4 * Copyright (C) 1991, 1992 Linus Torvalds
8 * #!-checking implemented by tytso.
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
25 #include <linux/config.h>
26 #include <linux/slab.h>
27 #include <linux/file.h>
28 #include <linux/mman.h>
29 #include <linux/a.out.h>
30 #include <linux/stat.h>
31 #include <linux/fcntl.h>
32 #include <linux/smp_lock.h>
33 #include <linux/init.h>
34 #include <linux/pagemap.h>
35 #include <linux/highmem.h>
36 #include <linux/spinlock.h>
37 #include <linux/key.h>
38 #include <linux/personality.h>
39 #include <linux/binfmts.h>
40 #include <linux/swap.h>
41 #include <linux/utsname.h>
42 #include <linux/module.h>
43 #include <linux/namei.h>
44 #include <linux/proc_fs.h>
45 #include <linux/ptrace.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/rmap.h>
50 #include <linux/acct.h>
51 #include <linux/cn_proc.h>
53 #include <asm/uaccess.h>
54 #include <asm/mmu_context.h>
57 #include <linux/kmod.h>
61 char core_pattern
[65] = "core";
62 int suid_dumpable
= 0;
64 EXPORT_SYMBOL(suid_dumpable
);
65 /* The maximal length of core_pattern is also specified in sysctl.c */
67 static struct linux_binfmt
*formats
;
68 static DEFINE_RWLOCK(binfmt_lock
);
70 int register_binfmt(struct linux_binfmt
* fmt
)
72 struct linux_binfmt
** tmp
= &formats
;
78 write_lock(&binfmt_lock
);
81 write_unlock(&binfmt_lock
);
88 write_unlock(&binfmt_lock
);
92 EXPORT_SYMBOL(register_binfmt
);
94 int unregister_binfmt(struct linux_binfmt
* fmt
)
96 struct linux_binfmt
** tmp
= &formats
;
98 write_lock(&binfmt_lock
);
102 write_unlock(&binfmt_lock
);
107 write_unlock(&binfmt_lock
);
111 EXPORT_SYMBOL(unregister_binfmt
);
113 static inline void put_binfmt(struct linux_binfmt
* fmt
)
115 module_put(fmt
->module
);
119 * Note that a shared library must be both readable and executable due to
122 * Also note that we take the address to load from from the file itself.
124 asmlinkage
long sys_uselib(const char __user
* library
)
130 error
= __user_path_lookup_open(library
, LOOKUP_FOLLOW
, &nd
, FMODE_READ
|FMODE_EXEC
);
135 if (!S_ISREG(nd
.dentry
->d_inode
->i_mode
))
138 error
= vfs_permission(&nd
, MAY_READ
| MAY_EXEC
);
142 file
= nameidata_to_filp(&nd
, O_RDONLY
);
143 error
= PTR_ERR(file
);
149 struct linux_binfmt
* fmt
;
151 read_lock(&binfmt_lock
);
152 for (fmt
= formats
; fmt
; fmt
= fmt
->next
) {
153 if (!fmt
->load_shlib
)
155 if (!try_module_get(fmt
->module
))
157 read_unlock(&binfmt_lock
);
158 error
= fmt
->load_shlib(file
);
159 read_lock(&binfmt_lock
);
161 if (error
!= -ENOEXEC
)
164 read_unlock(&binfmt_lock
);
170 release_open_intent(&nd
);
176 * count() counts the number of strings in array ARGV.
178 static int count(char __user
* __user
* argv
, int max
)
186 if (get_user(p
, argv
))
200 * 'copy_strings()' copies argument/environment strings from user
201 * memory to free pages in kernel mem. These are in a format ready
202 * to be put directly into the top of new user memory.
204 static int copy_strings(int argc
, char __user
* __user
* argv
,
205 struct linux_binprm
*bprm
)
207 struct page
*kmapped_page
= NULL
;
216 if (get_user(str
, argv
+argc
) ||
217 !(len
= strnlen_user(str
, bprm
->p
))) {
228 /* XXX: add architecture specific overflow check here. */
233 int offset
, bytes_to_copy
;
236 offset
= pos
% PAGE_SIZE
;
238 page
= bprm
->page
[i
];
241 page
= alloc_page(GFP_HIGHUSER
);
242 bprm
->page
[i
] = page
;
250 if (page
!= kmapped_page
) {
252 kunmap(kmapped_page
);
254 kaddr
= kmap(kmapped_page
);
257 memset(kaddr
, 0, offset
);
258 bytes_to_copy
= PAGE_SIZE
- offset
;
259 if (bytes_to_copy
> len
) {
262 memset(kaddr
+offset
+len
, 0,
263 PAGE_SIZE
-offset
-len
);
265 err
= copy_from_user(kaddr
+offset
, str
, bytes_to_copy
);
271 pos
+= bytes_to_copy
;
272 str
+= bytes_to_copy
;
273 len
-= bytes_to_copy
;
279 kunmap(kmapped_page
);
284 * Like copy_strings, but get argv and its values from kernel memory.
286 int copy_strings_kernel(int argc
,char ** argv
, struct linux_binprm
*bprm
)
289 mm_segment_t oldfs
= get_fs();
291 r
= copy_strings(argc
, (char __user
* __user
*)argv
, bprm
);
296 EXPORT_SYMBOL(copy_strings_kernel
);
300 * This routine is used to map in a page into an address space: needed by
301 * execve() for the initial stack and environment pages.
303 * vma->vm_mm->mmap_sem is held for writing.
305 void install_arg_page(struct vm_area_struct
*vma
,
306 struct page
*page
, unsigned long address
)
308 struct mm_struct
*mm
= vma
->vm_mm
;
312 if (unlikely(anon_vma_prepare(vma
)))
315 flush_dcache_page(page
);
316 pte
= get_locked_pte(mm
, address
, &ptl
);
319 if (!pte_none(*pte
)) {
320 pte_unmap_unlock(pte
, ptl
);
323 inc_mm_counter(mm
, anon_rss
);
324 lru_cache_add_active(page
);
325 set_pte_at(mm
, address
, pte
, pte_mkdirty(pte_mkwrite(mk_pte(
326 page
, vma
->vm_page_prot
))));
327 page_add_new_anon_rmap(page
, vma
, address
);
328 pte_unmap_unlock(pte
, ptl
);
330 /* no need for flush_tlb */
334 force_sig(SIGKILL
, current
);
337 #define EXTRA_STACK_VM_PAGES 20 /* random */
339 int setup_arg_pages(struct linux_binprm
*bprm
,
340 unsigned long stack_top
,
341 int executable_stack
)
343 unsigned long stack_base
;
344 struct vm_area_struct
*mpnt
;
345 struct mm_struct
*mm
= current
->mm
;
349 #ifdef CONFIG_STACK_GROWSUP
350 /* Move the argument and environment strings to the bottom of the
356 /* Start by shifting all the pages down */
358 for (j
= 0; j
< MAX_ARG_PAGES
; j
++) {
359 struct page
*page
= bprm
->page
[j
];
362 bprm
->page
[i
++] = page
;
365 /* Now move them within their pages */
366 offset
= bprm
->p
% PAGE_SIZE
;
367 to
= kmap(bprm
->page
[0]);
368 for (j
= 1; j
< i
; j
++) {
369 memmove(to
, to
+ offset
, PAGE_SIZE
- offset
);
370 from
= kmap(bprm
->page
[j
]);
371 memcpy(to
+ PAGE_SIZE
- offset
, from
, offset
);
372 kunmap(bprm
->page
[j
- 1]);
375 memmove(to
, to
+ offset
, PAGE_SIZE
- offset
);
376 kunmap(bprm
->page
[j
- 1]);
378 /* Limit stack size to 1GB */
379 stack_base
= current
->signal
->rlim
[RLIMIT_STACK
].rlim_max
;
380 if (stack_base
> (1 << 30))
381 stack_base
= 1 << 30;
382 stack_base
= PAGE_ALIGN(stack_top
- stack_base
);
384 /* Adjust bprm->p to point to the end of the strings. */
385 bprm
->p
= stack_base
+ PAGE_SIZE
* i
- offset
;
387 mm
->arg_start
= stack_base
;
388 arg_size
= i
<< PAGE_SHIFT
;
390 /* zero pages that were copied above */
391 while (i
< MAX_ARG_PAGES
)
392 bprm
->page
[i
++] = NULL
;
394 stack_base
= arch_align_stack(stack_top
- MAX_ARG_PAGES
*PAGE_SIZE
);
395 stack_base
= PAGE_ALIGN(stack_base
);
396 bprm
->p
+= stack_base
;
397 mm
->arg_start
= bprm
->p
;
398 arg_size
= stack_top
- (PAGE_MASK
& (unsigned long) mm
->arg_start
);
401 arg_size
+= EXTRA_STACK_VM_PAGES
* PAGE_SIZE
;
404 bprm
->loader
+= stack_base
;
405 bprm
->exec
+= stack_base
;
407 mpnt
= kmem_cache_alloc(vm_area_cachep
, SLAB_KERNEL
);
411 memset(mpnt
, 0, sizeof(*mpnt
));
413 down_write(&mm
->mmap_sem
);
416 #ifdef CONFIG_STACK_GROWSUP
417 mpnt
->vm_start
= stack_base
;
418 mpnt
->vm_end
= stack_base
+ arg_size
;
420 mpnt
->vm_end
= stack_top
;
421 mpnt
->vm_start
= mpnt
->vm_end
- arg_size
;
423 /* Adjust stack execute permissions; explicitly enable
424 * for EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X
425 * and leave alone (arch default) otherwise. */
426 if (unlikely(executable_stack
== EXSTACK_ENABLE_X
))
427 mpnt
->vm_flags
= VM_STACK_FLAGS
| VM_EXEC
;
428 else if (executable_stack
== EXSTACK_DISABLE_X
)
429 mpnt
->vm_flags
= VM_STACK_FLAGS
& ~VM_EXEC
;
431 mpnt
->vm_flags
= VM_STACK_FLAGS
;
432 mpnt
->vm_flags
|= mm
->def_flags
;
433 mpnt
->vm_page_prot
= protection_map
[mpnt
->vm_flags
& 0x7];
434 if ((ret
= insert_vm_struct(mm
, mpnt
))) {
435 up_write(&mm
->mmap_sem
);
436 kmem_cache_free(vm_area_cachep
, mpnt
);
439 mm
->stack_vm
= mm
->total_vm
= vma_pages(mpnt
);
442 for (i
= 0 ; i
< MAX_ARG_PAGES
; i
++) {
443 struct page
*page
= bprm
->page
[i
];
445 bprm
->page
[i
] = NULL
;
446 install_arg_page(mpnt
, page
, stack_base
);
448 stack_base
+= PAGE_SIZE
;
450 up_write(&mm
->mmap_sem
);
455 EXPORT_SYMBOL(setup_arg_pages
);
457 #define free_arg_pages(bprm) do { } while (0)
461 static inline void free_arg_pages(struct linux_binprm
*bprm
)
465 for (i
= 0; i
< MAX_ARG_PAGES
; i
++) {
467 __free_page(bprm
->page
[i
]);
468 bprm
->page
[i
] = NULL
;
472 #endif /* CONFIG_MMU */
474 struct file
*open_exec(const char *name
)
480 err
= path_lookup_open(AT_FDCWD
, name
, LOOKUP_FOLLOW
, &nd
, FMODE_READ
|FMODE_EXEC
);
484 struct inode
*inode
= nd
.dentry
->d_inode
;
485 file
= ERR_PTR(-EACCES
);
486 if (!(nd
.mnt
->mnt_flags
& MNT_NOEXEC
) &&
487 S_ISREG(inode
->i_mode
)) {
488 int err
= vfs_permission(&nd
, MAY_EXEC
);
489 if (!err
&& !(inode
->i_mode
& 0111))
493 file
= nameidata_to_filp(&nd
, O_RDONLY
);
495 err
= deny_write_access(file
);
505 release_open_intent(&nd
);
511 EXPORT_SYMBOL(open_exec
);
513 int kernel_read(struct file
*file
, unsigned long offset
,
514 char *addr
, unsigned long count
)
522 /* The cast to a user pointer is valid due to the set_fs() */
523 result
= vfs_read(file
, (void __user
*)addr
, count
, &pos
);
528 EXPORT_SYMBOL(kernel_read
);
530 static int exec_mmap(struct mm_struct
*mm
)
532 struct task_struct
*tsk
;
533 struct mm_struct
* old_mm
, *active_mm
;
535 /* Notify parent that we're no longer interested in the old VM */
537 old_mm
= current
->mm
;
538 mm_release(tsk
, old_mm
);
542 * Make sure that if there is a core dump in progress
543 * for the old mm, we get out and die instead of going
544 * through with the exec. We must hold mmap_sem around
545 * checking core_waiters and changing tsk->mm. The
546 * core-inducing thread will increment core_waiters for
547 * each thread whose ->mm == old_mm.
549 down_read(&old_mm
->mmap_sem
);
550 if (unlikely(old_mm
->core_waiters
)) {
551 up_read(&old_mm
->mmap_sem
);
556 active_mm
= tsk
->active_mm
;
559 activate_mm(active_mm
, mm
);
561 arch_pick_mmap_layout(mm
);
563 up_read(&old_mm
->mmap_sem
);
564 BUG_ON(active_mm
!= old_mm
);
573 * This function makes sure the current process has its own signal table,
574 * so that flush_signal_handlers can later reset the handlers without
575 * disturbing other processes. (Other processes might share the signal
576 * table via the CLONE_SIGHAND option to clone().)
578 static int de_thread(struct task_struct
*tsk
)
580 struct signal_struct
*sig
= tsk
->signal
;
581 struct sighand_struct
*newsighand
, *oldsighand
= tsk
->sighand
;
582 spinlock_t
*lock
= &oldsighand
->siglock
;
583 struct task_struct
*leader
= NULL
;
587 * If we don't share sighandlers, then we aren't sharing anything
588 * and we can just re-use it all.
590 if (atomic_read(&oldsighand
->count
) <= 1) {
591 BUG_ON(atomic_read(&sig
->count
) != 1);
596 newsighand
= kmem_cache_alloc(sighand_cachep
, GFP_KERNEL
);
600 if (thread_group_empty(current
))
601 goto no_thread_group
;
604 * Kill all other threads in the thread group.
605 * We must hold tasklist_lock to call zap_other_threads.
607 read_lock(&tasklist_lock
);
609 if (sig
->flags
& SIGNAL_GROUP_EXIT
) {
611 * Another group action in progress, just
612 * return so that the signal is processed.
614 spin_unlock_irq(lock
);
615 read_unlock(&tasklist_lock
);
616 kmem_cache_free(sighand_cachep
, newsighand
);
621 * child_reaper ignores SIGKILL, change it now.
622 * Reparenting needs write_lock on tasklist_lock,
623 * so it is safe to do it under read_lock.
625 if (unlikely(current
->group_leader
== child_reaper
))
626 child_reaper
= current
;
628 zap_other_threads(current
);
629 read_unlock(&tasklist_lock
);
632 * Account for the thread group leader hanging around:
635 if (!thread_group_leader(current
)) {
638 * The SIGALRM timer survives the exec, but needs to point
639 * at us as the new group leader now. We have a race with
640 * a timer firing now getting the old leader, so we need to
641 * synchronize with any firing (by calling del_timer_sync)
642 * before we can safely let the old group leader die.
645 spin_unlock_irq(lock
);
646 if (hrtimer_cancel(&sig
->real_timer
))
647 hrtimer_restart(&sig
->real_timer
);
650 while (atomic_read(&sig
->count
) > count
) {
651 sig
->group_exit_task
= current
;
652 sig
->notify_count
= count
;
653 __set_current_state(TASK_UNINTERRUPTIBLE
);
654 spin_unlock_irq(lock
);
658 sig
->group_exit_task
= NULL
;
659 sig
->notify_count
= 0;
660 spin_unlock_irq(lock
);
663 * At this point all other threads have exited, all we have to
664 * do is to wait for the thread group leader to become inactive,
665 * and to assume its PID:
667 if (!thread_group_leader(current
)) {
668 struct dentry
*proc_dentry1
, *proc_dentry2
;
671 * Wait for the thread group leader to be a zombie.
672 * It should already be zombie at this point, most
675 leader
= current
->group_leader
;
676 while (leader
->exit_state
!= EXIT_ZOMBIE
)
680 * The only record we have of the real-time age of a
681 * process, regardless of execs it's done, is start_time.
682 * All the past CPU time is accumulated in signal_struct
683 * from sister threads now dead. But in this non-leader
684 * exec, nothing survives from the original leader thread,
685 * whose birth marks the true age of this process now.
686 * When we take on its identity by switching to its PID, we
687 * also take its birthdate (always earlier than our own).
689 current
->start_time
= leader
->start_time
;
691 spin_lock(&leader
->proc_lock
);
692 spin_lock(¤t
->proc_lock
);
693 proc_dentry1
= proc_pid_unhash(current
);
694 proc_dentry2
= proc_pid_unhash(leader
);
695 write_lock_irq(&tasklist_lock
);
697 BUG_ON(leader
->tgid
!= current
->tgid
);
698 BUG_ON(current
->pid
== current
->tgid
);
700 * An exec() starts a new thread group with the
701 * TGID of the previous thread group. Rehash the
702 * two threads with a switched PID, and release
703 * the former thread group leader:
706 /* Become a process group leader with the old leader's pid.
707 * Note: The old leader also uses thispid until release_task
708 * is called. Odd but simple and correct.
710 detach_pid(current
, PIDTYPE_PID
);
711 current
->pid
= leader
->pid
;
712 attach_pid(current
, PIDTYPE_PID
, current
->pid
);
713 attach_pid(current
, PIDTYPE_PGID
, current
->signal
->pgrp
);
714 attach_pid(current
, PIDTYPE_SID
, current
->signal
->session
);
715 list_add_tail(¤t
->tasks
, &init_task
.tasks
);
717 current
->group_leader
= current
;
718 leader
->group_leader
= current
;
720 /* Reduce leader to a thread */
721 detach_pid(leader
, PIDTYPE_PGID
);
722 detach_pid(leader
, PIDTYPE_SID
);
723 list_del_init(&leader
->tasks
);
725 current
->exit_signal
= SIGCHLD
;
727 BUG_ON(leader
->exit_state
!= EXIT_ZOMBIE
);
728 leader
->exit_state
= EXIT_DEAD
;
730 write_unlock_irq(&tasklist_lock
);
731 spin_unlock(&leader
->proc_lock
);
732 spin_unlock(¤t
->proc_lock
);
733 proc_pid_flush(proc_dentry1
);
734 proc_pid_flush(proc_dentry2
);
738 * There may be one thread left which is just exiting,
739 * but it's safe to stop telling the group to kill themselves.
746 release_task(leader
);
748 BUG_ON(atomic_read(&sig
->count
) != 1);
750 if (atomic_read(&oldsighand
->count
) == 1) {
752 * Now that we nuked the rest of the thread group,
753 * it turns out we are not sharing sighand any more either.
754 * So we can just keep it.
756 kmem_cache_free(sighand_cachep
, newsighand
);
759 * Move our state over to newsighand and switch it in.
761 atomic_set(&newsighand
->count
, 1);
762 memcpy(newsighand
->action
, oldsighand
->action
,
763 sizeof(newsighand
->action
));
765 write_lock_irq(&tasklist_lock
);
766 spin_lock(&oldsighand
->siglock
);
767 spin_lock(&newsighand
->siglock
);
769 rcu_assign_pointer(current
->sighand
, newsighand
);
772 spin_unlock(&newsighand
->siglock
);
773 spin_unlock(&oldsighand
->siglock
);
774 write_unlock_irq(&tasklist_lock
);
776 if (atomic_dec_and_test(&oldsighand
->count
))
777 kmem_cache_free(sighand_cachep
, oldsighand
);
780 BUG_ON(!thread_group_leader(current
));
785 * These functions flushes out all traces of the currently running executable
786 * so that a new one can be started
789 static void flush_old_files(struct files_struct
* files
)
794 spin_lock(&files
->file_lock
);
796 unsigned long set
, i
;
800 fdt
= files_fdtable(files
);
801 if (i
>= fdt
->max_fds
|| i
>= fdt
->max_fdset
)
803 set
= fdt
->close_on_exec
->fds_bits
[j
];
806 fdt
->close_on_exec
->fds_bits
[j
] = 0;
807 spin_unlock(&files
->file_lock
);
808 for ( ; set
; i
++,set
>>= 1) {
813 spin_lock(&files
->file_lock
);
816 spin_unlock(&files
->file_lock
);
819 void get_task_comm(char *buf
, struct task_struct
*tsk
)
821 /* buf must be at least sizeof(tsk->comm) in size */
823 strncpy(buf
, tsk
->comm
, sizeof(tsk
->comm
));
827 void set_task_comm(struct task_struct
*tsk
, char *buf
)
830 strlcpy(tsk
->comm
, buf
, sizeof(tsk
->comm
));
834 int flush_old_exec(struct linux_binprm
* bprm
)
838 struct files_struct
*files
;
839 char tcomm
[sizeof(current
->comm
)];
842 * Make sure we have a private signal table and that
843 * we are unassociated from the previous thread group.
845 retval
= de_thread(current
);
850 * Make sure we have private file handles. Ask the
851 * fork helper to do the work for us and the exit
852 * helper to do the cleanup of the old one.
854 files
= current
->files
; /* refcounted so safe to hold */
855 retval
= unshare_files();
859 * Release all of the old mmap stuff
861 retval
= exec_mmap(bprm
->mm
);
865 bprm
->mm
= NULL
; /* We're using it now */
867 /* This is the point of no return */
869 put_files_struct(files
);
871 current
->sas_ss_sp
= current
->sas_ss_size
= 0;
873 if (current
->euid
== current
->uid
&& current
->egid
== current
->gid
)
874 current
->mm
->dumpable
= 1;
876 current
->mm
->dumpable
= suid_dumpable
;
878 name
= bprm
->filename
;
880 /* Copies the binary name from after last slash */
881 for (i
=0; (ch
= *(name
++)) != '\0';) {
883 i
= 0; /* overwrite what we wrote */
885 if (i
< (sizeof(tcomm
) - 1))
889 set_task_comm(current
, tcomm
);
891 current
->flags
&= ~PF_RANDOMIZE
;
894 /* Set the new mm task size. We have to do that late because it may
895 * depend on TIF_32BIT which is only updated in flush_thread() on
896 * some architectures like powerpc
898 current
->mm
->task_size
= TASK_SIZE
;
900 if (bprm
->e_uid
!= current
->euid
|| bprm
->e_gid
!= current
->egid
||
901 file_permission(bprm
->file
, MAY_READ
) ||
902 (bprm
->interp_flags
& BINPRM_FLAGS_ENFORCE_NONDUMP
)) {
904 current
->mm
->dumpable
= suid_dumpable
;
907 /* An exec changes our domain. We are no longer part of the thread
910 current
->self_exec_id
++;
912 flush_signal_handlers(current
, 0);
913 flush_old_files(current
->files
);
918 put_files_struct(current
->files
);
919 current
->files
= files
;
924 EXPORT_SYMBOL(flush_old_exec
);
927 * Fill the binprm structure from the inode.
928 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
930 int prepare_binprm(struct linux_binprm
*bprm
)
933 struct inode
* inode
= bprm
->file
->f_dentry
->d_inode
;
936 mode
= inode
->i_mode
;
938 * Check execute perms again - if the caller has CAP_DAC_OVERRIDE,
939 * generic_permission lets a non-executable through
941 if (!(mode
& 0111)) /* with at least _one_ execute bit set */
943 if (bprm
->file
->f_op
== NULL
)
946 bprm
->e_uid
= current
->euid
;
947 bprm
->e_gid
= current
->egid
;
949 if(!(bprm
->file
->f_vfsmnt
->mnt_flags
& MNT_NOSUID
)) {
951 if (mode
& S_ISUID
) {
952 current
->personality
&= ~PER_CLEAR_ON_SETID
;
953 bprm
->e_uid
= inode
->i_uid
;
958 * If setgid is set but no group execute bit then this
959 * is a candidate for mandatory locking, not a setgid
962 if ((mode
& (S_ISGID
| S_IXGRP
)) == (S_ISGID
| S_IXGRP
)) {
963 current
->personality
&= ~PER_CLEAR_ON_SETID
;
964 bprm
->e_gid
= inode
->i_gid
;
968 /* fill in binprm security blob */
969 retval
= security_bprm_set(bprm
);
973 memset(bprm
->buf
,0,BINPRM_BUF_SIZE
);
974 return kernel_read(bprm
->file
,0,bprm
->buf
,BINPRM_BUF_SIZE
);
977 EXPORT_SYMBOL(prepare_binprm
);
979 static int unsafe_exec(struct task_struct
*p
)
982 if (p
->ptrace
& PT_PTRACED
) {
983 if (p
->ptrace
& PT_PTRACE_CAP
)
984 unsafe
|= LSM_UNSAFE_PTRACE_CAP
;
986 unsafe
|= LSM_UNSAFE_PTRACE
;
988 if (atomic_read(&p
->fs
->count
) > 1 ||
989 atomic_read(&p
->files
->count
) > 1 ||
990 atomic_read(&p
->sighand
->count
) > 1)
991 unsafe
|= LSM_UNSAFE_SHARE
;
996 void compute_creds(struct linux_binprm
*bprm
)
1000 if (bprm
->e_uid
!= current
->uid
)
1005 unsafe
= unsafe_exec(current
);
1006 security_bprm_apply_creds(bprm
, unsafe
);
1007 task_unlock(current
);
1008 security_bprm_post_apply_creds(bprm
);
1011 EXPORT_SYMBOL(compute_creds
);
1013 void remove_arg_zero(struct linux_binprm
*bprm
)
1016 unsigned long offset
;
1020 offset
= bprm
->p
% PAGE_SIZE
;
1023 while (bprm
->p
++, *(kaddr
+offset
++)) {
1024 if (offset
!= PAGE_SIZE
)
1027 kunmap_atomic(kaddr
, KM_USER0
);
1029 page
= bprm
->page
[bprm
->p
/PAGE_SIZE
];
1030 kaddr
= kmap_atomic(page
, KM_USER0
);
1032 kunmap_atomic(kaddr
, KM_USER0
);
1037 EXPORT_SYMBOL(remove_arg_zero
);
1040 * cycle the list of binary formats handler, until one recognizes the image
1042 int search_binary_handler(struct linux_binprm
*bprm
,struct pt_regs
*regs
)
1045 struct linux_binfmt
*fmt
;
1047 /* handle /sbin/loader.. */
1049 struct exec
* eh
= (struct exec
*) bprm
->buf
;
1051 if (!bprm
->loader
&& eh
->fh
.f_magic
== 0x183 &&
1052 (eh
->fh
.f_flags
& 0x3000) == 0x3000)
1055 unsigned long loader
;
1057 allow_write_access(bprm
->file
);
1061 loader
= PAGE_SIZE
*MAX_ARG_PAGES
-sizeof(void *);
1063 file
= open_exec("/sbin/loader");
1064 retval
= PTR_ERR(file
);
1068 /* Remember if the application is TASO. */
1069 bprm
->sh_bang
= eh
->ah
.entry
< 0x100000000UL
;
1072 bprm
->loader
= loader
;
1073 retval
= prepare_binprm(bprm
);
1076 /* should call search_binary_handler recursively here,
1077 but it does not matter */
1081 retval
= security_bprm_check(bprm
);
1085 /* kernel module loader fixup */
1086 /* so we don't try to load run modprobe in kernel space. */
1089 for (try=0; try<2; try++) {
1090 read_lock(&binfmt_lock
);
1091 for (fmt
= formats
; fmt
; fmt
= fmt
->next
) {
1092 int (*fn
)(struct linux_binprm
*, struct pt_regs
*) = fmt
->load_binary
;
1095 if (!try_module_get(fmt
->module
))
1097 read_unlock(&binfmt_lock
);
1098 retval
= fn(bprm
, regs
);
1101 allow_write_access(bprm
->file
);
1105 current
->did_exec
= 1;
1106 proc_exec_connector(current
);
1109 read_lock(&binfmt_lock
);
1111 if (retval
!= -ENOEXEC
|| bprm
->mm
== NULL
)
1114 read_unlock(&binfmt_lock
);
1118 read_unlock(&binfmt_lock
);
1119 if (retval
!= -ENOEXEC
|| bprm
->mm
== NULL
) {
1123 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1124 if (printable(bprm
->buf
[0]) &&
1125 printable(bprm
->buf
[1]) &&
1126 printable(bprm
->buf
[2]) &&
1127 printable(bprm
->buf
[3]))
1128 break; /* -ENOEXEC */
1129 request_module("binfmt-%04x", *(unsigned short *)(&bprm
->buf
[2]));
1136 EXPORT_SYMBOL(search_binary_handler
);
1139 * sys_execve() executes a new program.
1141 int do_execve(char * filename
,
1142 char __user
*__user
*argv
,
1143 char __user
*__user
*envp
,
1144 struct pt_regs
* regs
)
1146 struct linux_binprm
*bprm
;
1152 bprm
= kzalloc(sizeof(*bprm
), GFP_KERNEL
);
1156 file
= open_exec(filename
);
1157 retval
= PTR_ERR(file
);
1163 bprm
->p
= PAGE_SIZE
*MAX_ARG_PAGES
-sizeof(void *);
1166 bprm
->filename
= filename
;
1167 bprm
->interp
= filename
;
1168 bprm
->mm
= mm_alloc();
1173 retval
= init_new_context(current
, bprm
->mm
);
1177 bprm
->argc
= count(argv
, bprm
->p
/ sizeof(void *));
1178 if ((retval
= bprm
->argc
) < 0)
1181 bprm
->envc
= count(envp
, bprm
->p
/ sizeof(void *));
1182 if ((retval
= bprm
->envc
) < 0)
1185 retval
= security_bprm_alloc(bprm
);
1189 retval
= prepare_binprm(bprm
);
1193 retval
= copy_strings_kernel(1, &bprm
->filename
, bprm
);
1197 bprm
->exec
= bprm
->p
;
1198 retval
= copy_strings(bprm
->envc
, envp
, bprm
);
1202 retval
= copy_strings(bprm
->argc
, argv
, bprm
);
1206 retval
= search_binary_handler(bprm
,regs
);
1208 free_arg_pages(bprm
);
1210 /* execve success */
1211 security_bprm_free(bprm
);
1212 acct_update_integrals(current
);
1218 /* Something went wrong, return the inode and free the argument pages*/
1219 for (i
= 0 ; i
< MAX_ARG_PAGES
; i
++) {
1220 struct page
* page
= bprm
->page
[i
];
1226 security_bprm_free(bprm
);
1234 allow_write_access(bprm
->file
);
1245 int set_binfmt(struct linux_binfmt
*new)
1247 struct linux_binfmt
*old
= current
->binfmt
;
1250 if (!try_module_get(new->module
))
1253 current
->binfmt
= new;
1255 module_put(old
->module
);
1259 EXPORT_SYMBOL(set_binfmt
);
1261 #define CORENAME_MAX_SIZE 64
1263 /* format_corename will inspect the pattern parameter, and output a
1264 * name into corename, which must have space for at least
1265 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1267 static void format_corename(char *corename
, const char *pattern
, long signr
)
1269 const char *pat_ptr
= pattern
;
1270 char *out_ptr
= corename
;
1271 char *const out_end
= corename
+ CORENAME_MAX_SIZE
;
1273 int pid_in_pattern
= 0;
1275 /* Repeat as long as we have more pattern to process and more output
1278 if (*pat_ptr
!= '%') {
1279 if (out_ptr
== out_end
)
1281 *out_ptr
++ = *pat_ptr
++;
1283 switch (*++pat_ptr
) {
1286 /* Double percent, output one percent */
1288 if (out_ptr
== out_end
)
1295 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1296 "%d", current
->tgid
);
1297 if (rc
> out_end
- out_ptr
)
1303 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1304 "%d", current
->uid
);
1305 if (rc
> out_end
- out_ptr
)
1311 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1312 "%d", current
->gid
);
1313 if (rc
> out_end
- out_ptr
)
1317 /* signal that caused the coredump */
1319 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1321 if (rc
> out_end
- out_ptr
)
1325 /* UNIX time of coredump */
1328 do_gettimeofday(&tv
);
1329 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1331 if (rc
> out_end
- out_ptr
)
1338 down_read(&uts_sem
);
1339 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1340 "%s", system_utsname
.nodename
);
1342 if (rc
> out_end
- out_ptr
)
1348 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1349 "%s", current
->comm
);
1350 if (rc
> out_end
- out_ptr
)
1360 /* Backward compatibility with core_uses_pid:
1362 * If core_pattern does not include a %p (as is the default)
1363 * and core_uses_pid is set, then .%pid will be appended to
1366 && (core_uses_pid
|| atomic_read(¤t
->mm
->mm_users
) != 1)) {
1367 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1368 ".%d", current
->tgid
);
1369 if (rc
> out_end
- out_ptr
)
1377 static void zap_threads (struct mm_struct
*mm
)
1379 struct task_struct
*g
, *p
;
1380 struct task_struct
*tsk
= current
;
1381 struct completion
*vfork_done
= tsk
->vfork_done
;
1385 * Make sure nobody is waiting for us to release the VM,
1386 * otherwise we can deadlock when we wait on each other
1389 tsk
->vfork_done
= NULL
;
1390 complete(vfork_done
);
1393 read_lock(&tasklist_lock
);
1395 if (mm
== p
->mm
&& p
!= tsk
) {
1396 force_sig_specific(SIGKILL
, p
);
1398 if (unlikely(p
->ptrace
) &&
1399 unlikely(p
->parent
->mm
== mm
))
1402 while_each_thread(g
,p
);
1404 read_unlock(&tasklist_lock
);
1406 if (unlikely(traced
)) {
1408 * We are zapping a thread and the thread it ptraces.
1409 * If the tracee went into a ptrace stop for exit tracing,
1410 * we could deadlock since the tracer is waiting for this
1411 * coredump to finish. Detach them so they can both die.
1413 write_lock_irq(&tasklist_lock
);
1414 do_each_thread(g
,p
) {
1415 if (mm
== p
->mm
&& p
!= tsk
&&
1416 p
->ptrace
&& p
->parent
->mm
== mm
) {
1417 __ptrace_detach(p
, 0);
1419 } while_each_thread(g
,p
);
1420 write_unlock_irq(&tasklist_lock
);
1424 static void coredump_wait(struct mm_struct
*mm
)
1426 DECLARE_COMPLETION(startup_done
);
1429 mm
->core_startup_done
= &startup_done
;
1432 core_waiters
= mm
->core_waiters
;
1433 up_write(&mm
->mmap_sem
);
1436 wait_for_completion(&startup_done
);
1437 BUG_ON(mm
->core_waiters
);
1440 int do_coredump(long signr
, int exit_code
, struct pt_regs
* regs
)
1442 char corename
[CORENAME_MAX_SIZE
+ 1];
1443 struct mm_struct
*mm
= current
->mm
;
1444 struct linux_binfmt
* binfmt
;
1445 struct inode
* inode
;
1448 int fsuid
= current
->fsuid
;
1451 binfmt
= current
->binfmt
;
1452 if (!binfmt
|| !binfmt
->core_dump
)
1454 down_write(&mm
->mmap_sem
);
1455 if (!mm
->dumpable
) {
1456 up_write(&mm
->mmap_sem
);
1461 * We cannot trust fsuid as being the "true" uid of the
1462 * process nor do we know its entire history. We only know it
1463 * was tainted so we dump it as root in mode 2.
1465 if (mm
->dumpable
== 2) { /* Setuid core dump mode */
1466 flag
= O_EXCL
; /* Stop rewrite attacks */
1467 current
->fsuid
= 0; /* Dump root private */
1472 spin_lock_irq(¤t
->sighand
->siglock
);
1473 if (!(current
->signal
->flags
& SIGNAL_GROUP_EXIT
)) {
1474 current
->signal
->flags
= SIGNAL_GROUP_EXIT
;
1475 current
->signal
->group_exit_code
= exit_code
;
1476 current
->signal
->group_stop_count
= 0;
1479 spin_unlock_irq(¤t
->sighand
->siglock
);
1481 up_write(&mm
->mmap_sem
);
1485 init_completion(&mm
->core_done
);
1489 * Clear any false indication of pending signals that might
1490 * be seen by the filesystem code called to write the core file.
1492 clear_thread_flag(TIF_SIGPENDING
);
1494 if (current
->signal
->rlim
[RLIMIT_CORE
].rlim_cur
< binfmt
->min_coredump
)
1498 * lock_kernel() because format_corename() is controlled by sysctl, which
1499 * uses lock_kernel()
1502 format_corename(corename
, core_pattern
, signr
);
1504 file
= filp_open(corename
, O_CREAT
| 2 | O_NOFOLLOW
| O_LARGEFILE
| flag
, 0600);
1507 inode
= file
->f_dentry
->d_inode
;
1508 if (inode
->i_nlink
> 1)
1509 goto close_fail
; /* multiple links - don't dump */
1510 if (d_unhashed(file
->f_dentry
))
1513 if (!S_ISREG(inode
->i_mode
))
1517 if (!file
->f_op
->write
)
1519 if (do_truncate(file
->f_dentry
, 0, 0, file
) != 0)
1522 retval
= binfmt
->core_dump(signr
, regs
, file
);
1525 current
->signal
->group_exit_code
|= 0x80;
1527 filp_close(file
, NULL
);
1529 current
->fsuid
= fsuid
;
1530 complete_all(&mm
->core_done
);