balancing on behalf of the other idle cpus whose ticks are
4698 if (this_rq
->idle_at_tick
&&
4699 atomic_read(&nohz
.load_balancer
) == this_cpu
) {
4703 for_each_cpu(balance_cpu
, nohz
.cpu_mask
) {
4704 if (balance_cpu
== this_cpu
)
4708 * If this cpu gets work to do, stop the load balancing
4709 * work being done for other cpus. Next load
4710 * balancing owner will pick it up.
4715 rebalance_domains(balance_cpu
, CPU_IDLE
);
4717 rq
= cpu_rq(balance_cpu
);
4718 if (time_after(this_rq
->next_balance
, rq
->next_balance
))
4719 this_rq
->next_balance
= rq
->next_balance
;
4725 static inline int on_null_domain(int cpu
)
4727 return !rcu_dereference(cpu_rq(cpu
)->sd
);
4731 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4733 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4734 * idle load balancing owner or decide to stop the periodic load balancing,
4735 * if the whole system is idle.
4737 static inline void trigger_load_balance(struct rq
*rq
, int cpu
)
4741 * If we were in the nohz mode recently and busy at the current
4742 * scheduler tick, then check if we need to nominate new idle
4745 if (rq
->in_nohz_recently
&& !rq
->idle_at_tick
) {
4746 rq
->in_nohz_recently
= 0;
4748 if (atomic_read(&nohz
.load_balancer
) == cpu
) {
4749 cpumask_clear_cpu(cpu
, nohz
.cpu_mask
);
4750 atomic_set(&nohz
.load_balancer
, -1);
4753 if (atomic_read(&nohz
.load_balancer
) == -1) {
4754 int ilb
= find_new_ilb(cpu
);
4756 if (ilb
< nr_cpu_ids
)
4762 * If this cpu is idle and doing idle load balancing for all the
4763 * cpus with ticks stopped, is it time for that to stop?
4765 if (rq
->idle_at_tick
&& atomic_read(&nohz
.load_balancer
) == cpu
&&
4766 cpumask_weight(nohz
.cpu_mask
) == num_online_cpus()) {
4772 * If this cpu is idle and the idle load balancing is done by
4773 * someone else, then no need raise the SCHED_SOFTIRQ
4775 if (rq
->idle_at_tick
&& atomic_read(&nohz
.load_balancer
) != cpu
&&
4776 cpumask_test_cpu(cpu
, nohz
.cpu_mask
))
4779 /* Don't need to rebalance while attached to NULL domain */
4780 if (time_after_eq(jiffies
, rq
->next_balance
) &&
4781 likely(!on_null_domain(cpu
)))
4782 raise_softirq(SCHED_SOFTIRQ
);
4785 #else /* CONFIG_SMP */
4788 * on UP we do not need to balance between CPUs:
4790 static inline void idle_balance(int cpu
, struct rq
*rq
)
4796 DEFINE_PER_CPU(struct kernel_stat
, kstat
);
4798 EXPORT_PER_CPU_SYMBOL(kstat
);
4801 * Return any ns on the sched_clock that have not yet been accounted in
4802 * @p in case that task is currently running.
4804 * Called with task_rq_lock() held on @rq.
4806 static u64
do_task_delta_exec(struct task_struct
*p
, struct rq
*rq
)
4810 if (task_current(rq
, p
)) {
4811 update_rq_clock(rq
);
4812 ns
= rq
->clock
- p
->se
.exec_start
;
4820 unsigned long long task_delta_exec(struct task_struct
*p
)
4822 unsigned long flags
;
4826 rq
= task_rq_lock(p
, &flags
);
4827 ns
= do_task_delta_exec(p
, rq
);
4828 task_rq_unlock(rq
, &flags
);
4834 * Return accounted runtime for the task.
4835 * In case the task is currently running, return the runtime plus current's
4836 * pending runtime that have not been accounted yet.
4838 unsigned long long task_sched_runtime(struct task_struct
*p
)
4840 unsigned long flags
;
4844 rq
= task_rq_lock(p
, &flags
);
4845 ns
= p
->se
.sum_exec_runtime
+ do_task_delta_exec(p
, rq
);
4846 task_rq_unlock(rq
, &flags
);
4852 * Return sum_exec_runtime for the thread group.
4853 * In case the task is currently running, return the sum plus current's
4854 * pending runtime that have not been accounted yet.
4856 * Note that the thread group might have other running tasks as well,
4857 * so the return value not includes other pending runtime that other
4858 * running tasks might have.
4860 unsigned long long thread_group_sched_runtime(struct task_struct
*p
)
4862 struct task_cputime totals
;
4863 unsigned long flags
;
4867 rq
= task_rq_lock(p
, &flags
);
4868 thread_group_cputime(p
, &totals
);
4869 ns
= totals
.sum_exec_runtime
+ do_task_delta_exec(p
, rq
);
4870 task_rq_unlock(rq
, &flags
);
4876 * Account user cpu time to a process.
4877 * @p: the process that the cpu time gets accounted to
4878 * @cputime: the cpu time spent in user space since the last update
4879 * @cputime_scaled: cputime scaled by cpu frequency
4881 void account_user_time(struct task_struct
*p
, cputime_t cputime
,
4882 cputime_t cputime_scaled
)
4884 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
4887 /* Add user time to process. */
4888 p
->utime
= cputime_add(p
->utime
, cputime
);
4889 p
->utimescaled
= cputime_add(p
->utimescaled
, cputime_scaled
);
4890 account_group_user_time(p
, cputime
);
4892 /* Add user time to cpustat. */
4893 tmp
= cputime_to_cputime64(cputime
);
4894 if (TASK_NICE(p
) > 0)
4895 cpustat
->nice
= cputime64_add(cpustat
->nice
, tmp
);
4897 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
4899 cpuacct_update_stats(p
, CPUACCT_STAT_USER
, cputime
);
4900 /* Account for user time used */
4901 acct_update_integrals(p
);
4905 * Account guest cpu time to a process.
4906 * @p: the process that the cpu time gets accounted to
4907 * @cputime: the cpu time spent in virtual machine since the last update
4908 * @cputime_scaled: cputime scaled by cpu frequency
4910 static void account_guest_time(struct task_struct
*p
, cputime_t cputime
,
4911 cputime_t cputime_scaled
)
4914 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
4916 tmp
= cputime_to_cputime64(cputime
);
4918 /* Add guest time to process. */
4919 p
->utime
= cputime_add(p
->utime
, cputime
);
4920 p
->utimescaled
= cputime_add(p
->utimescaled
, cputime_scaled
);
4921 account_group_user_time(p
, cputime
);
4922 p
->gtime
= cputime_add(p
->gtime
, cputime
);
4924 /* Add guest time to cpustat. */
4925 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
4926 cpustat
->guest
= cputime64_add(cpustat
->guest
, tmp
);
4930 * Account system cpu time to a process.
4931 * @p: the process that the cpu time gets accounted to
4932 * @hardirq_offset: the offset to subtract from hardirq_count()
4933 * @cputime: the cpu time spent in kernel space since the last update
4934 * @cputime_scaled: cputime scaled by cpu frequency
4936 void account_system_time(struct task_struct
*p
, int hardirq_offset
,
4937 cputime_t cputime
, cputime_t cputime_scaled
)
4939 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
4942 if ((p
->flags
& PF_VCPU
) && (irq_count() - hardirq_offset
== 0)) {
4943 account_guest_time(p
, cputime
, cputime_scaled
);
4947 /* Add system time to process. */
4948 p
->stime
= cputime_add(p
->stime
, cputime
);
4949 p
->stimescaled
= cputime_add(p
->stimescaled
, cputime_scaled
);
4950 account_group_system_time(p
, cputime
);
4952 /* Add system time to cpustat. */
4953 tmp
= cputime_to_cputime64(cputime
);
4954 if (hardirq_count() - hardirq_offset
)
4955 cpustat
->irq
= cputime64_add(cpustat
->irq
, tmp
);
4956 else if (softirq_count())
4957 cpustat
->softirq
= cputime64_add(cpustat
->softirq
, tmp
);
4959 cpustat
->system
= cputime64_add(cpustat
->system
, tmp
);
4961 cpuacct_update_stats(p
, CPUACCT_STAT_SYSTEM
, cputime
);
4963 /* Account for system time used */
4964 acct_update_integrals(p
);
4968 * Account for involuntary wait time.
4969 * @steal: the cpu time spent in involuntary wait
4971 void account_steal_time(cputime_t cputime
)
4973 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
4974 cputime64_t cputime64
= cputime_to_cputime64(cputime
);
4976 cpustat
->steal
= cputime64_add(cpustat
->steal
, cputime64
);
4980 * Account for idle time.
4981 * @cputime: the cpu time spent in idle wait
4983 void account_idle_time(cputime_t cputime
)
4985 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
4986 cputime64_t cputime64
= cputime_to_cputime64(cputime
);
4987 struct rq
*rq
= this_rq();
4989 if (atomic_read(&rq
->nr_iowait
) > 0)
4990 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, cputime64
);
4992 cpustat
->idle
= cputime64_add(cpustat
->idle
, cputime64
);
4995 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
4998 * Account a single tick of cpu time.
4999 * @p: the process that the cpu time gets accounted to
5000 * @user_tick: indicates if the tick is a user or a system tick
5002 void account_process_tick(struct task_struct
*p
, int user_tick
)
5004 cputime_t one_jiffy
= jiffies_to_cputime(1);
5005 cputime_t one_jiffy_scaled
= cputime_to_scaled(one_jiffy
);
5006 struct rq
*rq
= this_rq();
5009 account_user_time(p
, one_jiffy
, one_jiffy_scaled
);
5010 else if ((p
!= rq
->idle
) || (irq_count() != HARDIRQ_OFFSET
))
5011 account_system_time(p
, HARDIRQ_OFFSET
, one_jiffy
,
5014 account_idle_time(one_jiffy
);
5018 * Account multiple ticks of steal time.
5019 * @p: the process from which the cpu time has been stolen
5020 * @ticks: number of stolen ticks
5022 void account_steal_ticks(unsigned long ticks
)
5024 account_steal_time(jiffies_to_cputime(ticks
));
5028 * Account multiple ticks of idle time.
5029 * @ticks: number of stolen ticks
5031 void account_idle_ticks(unsigned long ticks
)
5033 account_idle_time(jiffies_to_cputime(ticks
));
5039 * Use precise platform statistics if available:
5041 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
5042 cputime_t
task_utime(struct task_struct
*p
)
5047 cputime_t
task_stime(struct task_struct
*p
)
5052 cputime_t
task_utime(struct task_struct
*p
)
5054 clock_t utime
= cputime_to_clock_t(p
->utime
),
5055 total
= utime
+ cputime_to_clock_t(p
->stime
);
5059 * Use CFS's precise accounting:
5061 temp
= (u64
)nsec_to_clock_t(p
->se
.sum_exec_runtime
);
5065 do_div(temp
, total
);
5067 utime
= (clock_t)temp
;
5069 p
->prev_utime
= max(p
->prev_utime
, clock_t_to_cputime(utime
));
5070 return p
->prev_utime
;
5073 cputime_t
task_stime(struct task_struct
*p
)
5078 * Use CFS's precise accounting. (we subtract utime from
5079 * the total, to make sure the total observed by userspace
5080 * grows monotonically - apps rely on that):
5082 stime
= nsec_to_clock_t(p
->se
.sum_exec_runtime
) -
5083 cputime_to_clock_t(task_utime(p
));
5086 p
->prev_stime
= max(p
->prev_stime
, clock_t_to_cputime(stime
));
5088 return p
->prev_stime
;
5092 inline cputime_t
task_gtime(struct task_struct
*p
)
5098 * This function gets called by the timer code, with HZ frequency.
5099 * We call it with interrupts disabled.
5101 * It also gets called by the fork code, when changing the parent's
5104 void scheduler_tick(void)
5106 int cpu
= smp_processor_id();
5107 struct rq
*rq
= cpu_rq(cpu
);
5108 struct task_struct
*curr
= rq
->curr
;
5112 spin_lock(&rq
->lock
);
5113 update_rq_clock(rq
);
5114 update_cpu_load(rq
);
5115 curr
->sched_class
->task_tick(rq
, curr
, 0);
5116 spin_unlock(&rq
->lock
);
5118 perf_counter_task_tick(curr
, cpu
);
5121 rq
->idle_at_tick
= idle_cpu(cpu
);
5122 trigger_load_balance(rq
, cpu
);
5126 notrace
unsigned long get_parent_ip(unsigned long addr
)
5128 if (in_lock_functions(addr
)) {
5129 addr
= CALLER_ADDR2
;
5130 if (in_lock_functions(addr
))
5131 addr
= CALLER_ADDR3
;
5136 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5137 defined(CONFIG_PREEMPT_TRACER))
5139 void __kprobes
add_preempt_count(int val
)
5141 #ifdef CONFIG_DEBUG_PREEMPT
5145 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5148 preempt_count() += val
;
5149 #ifdef CONFIG_DEBUG_PREEMPT
5151 * Spinlock count overflowing soon?
5153 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK
) >=
5156 if (preempt_count() == val
)
5157 trace_preempt_off(CALLER_ADDR0
, get_parent_ip(CALLER_ADDR1
));
5159 EXPORT_SYMBOL(add_preempt_count
);
5161 void __kprobes
sub_preempt_count(int val
)
5163 #ifdef CONFIG_DEBUG_PREEMPT
5167 if (DEBUG_LOCKS_WARN_ON(val
> preempt_count()))
5170 * Is the spinlock portion underflowing?
5172 if (DEBUG_LOCKS_WARN_ON((val
< PREEMPT_MASK
) &&
5173 !(preempt_count() & PREEMPT_MASK
)))
5177 if (preempt_count() == val
)
5178 trace_preempt_on(CALLER_ADDR0
, get_parent_ip(CALLER_ADDR1
));
5179 preempt_count() -= val
;
5181 EXPORT_SYMBOL(sub_preempt_count
);
5186 * Print scheduling while atomic bug:
5188 static noinline
void __schedule_bug(struct task_struct
*prev
)
5190 struct pt_regs
*regs
= get_irq_regs();
5192 printk(KERN_ERR
"BUG: scheduling while atomic: %s/%d/0x%08x\n",
5193 prev
->comm
, prev
->pid
, preempt_count());
5195 debug_show_held_locks(prev
);
5197 if (irqs_disabled())
5198 print_irqtrace_events(prev
);
5207 * Various schedule()-time debugging checks and statistics:
5209 static inline void schedule_debug(struct task_struct
*prev
)
5212 * Test if we are atomic. Since do_exit() needs to call into
5213 * schedule() atomically, we ignore that path for now.
5214 * Otherwise, whine if we are scheduling when we should not be.
5216 if (unlikely(in_atomic_preempt_off() && !prev
->exit_state
))
5217 __schedule_bug(prev
);
5219 profile_hit(SCHED_PROFILING
, __builtin_return_address(0));
5221 schedstat_inc(this_rq(), sched_count
);
5222 #ifdef CONFIG_SCHEDSTATS
5223 if (unlikely(prev
->lock_depth
>= 0)) {
5224 schedstat_inc(this_rq(), bkl_count
);
5225 schedstat_inc(prev
, sched_info
.bkl_count
);
5230 static void put_prev_task(struct rq
*rq
, struct task_struct
*prev
)
5232 if (prev
->state
== TASK_RUNNING
) {
5233 u64 runtime
= prev
->se
.sum_exec_runtime
;
5235 runtime
-= prev
->se
.prev_sum_exec_runtime
;
5236 runtime
= min_t(u64
, runtime
, 2*sysctl_sched_migration_cost
);
5239 * In order to avoid avg_overlap growing stale when we are
5240 * indeed overlapping and hence not getting put to sleep, grow
5241 * the avg_overlap on preemption.
5243 * We use the average preemption runtime because that
5244 * correlates to the amount of cache footprint a task can
5247 update_avg(&prev
->se
.avg_overlap
, runtime
);
5249 prev
->sched_class
->put_prev_task(rq
, prev
);
5253 * Pick up the highest-prio task:
5255 static inline struct task_struct
*
5256 pick_next_task(struct rq
*rq
)
5258 const struct sched_class
*class;
5259 struct task_struct
*p
;
5262 * Optimization: we know that if all tasks are in
5263 * the fair class we can call that function directly:
5265 if (likely(rq
->nr_running
== rq
->cfs
.nr_running
)) {
5266 p
= fair_sched_class
.pick_next_task(rq
);
5271 class = sched_class_highest
;
5273 p
= class->pick_next_task(rq
);
5277 * Will never be NULL as the idle class always
5278 * returns a non-NULL p:
5280 class = class->next
;
5285 * schedule() is the main scheduler function.
5287 asmlinkage
void __sched
schedule(void)
5289 struct task_struct
*prev
, *next
;
5290 unsigned long *switch_count
;
5296 cpu
= smp_processor_id();
5300 switch_count
= &prev
->nivcsw
;
5302 release_kernel_lock(prev
);
5303 need_resched_nonpreemptible
:
5305 schedule_debug(prev
);
5307 if (sched_feat(HRTICK
))
5310 spin_lock_irq(&rq
->lock
);
5311 update_rq_clock(rq
);
5312 clear_tsk_need_resched(prev
);
5314 if (prev
->state
&& !(preempt_count() & PREEMPT_ACTIVE
)) {
5315 if (unlikely(signal_pending_state(prev
->state
, prev
)))
5316 prev
->state
= TASK_RUNNING
;
5318 deactivate_task(rq
, prev
, 1);
5319 switch_count
= &prev
->nvcsw
;
5323 if (prev
->sched_class
->pre_schedule
)
5324 prev
->sched_class
->pre_schedule(rq
, prev
);
5327 if (unlikely(!rq
->nr_running
))
5328 idle_balance(cpu
, rq
);
5330 put_prev_task(rq
, prev
);
5331 next
= pick_next_task(rq
);
5333 if (likely(prev
!= next
)) {
5334 sched_info_switch(prev
, next
);
5335 perf_counter_task_sched_out(prev
, next
, cpu
);
5341 context_switch(rq
, prev
, next
); /* unlocks the rq */
5343 * the context switch might have flipped the stack from under
5344 * us, hence refresh the local variables.
5346 cpu
= smp_processor_id();
5349 spin_unlock_irq(&rq
->lock
);
5351 if (unlikely(reacquire_kernel_lock(current
) < 0))
5352 goto need_resched_nonpreemptible
;
5354 preempt_enable_no_resched();
5358 EXPORT_SYMBOL(schedule
);
5362 * Look out! "owner" is an entirely speculative pointer
5363 * access and not reliable.
5365 int mutex_spin_on_owner(struct mutex
*lock
, struct thread_info
*owner
)
5370 if (!sched_feat(OWNER_SPIN
))
5373 #ifdef CONFIG_DEBUG_PAGEALLOC
5375 * Need to access the cpu field knowing that
5376 * DEBUG_PAGEALLOC could have unmapped it if
5377 * the mutex owner just released it and exited.
5379 if (probe_kernel_address(&owner
->cpu
, cpu
))
5386 * Even if the access succeeded (likely case),
5387 * the cpu field may no longer be valid.
5389 if (cpu
>= nr_cpumask_bits
)
5393 * We need to validate that we can do a
5394 * get_cpu() and that we have the percpu area.
5396 if (!cpu_online(cpu
))
5403 * Owner changed, break to re-assess state.
5405 if (lock
->owner
!= owner
)
5409 * Is that owner really running on that cpu?
5411 if (task_thread_info(rq
->curr
) != owner
|| need_resched())
5421 #ifdef CONFIG_PREEMPT
5423 * this is the entry point to schedule() from in-kernel preemption
5424 * off of preempt_enable. Kernel preemptions off return from interrupt
5425 * occur there and call schedule directly.
5427 asmlinkage
void __sched
preempt_schedule(void)
5429 struct thread_info
*ti
= current_thread_info();
5432 * If there is a non-zero preempt_count or interrupts are disabled,
5433 * we do not want to preempt the current task. Just return..
5435 if (likely(ti
->preempt_count
|| irqs_disabled()))
5439 add_preempt_count(PREEMPT_ACTIVE
);
5441 sub_preempt_count(PREEMPT_ACTIVE
);
5444 * Check again in case we missed a preemption opportunity
5445 * between schedule and now.
5448 } while (need_resched());
5450 EXPORT_SYMBOL(preempt_schedule
);
5453 * this is the entry point to schedule() from kernel preemption
5454 * off of irq context.
5455 * Note, that this is called and return with irqs disabled. This will
5456 * protect us against recursive calling from irq.
5458 asmlinkage
void __sched
preempt_schedule_irq(void)
5460 struct thread_info
*ti
= current_thread_info();
5462 /* Catch callers which need to be fixed */
5463 BUG_ON(ti
->preempt_count
|| !irqs_disabled());
5466 add_preempt_count(PREEMPT_ACTIVE
);
5469 local_irq_disable();
5470 sub_preempt_count(PREEMPT_ACTIVE
);
5473 * Check again in case we missed a preemption opportunity
5474 * between schedule and now.
5477 } while (need_resched());
5480 #endif /* CONFIG_PREEMPT */
5482 int default_wake_function(wait_queue_t
*curr
, unsigned mode
, int sync
,
5485 return try_to_wake_up(curr
->private, mode
, sync
);
5487 EXPORT_SYMBOL(default_wake_function
);
5490 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5491 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
5492 * number) then we wake all the non-exclusive tasks and one exclusive task.
5494 * There are circumstances in which we can try to wake a task which has already
5495 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
5496 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5498 static void __wake_up_common(wait_queue_head_t
*q
, unsigned int mode
,
5499 int nr_exclusive
, int sync
, void *key
)
5501 wait_queue_t
*curr
, *next
;
5503 list_for_each_entry_safe(curr
, next
, &q
->task_list
, task_list
) {
5504 unsigned flags
= curr
->flags
;
5506 if (curr
->func(curr
, mode
, sync
, key
) &&
5507 (flags
& WQ_FLAG_EXCLUSIVE
) && !--nr_exclusive
)
5513 * __wake_up - wake up threads blocked on a waitqueue.
5515 * @mode: which threads
5516 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5517 * @key: is directly passed to the wakeup function
5519 * It may be assumed that this function implies a write memory barrier before
5520 * changing the task state if and only if any tasks are woken up.
5522 void __wake_up(wait_queue_head_t
*q
, unsigned int mode
,
5523 int nr_exclusive
, void *key
)
5525 unsigned long flags
;
5527 spin_lock_irqsave(&q
->lock
, flags
);
5528 __wake_up_common(q
, mode
, nr_exclusive
, 0, key
);
5529 spin_unlock_irqrestore(&q
->lock
, flags
);
5531 EXPORT_SYMBOL(__wake_up
);
5534 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5536 void __wake_up_locked(wait_queue_head_t
*q
, unsigned int mode
)
5538 __wake_up_common(q
, mode
, 1, 0, NULL
);
5541 void __wake_up_locked_key(wait_queue_head_t
*q
, unsigned int mode
, void *key
)
5543 __wake_up_common(q
, mode
, 1, 0, key
);
5547 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
5549 * @mode: which threads
5550 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5551 * @key: opaque value to be passed to wakeup targets
5553 * The sync wakeup differs that the waker knows that it will schedule
5554 * away soon, so while the target thread will be woken up, it will not
5555 * be migrated to another CPU - ie. the two threads are 'synchronized'
5556 * with each other. This can prevent needless bouncing between CPUs.
5558 * On UP it can prevent extra preemption.
5560 * It may be assumed that this function implies a write memory barrier before
5561 * changing the task state if and only if any tasks are woken up.
5563 void __wake_up_sync_key(wait_queue_head_t
*q
, unsigned int mode
,
5564 int nr_exclusive
, void *key
)
5566 unsigned long flags
;
5572 if (unlikely(!nr_exclusive
))
5575 spin_lock_irqsave(&q
->lock
, flags
);
5576 __wake_up_common(q
, mode
, nr_exclusive
, sync
, key
);
5577 spin_unlock_irqrestore(&q
->lock
, flags
);
5579 EXPORT_SYMBOL_GPL(__wake_up_sync_key
);
5582 * __wake_up_sync - see __wake_up_sync_key()
5584 void __wake_up_sync(wait_queue_head_t
*q
, unsigned int mode
, int nr_exclusive
)
5586 __wake_up_sync_key(q
, mode
, nr_exclusive
, NULL
);
5588 EXPORT_SYMBOL_GPL(__wake_up_sync
); /* For internal use only */
5591 * complete: - signals a single thread waiting on this completion
5592 * @x: holds the state of this particular completion
5594 * This will wake up a single thread waiting on this completion. Threads will be
5595 * awakened in the same order in which they were queued.
5597 * See also complete_all(), wait_for_completion() and related routines.
5599 * It may be assumed that this function implies a write memory barrier before
5600 * changing the task state if and only if any tasks are woken up.
5602 void complete(struct completion
*x
)
5604 unsigned long flags
;
5606 spin_lock_irqsave(&x
->wait
.lock
, flags
);
5608 __wake_up_common(&x
->wait
, TASK_NORMAL
, 1, 0, NULL
);
5609 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
5611 EXPORT_SYMBOL(complete
);
5614 * complete_all: - signals all threads waiting on this completion
5615 * @x: holds the state of this particular completion
5617 * This will wake up all threads waiting on this particular completion event.
5619 * It may be assumed that this function implies a write memory barrier before
5620 * changing the task state if and only if any tasks are woken up.
5622 void complete_all(struct completion
*x
)
5624 unsigned long flags
;
5626 spin_lock_irqsave(&x
->wait
.lock
, flags
);
5627 x
->done
+= UINT_MAX
/2;
5628 __wake_up_common(&x
->wait
, TASK_NORMAL
, 0, 0, NULL
);
5629 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
5631 EXPORT_SYMBOL(complete_all
);
5633 static inline long __sched
5634 do_wait_for_common(struct completion
*x
, long timeout
, int state
)
5637 DECLARE_WAITQUEUE(wait
, current
);
5639 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
5640 __add_wait_queue_tail(&x
->wait
, &wait
);
5642 if (signal_pending_state(state
, current
)) {
5643 timeout
= -ERESTARTSYS
;
5646 __set_current_state(state
);
5647 spin_unlock_irq(&x
->wait
.lock
);
5648 timeout
= schedule_timeout(timeout
);
5649 spin_lock_irq(&x
->wait
.lock
);
5650 } while (!x
->done
&& timeout
);
5651 __remove_wait_queue(&x
->wait
, &wait
);
5656 return timeout
?: 1;
5660 wait_for_common(struct completion
*x
, long timeout
, int state
)
5664 spin_lock_irq(&x
->wait
.lock
);
5665 timeout
= do_wait_for_common(x
, timeout
, state
);
5666 spin_unlock_irq(&x
->wait
.lock
);
5671 * wait_for_completion: - waits for completion of a task
5672 * @x: holds the state of this particular completion
5674 * This waits to be signaled for completion of a specific task. It is NOT
5675 * interruptible and there is no timeout.
5677 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5678 * and interrupt capability. Also see complete().
5680 void __sched
wait_for_completion(struct completion
*x
)
5682 wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_UNINTERRUPTIBLE
);
5684 EXPORT_SYMBOL(wait_for_completion
);
5687 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5688 * @x: holds the state of this particular completion
5689 * @timeout: timeout value in jiffies
5691 * This waits for either a completion of a specific task to be signaled or for a
5692 * specified timeout to expire. The timeout is in jiffies. It is not
5695 unsigned long __sched
5696 wait_for_completion_timeout(struct completion
*x
, unsigned long timeout
)
5698 return wait_for_common(x
, timeout
, TASK_UNINTERRUPTIBLE
);
5700 EXPORT_SYMBOL(wait_for_completion_timeout
);
5703 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5704 * @x: holds the state of this particular completion
5706 * This waits for completion of a specific task to be signaled. It is
5709 int __sched
wait_for_completion_interruptible(struct completion
*x
)
5711 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_INTERRUPTIBLE
);
5712 if (t
== -ERESTARTSYS
)
5716 EXPORT_SYMBOL(wait_for_completion_interruptible
);
5719 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5720 * @x: holds the state of this particular completion
5721 * @timeout: timeout value in jiffies
5723 * This waits for either a completion of a specific task to be signaled or for a
5724 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5726 unsigned long __sched
5727 wait_for_completion_interruptible_timeout(struct completion
*x
,
5728 unsigned long timeout
)
5730 return wait_for_common(x
, timeout
, TASK_INTERRUPTIBLE
);
5732 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout
);
5735 * wait_for_completion_killable: - waits for completion of a task (killable)
5736 * @x: holds the state of this particular completion
5738 * This waits to be signaled for completion of a specific task. It can be
5739 * interrupted by a kill signal.
5741 int __sched
wait_for_completion_killable(struct completion
*x
)
5743 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_KILLABLE
);
5744 if (t
== -ERESTARTSYS
)
5748 EXPORT_SYMBOL(wait_for_completion_killable
);
5751 * try_wait_for_completion - try to decrement a completion without blocking
5752 * @x: completion structure
5754 * Returns: 0 if a decrement cannot be done without blocking
5755 * 1 if a decrement succeeded.
5757 * If a completion is being used as a counting completion,
5758 * attempt to decrement the counter without blocking. This
5759 * enables us to avoid waiting if the resource the completion
5760 * is protecting is not available.
5762 bool try_wait_for_completion(struct completion
*x
)
5766 spin_lock_irq(&x
->wait
.lock
);
5771 spin_unlock_irq(&x
->wait
.lock
);
5774 EXPORT_SYMBOL(try_wait_for_completion
);
5777 * completion_done - Test to see if a completion has any waiters
5778 * @x: completion structure
5780 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5781 * 1 if there are no waiters.
5784 bool completion_done(struct completion
*x
)
5788 spin_lock_irq(&x
->wait
.lock
);
5791 spin_unlock_irq(&x
->wait
.lock
);
5794 EXPORT_SYMBOL(completion_done
);
5797 sleep_on_common(wait_queue_head_t
*q
, int state
, long timeout
)
5799 unsigned long flags
;
5802 init_waitqueue_entry(&wait
, current
);
5804 __set_current_state(state
);
5806 spin_lock_irqsave(&q
->lock
, flags
);
5807 __add_wait_queue(q
, &wait
);
5808 spin_unlock(&q
->lock
);
5809 timeout
= schedule_timeout(timeout
);
5810 spin_lock_irq(&q
->lock
);
5811 __remove_wait_queue(q
, &wait
);
5812 spin_unlock_irqrestore(&q
->lock
, flags
);
5817 void __sched
interruptible_sleep_on(wait_queue_head_t
*q
)
5819 sleep_on_common(q
, TASK_INTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
5821 EXPORT_SYMBOL(interruptible_sleep_on
);
5824 interruptible_sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
5826 return sleep_on_common(q
, TASK_INTERRUPTIBLE
, timeout
);
5828 EXPORT_SYMBOL(interruptible_sleep_on_timeout
);
5830 void __sched
sleep_on(wait_queue_head_t
*q
)
5832 sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
5834 EXPORT_SYMBOL(sleep_on
);
5836 long __sched
sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
5838 return sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, timeout
);
5840 EXPORT_SYMBOL(sleep_on_timeout
);
5842 #ifdef CONFIG_RT_MUTEXES
5845 * rt_mutex_setprio - set the current priority of a task
5847 * @prio: prio value (kernel-internal form)
5849 * This function changes the 'effective' priority of a task. It does
5850 * not touch ->normal_prio like __setscheduler().
5852 * Used by the rt_mutex code to implement priority inheritance logic.
5854 void rt_mutex_setprio(struct task_struct
*p
, int prio
)
5856 unsigned long flags
;
5857 int oldprio
, on_rq
, running
;
5859 const struct sched_class
*prev_class
= p
->sched_class
;
5861 BUG_ON(prio
< 0 || prio
> MAX_PRIO
);
5863 rq
= task_rq_lock(p
, &flags
);
5864 update_rq_clock(rq
);
5867 on_rq
= p
->se
.on_rq
;
5868 running
= task_current(rq
, p
);
5870 dequeue_task(rq
, p
, 0);
5872 p
->sched_class
->put_prev_task(rq
, p
);
5875 p
->sched_class
= &rt_sched_class
;
5877 p
->sched_class
= &fair_sched_class
;
5882 p
->sched_class
->set_curr_task(rq
);
5884 enqueue_task(rq
, p
, 0);
5886 check_class_changed(rq
, p
, prev_class
, oldprio
, running
);
5888 task_rq_unlock(rq
, &flags
);
5893 void set_user_nice(struct task_struct
*p
, long nice
)
5895 int old_prio
, delta
, on_rq
;
5896 unsigned long flags
;
5899 if (TASK_NICE(p
) == nice
|| nice
< -20 || nice
> 19)
5902 * We have to be careful, if called from sys_setpriority(),
5903 * the task might be in the middle of scheduling on another CPU.
5905 rq
= task_rq_lock(p
, &flags
);
5906 update_rq_clock(rq
);
5908 * The RT priorities are set via sched_setscheduler(), but we still
5909 * allow the 'normal' nice value to be set - but as expected
5910 * it wont have any effect on scheduling until the task is
5911 * SCHED_FIFO/SCHED_RR:
5913 if (task_has_rt_policy(p
)) {
5914 p
->static_prio
= NICE_TO_PRIO(nice
);
5917 on_rq
= p
->se
.on_rq
;
5919 dequeue_task(rq
, p
, 0);
5921 p
->static_prio
= NICE_TO_PRIO(nice
);
5924 p
->prio
= effective_prio(p
);
5925 delta
= p
->prio
- old_prio
;
5928 enqueue_task(rq
, p
, 0);
5930 * If the task increased its priority or is running and
5931 * lowered its priority, then reschedule its CPU:
5933 if (delta
< 0 || (delta
> 0 && task_running(rq
, p
)))
5934 resched_task(rq
->curr
);
5937 task_rq_unlock(rq
, &flags
);
5939 EXPORT_SYMBOL(set_user_nice
);
5942 * can_nice - check if a task can reduce its nice value
5946 int can_nice(const struct task_struct
*p
, const int nice
)
5948 /* convert nice value [19,-20] to rlimit style value [1,40] */
5949 int nice_rlim
= 20 - nice
;
5951 return (nice_rlim
<= p
->signal
->rlim
[RLIMIT_NICE
].rlim_cur
||
5952 capable(CAP_SYS_NICE
));
5955 #ifdef __ARCH_WANT_SYS_NICE
5958 * sys_nice - change the priority of the current process.
5959 * @increment: priority increment
5961 * sys_setpriority is a more generic, but much slower function that
5962 * does similar things.
5964 SYSCALL_DEFINE1(nice
, int, increment
)
5969 * Setpriority might change our priority at the same moment.
5970 * We don't have to worry. Conceptually one call occurs first
5971 * and we have a single winner.
5973 if (increment
< -40)
5978 nice
= TASK_NICE(current
) + increment
;
5984 if (increment
< 0 && !can_nice(current
, nice
))
5987 retval
= security_task_setnice(current
, nice
);
5991 set_user_nice(current
, nice
);
5998 * task_prio - return the priority value of a given task.
5999 * @p: the task in question.
6001 * This is the priority value as seen by users in /proc.
6002 * RT tasks are offset by -200. Normal tasks are centered
6003 * around 0, value goes from -16 to +15.
6005 int task_prio(const struct task_struct
*p
)
6007 return p
->prio
- MAX_RT_PRIO
;
6011 * task_nice - return the nice value of a given task.
6012 * @p: the task in question.
6014 int task_nice(const struct task_struct
*p
)
6016 return TASK_NICE(p
);
6018 EXPORT_SYMBOL(task_nice
);
6021 * idle_cpu - is a given cpu idle currently?
6022 * @cpu: the processor in question.
6024 int idle_cpu(int cpu
)
6026 return cpu_curr(cpu
) == cpu_rq(cpu
)->idle
;
6030 * idle_task - return the idle task for a given cpu.
6031 * @cpu: the processor in question.
6033 struct task_struct
*idle_task(int cpu
)
6035 return cpu_rq(cpu
)->idle
;
6039 * find_process_by_pid - find a process with a matching PID value.
6040 * @pid: the pid in question.
6042 static struct task_struct
*find_process_by_pid(pid_t pid
)
6044 return pid
? find_task_by_vpid(pid
) : current
;
6047 /* Actually do priority change: must hold rq lock. */
6049 __setscheduler(struct rq
*rq
, struct task_struct
*p
, int policy
, int prio
)
6051 BUG_ON(p
->se
.on_rq
);
6054 switch (p
->policy
) {
6058 p
->sched_class
= &fair_sched_class
;
6062 p
->sched_class
= &rt_sched_class
;
6066 p
->rt_priority
= prio
;
6067 p
->normal_prio
= normal_prio(p
);
6068 /* we are holding p->pi_lock already */
6069 p
->prio
= rt_mutex_getprio(p
);
6074 * check the target process has a UID that matches the current process's
6076 static bool check_same_owner(struct task_struct
*p
)
6078 const struct cred
*cred
= current_cred(), *pcred
;
6082 pcred
= __task_cred(p
);
6083 match
= (cred
->euid
== pcred
->euid
||
6084 cred
->euid
== pcred
->uid
);
6089 static int __sched_setscheduler(struct task_struct
*p
, int policy
,
6090 struct sched_param
*param
, bool user
)
6092 int retval
, oldprio
, oldpolicy
= -1, on_rq
, running
;
6093 unsigned long flags
;
6094 const struct sched_class
*prev_class
= p
->sched_class
;
6097 /* may grab non-irq protected spin_locks */
6098 BUG_ON(in_interrupt());
6100 /* double check policy once rq lock held */
6102 policy
= oldpolicy
= p
->policy
;
6103 else if (policy
!= SCHED_FIFO
&& policy
!= SCHED_RR
&&
6104 policy
!= SCHED_NORMAL
&& policy
!= SCHED_BATCH
&&
6105 policy
!= SCHED_IDLE
)
6108 * Valid priorities for SCHED_FIFO and SCHED_RR are
6109 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
6110 * SCHED_BATCH and SCHED_IDLE is 0.
6112 if (param
->sched_priority
< 0 ||
6113 (p
->mm
&& param
->sched_priority
> MAX_USER_RT_PRIO
-1) ||
6114 (!p
->mm
&& param
->sched_priority
> MAX_RT_PRIO
-1))
6116 if (rt_policy(policy
) != (param
->sched_priority
!= 0))
6120 * Allow unprivileged RT tasks to decrease priority:
6122 if (user
&& !capable(CAP_SYS_NICE
)) {
6123 if (rt_policy(policy
)) {
6124 unsigned long rlim_rtprio
;
6126 if (!lock_task_sighand(p
, &flags
))
6128 rlim_rtprio
= p
->signal
->rlim
[RLIMIT_RTPRIO
].rlim_cur
;
6129 unlock_task_sighand(p
, &flags
);
6131 /* can't set/change the rt policy */
6132 if (policy
!= p
->policy
&& !rlim_rtprio
)
6135 /* can't increase priority */
6136 if (param
->sched_priority
> p
->rt_priority
&&
6137 param
->sched_priority
> rlim_rtprio
)
6141 * Like positive nice levels, dont allow tasks to
6142 * move out of SCHED_IDLE either:
6144 if (p
->policy
== SCHED_IDLE
&& policy
!= SCHED_IDLE
)
6147 /* can't change other user's priorities */
6148 if (!check_same_owner(p
))
6153 #ifdef CONFIG_RT_GROUP_SCHED
6155 * Do not allow realtime tasks into groups that have no runtime
6158 if (rt_bandwidth_enabled() && rt_policy(policy
) &&
6159 task_group(p
)->rt_bandwidth
.rt_runtime
== 0)
6163 retval
= security_task_setscheduler(p
, policy
, param
);
6169 * make sure no PI-waiters arrive (or leave) while we are
6170 * changing the priority of the task:
6172 spin_lock_irqsave(&p
->pi_lock
, flags
);
6174 * To be able to change p->policy safely, the apropriate
6175 * runqueue lock must be held.
6177 rq
= __task_rq_lock(p
);
6178 /* recheck policy now with rq lock held */
6179 if (unlikely(oldpolicy
!= -1 && oldpolicy
!= p
->policy
)) {
6180 policy
= oldpolicy
= -1;
6181 __task_rq_unlock(rq
);
6182 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
6185 update_rq_clock(rq
);
6186 on_rq
= p
->se
.on_rq
;
6187 running
= task_current(rq
, p
);
6189 deactivate_task(rq
, p
, 0);
6191 p
->sched_class
->put_prev_task(rq
, p
);
6194 __setscheduler(rq
, p
, policy
, param
->sched_priority
);
6197 p
->sched_class
->set_curr_task(rq
);
6199 activate_task(rq
, p
, 0);
6201 check_class_changed(rq
, p
, prev_class
, oldprio
, running
);
6203 __task_rq_unlock(rq
);
6204 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
6206 rt_mutex_adjust_pi(p
);
6212 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6213 * @p: the task in question.
6214 * @policy: new policy.
6215 * @param: structure containing the new RT priority.
6217 * NOTE that the task may be already dead.
6219 int sched_setscheduler(struct task_struct
*p
, int policy
,
6220 struct sched_param
*param
)
6222 return __sched_setscheduler(p
, policy
, param
, true);
6224 EXPORT_SYMBOL_GPL(sched_setscheduler
);
6227 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6228 * @p: the task in question.
6229 * @policy: new policy.
6230 * @param: structure containing the new RT priority.
6232 * Just like sched_setscheduler, only don't bother checking if the
6233 * current context has permission. For example, this is needed in
6234 * stop_machine(): we create temporary high priority worker threads,
6235 * but our caller might not have that capability.
6237 int sched_setscheduler_nocheck(struct task_struct
*p
, int policy
,
6238 struct sched_param
*param
)
6240 return __sched_setscheduler(p
, policy
, param
, false);
6244 do_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
6246 struct sched_param lparam
;
6247 struct task_struct
*p
;
6250 if (!param
|| pid
< 0)
6252 if (copy_from_user(&lparam
, param
, sizeof(struct sched_param
)))
6257 p
= find_process_by_pid(pid
);
6259 retval
= sched_setscheduler(p
, policy
, &lparam
);
6266 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6267 * @pid: the pid in question.
6268 * @policy: new policy.
6269 * @param: structure containing the new RT priority.
6271 SYSCALL_DEFINE3(sched_setscheduler
, pid_t
, pid
, int, policy
,
6272 struct sched_param __user
*, param
)
6274 /* negative values for policy are not valid */
6278 return do_sched_setscheduler(pid
, policy
, param
);
6282 * sys_sched_setparam - set/change the RT priority of a thread
6283 * @pid: the pid in question.
6284 * @param: structure containing the new RT priority.
6286 SYSCALL_DEFINE2(sched_setparam
, pid_t
, pid
, struct sched_param __user
*, param
)
6288 return do_sched_setscheduler(pid
, -1, param
);
6292 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6293 * @pid: the pid in question.
6295 SYSCALL_DEFINE1(sched_getscheduler
, pid_t
, pid
)
6297 struct task_struct
*p
;
6304 read_lock(&tasklist_lock
);
6305 p
= find_process_by_pid(pid
);
6307 retval
= security_task_getscheduler(p
);
6311 read_unlock(&tasklist_lock
);
6316 * sys_sched_getscheduler - get the RT priority of a thread
6317 * @pid: the pid in question.
6318 * @param: structure containing the RT priority.
6320 SYSCALL_DEFINE2(sched_getparam
, pid_t
, pid
, struct sched_param __user
*, param
)
6322 struct sched_param lp
;
6323 struct task_struct
*p
;
6326 if (!param
|| pid
< 0)
6329 read_lock(&tasklist_lock
);
6330 p
= find_process_by_pid(pid
);
6335 retval
= security_task_getscheduler(p
);
6339 lp
.sched_priority
= p
->rt_priority
;
6340 read_unlock(&tasklist_lock
);
6343 * This one might sleep, we cannot do it with a spinlock held ...
6345 retval
= copy_to_user(param
, &lp
, sizeof(*param
)) ? -EFAULT
: 0;
6350 read_unlock(&tasklist_lock
);
6354 long sched_setaffinity(pid_t pid
, const struct cpumask
*in_mask
)
6356 cpumask_var_t cpus_allowed
, new_mask
;
6357 struct task_struct
*p
;
6361 read_lock(&tasklist_lock
);
6363 p
= find_process_by_pid(pid
);
6365 read_unlock(&tasklist_lock
);
6371 * It is not safe to call set_cpus_allowed with the
6372 * tasklist_lock held. We will bump the task_struct's
6373 * usage count and then drop tasklist_lock.
6376 read_unlock(&tasklist_lock
);
6378 if (!alloc_cpumask_var(&cpus_allowed
, GFP_KERNEL
)) {
6382 if (!alloc_cpumask_var(&new_mask
, GFP_KERNEL
)) {
6384 goto out_free_cpus_allowed
;
6387 if (!check_same_owner(p
) && !capable(CAP_SYS_NICE
))
6390 retval
= security_task_setscheduler(p
, 0, NULL
);
6394 cpuset_cpus_allowed(p
, cpus_allowed
);
6395 cpumask_and(new_mask
, in_mask
, cpus_allowed
);
6397 retval
= set_cpus_allowed_ptr(p
, new_mask
);
6400 cpuset_cpus_allowed(p
, cpus_allowed
);
6401 if (!cpumask_subset(new_mask
, cpus_allowed
)) {
6403 * We must have raced with a concurrent cpuset
6404 * update. Just reset the cpus_allowed to the
6405 * cpuset's cpus_allowed
6407 cpumask_copy(new_mask
, cpus_allowed
);
6412 free_cpumask_var(new_mask
);
6413 out_free_cpus_allowed
:
6414 free_cpumask_var(cpus_allowed
);
6421 static int get_user_cpu_mask(unsigned long __user
*user_mask_ptr
, unsigned len
,
6422 struct cpumask
*new_mask
)
6424 if (len
< cpumask_size())
6425 cpumask_clear(new_mask
);
6426 else if (len
> cpumask_size())
6427 len
= cpumask_size();
6429 return copy_from_user(new_mask
, user_mask_ptr
, len
) ? -EFAULT
: 0;
6433 * sys_sched_setaffinity - set the cpu affinity of a process
6434 * @pid: pid of the process
6435 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6436 * @user_mask_ptr: user-space pointer to the new cpu mask
6438 SYSCALL_DEFINE3(sched_setaffinity
, pid_t
, pid
, unsigned int, len
,
6439 unsigned long __user
*, user_mask_ptr
)
6441 cpumask_var_t new_mask
;
6444 if (!alloc_cpumask_var(&new_mask
, GFP_KERNEL
))
6447 retval
= get_user_cpu_mask(user_mask_ptr
, len
, new_mask
);
6449 retval
= sched_setaffinity(pid
, new_mask
);
6450 free_cpumask_var(new_mask
);
6454 long sched_getaffinity(pid_t pid
, struct cpumask
*mask
)
6456 struct task_struct
*p
;
6460 read_lock(&tasklist_lock
);
6463 p
= find_process_by_pid(pid
);
6467 retval
= security_task_getscheduler(p
);
6471 cpumask_and(mask
, &p
->cpus_allowed
, cpu_online_mask
);
6474 read_unlock(&tasklist_lock
);
6481 * sys_sched_getaffinity - get the cpu affinity of a process
6482 * @pid: pid of the process
6483 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6484 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6486 SYSCALL_DEFINE3(sched_getaffinity
, pid_t
, pid
, unsigned int, len
,
6487 unsigned long __user
*, user_mask_ptr
)
6492 if (len
< cpumask_size())
6495 if (!alloc_cpumask_var(&mask
, GFP_KERNEL
))
6498 ret
= sched_getaffinity(pid
, mask
);
6500 if (copy_to_user(user_mask_ptr
, mask
, cpumask_size()))
6503 ret
= cpumask_size();
6505 free_cpumask_var(mask
);
6511 * sys_sched_yield - yield the current processor to other threads.
6513 * This function yields the current CPU to other tasks. If there are no
6514 * other threads running on this CPU then this function will return.
6516 SYSCALL_DEFINE0(sched_yield
)
6518 struct rq
*rq
= this_rq_lock();
6520 schedstat_inc(rq
, yld_count
);
6521 current
->sched_class
->yield_task(rq
);
6524 * Since we are going to call schedule() anyway, there's
6525 * no need to preempt or enable interrupts:
6527 __release(rq
->lock
);
6528 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
6529 _raw_spin_unlock(&rq
->lock
);
6530 preempt_enable_no_resched();
6537 static void __cond_resched(void)
6539 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6540 __might_sleep(__FILE__
, __LINE__
);
6543 * The BKS might be reacquired before we have dropped
6544 * PREEMPT_ACTIVE, which could trigger a second
6545 * cond_resched() call.
6548 add_preempt_count(PREEMPT_ACTIVE
);
6550 sub_preempt_count(PREEMPT_ACTIVE
);
6551 } while (need_resched());
6554 int __sched
_cond_resched(void)
6556 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE
) &&
6557 system_state
== SYSTEM_RUNNING
) {
6563 EXPORT_SYMBOL(_cond_resched
);
6566 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
6567 * call schedule, and on return reacquire the lock.
6569 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
6570 * operations here to prevent schedule() from being called twice (once via
6571 * spin_unlock(), once by hand).
6573 int cond_resched_lock(spinlock_t
*lock
)
6575 int resched
= need_resched() && system_state
== SYSTEM_RUNNING
;
6578 if (spin_needbreak(lock
) || resched
) {
6580 if (resched
&& need_resched())
6589 EXPORT_SYMBOL(cond_resched_lock
);
6591 int __sched
cond_resched_softirq(void)
6593 BUG_ON(!in_softirq());
6595 if (need_resched() && system_state
== SYSTEM_RUNNING
) {
6603 EXPORT_SYMBOL(cond_resched_softirq
);
6606 * yield - yield the current processor to other threads.
6608 * This is a shortcut for kernel-space yielding - it marks the
6609 * thread runnable and calls sys_sched_yield().
6611 void __sched
yield(void)
6613 set_current_state(TASK_RUNNING
);
6616 EXPORT_SYMBOL(yield
);
6619 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
6620 * that process accounting knows that this is a task in IO wait state.
6622 * But don't do that if it is a deliberate, throttling IO wait (this task
6623 * has set its backing_dev_info: the queue against which it should throttle)
6625 void __sched
io_schedule(void)
6627 struct rq
*rq
= &__raw_get_cpu_var(runqueues
);
6629 delayacct_blkio_start();
6630 atomic_inc(&rq
->nr_iowait
);
6632 atomic_dec(&rq
->nr_iowait
);
6633 delayacct_blkio_end();
6635 EXPORT_SYMBOL(io_schedule
);
6637 long __sched
io_schedule_timeout(long timeout
)
6639 struct rq
*rq
= &__raw_get_cpu_var(runqueues
);
6642 delayacct_blkio_start();
6643 atomic_inc(&rq
->nr_iowait
);
6644 ret
= schedule_timeout(timeout
);
6645 atomic_dec(&rq
->nr_iowait
);
6646 delayacct_blkio_end();
6651 * sys_sched_get_priority_max - return maximum RT priority.
6652 * @policy: scheduling class.
6654 * this syscall returns the maximum rt_priority that can be used
6655 * by a given scheduling class.
6657 SYSCALL_DEFINE1(sched_get_priority_max
, int, policy
)
6664 ret
= MAX_USER_RT_PRIO
-1;
6676 * sys_sched_get_priority_min - return minimum RT priority.
6677 * @policy: scheduling class.
6679 * this syscall returns the minimum rt_priority that can be used
6680 * by a given scheduling class.
6682 SYSCALL_DEFINE1(sched_get_priority_min
, int, policy
)
6700 * sys_sched_rr_get_interval - return the default timeslice of a process.
6701 * @pid: pid of the process.
6702 * @interval: userspace pointer to the timeslice value.
6704 * this syscall writes the default timeslice value of a given process
6705 * into the user-space timespec buffer. A value of '0' means infinity.
6707 SYSCALL_DEFINE2(sched_rr_get_interval
, pid_t
, pid
,
6708 struct timespec __user
*, interval
)
6710 struct task_struct
*p
;
6711 unsigned int time_slice
;
6719 read_lock(&tasklist_lock
);
6720 p
= find_process_by_pid(pid
);
6724 retval
= security_task_getscheduler(p
);
6729 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
6730 * tasks that are on an otherwise idle runqueue:
6733 if (p
->policy
== SCHED_RR
) {
6734 time_slice
= DEF_TIMESLICE
;
6735 } else if (p
->policy
!= SCHED_FIFO
) {
6736 struct sched_entity
*se
= &p
->se
;
6737 unsigned long flags
;
6740 rq
= task_rq_lock(p
, &flags
);
6741 if (rq
->cfs
.load
.weight
)
6742 time_slice
= NS_TO_JIFFIES(sched_slice(&rq
->cfs
, se
));
6743 task_rq_unlock(rq
, &flags
);
6745 read_unlock(&tasklist_lock
);
6746 jiffies_to_timespec(time_slice
, &t
);
6747 retval
= copy_to_user(interval
, &t
, sizeof(t
)) ? -EFAULT
: 0;
6751 read_unlock(&tasklist_lock
);
6755 static const char stat_nam
[] = TASK_STATE_TO_CHAR_STR
;
6757 void sched_show_task(struct task_struct
*p
)
6759 unsigned long free
= 0;
6762 state
= p
->state
? __ffs(p
->state
) + 1 : 0;
6763 printk(KERN_INFO
"%-13.13s %c", p
->comm
,
6764 state
< sizeof(stat_nam
) - 1 ? stat_nam
[state
] : '?');
6765 #if BITS_PER_LONG == 32
6766 if (state
== TASK_RUNNING
)
6767 printk(KERN_CONT
" running ");
6769 printk(KERN_CONT
" %08lx ", thread_saved_pc(p
));
6771 if (state
== TASK_RUNNING
)
6772 printk(KERN_CONT
" running task ");
6774 printk(KERN_CONT
" %016lx ", thread_saved_pc(p
));
6776 #ifdef CONFIG_DEBUG_STACK_USAGE
6777 free
= stack_not_used(p
);
6779 printk(KERN_CONT
"%5lu %5d %6d 0x%08lx\n", free
,
6780 task_pid_nr(p
), task_pid_nr(p
->real_parent
),
6781 (unsigned long)task_thread_info(p
)->flags
);
6783 show_stack(p
, NULL
);
6786 void show_state_filter(unsigned long state_filter
)
6788 struct task_struct
*g
, *p
;
6790 #if BITS_PER_LONG == 32
6792 " task PC stack pid father\n");
6795 " task PC stack pid father\n");
6797 read_lock(&tasklist_lock
);
6798 do_each_thread(g
, p
) {
6800 * reset the NMI-timeout, listing all files on a slow
6801 * console might take alot of time:
6803 touch_nmi_watchdog();
6804 if (!state_filter
|| (p
->state
& state_filter
))
6806 } while_each_thread(g
, p
);
6808 touch_all_softlockup_watchdogs();
6810 #ifdef CONFIG_SCHED_DEBUG
6811 sysrq_sched_debug_show();
6813 read_unlock(&tasklist_lock
);
6815 * Only show locks if all tasks are dumped:
6817 if (state_filter
== -1)
6818 debug_show_all_locks();
6821 void __cpuinit
init_idle_bootup_task(struct task_struct
*idle
)
6823 idle
->sched_class
= &idle_sched_class
;
6827 * init_idle - set up an idle thread for a given CPU
6828 * @idle: task in question
6829 * @cpu: cpu the idle task belongs to
6831 * NOTE: this function does not set the idle thread's NEED_RESCHED
6832 * flag, to make booting more robust.
6834 void __cpuinit
init_idle(struct task_struct
*idle
, int cpu
)
6836 struct rq
*rq
= cpu_rq(cpu
);
6837 unsigned long flags
;
6839 spin_lock_irqsave(&rq
->lock
, flags
);
6842 idle
->se
.exec_start
= sched_clock();
6844 idle
->prio
= idle
->normal_prio
= MAX_PRIO
;
6845 cpumask_copy(&idle
->cpus_allowed
, cpumask_of(cpu
));
6846 __set_task_cpu(idle
, cpu
);
6848 rq
->curr
= rq
->idle
= idle
;
6849 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6852 spin_unlock_irqrestore(&rq
->lock
, flags
);
6854 /* Set the preempt count _outside_ the spinlocks! */
6855 #if defined(CONFIG_PREEMPT)
6856 task_thread_info(idle
)->preempt_count
= (idle
->lock_depth
>= 0);
6858 task_thread_info(idle
)->preempt_count
= 0;
6861 * The idle tasks have their own, simple scheduling class:
6863 idle
->sched_class
= &idle_sched_class
;
6864 ftrace_graph_init_task(idle
);
6868 * In a system that switches off the HZ timer nohz_cpu_mask
6869 * indicates which cpus entered this state. This is used
6870 * in the rcu update to wait only for active cpus. For system
6871 * which do not switch off the HZ timer nohz_cpu_mask should
6872 * always be CPU_BITS_NONE.
6874 cpumask_var_t nohz_cpu_mask
;
6877 * Increase the granularity value when there are more CPUs,
6878 * because with more CPUs the 'effective latency' as visible
6879 * to users decreases. But the relationship is not linear,
6880 * so pick a second-best guess by going with the log2 of the
6883 * This idea comes from the SD scheduler of Con Kolivas:
6885 static inline void sched_init_granularity(void)
6887 unsigned int factor
= 1 + ilog2(num_online_cpus());
6888 const unsigned long limit
= 200000000;
6890 sysctl_sched_min_granularity
*= factor
;
6891 if (sysctl_sched_min_granularity
> limit
)
6892 sysctl_sched_min_granularity
= limit
;
6894 sysctl_sched_latency
*= factor
;
6895 if (sysctl_sched_latency
> limit
)
6896 sysctl_sched_latency
= limit
;
6898 sysctl_sched_wakeup_granularity
*= factor
;
6900 sysctl_sched_shares_ratelimit
*= factor
;
6905 * This is how migration works:
6907 * 1) we queue a struct migration_req structure in the source CPU's
6908 * runqueue and wake up that CPU's migration thread.
6909 * 2) we down() the locked semaphore => thread blocks.
6910 * 3) migration thread wakes up (implicitly it forces the migrated
6911 * thread off the CPU)
6912 * 4) it gets the migration request and checks whether the migrated
6913 * task is still in the wrong runqueue.
6914 * 5) if it's in the wrong runqueue then the migration thread removes
6915 * it and puts it into the right queue.
6916 * 6) migration thread up()s the semaphore.
6917 * 7) we wake up and the migration is done.
6921 * Change a given task's CPU affinity. Migrate the thread to a
6922 * proper CPU and schedule it away if the CPU it's executing on
6923 * is removed from the allowed bitmask.
6925 * NOTE: the caller must have a valid reference to the task, the
6926 * task must not exit() & deallocate itself prematurely. The
6927 * call is not atomic; no spinlocks may be held.
6929 int set_cpus_allowed_ptr(struct task_struct
*p
, const struct cpumask
*new_mask
)
6931 struct migration_req req
;
6932 unsigned long flags
;
6936 rq
= task_rq_lock(p
, &flags
);
6937 if (!cpumask_intersects(new_mask
, cpu_online_mask
)) {
6942 if (unlikely((p
->flags
& PF_THREAD_BOUND
) && p
!= current
&&
6943 !cpumask_equal(&p
->cpus_allowed
, new_mask
))) {
6948 if (p
->sched_class
->set_cpus_allowed
)
6949 p
->sched_class
->set_cpus_allowed(p
, new_mask
);
6951 cpumask_copy(&p
->cpus_allowed
, new_mask
);
6952 p
->rt
.nr_cpus_allowed
= cpumask_weight(new_mask
);
6955 /* Can the task run on the task's current CPU? If so, we're done */
6956 if (cpumask_test_cpu(task_cpu(p
), new_mask
))
6959 if (migrate_task(p
, cpumask_any_and(cpu_online_mask
, new_mask
), &req
)) {
6960 /* Need help from migration thread: drop lock and wait. */
6961 task_rq_unlock(rq
, &flags
);
6962 wake_up_process(rq
->migration_thread
);
6963 wait_for_completion(&req
.done
);
6964 tlb_migrate_finish(p
->mm
);
6968 task_rq_unlock(rq
, &flags
);
6972 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr
);
6975 * Move (not current) task off this cpu, onto dest cpu. We're doing
6976 * this because either it can't run here any more (set_cpus_allowed()
6977 * away from this CPU, or CPU going down), or because we're
6978 * attempting to rebalance this task on exec (sched_exec).
6980 * So we race with normal scheduler movements, but that's OK, as long
6981 * as the task is no longer on this CPU.
6983 * Returns non-zero if task was successfully migrated.
6985 static int __migrate_task(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
6987 struct rq
*rq_dest
, *rq_src
;
6990 if (unlikely(!cpu_active(dest_cpu
)))
6993 rq_src
= cpu_rq(src_cpu
);
6994 rq_dest
= cpu_rq(dest_cpu
);
6996 double_rq_lock(rq_src
, rq_dest
);
6997 /* Already moved. */
6998 if (task_cpu(p
) != src_cpu
)
7000 /* Affinity changed (again). */
7001 if (!cpumask_test_cpu(dest_cpu
, &p
->cpus_allowed
))
7004 on_rq
= p
->se
.on_rq
;
7006 deactivate_task(rq_src
, p
, 0);
7008 set_task_cpu(p
, dest_cpu
);
7010 activate_task(rq_dest
, p
, 0);
7011 check_preempt_curr(rq_dest
, p
, 0);
7016 double_rq_unlock(rq_src
, rq_dest
);
7021 * migration_thread - this is a highprio system thread that performs
7022 * thread migration by bumping thread off CPU then 'pushing' onto
7025 static int migration_thread(void *data
)
7027 int cpu
= (long)data
;
7031 BUG_ON(rq
->migration_thread
!= current
);
7033 set_current_state(TASK_INTERRUPTIBLE
);
7034 while (!kthread_should_stop()) {
7035 struct migration_req
*req
;
7036 struct list_head
*head
;
7038 spin_lock_irq(&rq
->lock
);
7040 if (cpu_is_offline(cpu
)) {
7041 spin_unlock_irq(&rq
->lock
);
7045 if (rq
->active_balance
) {
7046 active_load_balance(rq
, cpu
);
7047 rq
->active_balance
= 0;
7050 head
= &rq
->migration_queue
;
7052 if (list_empty(head
)) {
7053 spin_unlock_irq(&rq
->lock
);
7055 set_current_state(TASK_INTERRUPTIBLE
);
7058 req
= list_entry(head
->next
, struct migration_req
, list
);
7059 list_del_init(head
->next
);
7061 spin_unlock(&rq
->lock
);
7062 __migrate_task(req
->task
, cpu
, req
->dest_cpu
);
7065 complete(&req
->done
);
7067 __set_current_state(TASK_RUNNING
);
7071 /* Wait for kthread_stop */
7072 set_current_state(TASK_INTERRUPTIBLE
);
7073 while (!kthread_should_stop()) {
7075 set_current_state(TASK_INTERRUPTIBLE
);
7077 __set_current_state(TASK_RUNNING
);
7081 #ifdef CONFIG_HOTPLUG_CPU
7083 static int __migrate_task_irq(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
7087 local_irq_disable();
7088 ret
= __migrate_task(p
, src_cpu
, dest_cpu
);
7094 * Figure out where task on dead CPU should go, use force if necessary.
7096 static void move_task_off_dead_cpu(int dead_cpu
, struct task_struct
*p
)
7099 const struct cpumask
*nodemask
= cpumask_of_node(cpu_to_node(dead_cpu
));
7102 /* Look for allowed, online CPU in same node. */
7103 for_each_cpu_and(dest_cpu
, nodemask
, cpu_online_mask
)
7104 if (cpumask_test_cpu(dest_cpu
, &p
->cpus_allowed
))
7107 /* Any allowed, online CPU? */
7108 dest_cpu
= cpumask_any_and(&p
->cpus_allowed
, cpu_online_mask
);
7109 if (dest_cpu
< nr_cpu_ids
)
7112 /* No more Mr. Nice Guy. */
7113 if (dest_cpu
>= nr_cpu_ids
) {
7114 cpuset_cpus_allowed_locked(p
, &p
->cpus_allowed
);
7115 dest_cpu
= cpumask_any_and(cpu_online_mask
, &p
->cpus_allowed
);
7118 * Don't tell them about moving exiting tasks or
7119 * kernel threads (both mm NULL), since they never
7122 if (p
->mm
&& printk_ratelimit()) {
7123 printk(KERN_INFO
"process %d (%s) no "
7124 "longer affine to cpu%d\n",
7125 task_pid_nr(p
), p
->comm
, dead_cpu
);
7130 /* It can have affinity changed while we were choosing. */
7131 if (unlikely(!__migrate_task_irq(p
, dead_cpu
, dest_cpu
)))
7136 * While a dead CPU has no uninterruptible tasks queued at this point,
7137 * it might still have a nonzero ->nr_uninterruptible counter, because
7138 * for performance reasons the counter is not stricly tracking tasks to
7139 * their home CPUs. So we just add the counter to another CPU's counter,
7140 * to keep the global sum constant after CPU-down:
7142 static void migrate_nr_uninterruptible(struct rq
*rq_src
)
7144 struct rq
*rq_dest
= cpu_rq(cpumask_any(cpu_online_mask
));
7145 unsigned long flags
;
7147 local_irq_save(flags
);
7148 double_rq_lock(rq_src
, rq_dest
);
7149 rq_dest
->nr_uninterruptible
+= rq_src
->nr_uninterruptible
;
7150 rq_src
->nr_uninterruptible
= 0;
7151 double_rq_unlock(rq_src
, rq_dest
);
7152 local_irq_restore(flags
);
7155 /* Run through task list and migrate tasks from the dead cpu. */
7156 static void migrate_live_tasks(int src_cpu
)
7158 struct task_struct
*p
, *t
;
7160 read_lock(&tasklist_lock
);
7162 do_each_thread(t
, p
) {
7166 if (task_cpu(p
) == src_cpu
)
7167 move_task_off_dead_cpu(src_cpu
, p
);
7168 } while_each_thread(t
, p
);
7170 read_unlock(&tasklist_lock
);
7174 * Schedules idle task to be the next runnable task on current CPU.
7175 * It does so by boosting its priority to highest possible.
7176 * Used by CPU offline code.
7178 void sched_idle_next(void)
7180 int this_cpu
= smp_processor_id();
7181 struct rq
*rq
= cpu_rq(this_cpu
);
7182 struct task_struct
*p
= rq
->idle
;
7183 unsigned long flags
;
7185 /* cpu has to be offline */
7186 BUG_ON(cpu_online(this_cpu
));
7189 * Strictly not necessary since rest of the CPUs are stopped by now
7190 * and interrupts disabled on the current cpu.
7192 spin_lock_irqsave(&rq
->lock
, flags
);
7194 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
7196 update_rq_clock(rq
);
7197 activate_task(rq
, p
, 0);
7199 spin_unlock_irqrestore(&rq
->lock
, flags
);
7203 * Ensures that the idle task is using init_mm right before its cpu goes
7206 void idle_task_exit(void)
7208 struct mm_struct
*mm
= current
->active_mm
;
7210 BUG_ON(cpu_online(smp_processor_id()));
7213 switch_mm(mm
, &init_mm
, current
);
7217 /* called under rq->lock with disabled interrupts */
7218 static void migrate_dead(unsigned int dead_cpu
, struct task_struct
*p
)
7220 struct rq
*rq
= cpu_rq(dead_cpu
);
7222 /* Must be exiting, otherwise would be on tasklist. */
7223 BUG_ON(!p
->exit_state
);
7225 /* Cannot have done final schedule yet: would have vanished. */
7226 BUG_ON(p
->state
== TASK_DEAD
);
7231 * Drop lock around migration; if someone else moves it,
7232 * that's OK. No task can be added to this CPU, so iteration is
7235 spin_unlock_irq(&rq
->lock
);
7236 move_task_off_dead_cpu(dead_cpu
, p
);
7237 spin_lock_irq(&rq
->lock
);
7242 /* release_task() removes task from tasklist, so we won't find dead tasks. */
7243 static void migrate_dead_tasks(unsigned int dead_cpu
)
7245 struct rq
*rq
= cpu_rq(dead_cpu
);
7246 struct task_struct
*next
;
7249 if (!rq
->nr_running
)
7251 update_rq_clock(rq
);
7252 next
= pick_next_task(rq
);
7255 next
->sched_class
->put_prev_task(rq
, next
);
7256 migrate_dead(dead_cpu
, next
);
7262 * remove the tasks which were accounted by rq from calc_load_tasks.
7264 static void calc_global_load_remove(struct rq
*rq
)
7266 atomic_long_sub(rq
->calc_load_active
, &calc_load_tasks
);
7268 #endif /* CONFIG_HOTPLUG_CPU */
7270 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7272 static struct ctl_table sd_ctl_dir
[] = {
7274 .procname
= "sched_domain",
7280 static struct ctl_table sd_ctl_root
[] = {
7282 .ctl_name
= CTL_KERN
,
7283 .procname
= "kernel",
7285 .child
= sd_ctl_dir
,
7290 static struct ctl_table
*sd_alloc_ctl_entry(int n
)
7292 struct ctl_table
*entry
=
7293 kcalloc(n
, sizeof(struct ctl_table
), GFP_KERNEL
);
7298 static void sd_free_ctl_entry(struct ctl_table
**tablep
)
7300 struct ctl_table
*entry
;
7303 * In the intermediate directories, both the child directory and
7304 * procname are dynamically allocated and could fail but the mode
7305 * will always be set. In the lowest directory the names are
7306 * static strings and all have proc handlers.
7308 for (entry
= *tablep
; entry
->mode
; entry
++) {
7310 sd_free_ctl_entry(&entry
->child
);
7311 if (entry
->proc_handler
== NULL
)
7312 kfree(entry
->procname
);
7320 set_table_entry(struct ctl_table
*entry
,
7321 const char *procname
, void *data
, int maxlen
,
7322 mode_t mode
, proc_handler
*proc_handler
)
7324 entry
->procname
= procname
;
7326 entry
->maxlen
= maxlen
;
7328 entry
->proc_handler
= proc_handler
;
7331 static struct ctl_table
*
7332 sd_alloc_ctl_domain_table(struct sched_domain
*sd
)
7334 struct ctl_table
*table
= sd_alloc_ctl_entry(13);
7339 set_table_entry(&table
[0], "min_interval", &sd
->min_interval
,
7340 sizeof(long), 0644, proc_doulongvec_minmax
);
7341 set_table_entry(&table
[1], "max_interval", &sd
->max_interval
,
7342 sizeof(long), 0644, proc_doulongvec_minmax
);
7343 set_table_entry(&table
[2], "busy_idx", &sd
->busy_idx
,
7344 sizeof(int), 0644, proc_dointvec_minmax
);
7345 set_table_entry(&table
[3], "idle_idx", &sd
->idle_idx
,
7346 sizeof(int), 0644, proc_dointvec_minmax
);
7347 set_table_entry(&table
[4], "newidle_idx", &sd
->newidle_idx
,
7348 sizeof(int), 0644, proc_dointvec_minmax
);
7349 set_table_entry(&table
[5], "wake_idx", &sd
->wake_idx
,
7350 sizeof(int), 0644, proc_dointvec_minmax
);
7351 set_table_entry(&table
[6], "forkexec_idx", &sd
->forkexec_idx
,
7352 sizeof(int), 0644, proc_dointvec_minmax
);
7353 set_table_entry(&table
[7], "busy_factor", &sd
->busy_factor
,
7354 sizeof(int), 0644, proc_dointvec_minmax
);
7355 set_table_entry(&table
[8], "imbalance_pct", &sd
->imbalance_pct
,
7356 sizeof(int), 0644, proc_dointvec_minmax
);
7357 set_table_entry(&table
[9], "cache_nice_tries",
7358 &sd
->cache_nice_tries
,
7359 sizeof(int), 0644, proc_dointvec_minmax
);
7360 set_table_entry(&table
[10], "flags", &sd
->flags
,
7361 sizeof(int), 0644, proc_dointvec_minmax
);
7362 set_table_entry(&table
[11], "name", sd
->name
,
7363 CORENAME_MAX_SIZE
, 0444, proc_dostring
);
7364 /* &table[12] is terminator */
7369 static ctl_table
*sd_alloc_ctl_cpu_table(int cpu
)
7371 struct ctl_table
*entry
, *table
;
7372 struct sched_domain
*sd
;
7373 int domain_num
= 0, i
;
7376 for_each_domain(cpu
, sd
)
7378 entry
= table
= sd_alloc_ctl_entry(domain_num
+ 1);
7383 for_each_domain(cpu
, sd
) {
7384 snprintf(buf
, 32, "domain%d", i
);
7385 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
7387 entry
->child
= sd_alloc_ctl_domain_table(sd
);
7394 static struct ctl_table_header
*sd_sysctl_header
;
7395 static void register_sched_domain_sysctl(void)
7397 int i
, cpu_num
= num_online_cpus();
7398 struct ctl_table
*entry
= sd_alloc_ctl_entry(cpu_num
+ 1);
7401 WARN_ON(sd_ctl_dir
[0].child
);
7402 sd_ctl_dir
[0].child
= entry
;
7407 for_each_online_cpu(i
) {
7408 snprintf(buf
, 32, "cpu%d", i
);
7409 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
7411 entry
->child
= sd_alloc_ctl_cpu_table(i
);
7415 WARN_ON(sd_sysctl_header
);
7416 sd_sysctl_header
= register_sysctl_table(sd_ctl_root
);
7419 /* may be called multiple times per register */
7420 static void unregister_sched_domain_sysctl(void)
7422 if (sd_sysctl_header
)
7423 unregister_sysctl_table(sd_sysctl_header
);
7424 sd_sysctl_header
= NULL
;
7425 if (sd_ctl_dir
[0].child
)
7426 sd_free_ctl_entry(&sd_ctl_dir
[0].child
);
7429 static void register_sched_domain_sysctl(void)
7432 static void unregister_sched_domain_sysctl(void)
7437 static void set_rq_online(struct rq
*rq
)
7440 const struct sched_class
*class;
7442 cpumask_set_cpu(rq
->cpu
, rq
->rd
->online
);
7445 for_each_class(class) {
7446 if (class->rq_online
)
7447 class->rq_online(rq
);
7452 static void set_rq_offline(struct rq
*rq
)
7455 const struct sched_class
*class;
7457 for_each_class(class) {
7458 if (class->rq_offline
)
7459 class->rq_offline(rq
);
7462 cpumask_clear_cpu(rq
->cpu
, rq
->rd
->online
);
7468 * migration_call - callback that gets triggered when a CPU is added.
7469 * Here we can start up the necessary migration thread for the new CPU.
7471 static int __cpuinit
7472 migration_call(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
7474 struct task_struct
*p
;
7475 int cpu
= (long)hcpu
;
7476 unsigned long flags
;
7481 case CPU_UP_PREPARE
:
7482 case CPU_UP_PREPARE_FROZEN
:
7483 p
= kthread_create(migration_thread
, hcpu
, "migration/%d", cpu
);
7486 kthread_bind(p
, cpu
);
7487 /* Must be high prio: stop_machine expects to yield to it. */
7488 rq
= task_rq_lock(p
, &flags
);
7489 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
7490 task_rq_unlock(rq
, &flags
);
7491 cpu_rq(cpu
)->migration_thread
= p
;
7495 case CPU_ONLINE_FROZEN
:
7496 /* Strictly unnecessary, as first user will wake it. */
7497 wake_up_process(cpu_rq(cpu
)->migration_thread
);
7499 /* Update our root-domain */
7501 spin_lock_irqsave(&rq
->lock
, flags
);
7502 rq
->calc_load_update
= calc_load_update
;
7503 rq
->calc_load_active
= 0;
7505 BUG_ON(!cpumask_test_cpu(cpu
, rq
->rd
->span
));
7509 spin_unlock_irqrestore(&rq
->lock
, flags
);
7512 #ifdef CONFIG_HOTPLUG_CPU
7513 case CPU_UP_CANCELED
:
7514 case CPU_UP_CANCELED_FROZEN
:
7515 if (!cpu_rq(cpu
)->migration_thread
)
7517 /* Unbind it from offline cpu so it can run. Fall thru. */
7518 kthread_bind(cpu_rq(cpu
)->migration_thread
,
7519 cpumask_any(cpu_online_mask
));
7520 kthread_stop(cpu_rq(cpu
)->migration_thread
);
7521 cpu_rq(cpu
)->migration_thread
= NULL
;
7525 case CPU_DEAD_FROZEN
:
7526 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
7527 migrate_live_tasks(cpu
);
7529 kthread_stop(rq
->migration_thread
);
7530 rq
->migration_thread
= NULL
;
7531 /* Idle task back to normal (off runqueue, low prio) */
7532 spin_lock_irq(&rq
->lock
);
7533 update_rq_clock(rq
);
7534 deactivate_task(rq
, rq
->idle
, 0);
7535 rq
->idle
->static_prio
= MAX_PRIO
;
7536 __setscheduler(rq
, rq
->idle
, SCHED_NORMAL
, 0);
7537 rq
->idle
->sched_class
= &idle_sched_class
;
7538 migrate_dead_tasks(cpu
);
7539 spin_unlock_irq(&rq
->lock
);
7541 migrate_nr_uninterruptible(rq
);
7542 BUG_ON(rq
->nr_running
!= 0);
7543 calc_global_load_remove(rq
);
7545 * No need to migrate the tasks: it was best-effort if
7546 * they didn't take sched_hotcpu_mutex. Just wake up
7549 spin_lock_irq(&rq
->lock
);
7550 while (!list_empty(&rq
->migration_queue
)) {
7551 struct migration_req
*req
;
7553 req
= list_entry(rq
->migration_queue
.next
,
7554 struct migration_req
, list
);
7555 list_del_init(&req
->list
);
7556 spin_unlock_irq(&rq
->lock
);
7557 complete(&req
->done
);
7558 spin_lock_irq(&rq
->lock
);
7560 spin_unlock_irq(&rq
->lock
);
7564 case CPU_DYING_FROZEN
:
7565 /* Update our root-domain */
7567 spin_lock_irqsave(&rq
->lock
, flags
);
7569 BUG_ON(!cpumask_test_cpu(cpu
, rq
->rd
->span
));
7572 spin_unlock_irqrestore(&rq
->lock
, flags
);
7580 * Register at high priority so that task migration (migrate_all_tasks)
7581 * happens before everything else. This has to be lower priority than
7582 * the notifier in the perf_counter subsystem, though.
7584 static struct notifier_block __cpuinitdata migration_notifier
= {
7585 .notifier_call
= migration_call
,
7589 static int __init
migration_init(void)
7591 void *cpu
= (void *)(long)smp_processor_id();
7594 /* Start one for the boot CPU: */
7595 err
= migration_call(&migration_notifier
, CPU_UP_PREPARE
, cpu
);
7596 BUG_ON(err
== NOTIFY_BAD
);
7597 migration_call(&migration_notifier
, CPU_ONLINE
, cpu
);
7598 register_cpu_notifier(&migration_notifier
);
7602 early_initcall(migration_init
);
7607 #ifdef CONFIG_SCHED_DEBUG
7609 static int sched_domain_debug_one(struct sched_domain
*sd
, int cpu
, int level
,
7610 struct cpumask
*groupmask
)
7612 struct sched_group
*group
= sd
->groups
;
7615 cpulist_scnprintf(str
, sizeof(str
), sched_domain_span(sd
));
7616 cpumask_clear(groupmask
);
7618 printk(KERN_DEBUG
"%*s domain %d: ", level
, "", level
);
7620 if (!(sd
->flags
& SD_LOAD_BALANCE
)) {
7621 printk("does not load-balance\n");
7623 printk(KERN_ERR
"ERROR: !SD_LOAD_BALANCE domain"
7628 printk(KERN_CONT
"span %s level %s\n", str
, sd
->name
);
7630 if (!cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
7631 printk(KERN_ERR
"ERROR: domain->span does not contain "
7634 if (!cpumask_test_cpu(cpu
, sched_group_cpus(group
))) {
7635 printk(KERN_ERR
"ERROR: domain->groups does not contain"
7639 printk(KERN_DEBUG
"%*s groups:", level
+ 1, "");
7643 printk(KERN_ERR
"ERROR: group is NULL\n");
7647 if (!group
->__cpu_power
) {
7648 printk(KERN_CONT
"\n");
7649 printk(KERN_ERR
"ERROR: domain->cpu_power not "
7654 if (!cpumask_weight(sched_group_cpus(group
))) {
7655 printk(KERN_CONT
"\n");
7656 printk(KERN_ERR
"ERROR: empty group\n");
7660 if (cpumask_intersects(groupmask
, sched_group_cpus(group
))) {
7661 printk(KERN_CONT
"\n");
7662 printk(KERN_ERR
"ERROR: repeated CPUs\n");
7666 cpumask_or(groupmask
, groupmask
, sched_group_cpus(group
));
7668 cpulist_scnprintf(str
, sizeof(str
), sched_group_cpus(group
));
7670 printk(KERN_CONT
" %s", str
);
7671 if (group
->__cpu_power
!= SCHED_LOAD_SCALE
) {
7672 printk(KERN_CONT
" (__cpu_power = %d)",
7673 group
->__cpu_power
);
7676 group
= group
->next
;
7677 } while (group
!= sd
->groups
);
7678 printk(KERN_CONT
"\n");
7680 if (!cpumask_equal(sched_domain_span(sd
), groupmask
))
7681 printk(KERN_ERR
"ERROR: groups don't span domain->span\n");
7684 !cpumask_subset(groupmask
, sched_domain_span(sd
->parent
)))
7685 printk(KERN_ERR
"ERROR: parent span is not a superset "
7686 "of domain->span\n");
7690 static void sched_domain_debug(struct sched_domain
*sd
, int cpu
)
7692 cpumask_var_t groupmask
;
7696 printk(KERN_DEBUG
"CPU%d attaching NULL sched-domain.\n", cpu
);
7700 printk(KERN_DEBUG
"CPU%d attaching sched-domain:\n", cpu
);
7702 if (!alloc_cpumask_var(&groupmask
, GFP_KERNEL
)) {
7703 printk(KERN_DEBUG
"Cannot load-balance (out of memory)\n");
7708 if (sched_domain_debug_one(sd
, cpu
, level
, groupmask
))
7715 free_cpumask_var(groupmask
);
7717 #else /* !CONFIG_SCHED_DEBUG */
7718 # define sched_domain_debug(sd, cpu) do { } while (0)
7719 #endif /* CONFIG_SCHED_DEBUG */
7721 static int sd_degenerate(struct sched_domain
*sd
)
7723 if (cpumask_weight(sched_domain_span(sd
)) == 1)
7726 /* Following flags need at least 2 groups */
7727 if (sd
->flags
& (SD_LOAD_BALANCE
|
7728 SD_BALANCE_NEWIDLE
|
7732 SD_SHARE_PKG_RESOURCES
)) {
7733 if (sd
->groups
!= sd
->groups
->next
)
7737 /* Following flags don't use groups */
7738 if (sd
->flags
& (SD_WAKE_IDLE
|
7747 sd_parent_degenerate(struct sched_domain
*sd
, struct sched_domain
*parent
)
7749 unsigned long cflags
= sd
->flags
, pflags
= parent
->flags
;
7751 if (sd_degenerate(parent
))
7754 if (!cpumask_equal(sched_domain_span(sd
), sched_domain_span(parent
)))
7757 /* Does parent contain flags not in child? */
7758 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
7759 if (cflags
& SD_WAKE_AFFINE
)
7760 pflags
&= ~SD_WAKE_BALANCE
;
7761 /* Flags needing groups don't count if only 1 group in parent */
7762 if (parent
->groups
== parent
->groups
->next
) {
7763 pflags
&= ~(SD_LOAD_BALANCE
|
7764 SD_BALANCE_NEWIDLE
|
7768 SD_SHARE_PKG_RESOURCES
);
7769 if (nr_node_ids
== 1)
7770 pflags
&= ~SD_SERIALIZE
;
7772 if (~cflags
& pflags
)
7778 static void free_rootdomain(struct root_domain
*rd
)
7780 cpupri_cleanup(&rd
->cpupri
);
7782 free_cpumask_var(rd
->rto_mask
);
7783 free_cpumask_var(rd
->online
);
7784 free_cpumask_var(rd
->span
);
7788 static void rq_attach_root(struct rq
*rq
, struct root_domain
*rd
)
7790 struct root_domain
*old_rd
= NULL
;
7791 unsigned long flags
;
7793 spin_lock_irqsave(&rq
->lock
, flags
);
7798 if (cpumask_test_cpu(rq
->cpu
, old_rd
->online
))
7801 cpumask_clear_cpu(rq
->cpu
, old_rd
->span
);
7804 * If we dont want to free the old_rt yet then
7805 * set old_rd to NULL to skip the freeing later
7808 if (!atomic_dec_and_test(&old_rd
->refcount
))
7812 atomic_inc(&rd
->refcount
);
7815 cpumask_set_cpu(rq
->cpu
, rd
->span
);
7816 if (cpumask_test_cpu(rq
->cpu
, cpu_online_mask
))
7819 spin_unlock_irqrestore(&rq
->lock
, flags
);
7822 free_rootdomain(old_rd
);
7825 static int __init_refok
init_rootdomain(struct root_domain
*rd
, bool bootmem
)
7827 gfp_t gfp
= GFP_KERNEL
;
7829 memset(rd
, 0, sizeof(*rd
));
7834 if (!alloc_cpumask_var(&rd
->span
, gfp
))
7836 if (!alloc_cpumask_var(&rd
->online
, gfp
))
7838 if (!alloc_cpumask_var(&rd
->rto_mask
, gfp
))
7841 if (cpupri_init(&rd
->cpupri
, bootmem
) != 0)
7846 free_cpumask_var(rd
->rto_mask
);
7848 free_cpumask_var(rd
->online
);
7850 free_cpumask_var(rd
->span
);
7855 static void init_defrootdomain(void)
7857 init_rootdomain(&def_root_domain
, true);
7859 atomic_set(&def_root_domain
.refcount
, 1);
7862 static struct root_domain
*alloc_rootdomain(void)
7864 struct root_domain
*rd
;
7866 rd
= kmalloc(sizeof(*rd
), GFP_KERNEL
);
7870 if (init_rootdomain(rd
, false) != 0) {
7879 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
7880 * hold the hotplug lock.
7883 cpu_attach_domain(struct sched_domain
*sd
, struct root_domain
*rd
, int cpu
)
7885 struct rq
*rq
= cpu_rq(cpu
);
7886 struct sched_domain
*tmp
;
7888 /* Remove the sched domains which do not contribute to scheduling. */
7889 for (tmp
= sd
; tmp
; ) {
7890 struct sched_domain
*parent
= tmp
->parent
;
7894 if (sd_parent_degenerate(tmp
, parent
)) {
7895 tmp
->parent
= parent
->parent
;
7897 parent
->parent
->child
= tmp
;
7902 if (sd
&& sd_degenerate(sd
)) {
7908 sched_domain_debug(sd
, cpu
);
7910 rq_attach_root(rq
, rd
);
7911 rcu_assign_pointer(rq
->sd
, sd
);
7914 /* cpus with isolated domains */
7915 static cpumask_var_t cpu_isolated_map
;
7917 /* Setup the mask of cpus configured for isolated domains */
7918 static int __init
isolated_cpu_setup(char *str
)
7920 cpulist_parse(str
, cpu_isolated_map
);
7924 __setup("isolcpus=", isolated_cpu_setup
);
7927 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
7928 * to a function which identifies what group(along with sched group) a CPU
7929 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
7930 * (due to the fact that we keep track of groups covered with a struct cpumask).
7932 * init_sched_build_groups will build a circular linked list of the groups
7933 * covered by the given span, and will set each group's ->cpumask correctly,
7934 * and ->cpu_power to 0.
7937 init_sched_build_groups(const struct cpumask
*span
,
7938 const struct cpumask
*cpu_map
,
7939 int (*group_fn
)(int cpu
, const struct cpumask
*cpu_map
,
7940 struct sched_group
**sg
,
7941 struct cpumask
*tmpmask
),
7942 struct cpumask
*covered
, struct cpumask
*tmpmask
)
7944 struct sched_group
*first
= NULL
, *last
= NULL
;
7947 cpumask_clear(covered
);
7949 for_each_cpu(i
, span
) {
7950 struct sched_group
*sg
;
7951 int group
= group_fn(i
, cpu_map
, &sg
, tmpmask
);
7954 if (cpumask_test_cpu(i
, covered
))
7957 cpumask_clear(sched_group_cpus(sg
));
7958 sg
->__cpu_power
= 0;
7960 for_each_cpu(j
, span
) {
7961 if (group_fn(j
, cpu_map
, NULL
, tmpmask
) != group
)
7964 cpumask_set_cpu(j
, covered
);
7965 cpumask_set_cpu(j
, sched_group_cpus(sg
));
7976 #define SD_NODES_PER_DOMAIN 16
7981 * find_next_best_node - find the next node to include in a sched_domain
7982 * @node: node whose sched_domain we're building
7983 * @used_nodes: nodes already in the sched_domain
7985 * Find the next node to include in a given scheduling domain. Simply
7986 * finds the closest node not already in the @used_nodes map.
7988 * Should use nodemask_t.
7990 static int find_next_best_node(int node
, nodemask_t
*used_nodes
)
7992 int i
, n
, val
, min_val
, best_node
= 0;
7996 for (i
= 0; i
< nr_node_ids
; i
++) {
7997 /* Start at @node */
7998 n
= (node
+ i
) % nr_node_ids
;
8000 if (!nr_cpus_node(n
))
8003 /* Skip already used nodes */
8004 if (node_isset(n
, *used_nodes
))
8007 /* Simple min distance search */
8008 val
= node_distance(node
, n
);
8010 if (val
< min_val
) {
8016 node_set(best_node
, *used_nodes
);
8021 * sched_domain_node_span - get a cpumask for a node's sched_domain
8022 * @node: node whose cpumask we're constructing
8023 * @span: resulting cpumask
8025 * Given a node, construct a good cpumask for its sched_domain to span. It
8026 * should be one that prevents unnecessary balancing, but also spreads tasks
8029 static void sched_domain_node_span(int node
, struct cpumask
*span
)
8031 nodemask_t used_nodes
;
8034 cpumask_clear(span
);
8035 nodes_clear(used_nodes
);
8037 cpumask_or(span
, span
, cpumask_of_node(node
));
8038 node_set(node
, used_nodes
);
8040 for (i
= 1; i
< SD_NODES_PER_DOMAIN
; i
++) {
8041 int next_node
= find_next_best_node(node
, &used_nodes
);
8043 cpumask_or(span
, span
, cpumask_of_node(next_node
));
8046 #endif /* CONFIG_NUMA */
8048 int sched_smt_power_savings
= 0, sched_mc_power_savings
= 0;
8051 * The cpus mask in sched_group and sched_domain hangs off the end.
8053 * ( See the the comments in include/linux/sched.h:struct sched_group
8054 * and struct sched_domain. )
8056 struct static_sched_group
{
8057 struct sched_group sg
;
8058 DECLARE_BITMAP(cpus
, CONFIG_NR_CPUS
);
8061 struct static_sched_domain
{
8062 struct sched_domain sd
;
8063 DECLARE_BITMAP(span
, CONFIG_NR_CPUS
);
8067 * SMT sched-domains:
8069 #ifdef CONFIG_SCHED_SMT
8070 static DEFINE_PER_CPU(struct static_sched_domain
, cpu_domains
);
8071 static DEFINE_PER_CPU(struct static_sched_group
, sched_group_cpus
);
8074 cpu_to_cpu_group(int cpu
, const struct cpumask
*cpu_map
,
8075 struct sched_group
**sg
, struct cpumask
*unused
)
8078 *sg
= &per_cpu(sched_group_cpus
, cpu
).sg
;
8081 #endif /* CONFIG_SCHED_SMT */
8084 * multi-core sched-domains:
8086 #ifdef CONFIG_SCHED_MC
8087 static DEFINE_PER_CPU(struct static_sched_domain
, core_domains
);
8088 static DEFINE_PER_CPU(struct static_sched_group
, sched_group_core
);
8089 #endif /* CONFIG_SCHED_MC */
8091 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
8093 cpu_to_core_group(int cpu
, const struct cpumask
*cpu_map
,
8094 struct sched_group
**sg
, struct cpumask
*mask
)
8098 cpumask_and(mask
, topology_thread_cpumask(cpu
), cpu_map
);
8099 group
= cpumask_first(mask
);
8101 *sg
= &per_cpu(sched_group_core
, group
).sg
;
8104 #elif defined(CONFIG_SCHED_MC)
8106 cpu_to_core_group(int cpu
, const struct cpumask
*cpu_map
,
8107 struct sched_group
**sg
, struct cpumask
*unused
)
8110 *sg
= &per_cpu(sched_group_core
, cpu
).sg
;
8115 static DEFINE_PER_CPU(struct static_sched_domain
, phys_domains
);
8116 static DEFINE_PER_CPU(struct static_sched_group
, sched_group_phys
);
8119 cpu_to_phys_group(int cpu
, const struct cpumask
*cpu_map
,
8120 struct sched_group
**sg
, struct cpumask
*mask
)
8123 #ifdef CONFIG_SCHED_MC
8124 cpumask_and(mask
, cpu_coregroup_mask(cpu
), cpu_map
);
8125 group
= cpumask_first(mask
);
8126 #elif defined(CONFIG_SCHED_SMT)
8127 cpumask_and(mask
, topology_thread_cpumask(cpu
), cpu_map
);
8128 group
= cpumask_first(mask
);
8133 *sg
= &per_cpu(sched_group_phys
, group
).sg
;
8139 * The init_sched_build_groups can't handle what we want to do with node
8140 * groups, so roll our own. Now each node has its own list of groups which
8141 * gets dynamically allocated.
8143 static DEFINE_PER_CPU(struct static_sched_domain
, node_domains
);
8144 static struct sched_group
***sched_group_nodes_bycpu
;
8146 static DEFINE_PER_CPU(struct static_sched_domain
, allnodes_domains
);
8147 static DEFINE_PER_CPU(struct static_sched_group
, sched_group_allnodes
);
8149 static int cpu_to_allnodes_group(int cpu
, const struct cpumask
*cpu_map
,
8150 struct sched_group
**sg
,
8151 struct cpumask
*nodemask
)
8155 cpumask_and(nodemask
, cpumask_of_node(cpu_to_node(cpu
)), cpu_map
);
8156 group
= cpumask_first(nodemask
);
8159 *sg
= &per_cpu(sched_group_allnodes
, group
).sg
;
8163 static void init_numa_sched_groups_power(struct sched_group
*group_head
)
8165 struct sched_group
*sg
= group_head
;
8171 for_each_cpu(j
, sched_group_cpus(sg
)) {
8172 struct sched_domain
*sd
;
8174 sd
= &per_cpu(phys_domains
, j
).sd
;
8175 if (j
!= group_first_cpu(sd
->groups
)) {
8177 * Only add "power" once for each
8183 sg_inc_cpu_power(sg
, sd
->groups
->__cpu_power
);
8186 } while (sg
!= group_head
);
8188 #endif /* CONFIG_NUMA */
8191 /* Free memory allocated for various sched_group structures */
8192 static void free_sched_groups(const struct cpumask
*cpu_map
,
8193 struct cpumask
*nodemask
)
8197 for_each_cpu(cpu
, cpu_map
) {
8198 struct sched_group
**sched_group_nodes
8199 = sched_group_nodes_bycpu
[cpu
];
8201 if (!sched_group_nodes
)
8204 for (i
= 0; i
< nr_node_ids
; i
++) {
8205 struct sched_group
*oldsg
, *sg
= sched_group_nodes
[i
];
8207 cpumask_and(nodemask
, cpumask_of_node(i
), cpu_map
);
8208 if (cpumask_empty(nodemask
))
8218 if (oldsg
!= sched_group_nodes
[i
])
8221 kfree(sched_group_nodes
);
8222 sched_group_nodes_bycpu
[cpu
] = NULL
;
8225 #else /* !CONFIG_NUMA */
8226 static void free_sched_groups(const struct cpumask
*cpu_map
,
8227 struct cpumask
*nodemask
)
8230 #endif /* CONFIG_NUMA */
8233 * Initialize sched groups cpu_power.
8235 * cpu_power indicates the capacity of sched group, which is used while
8236 * distributing the load between different sched groups in a sched domain.
8237 * Typically cpu_power for all the groups in a sched domain will be same unless
8238 * there are asymmetries in the topology. If there are asymmetries, group
8239 * having more cpu_power will pickup more load compared to the group having
8242 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
8243 * the maximum number of tasks a group can handle in the presence of other idle
8244 * or lightly loaded groups in the same sched domain.
8246 static void init_sched_groups_power(int cpu
, struct sched_domain
*sd
)
8248 struct sched_domain
*child
;
8249 struct sched_group
*group
;
8251 WARN_ON(!sd
|| !sd
->groups
);
8253 if (cpu
!= group_first_cpu(sd
->groups
))
8258 sd
->groups
->__cpu_power
= 0;
8261 * For perf policy, if the groups in child domain share resources
8262 * (for example cores sharing some portions of the cache hierarchy
8263 * or SMT), then set this domain groups cpu_power such that each group
8264 * can handle only one task, when there are other idle groups in the
8265 * same sched domain.
8267 if (!child
|| (!(sd
->flags
& SD_POWERSAVINGS_BALANCE
) &&
8269 (SD_SHARE_CPUPOWER
| SD_SHARE_PKG_RESOURCES
)))) {
8270 sg_inc_cpu_power(sd
->groups
, SCHED_LOAD_SCALE
);
8275 * add cpu_power of each child group to this groups cpu_power
8277 group
= child
->groups
;
8279 sg_inc_cpu_power(sd
->groups
, group
->__cpu_power
);
8280 group
= group
->next
;
8281 } while (group
!= child
->groups
);
8285 * Initializers for schedule domains
8286 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8289 #ifdef CONFIG_SCHED_DEBUG
8290 # define SD_INIT_NAME(sd, type) sd->name = #type
8292 # define SD_INIT_NAME(sd, type) do { } while (0)
8295 #define SD_INIT(sd, type) sd_init_##type(sd)
8297 #define SD_INIT_FUNC(type) \
8298 static noinline void sd_init_##type(struct sched_domain *sd) \
8300 memset(sd, 0, sizeof(*sd)); \
8301 *sd = SD_##type##_INIT; \
8302 sd->level = SD_LV_##type; \
8303 SD_INIT_NAME(sd, type); \
8308 SD_INIT_FUNC(ALLNODES
)
8311 #ifdef CONFIG_SCHED_SMT
8312 SD_INIT_FUNC(SIBLING
)
8314 #ifdef CONFIG_SCHED_MC
8318 static int default_relax_domain_level
= -1;
8320 static int __init
setup_relax_domain_level(char *str
)
8324 val
= simple_strtoul(str
, NULL
, 0);
8325 if (val
< SD_LV_MAX
)
8326 default_relax_domain_level
= val
;
8330 __setup("relax_domain_level=", setup_relax_domain_level
);
8332 static void set_domain_attribute(struct sched_domain
*sd
,
8333 struct sched_domain_attr
*attr
)
8337 if (!attr
|| attr
->relax_domain_level
< 0) {
8338 if (default_relax_domain_level
< 0)
8341 request
= default_relax_domain_level
;
8343 request
= attr
->relax_domain_level
;
8344 if (request
< sd
->level
) {
8345 /* turn off idle balance on this domain */
8346 sd
->flags
&= ~(SD_WAKE_IDLE
|SD_BALANCE_NEWIDLE
);
8348 /* turn on idle balance on this domain */
8349 sd
->flags
|= (SD_WAKE_IDLE_FAR
|SD_BALANCE_NEWIDLE
);
8354 * Build sched domains for a given set of cpus and attach the sched domains
8355 * to the individual cpus
8357 static int __build_sched_domains(const struct cpumask
*cpu_map
,
8358 struct sched_domain_attr
*attr
)
8360 int i
, err
= -ENOMEM
;
8361 struct root_domain
*rd
;
8362 cpumask_var_t nodemask
, this_sibling_map
, this_core_map
, send_covered
,
8365 cpumask_var_t domainspan
, covered
, notcovered
;
8366 struct sched_group
**sched_group_nodes
= NULL
;
8367 int sd_allnodes
= 0;
8369 if (!alloc_cpumask_var(&domainspan
, GFP_KERNEL
))
8371 if (!alloc_cpumask_var(&covered
, GFP_KERNEL
))
8372 goto free_domainspan
;
8373 if (!alloc_cpumask_var(¬covered
, GFP_KERNEL
))
8377 if (!alloc_cpumask_var(&nodemask
, GFP_KERNEL
))
8378 goto free_notcovered
;
8379 if (!alloc_cpumask_var(&this_sibling_map
, GFP_KERNEL
))
8381 if (!alloc_cpumask_var(&this_core_map
, GFP_KERNEL
))
8382 goto free_this_sibling_map
;
8383 if (!alloc_cpumask_var(&send_covered
, GFP_KERNEL
))
8384 goto free_this_core_map
;
8385 if (!alloc_cpumask_var(&tmpmask
, GFP_KERNEL
))
8386 goto free_send_covered
;
8390 * Allocate the per-node list of sched groups
8392 sched_group_nodes
= kcalloc(nr_node_ids
, sizeof(struct sched_group
*),
8394 if (!sched_group_nodes
) {
8395 printk(KERN_WARNING
"Can not alloc sched group node list\n");
8400 rd
= alloc_rootdomain();
8402 printk(KERN_WARNING
"Cannot alloc root domain\n");
8403 goto free_sched_groups
;
8407 sched_group_nodes_bycpu
[cpumask_first(cpu_map
)] = sched_group_nodes
;
8411 * Set up domains for cpus specified by the cpu_map.
8413 for_each_cpu(i
, cpu_map
) {
8414 struct sched_domain
*sd
= NULL
, *p
;
8416 cpumask_and(nodemask
, cpumask_of_node(cpu_to_node(i
)), cpu_map
);
8419 if (cpumask_weight(cpu_map
) >
8420 SD_NODES_PER_DOMAIN
*cpumask_weight(nodemask
)) {
8421 sd
= &per_cpu(allnodes_domains
, i
).sd
;
8422 SD_INIT(sd
, ALLNODES
);
8423 set_domain_attribute(sd
, attr
);
8424 cpumask_copy(sched_domain_span(sd
), cpu_map
);
8425 cpu_to_allnodes_group(i
, cpu_map
, &sd
->groups
, tmpmask
);
8431 sd
= &per_cpu(node_domains
, i
).sd
;
8433 set_domain_attribute(sd
, attr
);
8434 sched_domain_node_span(cpu_to_node(i
), sched_domain_span(sd
));
8438 cpumask_and(sched_domain_span(sd
),
8439 sched_domain_span(sd
), cpu_map
);
8443 sd
= &per_cpu(phys_domains
, i
).sd
;
8445 set_domain_attribute(sd
, attr
);
8446 cpumask_copy(sched_domain_span(sd
), nodemask
);
8450 cpu_to_phys_group(i
, cpu_map
, &sd
->groups
, tmpmask
);
8452 #ifdef CONFIG_SCHED_MC
8454 sd
= &per_cpu(core_domains
, i
).sd
;
8456 set_domain_attribute(sd
, attr
);
8457 cpumask_and(sched_domain_span(sd
), cpu_map
,
8458 cpu_coregroup_mask(i
));
8461 cpu_to_core_group(i
, cpu_map
, &sd
->groups
, tmpmask
);
8464 #ifdef CONFIG_SCHED_SMT
8466 sd
= &per_cpu(cpu_domains
, i
).sd
;
8467 SD_INIT(sd
, SIBLING
);
8468 set_domain_attribute(sd
, attr
);
8469 cpumask_and(sched_domain_span(sd
),
8470 topology_thread_cpumask(i
), cpu_map
);
8473 cpu_to_cpu_group(i
, cpu_map
, &sd
->groups
, tmpmask
);
8477 #ifdef CONFIG_SCHED_SMT
8478 /* Set up CPU (sibling) groups */
8479 for_each_cpu(i
, cpu_map
) {
8480 cpumask_and(this_sibling_map
,
8481 topology_thread_cpumask(i
), cpu_map
);
8482 if (i
!= cpumask_first(this_sibling_map
))
8485 init_sched_build_groups(this_sibling_map
, cpu_map
,
8487 send_covered
, tmpmask
);
8491 #ifdef CONFIG_SCHED_MC
8492 /* Set up multi-core groups */
8493 for_each_cpu(i
, cpu_map
) {
8494 cpumask_and(this_core_map
, cpu_coregroup_mask(i
), cpu_map
);
8495 if (i
!= cpumask_first(this_core_map
))
8498 init_sched_build_groups(this_core_map
, cpu_map
,
8500 send_covered
, tmpmask
);
8504 /* Set up physical groups */
8505 for (i
= 0; i
< nr_node_ids
; i
++) {
8506 cpumask_and(nodemask
, cpumask_of_node(i
), cpu_map
);
8507 if (cpumask_empty(nodemask
))
8510 init_sched_build_groups(nodemask
, cpu_map
,
8512 send_covered
, tmpmask
);
8516 /* Set up node groups */
8518 init_sched_build_groups(cpu_map
, cpu_map
,
8519 &cpu_to_allnodes_group
,
8520 send_covered
, tmpmask
);
8523 for (i
= 0; i
< nr_node_ids
; i
++) {
8524 /* Set up node groups */
8525 struct sched_group
*sg
, *prev
;
8528 cpumask_clear(covered
);
8529 cpumask_and(nodemask
, cpumask_of_node(i
), cpu_map
);
8530 if (cpumask_empty(nodemask
)) {
8531 sched_group_nodes
[i
] = NULL
;
8535 sched_domain_node_span(i
, domainspan
);
8536 cpumask_and(domainspan
, domainspan
, cpu_map
);
8538 sg
= kmalloc_node(sizeof(struct sched_group
) + cpumask_size(),
8541 printk(KERN_WARNING
"Can not alloc domain group for "
8545 sched_group_nodes
[i
] = sg
;
8546 for_each_cpu(j
, nodemask
) {
8547 struct sched_domain
*sd
;
8549 sd
= &per_cpu(node_domains
, j
).sd
;
8552 sg
->__cpu_power
= 0;
8553 cpumask_copy(sched_group_cpus(sg
), nodemask
);
8555 cpumask_or(covered
, covered
, nodemask
);
8558 for (j
= 0; j
< nr_node_ids
; j
++) {
8559 int n
= (i
+ j
) % nr_node_ids
;
8561 cpumask_complement(notcovered
, covered
);
8562 cpumask_and(tmpmask
, notcovered
, cpu_map
);
8563 cpumask_and(tmpmask
, tmpmask
, domainspan
);
8564 if (cpumask_empty(tmpmask
))
8567 cpumask_and(tmpmask
, tmpmask
, cpumask_of_node(n
));
8568 if (cpumask_empty(tmpmask
))
8571 sg
= kmalloc_node(sizeof(struct sched_group
) +
8576 "Can not alloc domain group for node %d\n", j
);
8579 sg
->__cpu_power
= 0;
8580 cpumask_copy(sched_group_cpus(sg
), tmpmask
);
8581 sg
->next
= prev
->next
;
8582 cpumask_or(covered
, covered
, tmpmask
);
8589 /* Calculate CPU power for physical packages and nodes */
8590 #ifdef CONFIG_SCHED_SMT
8591 for_each_cpu(i
, cpu_map
) {
8592 struct sched_domain
*sd
= &per_cpu(cpu_domains
, i
).sd
;
8594 init_sched_groups_power(i
, sd
);
8597 #ifdef CONFIG_SCHED_MC
8598 for_each_cpu(i
, cpu_map
) {
8599 struct sched_domain
*sd
= &per_cpu(core_domains
, i
).sd
;
8601 init_sched_groups_power(i
, sd
);
8605 for_each_cpu(i
, cpu_map
) {
8606 struct sched_domain
*sd
= &per_cpu(phys_domains
, i
).sd
;
8608 init_sched_groups_power(i
, sd
);
8612 for (i
= 0; i
< nr_node_ids
; i
++)
8613 init_numa_sched_groups_power(sched_group_nodes
[i
]);
8616 struct sched_group
*sg
;
8618 cpu_to_allnodes_group(cpumask_first(cpu_map
), cpu_map
, &sg
,
8620 init_numa_sched_groups_power(sg
);
8624 /* Attach the domains */
8625 for_each_cpu(i
, cpu_map
) {
8626 struct sched_domain
*sd
;
8627 #ifdef CONFIG_SCHED_SMT
8628 sd
= &per_cpu(cpu_domains
, i
).sd
;
8629 #elif defined(CONFIG_SCHED_MC)
8630 sd
= &per_cpu(core_domains
, i
).sd
;
8632 sd
= &per_cpu(phys_domains
, i
).sd
;
8634 cpu_attach_domain(sd
, rd
, i
);
8640 free_cpumask_var(tmpmask
);
8642 free_cpumask_var(send_covered
);
8644 free_cpumask_var(this_core_map
);
8645 free_this_sibling_map
:
8646 free_cpumask_var(this_sibling_map
);
8648 free_cpumask_var(nodemask
);
8651 free_cpumask_var(notcovered
);
8653 free_cpumask_var(covered
);
8655 free_cpumask_var(domainspan
);
8662 kfree(sched_group_nodes
);
8668 free_sched_groups(cpu_map
, tmpmask
);
8669 free_rootdomain(rd
);
8674 static int build_sched_domains(const struct cpumask
*cpu_map
)
8676 return __build_sched_domains(cpu_map
, NULL
);
8679 static struct cpumask
*doms_cur
; /* current sched domains */
8680 static int ndoms_cur
; /* number of sched domains in 'doms_cur' */
8681 static struct sched_domain_attr
*dattr_cur
;
8682 /* attribues of custom domains in 'doms_cur' */
8685 * Special case: If a kmalloc of a doms_cur partition (array of
8686 * cpumask) fails, then fallback to a single sched domain,
8687 * as determined by the single cpumask fallback_doms.
8689 static cpumask_var_t fallback_doms
;
8692 * arch_update_cpu_topology lets virtualized architectures update the
8693 * cpu core maps. It is supposed to return 1 if the topology changed
8694 * or 0 if it stayed the same.
8696 int __attribute__((weak
)) arch_update_cpu_topology(void)
8702 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
8703 * For now this just excludes isolated cpus, but could be used to
8704 * exclude other special cases in the future.
8706 static int arch_init_sched_domains(const struct cpumask
*cpu_map
)
8710 arch_update_cpu_topology();
8712 doms_cur
= kmalloc(cpumask_size(), GFP_KERNEL
);
8714 doms_cur
= fallback_doms
;
8715 cpumask_andnot(doms_cur
, cpu_map
, cpu_isolated_map
);
8717 err
= build_sched_domains(doms_cur
);
8718 register_sched_domain_sysctl();
8723 static void arch_destroy_sched_domains(const struct cpumask
*cpu_map
,
8724 struct cpumask
*tmpmask
)
8726 free_sched_groups(cpu_map
, tmpmask
);
8730 * Detach sched domains from a group of cpus specified in cpu_map
8731 * These cpus will now be attached to the NULL domain
8733 static void detach_destroy_domains(const struct cpumask
*cpu_map
)
8735 /* Save because hotplug lock held. */
8736 static DECLARE_BITMAP(tmpmask
, CONFIG_NR_CPUS
);
8739 for_each_cpu(i
, cpu_map
)
8740 cpu_attach_domain(NULL
, &def_root_domain
, i
);
8741 synchronize_sched();
8742 arch_destroy_sched_domains(cpu_map
, to_cpumask(tmpmask
));
8745 /* handle null as "default" */
8746 static int dattrs_equal(struct sched_domain_attr
*cur
, int idx_cur
,
8747 struct sched_domain_attr
*new, int idx_new
)
8749 struct sched_domain_attr tmp
;
8756 return !memcmp(cur
? (cur
+ idx_cur
) : &tmp
,
8757 new ? (new + idx_new
) : &tmp
,
8758 sizeof(struct sched_domain_attr
));
8762 * Partition sched domains as specified by the 'ndoms_new'
8763 * cpumasks in the array doms_new[] of cpumasks. This compares
8764 * doms_new[] to the current sched domain partitioning, doms_cur[].
8765 * It destroys each deleted domain and builds each new domain.
8767 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
8768 * The masks don't intersect (don't overlap.) We should setup one
8769 * sched domain for each mask. CPUs not in any of the cpumasks will
8770 * not be load balanced. If the same cpumask appears both in the
8771 * current 'doms_cur' domains and in the new 'doms_new', we can leave
8774 * The passed in 'doms_new' should be kmalloc'd. This routine takes
8775 * ownership of it and will kfree it when done with it. If the caller
8776 * failed the kmalloc call, then it can pass in doms_new == NULL &&
8777 * ndoms_new == 1, and partition_sched_domains() will fallback to
8778 * the single partition 'fallback_doms', it also forces the domains
8781 * If doms_new == NULL it will be replaced with cpu_online_mask.
8782 * ndoms_new == 0 is a special case for destroying existing domains,
8783 * and it will not create the default domain.
8785 * Call with hotplug lock held
8787 /* FIXME: Change to struct cpumask *doms_new[] */
8788 void partition_sched_domains(int ndoms_new
, struct cpumask
*doms_new
,
8789 struct sched_domain_attr
*dattr_new
)
8794 mutex_lock(&sched_domains_mutex
);
8796 /* always unregister in case we don't destroy any domains */
8797 unregister_sched_domain_sysctl();
8799 /* Let architecture update cpu core mappings. */
8800 new_topology
= arch_update_cpu_topology();
8802 n
= doms_new
? ndoms_new
: 0;
8804 /* Destroy deleted domains */
8805 for (i
= 0; i
< ndoms_cur
; i
++) {
8806 for (j
= 0; j
< n
&& !new_topology
; j
++) {
8807 if (cpumask_equal(&doms_cur
[i
], &doms_new
[j
])
8808 && dattrs_equal(dattr_cur
, i
, dattr_new
, j
))
8811 /* no match - a current sched domain not in new doms_new[] */
8812 detach_destroy_domains(doms_cur
+ i
);
8817 if (doms_new
== NULL
) {
8819 doms_new
= fallback_doms
;
8820 cpumask_andnot(&doms_new
[0], cpu_online_mask
, cpu_isolated_map
);
8821 WARN_ON_ONCE(dattr_new
);
8824 /* Build new domains */
8825 for (i
= 0; i
< ndoms_new
; i
++) {
8826 for (j
= 0; j
< ndoms_cur
&& !new_topology
; j
++) {
8827 if (cpumask_equal(&doms_new
[i
], &doms_cur
[j
])
8828 && dattrs_equal(dattr_new
, i
, dattr_cur
, j
))
8831 /* no match - add a new doms_new */
8832 __build_sched_domains(doms_new
+ i
,
8833 dattr_new
? dattr_new
+ i
: NULL
);
8838 /* Remember the new sched domains */
8839 if (doms_cur
!= fallback_doms
)
8841 kfree(dattr_cur
); /* kfree(NULL) is safe */
8842 doms_cur
= doms_new
;
8843 dattr_cur
= dattr_new
;
8844 ndoms_cur
= ndoms_new
;
8846 register_sched_domain_sysctl();
8848 mutex_unlock(&sched_domains_mutex
);
8851 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
8852 static void arch_reinit_sched_domains(void)
8856 /* Destroy domains first to force the rebuild */
8857 partition_sched_domains(0, NULL
, NULL
);
8859 rebuild_sched_domains();
8863 static ssize_t
sched_power_savings_store(const char *buf
, size_t count
, int smt
)
8865 unsigned int level
= 0;
8867 if (sscanf(buf
, "%u", &level
) != 1)
8871 * level is always be positive so don't check for
8872 * level < POWERSAVINGS_BALANCE_NONE which is 0
8873 * What happens on 0 or 1 byte write,
8874 * need to check for count as well?
8877 if (level
>= MAX_POWERSAVINGS_BALANCE_LEVELS
)
8881 sched_smt_power_savings
= level
;
8883 sched_mc_power_savings
= level
;
8885 arch_reinit_sched_domains();
8890 #ifdef CONFIG_SCHED_MC
8891 static ssize_t
sched_mc_power_savings_show(struct sysdev_class
*class,
8894 return sprintf(page
, "%u\n", sched_mc_power_savings
);
8896 static ssize_t
sched_mc_power_savings_store(struct sysdev_class
*class,
8897 const char *buf
, size_t count
)
8899 return sched_power_savings_store(buf
, count
, 0);
8901 static SYSDEV_CLASS_ATTR(sched_mc_power_savings
, 0644,
8902 sched_mc_power_savings_show
,
8903 sched_mc_power_savings_store
);
8906 #ifdef CONFIG_SCHED_SMT
8907 static ssize_t
sched_smt_power_savings_show(struct sysdev_class
*dev
,
8910 return sprintf(page
, "%u\n", sched_smt_power_savings
);
8912 static ssize_t
sched_smt_power_savings_store(struct sysdev_class
*dev
,
8913 const char *buf
, size_t count
)
8915 return sched_power_savings_store(buf
, count
, 1);
8917 static SYSDEV_CLASS_ATTR(sched_smt_power_savings
, 0644,
8918 sched_smt_power_savings_show
,
8919 sched_smt_power_savings_store
);
8922 int __init
sched_create_sysfs_power_savings_entries(struct sysdev_class
*cls
)
8926 #ifdef CONFIG_SCHED_SMT
8928 err
= sysfs_create_file(&cls
->kset
.kobj
,
8929 &attr_sched_smt_power_savings
.attr
);
8931 #ifdef CONFIG_SCHED_MC
8932 if (!err
&& mc_capable())
8933 err
= sysfs_create_file(&cls
->kset
.kobj
,
8934 &attr_sched_mc_power_savings
.attr
);
8938 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
8940 #ifndef CONFIG_CPUSETS
8942 * Add online and remove offline CPUs from the scheduler domains.
8943 * When cpusets are enabled they take over this function.
8945 static int update_sched_domains(struct notifier_block
*nfb
,
8946 unsigned long action
, void *hcpu
)
8950 case CPU_ONLINE_FROZEN
:
8952 case CPU_DEAD_FROZEN
:
8953 partition_sched_domains(1, NULL
, NULL
);
8962 static int update_runtime(struct notifier_block
*nfb
,
8963 unsigned long action
, void *hcpu
)
8965 int cpu
= (int)(long)hcpu
;
8968 case CPU_DOWN_PREPARE
:
8969 case CPU_DOWN_PREPARE_FROZEN
:
8970 disable_runtime(cpu_rq(cpu
));
8973 case CPU_DOWN_FAILED
:
8974 case CPU_DOWN_FAILED_FROZEN
:
8976 case CPU_ONLINE_FROZEN
:
8977 enable_runtime(cpu_rq(cpu
));
8985 void __init
sched_init_smp(void)
8987 cpumask_var_t non_isolated_cpus
;
8989 alloc_cpumask_var(&non_isolated_cpus
, GFP_KERNEL
);
8991 #if defined(CONFIG_NUMA)
8992 sched_group_nodes_bycpu
= kzalloc(nr_cpu_ids
* sizeof(void **),
8994 BUG_ON(sched_group_nodes_bycpu
== NULL
);
8997 mutex_lock(&sched_domains_mutex
);
8998 arch_init_sched_domains(cpu_online_mask
);
8999 cpumask_andnot(non_isolated_cpus
, cpu_possible_mask
, cpu_isolated_map
);
9000 if (cpumask_empty(non_isolated_cpus
))
9001 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus
);
9002 mutex_unlock(&sched_domains_mutex
);
9005 #ifndef CONFIG_CPUSETS
9006 /* XXX: Theoretical race here - CPU may be hotplugged now */
9007 hotcpu_notifier(update_sched_domains
, 0);
9010 /* RT runtime code needs to handle some hotplug events */
9011 hotcpu_notifier(update_runtime
, 0);
9015 /* Move init over to a non-isolated CPU */
9016 if (set_cpus_allowed_ptr(current
, non_isolated_cpus
) < 0)
9018 sched_init_granularity();
9019 free_cpumask_var(non_isolated_cpus
);
9021 alloc_cpumask_var(&fallback_doms
, GFP_KERNEL
);
9022 init_sched_rt_class();
9025 void __init
sched_init_smp(void)
9027 sched_init_granularity();
9029 #endif /* CONFIG_SMP */
9031 int in_sched_functions(unsigned long addr
)
9033 return in_lock_functions(addr
) ||
9034 (addr
>= (unsigned long)__sched_text_start
9035 && addr
< (unsigned long)__sched_text_end
);
9038 static void init_cfs_rq(struct cfs_rq
*cfs_rq
, struct rq
*rq
)
9040 cfs_rq
->tasks_timeline
= RB_ROOT
;
9041 INIT_LIST_HEAD(&cfs_rq
->tasks
);
9042 #ifdef CONFIG_FAIR_GROUP_SCHED
9045 cfs_rq
->min_vruntime
= (u64
)(-(1LL << 20));
9048 static void init_rt_rq(struct rt_rq
*rt_rq
, struct rq
*rq
)
9050 struct rt_prio_array
*array
;
9053 array
= &rt_rq
->active
;
9054 for (i
= 0; i
< MAX_RT_PRIO
; i
++) {
9055 INIT_LIST_HEAD(array
->queue
+ i
);
9056 __clear_bit(i
, array
->bitmap
);
9058 /* delimiter for bitsearch: */
9059 __set_bit(MAX_RT_PRIO
, array
->bitmap
);
9061 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
9062 rt_rq
->highest_prio
.curr
= MAX_RT_PRIO
;
9064 rt_rq
->highest_prio
.next
= MAX_RT_PRIO
;
9068 rt_rq
->rt_nr_migratory
= 0;
9069 rt_rq
->overloaded
= 0;
9070 plist_head_init(&rq
->rt
.pushable_tasks
, &rq
->lock
);
9074 rt_rq
->rt_throttled
= 0;
9075 rt_rq
->rt_runtime
= 0;
9076 spin_lock_init(&rt_rq
->rt_runtime_lock
);
9078 #ifdef CONFIG_RT_GROUP_SCHED
9079 rt_rq
->rt_nr_boosted
= 0;
9084 #ifdef CONFIG_FAIR_GROUP_SCHED
9085 static void init_tg_cfs_entry(struct task_group
*tg
, struct cfs_rq
*cfs_rq
,
9086 struct sched_entity
*se
, int cpu
, int add
,
9087 struct sched_entity
*parent
)
9089 struct rq
*rq
= cpu_rq(cpu
);
9090 tg
->cfs_rq
[cpu
] = cfs_rq
;
9091 init_cfs_rq(cfs_rq
, rq
);
9094 list_add(&cfs_rq
->leaf_cfs_rq_list
, &rq
->leaf_cfs_rq_list
);
9097 /* se could be NULL for init_task_group */
9102 se
->cfs_rq
= &rq
->cfs
;
9104 se
->cfs_rq
= parent
->my_q
;
9107 se
->load
.weight
= tg
->shares
;
9108 se
->load
.inv_weight
= 0;
9109 se
->parent
= parent
;
9113 #ifdef CONFIG_RT_GROUP_SCHED
9114 static void init_tg_rt_entry(struct task_group
*tg
, struct rt_rq
*rt_rq
,
9115 struct sched_rt_entity
*rt_se
, int cpu
, int add
,
9116 struct sched_rt_entity
*parent
)
9118 struct rq
*rq
= cpu_rq(cpu
);
9120 tg
->rt_rq
[cpu
] = rt_rq
;
9121 init_rt_rq(rt_rq
, rq
);
9123 rt_rq
->rt_se
= rt_se
;
9124 rt_rq
->rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
9126 list_add(&rt_rq
->leaf_rt_rq_list
, &rq
->leaf_rt_rq_list
);
9128 tg
->rt_se
[cpu
] = rt_se
;
9133 rt_se
->rt_rq
= &rq
->rt
;
9135 rt_se
->rt_rq
= parent
->my_q
;
9137 rt_se
->my_q
= rt_rq
;
9138 rt_se
->parent
= parent
;
9139 INIT_LIST_HEAD(&rt_se
->run_list
);
9143 void __init
sched_init(void)
9146 unsigned long alloc_size
= 0, ptr
;
9148 #ifdef CONFIG_FAIR_GROUP_SCHED
9149 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
9151 #ifdef CONFIG_RT_GROUP_SCHED
9152 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
9154 #ifdef CONFIG_USER_SCHED
9157 #ifdef CONFIG_CPUMASK_OFFSTACK
9158 alloc_size
+= num_possible_cpus() * cpumask_size();
9161 * As sched_init() is called before page_alloc is setup,
9162 * we use alloc_bootmem().
9165 ptr
= (unsigned long)kzalloc(alloc_size
, GFP_NOWAIT
);
9167 #ifdef CONFIG_FAIR_GROUP_SCHED
9168 init_task_group
.se
= (struct sched_entity
**)ptr
;
9169 ptr
+= nr_cpu_ids
* sizeof(void **);
9171 init_task_group
.cfs_rq
= (struct cfs_rq
**)ptr
;
9172 ptr
+= nr_cpu_ids
* sizeof(void **);
9174 #ifdef CONFIG_USER_SCHED
9175 root_task_group
.se
= (struct sched_entity
**)ptr
;
9176 ptr
+= nr_cpu_ids
* sizeof(void **);
9178 root_task_group
.cfs_rq
= (struct cfs_rq
**)ptr
;
9179 ptr
+= nr_cpu_ids
* sizeof(void **);
9180 #endif /* CONFIG_USER_SCHED */
9181 #endif /* CONFIG_FAIR_GROUP_SCHED */
9182 #ifdef CONFIG_RT_GROUP_SCHED
9183 init_task_group
.rt_se
= (struct sched_rt_entity
**)ptr
;
9184 ptr
+= nr_cpu_ids
* sizeof(void **);
9186 init_task_group
.rt_rq
= (struct rt_rq
**)ptr
;
9187 ptr
+= nr_cpu_ids
* sizeof(void **);
9189 #ifdef CONFIG_USER_SCHED
9190 root_task_group
.rt_se
= (struct sched_rt_entity
**)ptr
;
9191 ptr
+= nr_cpu_ids
* sizeof(void **);
9193 root_task_group
.rt_rq
= (struct rt_rq
**)ptr
;
9194 ptr
+= nr_cpu_ids
* sizeof(void **);
9195 #endif /* CONFIG_USER_SCHED */
9196 #endif /* CONFIG_RT_GROUP_SCHED */
9197 #ifdef CONFIG_CPUMASK_OFFSTACK
9198 for_each_possible_cpu(i
) {
9199 per_cpu(load_balance_tmpmask
, i
) = (void *)ptr
;
9200 ptr
+= cpumask_size();
9202 #endif /* CONFIG_CPUMASK_OFFSTACK */
9206 init_defrootdomain();
9209 init_rt_bandwidth(&def_rt_bandwidth
,
9210 global_rt_period(), global_rt_runtime());
9212 #ifdef CONFIG_RT_GROUP_SCHED
9213 init_rt_bandwidth(&init_task_group
.rt_bandwidth
,
9214 global_rt_period(), global_rt_runtime());
9215 #ifdef CONFIG_USER_SCHED
9216 init_rt_bandwidth(&root_task_group
.rt_bandwidth
,
9217 global_rt_period(), RUNTIME_INF
);
9218 #endif /* CONFIG_USER_SCHED */
9219 #endif /* CONFIG_RT_GROUP_SCHED */
9221 #ifdef CONFIG_GROUP_SCHED
9222 list_add(&init_task_group
.list
, &task_groups
);
9223 INIT_LIST_HEAD(&init_task_group
.children
);
9225 #ifdef CONFIG_USER_SCHED
9226 INIT_LIST_HEAD(&root_task_group
.children
);
9227 init_task_group
.parent
= &root_task_group
;
9228 list_add(&init_task_group
.siblings
, &root_task_group
.children
);
9229 #endif /* CONFIG_USER_SCHED */
9230 #endif /* CONFIG_GROUP_SCHED */
9232 for_each_possible_cpu(i
) {
9236 spin_lock_init(&rq
->lock
);
9238 rq
->calc_load_active
= 0;
9239 rq
->calc_load_update
= jiffies
+ LOAD_FREQ
;
9240 init_cfs_rq(&rq
->cfs
, rq
);
9241 init_rt_rq(&rq
->rt
, rq
);
9242 #ifdef CONFIG_FAIR_GROUP_SCHED
9243 init_task_group
.shares
= init_task_group_load
;
9244 INIT_LIST_HEAD(&rq
->leaf_cfs_rq_list
);
9245 #ifdef CONFIG_CGROUP_SCHED
9247 * How much cpu bandwidth does init_task_group get?
9249 * In case of task-groups formed thr' the cgroup filesystem, it
9250 * gets 100% of the cpu resources in the system. This overall
9251 * system cpu resource is divided among the tasks of
9252 * init_task_group and its child task-groups in a fair manner,
9253 * based on each entity's (task or task-group's) weight
9254 * (se->load.weight).
9256 * In other words, if init_task_group has 10 tasks of weight
9257 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9258 * then A0's share of the cpu resource is:
9260 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
9262 * We achieve this by letting init_task_group's tasks sit
9263 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9265 init_tg_cfs_entry(&init_task_group
, &rq
->cfs
, NULL
, i
, 1, NULL
);
9266 #elif defined CONFIG_USER_SCHED
9267 root_task_group
.shares
= NICE_0_LOAD
;
9268 init_tg_cfs_entry(&root_task_group
, &rq
->cfs
, NULL
, i
, 0, NULL
);
9270 * In case of task-groups formed thr' the user id of tasks,
9271 * init_task_group represents tasks belonging to root user.
9272 * Hence it forms a sibling of all subsequent groups formed.
9273 * In this case, init_task_group gets only a fraction of overall
9274 * system cpu resource, based on the weight assigned to root
9275 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9276 * by letting tasks of init_task_group sit in a separate cfs_rq
9277 * (init_cfs_rq) and having one entity represent this group of
9278 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9280 init_tg_cfs_entry(&init_task_group
,
9281 &per_cpu(init_cfs_rq
, i
),
9282 &per_cpu(init_sched_entity
, i
), i
, 1,
9283 root_task_group
.se
[i
]);
9286 #endif /* CONFIG_FAIR_GROUP_SCHED */
9288 rq
->rt
.rt_runtime
= def_rt_bandwidth
.rt_runtime
;
9289 #ifdef CONFIG_RT_GROUP_SCHED
9290 INIT_LIST_HEAD(&rq
->leaf_rt_rq_list
);
9291 #ifdef CONFIG_CGROUP_SCHED
9292 init_tg_rt_entry(&init_task_group
, &rq
->rt
, NULL
, i
, 1, NULL
);
9293 #elif defined CONFIG_USER_SCHED
9294 init_tg_rt_entry(&root_task_group
, &rq
->rt
, NULL
, i
, 0, NULL
);
9295 init_tg_rt_entry(&init_task_group
,
9296 &per_cpu(init_rt_rq
, i
),
9297 &per_cpu(init_sched_rt_entity
, i
), i
, 1,
9298 root_task_group
.rt_se
[i
]);
9302 for (j
= 0; j
< CPU_LOAD_IDX_MAX
; j
++)
9303 rq
->cpu_load
[j
] = 0;
9307 rq
->active_balance
= 0;
9308 rq
->next_balance
= jiffies
;
9312 rq
->migration_thread
= NULL
;
9313 INIT_LIST_HEAD(&rq
->migration_queue
);
9314 rq_attach_root(rq
, &def_root_domain
);
9317 atomic_set(&rq
->nr_iowait
, 0);
9320 set_load_weight(&init_task
);
9322 #ifdef CONFIG_PREEMPT_NOTIFIERS
9323 INIT_HLIST_HEAD(&init_task
.preempt_notifiers
);
9327 open_softirq(SCHED_SOFTIRQ
, run_rebalance_domains
);
9330 #ifdef CONFIG_RT_MUTEXES
9331 plist_head_init(&init_task
.pi_waiters
, &init_task
.pi_lock
);
9335 * The boot idle thread does lazy MMU switching as well:
9337 atomic_inc(&init_mm
.mm_count
);
9338 enter_lazy_tlb(&init_mm
, current
);
9341 * Make us the idle thread. Technically, schedule() should not be
9342 * called from this thread, however somewhere below it might be,
9343 * but because we are the idle thread, we just pick up running again
9344 * when this runqueue becomes "idle".
9346 init_idle(current
, smp_processor_id());
9348 calc_load_update
= jiffies
+ LOAD_FREQ
;
9351 * During early bootup we pretend to be a normal task:
9353 current
->sched_class
= &fair_sched_class
;
9355 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
9356 alloc_cpumask_var(&nohz_cpu_mask
, GFP_NOWAIT
);
9359 alloc_cpumask_var(&nohz
.cpu_mask
, GFP_NOWAIT
);
9360 alloc_cpumask_var(&nohz
.ilb_grp_nohz_mask
, GFP_NOWAIT
);
9362 alloc_cpumask_var(&cpu_isolated_map
, GFP_NOWAIT
);
9365 perf_counter_init();
9367 scheduler_running
= 1;
9370 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
9371 void __might_sleep(char *file
, int line
)
9374 static unsigned long prev_jiffy
; /* ratelimiting */
9376 if ((!in_atomic() && !irqs_disabled()) ||
9377 system_state
!= SYSTEM_RUNNING
|| oops_in_progress
)
9379 if (time_before(jiffies
, prev_jiffy
+ HZ
) && prev_jiffy
)
9381 prev_jiffy
= jiffies
;
9384 "BUG: sleeping function called from invalid context at %s:%d\n",
9387 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9388 in_atomic(), irqs_disabled(),
9389 current
->pid
, current
->comm
);
9391 debug_show_held_locks(current
);
9392 if (irqs_disabled())
9393 print_irqtrace_events(current
);
9397 EXPORT_SYMBOL(__might_sleep
);
9400 #ifdef CONFIG_MAGIC_SYSRQ
9401 static void normalize_task(struct rq
*rq
, struct task_struct
*p
)
9405 update_rq_clock(rq
);
9406 on_rq
= p
->se
.on_rq
;
9408 deactivate_task(rq
, p
, 0);
9409 __setscheduler(rq
, p
, SCHED_NORMAL
, 0);
9411 activate_task(rq
, p
, 0);
9412 resched_task(rq
->curr
);
9416 void normalize_rt_tasks(void)
9418 struct task_struct
*g
, *p
;
9419 unsigned long flags
;
9422 read_lock_irqsave(&tasklist_lock
, flags
);
9423 do_each_thread(g
, p
) {
9425 * Only normalize user tasks:
9430 p
->se
.exec_start
= 0;
9431 #ifdef CONFIG_SCHEDSTATS
9432 p
->se
.wait_start
= 0;
9433 p
->se
.sleep_start
= 0;
9434 p
->se
.block_start
= 0;
9439 * Renice negative nice level userspace
9442 if (TASK_NICE(p
) < 0 && p
->mm
)
9443 set_user_nice(p
, 0);
9447 spin_lock(&p
->pi_lock
);
9448 rq
= __task_rq_lock(p
);
9450 normalize_task(rq
, p
);
9452 __task_rq_unlock(rq
);
9453 spin_unlock(&p
->pi_lock
);
9454 } while_each_thread(g
, p
);
9456 read_unlock_irqrestore(&tasklist_lock
, flags
);
9459 #endif /* CONFIG_MAGIC_SYSRQ */
9463 * These functions are only useful for the IA64 MCA handling.
9465 * They can only be called when the whole system has been
9466 * stopped - every CPU needs to be quiescent, and no scheduling
9467 * activity can take place. Using them for anything else would
9468 * be a serious bug, and as a result, they aren't even visible
9469 * under any other configuration.
9473 * curr_task - return the current task for a given cpu.
9474 * @cpu: the processor in question.
9476 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9478 struct task_struct
*curr_task(int cpu
)
9480 return cpu_curr(cpu
);
9484 * set_curr_task - set the current task for a given cpu.
9485 * @cpu: the processor in question.
9486 * @p: the task pointer to set.
9488 * Description: This function must only be used when non-maskable interrupts
9489 * are serviced on a separate stack. It allows the architecture to switch the
9490 * notion of the current task on a cpu in a non-blocking manner. This function
9491 * must be called with all CPU's synchronized, and interrupts disabled, the
9492 * and caller must save the original value of the current task (see
9493 * curr_task() above) and restore that value before reenabling interrupts and
9494 * re-starting the system.
9496 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9498 void set_curr_task(int cpu
, struct task_struct
*p
)
9505 #ifdef CONFIG_FAIR_GROUP_SCHED
9506 static void free_fair_sched_group(struct task_group
*tg
)
9510 for_each_possible_cpu(i
) {
9512 kfree(tg
->cfs_rq
[i
]);
9522 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
9524 struct cfs_rq
*cfs_rq
;
9525 struct sched_entity
*se
;
9529 tg
->cfs_rq
= kzalloc(sizeof(cfs_rq
) * nr_cpu_ids
, GFP_KERNEL
);
9532 tg
->se
= kzalloc(sizeof(se
) * nr_cpu_ids
, GFP_KERNEL
);
9536 tg
->shares
= NICE_0_LOAD
;
9538 for_each_possible_cpu(i
) {
9541 cfs_rq
= kzalloc_node(sizeof(struct cfs_rq
),
9542 GFP_KERNEL
, cpu_to_node(i
));
9546 se
= kzalloc_node(sizeof(struct sched_entity
),
9547 GFP_KERNEL
, cpu_to_node(i
));
9551 init_tg_cfs_entry(tg
, cfs_rq
, se
, i
, 0, parent
->se
[i
]);
9560 static inline void register_fair_sched_group(struct task_group
*tg
, int cpu
)
9562 list_add_rcu(&tg
->cfs_rq
[cpu
]->leaf_cfs_rq_list
,
9563 &cpu_rq(cpu
)->leaf_cfs_rq_list
);
9566 static inline void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
9568 list_del_rcu(&tg
->cfs_rq
[cpu
]->leaf_cfs_rq_list
);
9570 #else /* !CONFG_FAIR_GROUP_SCHED */
9571 static inline void free_fair_sched_group(struct task_group
*tg
)
9576 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
9581 static inline void register_fair_sched_group(struct task_group
*tg
, int cpu
)
9585 static inline void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
9588 #endif /* CONFIG_FAIR_GROUP_SCHED */
9590 #ifdef CONFIG_RT_GROUP_SCHED
9591 static void free_rt_sched_group(struct task_group
*tg
)
9595 destroy_rt_bandwidth(&tg
->rt_bandwidth
);
9597 for_each_possible_cpu(i
) {
9599 kfree(tg
->rt_rq
[i
]);
9601 kfree(tg
->rt_se
[i
]);
9609 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
9611 struct rt_rq
*rt_rq
;
9612 struct sched_rt_entity
*rt_se
;
9616 tg
->rt_rq
= kzalloc(sizeof(rt_rq
) * nr_cpu_ids
, GFP_KERNEL
);
9619 tg
->rt_se
= kzalloc(sizeof(rt_se
) * nr_cpu_ids
, GFP_KERNEL
);
9623 init_rt_bandwidth(&tg
->rt_bandwidth
,
9624 ktime_to_ns(def_rt_bandwidth
.rt_period
), 0);
9626 for_each_possible_cpu(i
) {
9629 rt_rq
= kzalloc_node(sizeof(struct rt_rq
),
9630 GFP_KERNEL
, cpu_to_node(i
));
9634 rt_se
= kzalloc_node(sizeof(struct sched_rt_entity
),
9635 GFP_KERNEL
, cpu_to_node(i
));
9639 init_tg_rt_entry(tg
, rt_rq
, rt_se
, i
, 0, parent
->rt_se
[i
]);
9648 static inline void register_rt_sched_group(struct task_group
*tg
, int cpu
)
9650 list_add_rcu(&tg
->rt_rq
[cpu
]->leaf_rt_rq_list
,
9651 &cpu_rq(cpu
)->leaf_rt_rq_list
);
9654 static inline void unregister_rt_sched_group(struct task_group
*tg
, int cpu
)
9656 list_del_rcu(&tg
->rt_rq
[cpu
]->leaf_rt_rq_list
);
9658 #else /* !CONFIG_RT_GROUP_SCHED */
9659 static inline void free_rt_sched_group(struct task_group
*tg
)
9664 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
9669 static inline void register_rt_sched_group(struct task_group
*tg
, int cpu
)
9673 static inline void unregister_rt_sched_group(struct task_group
*tg
, int cpu
)
9676 #endif /* CONFIG_RT_GROUP_SCHED */
9678 #ifdef CONFIG_GROUP_SCHED
9679 static void free_sched_group(struct task_group
*tg
)
9681 free_fair_sched_group(tg
);
9682 free_rt_sched_group(tg
);
9686 /* allocate runqueue etc for a new task group */
9687 struct task_group
*sched_create_group(struct task_group
*parent
)
9689 struct task_group
*tg
;
9690 unsigned long flags
;
9693 tg
= kzalloc(sizeof(*tg
), GFP_KERNEL
);
9695 return ERR_PTR(-ENOMEM
);
9697 if (!alloc_fair_sched_group(tg
, parent
))
9700 if (!alloc_rt_sched_group(tg
, parent
))
9703 spin_lock_irqsave(&task_group_lock
, flags
);
9704 for_each_possible_cpu(i
) {
9705 register_fair_sched_group(tg
, i
);
9706 register_rt_sched_group(tg
, i
);
9708 list_add_rcu(&tg
->list
, &task_groups
);
9710 WARN_ON(!parent
); /* root should already exist */
9712 tg
->parent
= parent
;
9713 INIT_LIST_HEAD(&tg
->children
);
9714 list_add_rcu(&tg
->siblings
, &parent
->children
);
9715 spin_unlock_irqrestore(&task_group_lock
, flags
);
9720 free_sched_group(tg
);
9721 return ERR_PTR(-ENOMEM
);
9724 /* rcu callback to free various structures associated with a task group */
9725 static void free_sched_group_rcu(struct rcu_head
*rhp
)
9727 /* now it should be safe to free those cfs_rqs */
9728 free_sched_group(container_of(rhp
, struct task_group
, rcu
));
9731 /* Destroy runqueue etc associated with a task group */
9732 void sched_destroy_group(struct task_group
*tg
)
9734 unsigned long flags
;
9737 spin_lock_irqsave(&task_group_lock
, flags
);
9738 for_each_possible_cpu(i
) {
9739 unregister_fair_sched_group(tg
, i
);
9740 unregister_rt_sched_group(tg
, i
);
9742 list_del_rcu(&tg
->list
);
9743 list_del_rcu(&tg
->siblings
);
9744 spin_unlock_irqrestore(&task_group_lock
, flags
);
9746 /* wait for possible concurrent references to cfs_rqs complete */
9747 call_rcu(&tg
->rcu
, free_sched_group_rcu
);
9750 /* change task's runqueue when it moves between groups.
9751 * The caller of this function should have put the task in its new group
9752 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
9753 * reflect its new group.
9755 void sched_move_task(struct task_struct
*tsk
)
9758 unsigned long flags
;
9761 rq
= task_rq_lock(tsk
, &flags
);
9763 update_rq_clock(rq
);
9765 running
= task_current(rq
, tsk
);
9766 on_rq
= tsk
->se
.on_rq
;
9769 dequeue_task(rq
, tsk
, 0);
9770 if (unlikely(running
))
9771 tsk
->sched_class
->put_prev_task(rq
, tsk
);
9773 set_task_rq(tsk
, task_cpu(tsk
));
9775 #ifdef CONFIG_FAIR_GROUP_SCHED
9776 if (tsk
->sched_class
->moved_group
)
9777 tsk
->sched_class
->moved_group(tsk
);
9780 if (unlikely(running
))
9781 tsk
->sched_class
->set_curr_task(rq
);
9783 enqueue_task(rq
, tsk
, 0);
9785 task_rq_unlock(rq
, &flags
);
9787 #endif /* CONFIG_GROUP_SCHED */
9789 #ifdef CONFIG_FAIR_GROUP_SCHED
9790 static void __set_se_shares(struct sched_entity
*se
, unsigned long shares
)
9792 struct cfs_rq
*cfs_rq
= se
->cfs_rq
;
9797 dequeue_entity(cfs_rq
, se
, 0);
9799 se
->load
.weight
= shares
;
9800 se
->load
.inv_weight
= 0;
9803 enqueue_entity(cfs_rq
, se
, 0);
9806 static void set_se_shares(struct sched_entity
*se
, unsigned long shares
)
9808 struct cfs_rq
*cfs_rq
= se
->cfs_rq
;
9809 struct rq
*rq
= cfs_rq
->rq
;
9810 unsigned long flags
;
9812 spin_lock_irqsave(&rq
->lock
, flags
);
9813 __set_se_shares(se
, shares
);
9814 spin_unlock_irqrestore(&rq
->lock
, flags
);
9817 static DEFINE_MUTEX(shares_mutex
);
9819 int sched_group_set_shares(struct task_group
*tg
, unsigned long shares
)
9822 unsigned long flags
;
9825 * We can't change the weight of the root cgroup.
9830 if (shares
< MIN_SHARES
)
9831 shares
= MIN_SHARES
;
9832 else if (shares
> MAX_SHARES
)
9833 shares
= MAX_SHARES
;
9835 mutex_lock(&shares_mutex
);
9836 if (tg
->shares
== shares
)
9839 spin_lock_irqsave(&task_group_lock
, flags
);
9840 for_each_possible_cpu(i
)
9841 unregister_fair_sched_group(tg
, i
);
9842 list_del_rcu(&tg
->siblings
);
9843 spin_unlock_irqrestore(&task_group_lock
, flags
);
9845 /* wait for any ongoing reference to this group to finish */
9846 synchronize_sched();
9849 * Now we are free to modify the group's share on each cpu
9850 * w/o tripping rebalance_share or load_balance_fair.
9852 tg
->shares
= shares
;
9853 for_each_possible_cpu(i
) {
9857 cfs_rq_set_shares(tg
->cfs_rq
[i
], 0);
9858 set_se_shares(tg
->se
[i
], shares
);
9862 * Enable load balance activity on this group, by inserting it back on
9863 * each cpu's rq->leaf_cfs_rq_list.
9865 spin_lock_irqsave(&task_group_lock
, flags
);
9866 for_each_possible_cpu(i
)
9867 register_fair_sched_group(tg
, i
);
9868 list_add_rcu(&tg
->siblings
, &tg
->parent
->children
);
9869 spin_unlock_irqrestore(&task_group_lock
, flags
);
9871 mutex_unlock(&shares_mutex
);
9875 unsigned long sched_group_shares(struct task_group
*tg
)
9881 #ifdef CONFIG_RT_GROUP_SCHED
9883 * Ensure that the real time constraints are schedulable.
9885 static DEFINE_MUTEX(rt_constraints_mutex
);
9887 static unsigned long to_ratio(u64 period
, u64 runtime
)
9889 if (runtime
== RUNTIME_INF
)
9892 return div64_u64(runtime
<< 20, period
);
9895 /* Must be called with tasklist_lock held */
9896 static inline int tg_has_rt_tasks(struct task_group
*tg
)
9898 struct task_struct
*g
, *p
;
9900 do_each_thread(g
, p
) {
9901 if (rt_task(p
) && rt_rq_of_se(&p
->rt
)->tg
== tg
)
9903 } while_each_thread(g
, p
);
9908 struct rt_schedulable_data
{
9909 struct task_group
*tg
;
9914 static int tg_schedulable(struct task_group
*tg
, void *data
)
9916 struct rt_schedulable_data
*d
= data
;
9917 struct task_group
*child
;
9918 unsigned long total
, sum
= 0;
9919 u64 period
, runtime
;
9921 period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
9922 runtime
= tg
->rt_bandwidth
.rt_runtime
;
9925 period
= d
->rt_period
;
9926 runtime
= d
->rt_runtime
;
9929 #ifdef CONFIG_USER_SCHED
9930 if (tg
== &root_task_group
) {
9931 period
= global_rt_period();
9932 runtime
= global_rt_runtime();
9937 * Cannot have more runtime than the period.
9939 if (runtime
> period
&& runtime
!= RUNTIME_INF
)
9943 * Ensure we don't starve existing RT tasks.
9945 if (rt_bandwidth_enabled() && !runtime
&& tg_has_rt_tasks(tg
))
9948 total
= to_ratio(period
, runtime
);
9951 * Nobody can have more than the global setting allows.
9953 if (total
> to_ratio(global_rt_period(), global_rt_runtime()))
9957 * The sum of our children's runtime should not exceed our own.
9959 list_for_each_entry_rcu(child
, &tg
->children
, siblings
) {
9960 period
= ktime_to_ns(child
->rt_bandwidth
.rt_period
);
9961 runtime
= child
->rt_bandwidth
.rt_runtime
;
9963 if (child
== d
->tg
) {
9964 period
= d
->rt_period
;
9965 runtime
= d
->rt_runtime
;
9968 sum
+= to_ratio(period
, runtime
);
9977 static int __rt_schedulable(struct task_group
*tg
, u64 period
, u64 runtime
)
9979 struct rt_schedulable_data data
= {
9981 .rt_period
= period
,
9982 .rt_runtime
= runtime
,
9985 return walk_tg_tree(tg_schedulable
, tg_nop
, &data
);
9988 static int tg_set_bandwidth(struct task_group
*tg
,
9989 u64 rt_period
, u64 rt_runtime
)
9993 mutex_lock(&rt_constraints_mutex
);
9994 read_lock(&tasklist_lock
);
9995 err
= __rt_schedulable(tg
, rt_period
, rt_runtime
);
9999 spin_lock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
10000 tg
->rt_bandwidth
.rt_period
= ns_to_ktime(rt_period
);
10001 tg
->rt_bandwidth
.rt_runtime
= rt_runtime
;
10003 for_each_possible_cpu(i
) {
10004 struct rt_rq
*rt_rq
= tg
->rt_rq
[i
];
10006 spin_lock(&rt_rq
->rt_runtime_lock
);
10007 rt_rq
->rt_runtime
= rt_runtime
;
10008 spin_unlock(&rt_rq
->rt_runtime_lock
);
10010 spin_unlock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
10012 read_unlock(&tasklist_lock
);
10013 mutex_unlock(&rt_constraints_mutex
);
10018 int sched_group_set_rt_runtime(struct task_group
*tg
, long rt_runtime_us
)
10020 u64 rt_runtime
, rt_period
;
10022 rt_period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
10023 rt_runtime
= (u64
)rt_runtime_us
* NSEC_PER_USEC
;
10024 if (rt_runtime_us
< 0)
10025 rt_runtime
= RUNTIME_INF
;
10027 return tg_set_bandwidth(tg
, rt_period
, rt_runtime
);
10030 long sched_group_rt_runtime(struct task_group
*tg
)
10034 if (tg
->rt_bandwidth
.rt_runtime
== RUNTIME_INF
)
10037 rt_runtime_us
= tg
->rt_bandwidth
.rt_runtime
;
10038 do_div(rt_runtime_us
, NSEC_PER_USEC
);
10039 return rt_runtime_us
;
10042 int sched_group_set_rt_period(struct task_group
*tg
, long rt_period_us
)
10044 u64 rt_runtime
, rt_period
;
10046 rt_period
= (u64
)rt_period_us
* NSEC_PER_USEC
;
10047 rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
10049 if (rt_period
== 0)
10052 return tg_set_bandwidth(tg
, rt_period
, rt_runtime
);
10055 long sched_group_rt_period(struct task_group
*tg
)
10059 rt_period_us
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
10060 do_div(rt_period_us
, NSEC_PER_USEC
);
10061 return rt_period_us
;
10064 static int sched_rt_global_constraints(void)
10066 u64 runtime
, period
;
10069 if (sysctl_sched_rt_period
<= 0)
10072 runtime
= global_rt_runtime();
10073 period
= global_rt_period();
10076 * Sanity check on the sysctl variables.
10078 if (runtime
> period
&& runtime
!= RUNTIME_INF
)
10081 mutex_lock(&rt_constraints_mutex
);
10082 read_lock(&tasklist_lock
);
10083 ret
= __rt_schedulable(NULL
, 0, 0);
10084 read_unlock(&tasklist_lock
);
10085 mutex_unlock(&rt_constraints_mutex
);
10090 int sched_rt_can_attach(struct task_group
*tg
, struct task_struct
*tsk
)
10092 /* Don't accept realtime tasks when there is no way for them to run */
10093 if (rt_task(tsk
) && tg
->rt_bandwidth
.rt_runtime
== 0)
10099 #else /* !CONFIG_RT_GROUP_SCHED */
10100 static int sched_rt_global_constraints(void)
10102 unsigned long flags
;
10105 if (sysctl_sched_rt_period
<= 0)
10109 * There's always some RT tasks in the root group
10110 * -- migration, kstopmachine etc..
10112 if (sysctl_sched_rt_runtime
== 0)
10115 spin_lock_irqsave(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
10116 for_each_possible_cpu(i
) {
10117 struct rt_rq
*rt_rq
= &cpu_rq(i
)->rt
;
10119 spin_lock(&rt_rq
->rt_runtime_lock
);
10120 rt_rq
->rt_runtime
= global_rt_runtime();
10121 spin_unlock(&rt_rq
->rt_runtime_lock
);
10123 spin_unlock_irqrestore(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
10127 #endif /* CONFIG_RT_GROUP_SCHED */
10129 int sched_rt_handler(struct ctl_table
*table
, int write
,
10130 struct file
*filp
, void __user
*buffer
, size_t *lenp
,
10134 int old_period
, old_runtime
;
10135 static DEFINE_MUTEX(mutex
);
10137 mutex_lock(&mutex
);
10138 old_period
= sysctl_sched_rt_period
;
10139 old_runtime
= sysctl_sched_rt_runtime
;
10141 ret
= proc_dointvec(table
, write
, filp
, buffer
, lenp
, ppos
);
10143 if (!ret
&& write
) {
10144 ret
= sched_rt_global_constraints();
10146 sysctl_sched_rt_period
= old_period
;
10147 sysctl_sched_rt_runtime
= old_runtime
;
10149 def_rt_bandwidth
.rt_runtime
= global_rt_runtime();
10150 def_rt_bandwidth
.rt_period
=
10151 ns_to_ktime(global_rt_period());
10154 mutex_unlock(&mutex
);
10159 #ifdef CONFIG_CGROUP_SCHED
10161 /* return corresponding task_group object of a cgroup */
10162 static inline struct task_group
*cgroup_tg(struct cgroup
*cgrp
)
10164 return container_of(cgroup_subsys_state(cgrp
, cpu_cgroup_subsys_id
),
10165 struct task_group
, css
);
10168 static struct cgroup_subsys_state
*
10169 cpu_cgroup_create(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
10171 struct task_group
*tg
, *parent
;
10173 if (!cgrp
->parent
) {
10174 /* This is early initialization for the top cgroup */
10175 return &init_task_group
.css
;
10178 parent
= cgroup_tg(cgrp
->parent
);
10179 tg
= sched_create_group(parent
);
10181 return ERR_PTR(-ENOMEM
);
10187 cpu_cgroup_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
10189 struct task_group
*tg
= cgroup_tg(cgrp
);
10191 sched_destroy_group(tg
);
10195 cpu_cgroup_can_attach(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
10196 struct task_struct
*tsk
)
10198 #ifdef CONFIG_RT_GROUP_SCHED
10199 if (!sched_rt_can_attach(cgroup_tg(cgrp
), tsk
))
10202 /* We don't support RT-tasks being in separate groups */
10203 if (tsk
->sched_class
!= &fair_sched_class
)
10211 cpu_cgroup_attach(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
10212 struct cgroup
*old_cont
, struct task_struct
*tsk
)
10214 sched_move_task(tsk
);
10217 #ifdef CONFIG_FAIR_GROUP_SCHED
10218 static int cpu_shares_write_u64(struct cgroup
*cgrp
, struct cftype
*cftype
,
10221 return sched_group_set_shares(cgroup_tg(cgrp
), shareval
);
10224 static u64
cpu_shares_read_u64(struct cgroup
*cgrp
, struct cftype
*cft
)
10226 struct task_group
*tg
= cgroup_tg(cgrp
);
10228 return (u64
) tg
->shares
;
10230 #endif /* CONFIG_FAIR_GROUP_SCHED */
10232 #ifdef CONFIG_RT_GROUP_SCHED
10233 static int cpu_rt_runtime_write(struct cgroup
*cgrp
, struct cftype
*cft
,
10236 return sched_group_set_rt_runtime(cgroup_tg(cgrp
), val
);
10239 static s64
cpu_rt_runtime_read(struct cgroup
*cgrp
, struct cftype
*cft
)
10241 return sched_group_rt_runtime(cgroup_tg(cgrp
));
10244 static int cpu_rt_period_write_uint(struct cgroup
*cgrp
, struct cftype
*cftype
,
10247 return sched_group_set_rt_period(cgroup_tg(cgrp
), rt_period_us
);
10250 static u64
cpu_rt_period_read_uint(struct cgroup
*cgrp
, struct cftype
*cft
)
10252 return sched_group_rt_period(cgroup_tg(cgrp
));
10254 #endif /* CONFIG_RT_GROUP_SCHED */
10256 static struct cftype cpu_files
[] = {
10257 #ifdef CONFIG_FAIR_GROUP_SCHED
10260 .read_u64
= cpu_shares_read_u64
,
10261 .write_u64
= cpu_shares_write_u64
,
10264 #ifdef CONFIG_RT_GROUP_SCHED
10266 .name
= "rt_runtime_us",
10267 .read_s64
= cpu_rt_runtime_read
,
10268 .write_s64
= cpu_rt_runtime_write
,
10271 .name
= "rt_period_us",
10272 .read_u64
= cpu_rt_period_read_uint
,
10273 .write_u64
= cpu_rt_period_write_uint
,
10278 static int cpu_cgroup_populate(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
10280 return cgroup_add_files(cont
, ss
, cpu_files
, ARRAY_SIZE(cpu_files
));
10283 struct cgroup_subsys cpu_cgroup_subsys
= {
10285 .create
= cpu_cgroup_create
,
10286 .destroy
= cpu_cgroup_destroy
,
10287 .can_attach
= cpu_cgroup_can_attach
,
10288 .attach
= cpu_cgroup_attach
,
10289 .populate
= cpu_cgroup_populate
,
10290 .subsys_id
= cpu_cgroup_subsys_id
,
10294 #endif /* CONFIG_CGROUP_SCHED */
10296 #ifdef CONFIG_CGROUP_CPUACCT
10299 * CPU accounting code for task groups.
10301 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10302 * (balbir@in.ibm.com).
10305 /* track cpu usage of a group of tasks and its child groups */
10307 struct cgroup_subsys_state css
;
10308 /* cpuusage holds pointer to a u64-type object on every cpu */
10310 struct percpu_counter cpustat
[CPUACCT_STAT_NSTATS
];
10311 struct cpuacct
*parent
;
10314 struct cgroup_subsys cpuacct_subsys
;
10316 /* return cpu accounting group corresponding to this container */
10317 static inline struct cpuacct
*cgroup_ca(struct cgroup
*cgrp
)
10319 return container_of(cgroup_subsys_state(cgrp
, cpuacct_subsys_id
),
10320 struct cpuacct
, css
);
10323 /* return cpu accounting group to which this task belongs */
10324 static inline struct cpuacct
*task_ca(struct task_struct
*tsk
)
10326 return container_of(task_subsys_state(tsk
, cpuacct_subsys_id
),
10327 struct cpuacct
, css
);
10330 /* create a new cpu accounting group */
10331 static struct cgroup_subsys_state
*cpuacct_create(
10332 struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
10334 struct cpuacct
*ca
= kzalloc(sizeof(*ca
), GFP_KERNEL
);
10340 ca
->cpuusage
= alloc_percpu(u64
);
10344 for (i
= 0; i
< CPUACCT_STAT_NSTATS
; i
++)
10345 if (percpu_counter_init(&ca
->cpustat
[i
], 0))
10346 goto out_free_counters
;
10349 ca
->parent
= cgroup_ca(cgrp
->parent
);
10355 percpu_counter_destroy(&ca
->cpustat
[i
]);
10356 free_percpu(ca
->cpuusage
);
10360 return ERR_PTR(-ENOMEM
);
10363 /* destroy an existing cpu accounting group */
10365 cpuacct_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
10367 struct cpuacct
*ca
= cgroup_ca(cgrp
);
10370 for (i
= 0; i
< CPUACCT_STAT_NSTATS
; i
++)
10371 percpu_counter_destroy(&ca
->cpustat
[i
]);
10372 free_percpu(ca
->cpuusage
);
10376 static u64
cpuacct_cpuusage_read(struct cpuacct
*ca
, int cpu
)
10378 u64
*cpuusage
= per_cpu_ptr(ca
->cpuusage
, cpu
);
10381 #ifndef CONFIG_64BIT
10383 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10385 spin_lock_irq(&cpu_rq(cpu
)->lock
);
10387 spin_unlock_irq(&cpu_rq(cpu
)->lock
);
10395 static void cpuacct_cpuusage_write(struct cpuacct
*ca
, int cpu
, u64 val
)
10397 u64
*cpuusage
= per_cpu_ptr(ca
->cpuusage
, cpu
);
10399 #ifndef CONFIG_64BIT
10401 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10403 spin_lock_irq(&cpu_rq(cpu
)->lock
);
10405 spin_unlock_irq(&cpu_rq(cpu
)->lock
);
10411 /* return total cpu usage (in nanoseconds) of a group */
10412 static u64
cpuusage_read(struct cgroup
*cgrp
, struct cftype
*cft
)
10414 struct cpuacct
*ca
= cgroup_ca(cgrp
);
10415 u64 totalcpuusage
= 0;
10418 for_each_present_cpu(i
)
10419 totalcpuusage
+= cpuacct_cpuusage_read(ca
, i
);
10421 return totalcpuusage
;
10424 static int cpuusage_write(struct cgroup
*cgrp
, struct cftype
*cftype
,
10427 struct cpuacct
*ca
= cgroup_ca(cgrp
);
10436 for_each_present_cpu(i
)
10437 cpuacct_cpuusage_write(ca
, i
, 0);
10443 static int cpuacct_percpu_seq_read(struct cgroup
*cgroup
, struct cftype
*cft
,
10444 struct seq_file
*m
)
10446 struct cpuacct
*ca
= cgroup_ca(cgroup
);
10450 for_each_present_cpu(i
) {
10451 percpu
= cpuacct_cpuusage_read(ca
, i
);
10452 seq_printf(m
, "%llu ", (unsigned long long) percpu
);
10454 seq_printf(m
, "\n");
10458 static const char *cpuacct_stat_desc
[] = {
10459 [CPUACCT_STAT_USER
] = "user",
10460 [CPUACCT_STAT_SYSTEM
] = "system",
10463 static int cpuacct_stats_show(struct cgroup
*cgrp
, struct cftype
*cft
,
10464 struct cgroup_map_cb
*cb
)
10466 struct cpuacct
*ca
= cgroup_ca(cgrp
);
10469 for (i
= 0; i
< CPUACCT_STAT_NSTATS
; i
++) {
10470 s64 val
= percpu_counter_read(&ca
->cpustat
[i
]);
10471 val
= cputime64_to_clock_t(val
);
10472 cb
->fill(cb
, cpuacct_stat_desc
[i
], val
);
10477 static struct cftype files
[] = {
10480 .read_u64
= cpuusage_read
,
10481 .write_u64
= cpuusage_write
,
10484 .name
= "usage_percpu",
10485 .read_seq_string
= cpuacct_percpu_seq_read
,
10489 .read_map
= cpuacct_stats_show
,
10493 static int cpuacct_populate(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
10495 return cgroup_add_files(cgrp
, ss
, files
, ARRAY_SIZE(files
));
10499 * charge this task's execution time to its accounting group.
10501 * called with rq->lock held.
10503 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
)
10505 struct cpuacct
*ca
;
10508 if (unlikely(!cpuacct_subsys
.active
))
10511 cpu
= task_cpu(tsk
);
10517 for (; ca
; ca
= ca
->parent
) {
10518 u64
*cpuusage
= per_cpu_ptr(ca
->cpuusage
, cpu
);
10519 *cpuusage
+= cputime
;
10526 * Charge the system/user time to the task's accounting group.
10528 static void cpuacct_update_stats(struct task_struct
*tsk
,
10529 enum cpuacct_stat_index idx
, cputime_t val
)
10531 struct cpuacct
*ca
;
10533 if (unlikely(!cpuacct_subsys
.active
))
10540 percpu_counter_add(&ca
->cpustat
[idx
], val
);
10546 struct cgroup_subsys cpuacct_subsys
= {
10548 .create
= cpuacct_create
,
10549 .destroy
= cpuacct_destroy
,
10550 .populate
= cpuacct_populate
,
10551 .subsys_id
= cpuacct_subsys_id
,
10553 #endif /* CONFIG_CGROUP_CPUACCT */