ALSA: hda - Avoid call of snd_jack_report at release
[linux-2.6/mini2440.git] / kernel / kprobes.c
bloba5e74ddee0e2f3a9937e46e95eae61e9b44b8746
1 /*
2 * Kernel Probes (KProbes)
3 * kernel/kprobes.c
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 * Copyright (C) IBM Corporation, 2002, 2004
21 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22 * Probes initial implementation (includes suggestions from
23 * Rusty Russell).
24 * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25 * hlists and exceptions notifier as suggested by Andi Kleen.
26 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27 * interface to access function arguments.
28 * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29 * exceptions notifier to be first on the priority list.
30 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32 * <prasanna@in.ibm.com> added function-return probes.
34 #include <linux/kprobes.h>
35 #include <linux/hash.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/stddef.h>
39 #include <linux/module.h>
40 #include <linux/moduleloader.h>
41 #include <linux/kallsyms.h>
42 #include <linux/freezer.h>
43 #include <linux/seq_file.h>
44 #include <linux/debugfs.h>
45 #include <linux/kdebug.h>
46 #include <linux/memory.h>
48 #include <asm-generic/sections.h>
49 #include <asm/cacheflush.h>
50 #include <asm/errno.h>
51 #include <asm/uaccess.h>
53 #define KPROBE_HASH_BITS 6
54 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
58 * Some oddball architectures like 64bit powerpc have function descriptors
59 * so this must be overridable.
61 #ifndef kprobe_lookup_name
62 #define kprobe_lookup_name(name, addr) \
63 addr = ((kprobe_opcode_t *)(kallsyms_lookup_name(name)))
64 #endif
66 static int kprobes_initialized;
67 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
68 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
70 /* NOTE: change this value only with kprobe_mutex held */
71 static bool kprobes_all_disarmed;
73 static DEFINE_MUTEX(kprobe_mutex); /* Protects kprobe_table */
74 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
75 static struct {
76 spinlock_t lock ____cacheline_aligned_in_smp;
77 } kretprobe_table_locks[KPROBE_TABLE_SIZE];
79 static spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
81 return &(kretprobe_table_locks[hash].lock);
85 * Normally, functions that we'd want to prohibit kprobes in, are marked
86 * __kprobes. But, there are cases where such functions already belong to
87 * a different section (__sched for preempt_schedule)
89 * For such cases, we now have a blacklist
91 static struct kprobe_blackpoint kprobe_blacklist[] = {
92 {"preempt_schedule",},
93 {NULL} /* Terminator */
96 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
98 * kprobe->ainsn.insn points to the copy of the instruction to be
99 * single-stepped. x86_64, POWER4 and above have no-exec support and
100 * stepping on the instruction on a vmalloced/kmalloced/data page
101 * is a recipe for disaster
103 #define INSNS_PER_PAGE (PAGE_SIZE/(MAX_INSN_SIZE * sizeof(kprobe_opcode_t)))
105 struct kprobe_insn_page {
106 struct hlist_node hlist;
107 kprobe_opcode_t *insns; /* Page of instruction slots */
108 char slot_used[INSNS_PER_PAGE];
109 int nused;
110 int ngarbage;
113 enum kprobe_slot_state {
114 SLOT_CLEAN = 0,
115 SLOT_DIRTY = 1,
116 SLOT_USED = 2,
119 static DEFINE_MUTEX(kprobe_insn_mutex); /* Protects kprobe_insn_pages */
120 static struct hlist_head kprobe_insn_pages;
121 static int kprobe_garbage_slots;
122 static int collect_garbage_slots(void);
124 static int __kprobes check_safety(void)
126 int ret = 0;
127 #if defined(CONFIG_PREEMPT) && defined(CONFIG_FREEZER)
128 ret = freeze_processes();
129 if (ret == 0) {
130 struct task_struct *p, *q;
131 do_each_thread(p, q) {
132 if (p != current && p->state == TASK_RUNNING &&
133 p->pid != 0) {
134 printk("Check failed: %s is running\n",p->comm);
135 ret = -1;
136 goto loop_end;
138 } while_each_thread(p, q);
140 loop_end:
141 thaw_processes();
142 #else
143 synchronize_sched();
144 #endif
145 return ret;
149 * __get_insn_slot() - Find a slot on an executable page for an instruction.
150 * We allocate an executable page if there's no room on existing ones.
152 static kprobe_opcode_t __kprobes *__get_insn_slot(void)
154 struct kprobe_insn_page *kip;
155 struct hlist_node *pos;
157 retry:
158 hlist_for_each_entry(kip, pos, &kprobe_insn_pages, hlist) {
159 if (kip->nused < INSNS_PER_PAGE) {
160 int i;
161 for (i = 0; i < INSNS_PER_PAGE; i++) {
162 if (kip->slot_used[i] == SLOT_CLEAN) {
163 kip->slot_used[i] = SLOT_USED;
164 kip->nused++;
165 return kip->insns + (i * MAX_INSN_SIZE);
168 /* Surprise! No unused slots. Fix kip->nused. */
169 kip->nused = INSNS_PER_PAGE;
173 /* If there are any garbage slots, collect it and try again. */
174 if (kprobe_garbage_slots && collect_garbage_slots() == 0) {
175 goto retry;
177 /* All out of space. Need to allocate a new page. Use slot 0. */
178 kip = kmalloc(sizeof(struct kprobe_insn_page), GFP_KERNEL);
179 if (!kip)
180 return NULL;
183 * Use module_alloc so this page is within +/- 2GB of where the
184 * kernel image and loaded module images reside. This is required
185 * so x86_64 can correctly handle the %rip-relative fixups.
187 kip->insns = module_alloc(PAGE_SIZE);
188 if (!kip->insns) {
189 kfree(kip);
190 return NULL;
192 INIT_HLIST_NODE(&kip->hlist);
193 hlist_add_head(&kip->hlist, &kprobe_insn_pages);
194 memset(kip->slot_used, SLOT_CLEAN, INSNS_PER_PAGE);
195 kip->slot_used[0] = SLOT_USED;
196 kip->nused = 1;
197 kip->ngarbage = 0;
198 return kip->insns;
201 kprobe_opcode_t __kprobes *get_insn_slot(void)
203 kprobe_opcode_t *ret;
204 mutex_lock(&kprobe_insn_mutex);
205 ret = __get_insn_slot();
206 mutex_unlock(&kprobe_insn_mutex);
207 return ret;
210 /* Return 1 if all garbages are collected, otherwise 0. */
211 static int __kprobes collect_one_slot(struct kprobe_insn_page *kip, int idx)
213 kip->slot_used[idx] = SLOT_CLEAN;
214 kip->nused--;
215 if (kip->nused == 0) {
217 * Page is no longer in use. Free it unless
218 * it's the last one. We keep the last one
219 * so as not to have to set it up again the
220 * next time somebody inserts a probe.
222 hlist_del(&kip->hlist);
223 if (hlist_empty(&kprobe_insn_pages)) {
224 INIT_HLIST_NODE(&kip->hlist);
225 hlist_add_head(&kip->hlist,
226 &kprobe_insn_pages);
227 } else {
228 module_free(NULL, kip->insns);
229 kfree(kip);
231 return 1;
233 return 0;
236 static int __kprobes collect_garbage_slots(void)
238 struct kprobe_insn_page *kip;
239 struct hlist_node *pos, *next;
240 int safety;
242 /* Ensure no-one is preepmted on the garbages */
243 mutex_unlock(&kprobe_insn_mutex);
244 safety = check_safety();
245 mutex_lock(&kprobe_insn_mutex);
246 if (safety != 0)
247 return -EAGAIN;
249 hlist_for_each_entry_safe(kip, pos, next, &kprobe_insn_pages, hlist) {
250 int i;
251 if (kip->ngarbage == 0)
252 continue;
253 kip->ngarbage = 0; /* we will collect all garbages */
254 for (i = 0; i < INSNS_PER_PAGE; i++) {
255 if (kip->slot_used[i] == SLOT_DIRTY &&
256 collect_one_slot(kip, i))
257 break;
260 kprobe_garbage_slots = 0;
261 return 0;
264 void __kprobes free_insn_slot(kprobe_opcode_t * slot, int dirty)
266 struct kprobe_insn_page *kip;
267 struct hlist_node *pos;
269 mutex_lock(&kprobe_insn_mutex);
270 hlist_for_each_entry(kip, pos, &kprobe_insn_pages, hlist) {
271 if (kip->insns <= slot &&
272 slot < kip->insns + (INSNS_PER_PAGE * MAX_INSN_SIZE)) {
273 int i = (slot - kip->insns) / MAX_INSN_SIZE;
274 if (dirty) {
275 kip->slot_used[i] = SLOT_DIRTY;
276 kip->ngarbage++;
277 } else {
278 collect_one_slot(kip, i);
280 break;
284 if (dirty && ++kprobe_garbage_slots > INSNS_PER_PAGE)
285 collect_garbage_slots();
287 mutex_unlock(&kprobe_insn_mutex);
289 #endif
291 /* We have preemption disabled.. so it is safe to use __ versions */
292 static inline void set_kprobe_instance(struct kprobe *kp)
294 __get_cpu_var(kprobe_instance) = kp;
297 static inline void reset_kprobe_instance(void)
299 __get_cpu_var(kprobe_instance) = NULL;
303 * This routine is called either:
304 * - under the kprobe_mutex - during kprobe_[un]register()
305 * OR
306 * - with preemption disabled - from arch/xxx/kernel/kprobes.c
308 struct kprobe __kprobes *get_kprobe(void *addr)
310 struct hlist_head *head;
311 struct hlist_node *node;
312 struct kprobe *p;
314 head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
315 hlist_for_each_entry_rcu(p, node, head, hlist) {
316 if (p->addr == addr)
317 return p;
319 return NULL;
323 * Aggregate handlers for multiple kprobes support - these handlers
324 * take care of invoking the individual kprobe handlers on p->list
326 static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
328 struct kprobe *kp;
330 list_for_each_entry_rcu(kp, &p->list, list) {
331 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
332 set_kprobe_instance(kp);
333 if (kp->pre_handler(kp, regs))
334 return 1;
336 reset_kprobe_instance();
338 return 0;
341 static void __kprobes aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
342 unsigned long flags)
344 struct kprobe *kp;
346 list_for_each_entry_rcu(kp, &p->list, list) {
347 if (kp->post_handler && likely(!kprobe_disabled(kp))) {
348 set_kprobe_instance(kp);
349 kp->post_handler(kp, regs, flags);
350 reset_kprobe_instance();
355 static int __kprobes aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
356 int trapnr)
358 struct kprobe *cur = __get_cpu_var(kprobe_instance);
361 * if we faulted "during" the execution of a user specified
362 * probe handler, invoke just that probe's fault handler
364 if (cur && cur->fault_handler) {
365 if (cur->fault_handler(cur, regs, trapnr))
366 return 1;
368 return 0;
371 static int __kprobes aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
373 struct kprobe *cur = __get_cpu_var(kprobe_instance);
374 int ret = 0;
376 if (cur && cur->break_handler) {
377 if (cur->break_handler(cur, regs))
378 ret = 1;
380 reset_kprobe_instance();
381 return ret;
384 /* Walks the list and increments nmissed count for multiprobe case */
385 void __kprobes kprobes_inc_nmissed_count(struct kprobe *p)
387 struct kprobe *kp;
388 if (p->pre_handler != aggr_pre_handler) {
389 p->nmissed++;
390 } else {
391 list_for_each_entry_rcu(kp, &p->list, list)
392 kp->nmissed++;
394 return;
397 void __kprobes recycle_rp_inst(struct kretprobe_instance *ri,
398 struct hlist_head *head)
400 struct kretprobe *rp = ri->rp;
402 /* remove rp inst off the rprobe_inst_table */
403 hlist_del(&ri->hlist);
404 INIT_HLIST_NODE(&ri->hlist);
405 if (likely(rp)) {
406 spin_lock(&rp->lock);
407 hlist_add_head(&ri->hlist, &rp->free_instances);
408 spin_unlock(&rp->lock);
409 } else
410 /* Unregistering */
411 hlist_add_head(&ri->hlist, head);
414 void __kprobes kretprobe_hash_lock(struct task_struct *tsk,
415 struct hlist_head **head, unsigned long *flags)
417 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
418 spinlock_t *hlist_lock;
420 *head = &kretprobe_inst_table[hash];
421 hlist_lock = kretprobe_table_lock_ptr(hash);
422 spin_lock_irqsave(hlist_lock, *flags);
425 static void __kprobes kretprobe_table_lock(unsigned long hash,
426 unsigned long *flags)
428 spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
429 spin_lock_irqsave(hlist_lock, *flags);
432 void __kprobes kretprobe_hash_unlock(struct task_struct *tsk,
433 unsigned long *flags)
435 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
436 spinlock_t *hlist_lock;
438 hlist_lock = kretprobe_table_lock_ptr(hash);
439 spin_unlock_irqrestore(hlist_lock, *flags);
442 void __kprobes kretprobe_table_unlock(unsigned long hash, unsigned long *flags)
444 spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
445 spin_unlock_irqrestore(hlist_lock, *flags);
449 * This function is called from finish_task_switch when task tk becomes dead,
450 * so that we can recycle any function-return probe instances associated
451 * with this task. These left over instances represent probed functions
452 * that have been called but will never return.
454 void __kprobes kprobe_flush_task(struct task_struct *tk)
456 struct kretprobe_instance *ri;
457 struct hlist_head *head, empty_rp;
458 struct hlist_node *node, *tmp;
459 unsigned long hash, flags = 0;
461 if (unlikely(!kprobes_initialized))
462 /* Early boot. kretprobe_table_locks not yet initialized. */
463 return;
465 hash = hash_ptr(tk, KPROBE_HASH_BITS);
466 head = &kretprobe_inst_table[hash];
467 kretprobe_table_lock(hash, &flags);
468 hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
469 if (ri->task == tk)
470 recycle_rp_inst(ri, &empty_rp);
472 kretprobe_table_unlock(hash, &flags);
473 INIT_HLIST_HEAD(&empty_rp);
474 hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
475 hlist_del(&ri->hlist);
476 kfree(ri);
480 static inline void free_rp_inst(struct kretprobe *rp)
482 struct kretprobe_instance *ri;
483 struct hlist_node *pos, *next;
485 hlist_for_each_entry_safe(ri, pos, next, &rp->free_instances, hlist) {
486 hlist_del(&ri->hlist);
487 kfree(ri);
491 static void __kprobes cleanup_rp_inst(struct kretprobe *rp)
493 unsigned long flags, hash;
494 struct kretprobe_instance *ri;
495 struct hlist_node *pos, *next;
496 struct hlist_head *head;
498 /* No race here */
499 for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
500 kretprobe_table_lock(hash, &flags);
501 head = &kretprobe_inst_table[hash];
502 hlist_for_each_entry_safe(ri, pos, next, head, hlist) {
503 if (ri->rp == rp)
504 ri->rp = NULL;
506 kretprobe_table_unlock(hash, &flags);
508 free_rp_inst(rp);
512 * Keep all fields in the kprobe consistent
514 static inline void copy_kprobe(struct kprobe *old_p, struct kprobe *p)
516 memcpy(&p->opcode, &old_p->opcode, sizeof(kprobe_opcode_t));
517 memcpy(&p->ainsn, &old_p->ainsn, sizeof(struct arch_specific_insn));
521 * Add the new probe to ap->list. Fail if this is the
522 * second jprobe at the address - two jprobes can't coexist
524 static int __kprobes add_new_kprobe(struct kprobe *ap, struct kprobe *p)
526 BUG_ON(kprobe_gone(ap) || kprobe_gone(p));
527 if (p->break_handler) {
528 if (ap->break_handler)
529 return -EEXIST;
530 list_add_tail_rcu(&p->list, &ap->list);
531 ap->break_handler = aggr_break_handler;
532 } else
533 list_add_rcu(&p->list, &ap->list);
534 if (p->post_handler && !ap->post_handler)
535 ap->post_handler = aggr_post_handler;
537 if (kprobe_disabled(ap) && !kprobe_disabled(p)) {
538 ap->flags &= ~KPROBE_FLAG_DISABLED;
539 if (!kprobes_all_disarmed)
540 /* Arm the breakpoint again. */
541 arch_arm_kprobe(ap);
543 return 0;
547 * Fill in the required fields of the "manager kprobe". Replace the
548 * earlier kprobe in the hlist with the manager kprobe
550 static inline void add_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
552 copy_kprobe(p, ap);
553 flush_insn_slot(ap);
554 ap->addr = p->addr;
555 ap->flags = p->flags;
556 ap->pre_handler = aggr_pre_handler;
557 ap->fault_handler = aggr_fault_handler;
558 /* We don't care the kprobe which has gone. */
559 if (p->post_handler && !kprobe_gone(p))
560 ap->post_handler = aggr_post_handler;
561 if (p->break_handler && !kprobe_gone(p))
562 ap->break_handler = aggr_break_handler;
564 INIT_LIST_HEAD(&ap->list);
565 list_add_rcu(&p->list, &ap->list);
567 hlist_replace_rcu(&p->hlist, &ap->hlist);
571 * This is the second or subsequent kprobe at the address - handle
572 * the intricacies
574 static int __kprobes register_aggr_kprobe(struct kprobe *old_p,
575 struct kprobe *p)
577 int ret = 0;
578 struct kprobe *ap = old_p;
580 if (old_p->pre_handler != aggr_pre_handler) {
581 /* If old_p is not an aggr_probe, create new aggr_kprobe. */
582 ap = kzalloc(sizeof(struct kprobe), GFP_KERNEL);
583 if (!ap)
584 return -ENOMEM;
585 add_aggr_kprobe(ap, old_p);
588 if (kprobe_gone(ap)) {
590 * Attempting to insert new probe at the same location that
591 * had a probe in the module vaddr area which already
592 * freed. So, the instruction slot has already been
593 * released. We need a new slot for the new probe.
595 ret = arch_prepare_kprobe(ap);
596 if (ret)
598 * Even if fail to allocate new slot, don't need to
599 * free aggr_probe. It will be used next time, or
600 * freed by unregister_kprobe.
602 return ret;
605 * Clear gone flag to prevent allocating new slot again, and
606 * set disabled flag because it is not armed yet.
608 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
609 | KPROBE_FLAG_DISABLED;
612 copy_kprobe(ap, p);
613 return add_new_kprobe(ap, p);
616 /* Try to disable aggr_kprobe, and return 1 if succeeded.*/
617 static int __kprobes try_to_disable_aggr_kprobe(struct kprobe *p)
619 struct kprobe *kp;
621 list_for_each_entry_rcu(kp, &p->list, list) {
622 if (!kprobe_disabled(kp))
624 * There is an active probe on the list.
625 * We can't disable aggr_kprobe.
627 return 0;
629 p->flags |= KPROBE_FLAG_DISABLED;
630 return 1;
633 static int __kprobes in_kprobes_functions(unsigned long addr)
635 struct kprobe_blackpoint *kb;
637 if (addr >= (unsigned long)__kprobes_text_start &&
638 addr < (unsigned long)__kprobes_text_end)
639 return -EINVAL;
641 * If there exists a kprobe_blacklist, verify and
642 * fail any probe registration in the prohibited area
644 for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
645 if (kb->start_addr) {
646 if (addr >= kb->start_addr &&
647 addr < (kb->start_addr + kb->range))
648 return -EINVAL;
651 return 0;
655 * If we have a symbol_name argument, look it up and add the offset field
656 * to it. This way, we can specify a relative address to a symbol.
658 static kprobe_opcode_t __kprobes *kprobe_addr(struct kprobe *p)
660 kprobe_opcode_t *addr = p->addr;
661 if (p->symbol_name) {
662 if (addr)
663 return NULL;
664 kprobe_lookup_name(p->symbol_name, addr);
667 if (!addr)
668 return NULL;
669 return (kprobe_opcode_t *)(((char *)addr) + p->offset);
672 int __kprobes register_kprobe(struct kprobe *p)
674 int ret = 0;
675 struct kprobe *old_p;
676 struct module *probed_mod;
677 kprobe_opcode_t *addr;
679 addr = kprobe_addr(p);
680 if (!addr)
681 return -EINVAL;
682 p->addr = addr;
684 preempt_disable();
685 if (!__kernel_text_address((unsigned long) p->addr) ||
686 in_kprobes_functions((unsigned long) p->addr)) {
687 preempt_enable();
688 return -EINVAL;
691 /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
692 p->flags &= KPROBE_FLAG_DISABLED;
695 * Check if are we probing a module.
697 probed_mod = __module_text_address((unsigned long) p->addr);
698 if (probed_mod) {
700 * We must hold a refcount of the probed module while updating
701 * its code to prohibit unexpected unloading.
703 if (unlikely(!try_module_get(probed_mod))) {
704 preempt_enable();
705 return -EINVAL;
708 * If the module freed .init.text, we couldn't insert
709 * kprobes in there.
711 if (within_module_init((unsigned long)p->addr, probed_mod) &&
712 probed_mod->state != MODULE_STATE_COMING) {
713 module_put(probed_mod);
714 preempt_enable();
715 return -EINVAL;
718 preempt_enable();
720 p->nmissed = 0;
721 INIT_LIST_HEAD(&p->list);
722 mutex_lock(&kprobe_mutex);
723 old_p = get_kprobe(p->addr);
724 if (old_p) {
725 ret = register_aggr_kprobe(old_p, p);
726 goto out;
729 mutex_lock(&text_mutex);
730 ret = arch_prepare_kprobe(p);
731 if (ret)
732 goto out_unlock_text;
734 INIT_HLIST_NODE(&p->hlist);
735 hlist_add_head_rcu(&p->hlist,
736 &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
738 if (!kprobes_all_disarmed && !kprobe_disabled(p))
739 arch_arm_kprobe(p);
741 out_unlock_text:
742 mutex_unlock(&text_mutex);
743 out:
744 mutex_unlock(&kprobe_mutex);
746 if (probed_mod)
747 module_put(probed_mod);
749 return ret;
751 EXPORT_SYMBOL_GPL(register_kprobe);
753 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
754 static struct kprobe * __kprobes __get_valid_kprobe(struct kprobe *p)
756 struct kprobe *old_p, *list_p;
758 old_p = get_kprobe(p->addr);
759 if (unlikely(!old_p))
760 return NULL;
762 if (p != old_p) {
763 list_for_each_entry_rcu(list_p, &old_p->list, list)
764 if (list_p == p)
765 /* kprobe p is a valid probe */
766 goto valid;
767 return NULL;
769 valid:
770 return old_p;
774 * Unregister a kprobe without a scheduler synchronization.
776 static int __kprobes __unregister_kprobe_top(struct kprobe *p)
778 struct kprobe *old_p, *list_p;
780 old_p = __get_valid_kprobe(p);
781 if (old_p == NULL)
782 return -EINVAL;
784 if (old_p == p ||
785 (old_p->pre_handler == aggr_pre_handler &&
786 list_is_singular(&old_p->list))) {
788 * Only probe on the hash list. Disarm only if kprobes are
789 * enabled and not gone - otherwise, the breakpoint would
790 * already have been removed. We save on flushing icache.
792 if (!kprobes_all_disarmed && !kprobe_disabled(old_p)) {
793 mutex_lock(&text_mutex);
794 arch_disarm_kprobe(p);
795 mutex_unlock(&text_mutex);
797 hlist_del_rcu(&old_p->hlist);
798 } else {
799 if (p->break_handler && !kprobe_gone(p))
800 old_p->break_handler = NULL;
801 if (p->post_handler && !kprobe_gone(p)) {
802 list_for_each_entry_rcu(list_p, &old_p->list, list) {
803 if ((list_p != p) && (list_p->post_handler))
804 goto noclean;
806 old_p->post_handler = NULL;
808 noclean:
809 list_del_rcu(&p->list);
810 if (!kprobe_disabled(old_p)) {
811 try_to_disable_aggr_kprobe(old_p);
812 if (!kprobes_all_disarmed && kprobe_disabled(old_p))
813 arch_disarm_kprobe(old_p);
816 return 0;
819 static void __kprobes __unregister_kprobe_bottom(struct kprobe *p)
821 struct kprobe *old_p;
823 if (list_empty(&p->list))
824 arch_remove_kprobe(p);
825 else if (list_is_singular(&p->list)) {
826 /* "p" is the last child of an aggr_kprobe */
827 old_p = list_entry(p->list.next, struct kprobe, list);
828 list_del(&p->list);
829 arch_remove_kprobe(old_p);
830 kfree(old_p);
834 int __kprobes register_kprobes(struct kprobe **kps, int num)
836 int i, ret = 0;
838 if (num <= 0)
839 return -EINVAL;
840 for (i = 0; i < num; i++) {
841 ret = register_kprobe(kps[i]);
842 if (ret < 0) {
843 if (i > 0)
844 unregister_kprobes(kps, i);
845 break;
848 return ret;
850 EXPORT_SYMBOL_GPL(register_kprobes);
852 void __kprobes unregister_kprobe(struct kprobe *p)
854 unregister_kprobes(&p, 1);
856 EXPORT_SYMBOL_GPL(unregister_kprobe);
858 void __kprobes unregister_kprobes(struct kprobe **kps, int num)
860 int i;
862 if (num <= 0)
863 return;
864 mutex_lock(&kprobe_mutex);
865 for (i = 0; i < num; i++)
866 if (__unregister_kprobe_top(kps[i]) < 0)
867 kps[i]->addr = NULL;
868 mutex_unlock(&kprobe_mutex);
870 synchronize_sched();
871 for (i = 0; i < num; i++)
872 if (kps[i]->addr)
873 __unregister_kprobe_bottom(kps[i]);
875 EXPORT_SYMBOL_GPL(unregister_kprobes);
877 static struct notifier_block kprobe_exceptions_nb = {
878 .notifier_call = kprobe_exceptions_notify,
879 .priority = 0x7fffffff /* we need to be notified first */
882 unsigned long __weak arch_deref_entry_point(void *entry)
884 return (unsigned long)entry;
887 int __kprobes register_jprobes(struct jprobe **jps, int num)
889 struct jprobe *jp;
890 int ret = 0, i;
892 if (num <= 0)
893 return -EINVAL;
894 for (i = 0; i < num; i++) {
895 unsigned long addr;
896 jp = jps[i];
897 addr = arch_deref_entry_point(jp->entry);
899 if (!kernel_text_address(addr))
900 ret = -EINVAL;
901 else {
902 /* Todo: Verify probepoint is a function entry point */
903 jp->kp.pre_handler = setjmp_pre_handler;
904 jp->kp.break_handler = longjmp_break_handler;
905 ret = register_kprobe(&jp->kp);
907 if (ret < 0) {
908 if (i > 0)
909 unregister_jprobes(jps, i);
910 break;
913 return ret;
915 EXPORT_SYMBOL_GPL(register_jprobes);
917 int __kprobes register_jprobe(struct jprobe *jp)
919 return register_jprobes(&jp, 1);
921 EXPORT_SYMBOL_GPL(register_jprobe);
923 void __kprobes unregister_jprobe(struct jprobe *jp)
925 unregister_jprobes(&jp, 1);
927 EXPORT_SYMBOL_GPL(unregister_jprobe);
929 void __kprobes unregister_jprobes(struct jprobe **jps, int num)
931 int i;
933 if (num <= 0)
934 return;
935 mutex_lock(&kprobe_mutex);
936 for (i = 0; i < num; i++)
937 if (__unregister_kprobe_top(&jps[i]->kp) < 0)
938 jps[i]->kp.addr = NULL;
939 mutex_unlock(&kprobe_mutex);
941 synchronize_sched();
942 for (i = 0; i < num; i++) {
943 if (jps[i]->kp.addr)
944 __unregister_kprobe_bottom(&jps[i]->kp);
947 EXPORT_SYMBOL_GPL(unregister_jprobes);
949 #ifdef CONFIG_KRETPROBES
951 * This kprobe pre_handler is registered with every kretprobe. When probe
952 * hits it will set up the return probe.
954 static int __kprobes pre_handler_kretprobe(struct kprobe *p,
955 struct pt_regs *regs)
957 struct kretprobe *rp = container_of(p, struct kretprobe, kp);
958 unsigned long hash, flags = 0;
959 struct kretprobe_instance *ri;
961 /*TODO: consider to only swap the RA after the last pre_handler fired */
962 hash = hash_ptr(current, KPROBE_HASH_BITS);
963 spin_lock_irqsave(&rp->lock, flags);
964 if (!hlist_empty(&rp->free_instances)) {
965 ri = hlist_entry(rp->free_instances.first,
966 struct kretprobe_instance, hlist);
967 hlist_del(&ri->hlist);
968 spin_unlock_irqrestore(&rp->lock, flags);
970 ri->rp = rp;
971 ri->task = current;
973 if (rp->entry_handler && rp->entry_handler(ri, regs))
974 return 0;
976 arch_prepare_kretprobe(ri, regs);
978 /* XXX(hch): why is there no hlist_move_head? */
979 INIT_HLIST_NODE(&ri->hlist);
980 kretprobe_table_lock(hash, &flags);
981 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
982 kretprobe_table_unlock(hash, &flags);
983 } else {
984 rp->nmissed++;
985 spin_unlock_irqrestore(&rp->lock, flags);
987 return 0;
990 int __kprobes register_kretprobe(struct kretprobe *rp)
992 int ret = 0;
993 struct kretprobe_instance *inst;
994 int i;
995 void *addr;
997 if (kretprobe_blacklist_size) {
998 addr = kprobe_addr(&rp->kp);
999 if (!addr)
1000 return -EINVAL;
1002 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1003 if (kretprobe_blacklist[i].addr == addr)
1004 return -EINVAL;
1008 rp->kp.pre_handler = pre_handler_kretprobe;
1009 rp->kp.post_handler = NULL;
1010 rp->kp.fault_handler = NULL;
1011 rp->kp.break_handler = NULL;
1013 /* Pre-allocate memory for max kretprobe instances */
1014 if (rp->maxactive <= 0) {
1015 #ifdef CONFIG_PREEMPT
1016 rp->maxactive = max(10, 2 * NR_CPUS);
1017 #else
1018 rp->maxactive = NR_CPUS;
1019 #endif
1021 spin_lock_init(&rp->lock);
1022 INIT_HLIST_HEAD(&rp->free_instances);
1023 for (i = 0; i < rp->maxactive; i++) {
1024 inst = kmalloc(sizeof(struct kretprobe_instance) +
1025 rp->data_size, GFP_KERNEL);
1026 if (inst == NULL) {
1027 free_rp_inst(rp);
1028 return -ENOMEM;
1030 INIT_HLIST_NODE(&inst->hlist);
1031 hlist_add_head(&inst->hlist, &rp->free_instances);
1034 rp->nmissed = 0;
1035 /* Establish function entry probe point */
1036 ret = register_kprobe(&rp->kp);
1037 if (ret != 0)
1038 free_rp_inst(rp);
1039 return ret;
1041 EXPORT_SYMBOL_GPL(register_kretprobe);
1043 int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1045 int ret = 0, i;
1047 if (num <= 0)
1048 return -EINVAL;
1049 for (i = 0; i < num; i++) {
1050 ret = register_kretprobe(rps[i]);
1051 if (ret < 0) {
1052 if (i > 0)
1053 unregister_kretprobes(rps, i);
1054 break;
1057 return ret;
1059 EXPORT_SYMBOL_GPL(register_kretprobes);
1061 void __kprobes unregister_kretprobe(struct kretprobe *rp)
1063 unregister_kretprobes(&rp, 1);
1065 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1067 void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1069 int i;
1071 if (num <= 0)
1072 return;
1073 mutex_lock(&kprobe_mutex);
1074 for (i = 0; i < num; i++)
1075 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
1076 rps[i]->kp.addr = NULL;
1077 mutex_unlock(&kprobe_mutex);
1079 synchronize_sched();
1080 for (i = 0; i < num; i++) {
1081 if (rps[i]->kp.addr) {
1082 __unregister_kprobe_bottom(&rps[i]->kp);
1083 cleanup_rp_inst(rps[i]);
1087 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1089 #else /* CONFIG_KRETPROBES */
1090 int __kprobes register_kretprobe(struct kretprobe *rp)
1092 return -ENOSYS;
1094 EXPORT_SYMBOL_GPL(register_kretprobe);
1096 int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1098 return -ENOSYS;
1100 EXPORT_SYMBOL_GPL(register_kretprobes);
1102 void __kprobes unregister_kretprobe(struct kretprobe *rp)
1105 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1107 void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1110 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1112 static int __kprobes pre_handler_kretprobe(struct kprobe *p,
1113 struct pt_regs *regs)
1115 return 0;
1118 #endif /* CONFIG_KRETPROBES */
1120 /* Set the kprobe gone and remove its instruction buffer. */
1121 static void __kprobes kill_kprobe(struct kprobe *p)
1123 struct kprobe *kp;
1125 p->flags |= KPROBE_FLAG_GONE;
1126 if (p->pre_handler == aggr_pre_handler) {
1128 * If this is an aggr_kprobe, we have to list all the
1129 * chained probes and mark them GONE.
1131 list_for_each_entry_rcu(kp, &p->list, list)
1132 kp->flags |= KPROBE_FLAG_GONE;
1133 p->post_handler = NULL;
1134 p->break_handler = NULL;
1137 * Here, we can remove insn_slot safely, because no thread calls
1138 * the original probed function (which will be freed soon) any more.
1140 arch_remove_kprobe(p);
1143 /* Module notifier call back, checking kprobes on the module */
1144 static int __kprobes kprobes_module_callback(struct notifier_block *nb,
1145 unsigned long val, void *data)
1147 struct module *mod = data;
1148 struct hlist_head *head;
1149 struct hlist_node *node;
1150 struct kprobe *p;
1151 unsigned int i;
1152 int checkcore = (val == MODULE_STATE_GOING);
1154 if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
1155 return NOTIFY_DONE;
1158 * When MODULE_STATE_GOING was notified, both of module .text and
1159 * .init.text sections would be freed. When MODULE_STATE_LIVE was
1160 * notified, only .init.text section would be freed. We need to
1161 * disable kprobes which have been inserted in the sections.
1163 mutex_lock(&kprobe_mutex);
1164 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1165 head = &kprobe_table[i];
1166 hlist_for_each_entry_rcu(p, node, head, hlist)
1167 if (within_module_init((unsigned long)p->addr, mod) ||
1168 (checkcore &&
1169 within_module_core((unsigned long)p->addr, mod))) {
1171 * The vaddr this probe is installed will soon
1172 * be vfreed buy not synced to disk. Hence,
1173 * disarming the breakpoint isn't needed.
1175 kill_kprobe(p);
1178 mutex_unlock(&kprobe_mutex);
1179 return NOTIFY_DONE;
1182 static struct notifier_block kprobe_module_nb = {
1183 .notifier_call = kprobes_module_callback,
1184 .priority = 0
1187 static int __init init_kprobes(void)
1189 int i, err = 0;
1190 unsigned long offset = 0, size = 0;
1191 char *modname, namebuf[128];
1192 const char *symbol_name;
1193 void *addr;
1194 struct kprobe_blackpoint *kb;
1196 /* FIXME allocate the probe table, currently defined statically */
1197 /* initialize all list heads */
1198 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1199 INIT_HLIST_HEAD(&kprobe_table[i]);
1200 INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
1201 spin_lock_init(&(kretprobe_table_locks[i].lock));
1205 * Lookup and populate the kprobe_blacklist.
1207 * Unlike the kretprobe blacklist, we'll need to determine
1208 * the range of addresses that belong to the said functions,
1209 * since a kprobe need not necessarily be at the beginning
1210 * of a function.
1212 for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
1213 kprobe_lookup_name(kb->name, addr);
1214 if (!addr)
1215 continue;
1217 kb->start_addr = (unsigned long)addr;
1218 symbol_name = kallsyms_lookup(kb->start_addr,
1219 &size, &offset, &modname, namebuf);
1220 if (!symbol_name)
1221 kb->range = 0;
1222 else
1223 kb->range = size;
1226 if (kretprobe_blacklist_size) {
1227 /* lookup the function address from its name */
1228 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1229 kprobe_lookup_name(kretprobe_blacklist[i].name,
1230 kretprobe_blacklist[i].addr);
1231 if (!kretprobe_blacklist[i].addr)
1232 printk("kretprobe: lookup failed: %s\n",
1233 kretprobe_blacklist[i].name);
1237 /* By default, kprobes are armed */
1238 kprobes_all_disarmed = false;
1240 err = arch_init_kprobes();
1241 if (!err)
1242 err = register_die_notifier(&kprobe_exceptions_nb);
1243 if (!err)
1244 err = register_module_notifier(&kprobe_module_nb);
1246 kprobes_initialized = (err == 0);
1248 if (!err)
1249 init_test_probes();
1250 return err;
1253 #ifdef CONFIG_DEBUG_FS
1254 static void __kprobes report_probe(struct seq_file *pi, struct kprobe *p,
1255 const char *sym, int offset,char *modname)
1257 char *kprobe_type;
1259 if (p->pre_handler == pre_handler_kretprobe)
1260 kprobe_type = "r";
1261 else if (p->pre_handler == setjmp_pre_handler)
1262 kprobe_type = "j";
1263 else
1264 kprobe_type = "k";
1265 if (sym)
1266 seq_printf(pi, "%p %s %s+0x%x %s %s%s\n",
1267 p->addr, kprobe_type, sym, offset,
1268 (modname ? modname : " "),
1269 (kprobe_gone(p) ? "[GONE]" : ""),
1270 ((kprobe_disabled(p) && !kprobe_gone(p)) ?
1271 "[DISABLED]" : ""));
1272 else
1273 seq_printf(pi, "%p %s %p %s%s\n",
1274 p->addr, kprobe_type, p->addr,
1275 (kprobe_gone(p) ? "[GONE]" : ""),
1276 ((kprobe_disabled(p) && !kprobe_gone(p)) ?
1277 "[DISABLED]" : ""));
1280 static void __kprobes *kprobe_seq_start(struct seq_file *f, loff_t *pos)
1282 return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
1285 static void __kprobes *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
1287 (*pos)++;
1288 if (*pos >= KPROBE_TABLE_SIZE)
1289 return NULL;
1290 return pos;
1293 static void __kprobes kprobe_seq_stop(struct seq_file *f, void *v)
1295 /* Nothing to do */
1298 static int __kprobes show_kprobe_addr(struct seq_file *pi, void *v)
1300 struct hlist_head *head;
1301 struct hlist_node *node;
1302 struct kprobe *p, *kp;
1303 const char *sym = NULL;
1304 unsigned int i = *(loff_t *) v;
1305 unsigned long offset = 0;
1306 char *modname, namebuf[128];
1308 head = &kprobe_table[i];
1309 preempt_disable();
1310 hlist_for_each_entry_rcu(p, node, head, hlist) {
1311 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
1312 &offset, &modname, namebuf);
1313 if (p->pre_handler == aggr_pre_handler) {
1314 list_for_each_entry_rcu(kp, &p->list, list)
1315 report_probe(pi, kp, sym, offset, modname);
1316 } else
1317 report_probe(pi, p, sym, offset, modname);
1319 preempt_enable();
1320 return 0;
1323 static struct seq_operations kprobes_seq_ops = {
1324 .start = kprobe_seq_start,
1325 .next = kprobe_seq_next,
1326 .stop = kprobe_seq_stop,
1327 .show = show_kprobe_addr
1330 static int __kprobes kprobes_open(struct inode *inode, struct file *filp)
1332 return seq_open(filp, &kprobes_seq_ops);
1335 static struct file_operations debugfs_kprobes_operations = {
1336 .open = kprobes_open,
1337 .read = seq_read,
1338 .llseek = seq_lseek,
1339 .release = seq_release,
1342 /* Disable one kprobe */
1343 int __kprobes disable_kprobe(struct kprobe *kp)
1345 int ret = 0;
1346 struct kprobe *p;
1348 mutex_lock(&kprobe_mutex);
1350 /* Check whether specified probe is valid. */
1351 p = __get_valid_kprobe(kp);
1352 if (unlikely(p == NULL)) {
1353 ret = -EINVAL;
1354 goto out;
1357 /* If the probe is already disabled (or gone), just return */
1358 if (kprobe_disabled(kp))
1359 goto out;
1361 kp->flags |= KPROBE_FLAG_DISABLED;
1362 if (p != kp)
1363 /* When kp != p, p is always enabled. */
1364 try_to_disable_aggr_kprobe(p);
1366 if (!kprobes_all_disarmed && kprobe_disabled(p))
1367 arch_disarm_kprobe(p);
1368 out:
1369 mutex_unlock(&kprobe_mutex);
1370 return ret;
1372 EXPORT_SYMBOL_GPL(disable_kprobe);
1374 /* Enable one kprobe */
1375 int __kprobes enable_kprobe(struct kprobe *kp)
1377 int ret = 0;
1378 struct kprobe *p;
1380 mutex_lock(&kprobe_mutex);
1382 /* Check whether specified probe is valid. */
1383 p = __get_valid_kprobe(kp);
1384 if (unlikely(p == NULL)) {
1385 ret = -EINVAL;
1386 goto out;
1389 if (kprobe_gone(kp)) {
1390 /* This kprobe has gone, we couldn't enable it. */
1391 ret = -EINVAL;
1392 goto out;
1395 if (!kprobes_all_disarmed && kprobe_disabled(p))
1396 arch_arm_kprobe(p);
1398 p->flags &= ~KPROBE_FLAG_DISABLED;
1399 if (p != kp)
1400 kp->flags &= ~KPROBE_FLAG_DISABLED;
1401 out:
1402 mutex_unlock(&kprobe_mutex);
1403 return ret;
1405 EXPORT_SYMBOL_GPL(enable_kprobe);
1407 static void __kprobes arm_all_kprobes(void)
1409 struct hlist_head *head;
1410 struct hlist_node *node;
1411 struct kprobe *p;
1412 unsigned int i;
1414 mutex_lock(&kprobe_mutex);
1416 /* If kprobes are armed, just return */
1417 if (!kprobes_all_disarmed)
1418 goto already_enabled;
1420 mutex_lock(&text_mutex);
1421 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1422 head = &kprobe_table[i];
1423 hlist_for_each_entry_rcu(p, node, head, hlist)
1424 if (!kprobe_disabled(p))
1425 arch_arm_kprobe(p);
1427 mutex_unlock(&text_mutex);
1429 kprobes_all_disarmed = false;
1430 printk(KERN_INFO "Kprobes globally enabled\n");
1432 already_enabled:
1433 mutex_unlock(&kprobe_mutex);
1434 return;
1437 static void __kprobes disarm_all_kprobes(void)
1439 struct hlist_head *head;
1440 struct hlist_node *node;
1441 struct kprobe *p;
1442 unsigned int i;
1444 mutex_lock(&kprobe_mutex);
1446 /* If kprobes are already disarmed, just return */
1447 if (kprobes_all_disarmed)
1448 goto already_disabled;
1450 kprobes_all_disarmed = true;
1451 printk(KERN_INFO "Kprobes globally disabled\n");
1452 mutex_lock(&text_mutex);
1453 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1454 head = &kprobe_table[i];
1455 hlist_for_each_entry_rcu(p, node, head, hlist) {
1456 if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p))
1457 arch_disarm_kprobe(p);
1461 mutex_unlock(&text_mutex);
1462 mutex_unlock(&kprobe_mutex);
1463 /* Allow all currently running kprobes to complete */
1464 synchronize_sched();
1465 return;
1467 already_disabled:
1468 mutex_unlock(&kprobe_mutex);
1469 return;
1473 * XXX: The debugfs bool file interface doesn't allow for callbacks
1474 * when the bool state is switched. We can reuse that facility when
1475 * available
1477 static ssize_t read_enabled_file_bool(struct file *file,
1478 char __user *user_buf, size_t count, loff_t *ppos)
1480 char buf[3];
1482 if (!kprobes_all_disarmed)
1483 buf[0] = '1';
1484 else
1485 buf[0] = '0';
1486 buf[1] = '\n';
1487 buf[2] = 0x00;
1488 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
1491 static ssize_t write_enabled_file_bool(struct file *file,
1492 const char __user *user_buf, size_t count, loff_t *ppos)
1494 char buf[32];
1495 int buf_size;
1497 buf_size = min(count, (sizeof(buf)-1));
1498 if (copy_from_user(buf, user_buf, buf_size))
1499 return -EFAULT;
1501 switch (buf[0]) {
1502 case 'y':
1503 case 'Y':
1504 case '1':
1505 arm_all_kprobes();
1506 break;
1507 case 'n':
1508 case 'N':
1509 case '0':
1510 disarm_all_kprobes();
1511 break;
1514 return count;
1517 static struct file_operations fops_kp = {
1518 .read = read_enabled_file_bool,
1519 .write = write_enabled_file_bool,
1522 static int __kprobes debugfs_kprobe_init(void)
1524 struct dentry *dir, *file;
1525 unsigned int value = 1;
1527 dir = debugfs_create_dir("kprobes", NULL);
1528 if (!dir)
1529 return -ENOMEM;
1531 file = debugfs_create_file("list", 0444, dir, NULL,
1532 &debugfs_kprobes_operations);
1533 if (!file) {
1534 debugfs_remove(dir);
1535 return -ENOMEM;
1538 file = debugfs_create_file("enabled", 0600, dir,
1539 &value, &fops_kp);
1540 if (!file) {
1541 debugfs_remove(dir);
1542 return -ENOMEM;
1545 return 0;
1548 late_initcall(debugfs_kprobe_init);
1549 #endif /* CONFIG_DEBUG_FS */
1551 module_init(init_kprobes);
1553 /* defined in arch/.../kernel/kprobes.c */
1554 EXPORT_SYMBOL_GPL(jprobe_return);