1 /* cassini.c: Sun Microsystems Cassini(+) ethernet driver.
3 * Copyright (C) 2004 Sun Microsystems Inc.
4 * Copyright (C) 2003 Adrian Sun (asun@darksunrising.com)
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation; either version 2 of the
9 * License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
21 * This driver uses the sungem driver (c) David Miller
22 * (davem@redhat.com) as its basis.
24 * The cassini chip has a number of features that distinguish it from
26 * 4 transmit descriptor rings that are used for either QoS (VLAN) or
27 * load balancing (non-VLAN mode)
28 * batching of multiple packets
29 * multiple CPU dispatching
30 * page-based RX descriptor engine with separate completion rings
31 * Gigabit support (GMII and PCS interface)
32 * MIF link up/down detection works
34 * RX is handled by page sized buffers that are attached as fragments to
35 * the skb. here's what's done:
36 * -- driver allocates pages at a time and keeps reference counts
38 * -- the upper protocol layers assume that the header is in the skb
39 * itself. as a result, cassini will copy a small amount (64 bytes)
41 * -- driver appends the rest of the data pages as frags to skbuffs
42 * and increments the reference count
43 * -- on page reclamation, the driver swaps the page with a spare page.
44 * if that page is still in use, it frees its reference to that page,
45 * and allocates a new page for use. otherwise, it just recycles the
48 * NOTE: cassini can parse the header. however, it's not worth it
49 * as long as the network stack requires a header copy.
51 * TX has 4 queues. currently these queues are used in a round-robin
52 * fashion for load balancing. They can also be used for QoS. for that
53 * to work, however, QoS information needs to be exposed down to the driver
54 * level so that subqueues get targetted to particular transmit rings.
55 * alternatively, the queues can be configured via use of the all-purpose
58 * RX DATA: the rx completion ring has all the info, but the rx desc
59 * ring has all of the data. RX can conceivably come in under multiple
60 * interrupts, but the INT# assignment needs to be set up properly by
61 * the BIOS and conveyed to the driver. PCI BIOSes don't know how to do
62 * that. also, the two descriptor rings are designed to distinguish between
63 * encrypted and non-encrypted packets, but we use them for buffering
66 * by default, the selective clear mask is set up to process rx packets.
70 #include <linux/module.h>
71 #include <linux/kernel.h>
72 #include <linux/types.h>
73 #include <linux/compiler.h>
74 #include <linux/slab.h>
75 #include <linux/delay.h>
76 #include <linux/init.h>
77 #include <linux/ioport.h>
78 #include <linux/pci.h>
80 #include <linux/highmem.h>
81 #include <linux/list.h>
82 #include <linux/dma-mapping.h>
84 #include <linux/netdevice.h>
85 #include <linux/etherdevice.h>
86 #include <linux/skbuff.h>
87 #include <linux/ethtool.h>
88 #include <linux/crc32.h>
89 #include <linux/random.h>
90 #include <linux/mii.h>
92 #include <linux/tcp.h>
93 #include <linux/mutex.h>
95 #include <net/checksum.h>
97 #include <asm/atomic.h>
98 #include <asm/system.h>
100 #include <asm/byteorder.h>
101 #include <asm/uaccess.h>
103 #define cas_page_map(x) kmap_atomic((x), KM_SKB_DATA_SOFTIRQ)
104 #define cas_page_unmap(x) kunmap_atomic((x), KM_SKB_DATA_SOFTIRQ)
105 #define CAS_NCPUS num_online_cpus()
107 #if defined(CONFIG_CASSINI_NAPI) && defined(HAVE_NETDEV_POLL)
109 #define cas_skb_release(x) netif_receive_skb(x)
111 #define cas_skb_release(x) netif_rx(x)
114 /* select which firmware to use */
115 #define USE_HP_WORKAROUND
116 #define HP_WORKAROUND_DEFAULT /* select which firmware to use as default */
117 #define CAS_HP_ALT_FIRMWARE cas_prog_null /* alternate firmware */
121 #define USE_TX_COMPWB /* use completion writeback registers */
122 #define USE_CSMA_CD_PROTO /* standard CSMA/CD */
123 #define USE_RX_BLANK /* hw interrupt mitigation */
124 #undef USE_ENTROPY_DEV /* don't test for entropy device */
126 /* NOTE: these aren't useable unless PCI interrupts can be assigned.
127 * also, we need to make cp->lock finer-grained.
134 #undef USE_VPD_DEBUG /* debug vpd information if defined */
136 /* rx processing options */
137 #define USE_PAGE_ORDER /* specify to allocate large rx pages */
138 #define RX_DONT_BATCH 0 /* if 1, don't batch flows */
139 #define RX_COPY_ALWAYS 0 /* if 0, use frags */
140 #define RX_COPY_MIN 64 /* copy a little to make upper layers happy */
141 #undef RX_COUNT_BUFFERS /* define to calculate RX buffer stats */
143 #define DRV_MODULE_NAME "cassini"
144 #define PFX DRV_MODULE_NAME ": "
145 #define DRV_MODULE_VERSION "1.5"
146 #define DRV_MODULE_RELDATE "4 Jan 2008"
148 #define CAS_DEF_MSG_ENABLE \
158 /* length of time before we decide the hardware is borked,
159 * and dev->tx_timeout() should be called to fix the problem
161 #define CAS_TX_TIMEOUT (HZ)
162 #define CAS_LINK_TIMEOUT (22*HZ/10)
163 #define CAS_LINK_FAST_TIMEOUT (1)
165 /* timeout values for state changing. these specify the number
166 * of 10us delays to be used before giving up.
168 #define STOP_TRIES_PHY 1000
169 #define STOP_TRIES 5000
171 /* specify a minimum frame size to deal with some fifo issues
172 * max mtu == 2 * page size - ethernet header - 64 - swivel =
173 * 2 * page_size - 0x50
175 #define CAS_MIN_FRAME 97
176 #define CAS_1000MB_MIN_FRAME 255
177 #define CAS_MIN_MTU 60
178 #define CAS_MAX_MTU min(((cp->page_size << 1) - 0x50), 9000)
182 * Eliminate these and use separate atomic counters for each, to
183 * avoid a race condition.
186 #define CAS_RESET_MTU 1
187 #define CAS_RESET_ALL 2
188 #define CAS_RESET_SPARE 3
191 static char version
[] __devinitdata
=
192 DRV_MODULE_NAME
".c:v" DRV_MODULE_VERSION
" (" DRV_MODULE_RELDATE
")\n";
194 static int cassini_debug
= -1; /* -1 == use CAS_DEF_MSG_ENABLE as value */
195 static int link_mode
;
197 MODULE_AUTHOR("Adrian Sun (asun@darksunrising.com)");
198 MODULE_DESCRIPTION("Sun Cassini(+) ethernet driver");
199 MODULE_LICENSE("GPL");
200 module_param(cassini_debug
, int, 0);
201 MODULE_PARM_DESC(cassini_debug
, "Cassini bitmapped debugging message enable value");
202 module_param(link_mode
, int, 0);
203 MODULE_PARM_DESC(link_mode
, "default link mode");
206 * Work around for a PCS bug in which the link goes down due to the chip
207 * being confused and never showing a link status of "up."
209 #define DEFAULT_LINKDOWN_TIMEOUT 5
211 * Value in seconds, for user input.
213 static int linkdown_timeout
= DEFAULT_LINKDOWN_TIMEOUT
;
214 module_param(linkdown_timeout
, int, 0);
215 MODULE_PARM_DESC(linkdown_timeout
,
216 "min reset interval in sec. for PCS linkdown issue; disabled if not positive");
219 * value in 'ticks' (units used by jiffies). Set when we init the
220 * module because 'HZ' in actually a function call on some flavors of
221 * Linux. This will default to DEFAULT_LINKDOWN_TIMEOUT * HZ.
223 static int link_transition_timeout
;
227 static u16 link_modes
[] __devinitdata
= {
228 BMCR_ANENABLE
, /* 0 : autoneg */
229 0, /* 1 : 10bt half duplex */
230 BMCR_SPEED100
, /* 2 : 100bt half duplex */
231 BMCR_FULLDPLX
, /* 3 : 10bt full duplex */
232 BMCR_SPEED100
|BMCR_FULLDPLX
, /* 4 : 100bt full duplex */
233 CAS_BMCR_SPEED1000
|BMCR_FULLDPLX
/* 5 : 1000bt full duplex */
236 static struct pci_device_id cas_pci_tbl
[] __devinitdata
= {
237 { PCI_VENDOR_ID_SUN
, PCI_DEVICE_ID_SUN_CASSINI
,
238 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
239 { PCI_VENDOR_ID_NS
, PCI_DEVICE_ID_NS_SATURN
,
240 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
244 MODULE_DEVICE_TABLE(pci
, cas_pci_tbl
);
246 static void cas_set_link_modes(struct cas
*cp
);
248 static inline void cas_lock_tx(struct cas
*cp
)
252 for (i
= 0; i
< N_TX_RINGS
; i
++)
253 spin_lock(&cp
->tx_lock
[i
]);
256 static inline void cas_lock_all(struct cas
*cp
)
258 spin_lock_irq(&cp
->lock
);
262 /* WTZ: QA was finding deadlock problems with the previous
263 * versions after long test runs with multiple cards per machine.
264 * See if replacing cas_lock_all with safer versions helps. The
265 * symptoms QA is reporting match those we'd expect if interrupts
266 * aren't being properly restored, and we fixed a previous deadlock
267 * with similar symptoms by using save/restore versions in other
270 #define cas_lock_all_save(cp, flags) \
272 struct cas *xxxcp = (cp); \
273 spin_lock_irqsave(&xxxcp->lock, flags); \
274 cas_lock_tx(xxxcp); \
277 static inline void cas_unlock_tx(struct cas
*cp
)
281 for (i
= N_TX_RINGS
; i
> 0; i
--)
282 spin_unlock(&cp
->tx_lock
[i
- 1]);
285 static inline void cas_unlock_all(struct cas
*cp
)
288 spin_unlock_irq(&cp
->lock
);
291 #define cas_unlock_all_restore(cp, flags) \
293 struct cas *xxxcp = (cp); \
294 cas_unlock_tx(xxxcp); \
295 spin_unlock_irqrestore(&xxxcp->lock, flags); \
298 static void cas_disable_irq(struct cas
*cp
, const int ring
)
300 /* Make sure we won't get any more interrupts */
302 writel(0xFFFFFFFF, cp
->regs
+ REG_INTR_MASK
);
306 /* disable completion interrupts and selectively mask */
307 if (cp
->cas_flags
& CAS_FLAG_REG_PLUS
) {
309 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
319 writel(INTRN_MASK_CLEAR_ALL
| INTRN_MASK_RX_EN
,
320 cp
->regs
+ REG_PLUS_INTRN_MASK(ring
));
324 writel(INTRN_MASK_CLEAR_ALL
, cp
->regs
+
325 REG_PLUS_INTRN_MASK(ring
));
331 static inline void cas_mask_intr(struct cas
*cp
)
335 for (i
= 0; i
< N_RX_COMP_RINGS
; i
++)
336 cas_disable_irq(cp
, i
);
339 static void cas_enable_irq(struct cas
*cp
, const int ring
)
341 if (ring
== 0) { /* all but TX_DONE */
342 writel(INTR_TX_DONE
, cp
->regs
+ REG_INTR_MASK
);
346 if (cp
->cas_flags
& CAS_FLAG_REG_PLUS
) {
348 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
358 writel(INTRN_MASK_RX_EN
, cp
->regs
+
359 REG_PLUS_INTRN_MASK(ring
));
368 static inline void cas_unmask_intr(struct cas
*cp
)
372 for (i
= 0; i
< N_RX_COMP_RINGS
; i
++)
373 cas_enable_irq(cp
, i
);
376 static inline void cas_entropy_gather(struct cas
*cp
)
378 #ifdef USE_ENTROPY_DEV
379 if ((cp
->cas_flags
& CAS_FLAG_ENTROPY_DEV
) == 0)
382 batch_entropy_store(readl(cp
->regs
+ REG_ENTROPY_IV
),
383 readl(cp
->regs
+ REG_ENTROPY_IV
),
388 static inline void cas_entropy_reset(struct cas
*cp
)
390 #ifdef USE_ENTROPY_DEV
391 if ((cp
->cas_flags
& CAS_FLAG_ENTROPY_DEV
) == 0)
394 writel(BIM_LOCAL_DEV_PAD
| BIM_LOCAL_DEV_PROM
| BIM_LOCAL_DEV_EXT
,
395 cp
->regs
+ REG_BIM_LOCAL_DEV_EN
);
396 writeb(ENTROPY_RESET_STC_MODE
, cp
->regs
+ REG_ENTROPY_RESET
);
397 writeb(0x55, cp
->regs
+ REG_ENTROPY_RAND_REG
);
399 /* if we read back 0x0, we don't have an entropy device */
400 if (readb(cp
->regs
+ REG_ENTROPY_RAND_REG
) == 0)
401 cp
->cas_flags
&= ~CAS_FLAG_ENTROPY_DEV
;
405 /* access to the phy. the following assumes that we've initialized the MIF to
406 * be in frame rather than bit-bang mode
408 static u16
cas_phy_read(struct cas
*cp
, int reg
)
411 int limit
= STOP_TRIES_PHY
;
413 cmd
= MIF_FRAME_ST
| MIF_FRAME_OP_READ
;
414 cmd
|= CAS_BASE(MIF_FRAME_PHY_ADDR
, cp
->phy_addr
);
415 cmd
|= CAS_BASE(MIF_FRAME_REG_ADDR
, reg
);
416 cmd
|= MIF_FRAME_TURN_AROUND_MSB
;
417 writel(cmd
, cp
->regs
+ REG_MIF_FRAME
);
419 /* poll for completion */
420 while (limit
-- > 0) {
422 cmd
= readl(cp
->regs
+ REG_MIF_FRAME
);
423 if (cmd
& MIF_FRAME_TURN_AROUND_LSB
)
424 return (cmd
& MIF_FRAME_DATA_MASK
);
426 return 0xFFFF; /* -1 */
429 static int cas_phy_write(struct cas
*cp
, int reg
, u16 val
)
431 int limit
= STOP_TRIES_PHY
;
434 cmd
= MIF_FRAME_ST
| MIF_FRAME_OP_WRITE
;
435 cmd
|= CAS_BASE(MIF_FRAME_PHY_ADDR
, cp
->phy_addr
);
436 cmd
|= CAS_BASE(MIF_FRAME_REG_ADDR
, reg
);
437 cmd
|= MIF_FRAME_TURN_AROUND_MSB
;
438 cmd
|= val
& MIF_FRAME_DATA_MASK
;
439 writel(cmd
, cp
->regs
+ REG_MIF_FRAME
);
441 /* poll for completion */
442 while (limit
-- > 0) {
444 cmd
= readl(cp
->regs
+ REG_MIF_FRAME
);
445 if (cmd
& MIF_FRAME_TURN_AROUND_LSB
)
451 static void cas_phy_powerup(struct cas
*cp
)
453 u16 ctl
= cas_phy_read(cp
, MII_BMCR
);
455 if ((ctl
& BMCR_PDOWN
) == 0)
458 cas_phy_write(cp
, MII_BMCR
, ctl
);
461 static void cas_phy_powerdown(struct cas
*cp
)
463 u16 ctl
= cas_phy_read(cp
, MII_BMCR
);
465 if (ctl
& BMCR_PDOWN
)
468 cas_phy_write(cp
, MII_BMCR
, ctl
);
471 /* cp->lock held. note: the last put_page will free the buffer */
472 static int cas_page_free(struct cas
*cp
, cas_page_t
*page
)
474 pci_unmap_page(cp
->pdev
, page
->dma_addr
, cp
->page_size
,
476 __free_pages(page
->buffer
, cp
->page_order
);
481 #ifdef RX_COUNT_BUFFERS
482 #define RX_USED_ADD(x, y) ((x)->used += (y))
483 #define RX_USED_SET(x, y) ((x)->used = (y))
485 #define RX_USED_ADD(x, y)
486 #define RX_USED_SET(x, y)
489 /* local page allocation routines for the receive buffers. jumbo pages
490 * require at least 8K contiguous and 8K aligned buffers.
492 static cas_page_t
*cas_page_alloc(struct cas
*cp
, const gfp_t flags
)
496 page
= kmalloc(sizeof(cas_page_t
), flags
);
500 INIT_LIST_HEAD(&page
->list
);
501 RX_USED_SET(page
, 0);
502 page
->buffer
= alloc_pages(flags
, cp
->page_order
);
505 page
->dma_addr
= pci_map_page(cp
->pdev
, page
->buffer
, 0,
506 cp
->page_size
, PCI_DMA_FROMDEVICE
);
514 /* initialize spare pool of rx buffers, but allocate during the open */
515 static void cas_spare_init(struct cas
*cp
)
517 spin_lock(&cp
->rx_inuse_lock
);
518 INIT_LIST_HEAD(&cp
->rx_inuse_list
);
519 spin_unlock(&cp
->rx_inuse_lock
);
521 spin_lock(&cp
->rx_spare_lock
);
522 INIT_LIST_HEAD(&cp
->rx_spare_list
);
523 cp
->rx_spares_needed
= RX_SPARE_COUNT
;
524 spin_unlock(&cp
->rx_spare_lock
);
527 /* used on close. free all the spare buffers. */
528 static void cas_spare_free(struct cas
*cp
)
530 struct list_head list
, *elem
, *tmp
;
532 /* free spare buffers */
533 INIT_LIST_HEAD(&list
);
534 spin_lock(&cp
->rx_spare_lock
);
535 list_splice_init(&cp
->rx_spare_list
, &list
);
536 spin_unlock(&cp
->rx_spare_lock
);
537 list_for_each_safe(elem
, tmp
, &list
) {
538 cas_page_free(cp
, list_entry(elem
, cas_page_t
, list
));
541 INIT_LIST_HEAD(&list
);
544 * Looks like Adrian had protected this with a different
545 * lock than used everywhere else to manipulate this list.
547 spin_lock(&cp
->rx_inuse_lock
);
548 list_splice_init(&cp
->rx_inuse_list
, &list
);
549 spin_unlock(&cp
->rx_inuse_lock
);
551 spin_lock(&cp
->rx_spare_lock
);
552 list_splice_init(&cp
->rx_inuse_list
, &list
);
553 spin_unlock(&cp
->rx_spare_lock
);
555 list_for_each_safe(elem
, tmp
, &list
) {
556 cas_page_free(cp
, list_entry(elem
, cas_page_t
, list
));
560 /* replenish spares if needed */
561 static void cas_spare_recover(struct cas
*cp
, const gfp_t flags
)
563 struct list_head list
, *elem
, *tmp
;
566 /* check inuse list. if we don't need any more free buffers,
570 /* make a local copy of the list */
571 INIT_LIST_HEAD(&list
);
572 spin_lock(&cp
->rx_inuse_lock
);
573 list_splice_init(&cp
->rx_inuse_list
, &list
);
574 spin_unlock(&cp
->rx_inuse_lock
);
576 list_for_each_safe(elem
, tmp
, &list
) {
577 cas_page_t
*page
= list_entry(elem
, cas_page_t
, list
);
579 if (page_count(page
->buffer
) > 1)
583 spin_lock(&cp
->rx_spare_lock
);
584 if (cp
->rx_spares_needed
> 0) {
585 list_add(elem
, &cp
->rx_spare_list
);
586 cp
->rx_spares_needed
--;
587 spin_unlock(&cp
->rx_spare_lock
);
589 spin_unlock(&cp
->rx_spare_lock
);
590 cas_page_free(cp
, page
);
594 /* put any inuse buffers back on the list */
595 if (!list_empty(&list
)) {
596 spin_lock(&cp
->rx_inuse_lock
);
597 list_splice(&list
, &cp
->rx_inuse_list
);
598 spin_unlock(&cp
->rx_inuse_lock
);
601 spin_lock(&cp
->rx_spare_lock
);
602 needed
= cp
->rx_spares_needed
;
603 spin_unlock(&cp
->rx_spare_lock
);
607 /* we still need spares, so try to allocate some */
608 INIT_LIST_HEAD(&list
);
611 cas_page_t
*spare
= cas_page_alloc(cp
, flags
);
614 list_add(&spare
->list
, &list
);
618 spin_lock(&cp
->rx_spare_lock
);
619 list_splice(&list
, &cp
->rx_spare_list
);
620 cp
->rx_spares_needed
-= i
;
621 spin_unlock(&cp
->rx_spare_lock
);
624 /* pull a page from the list. */
625 static cas_page_t
*cas_page_dequeue(struct cas
*cp
)
627 struct list_head
*entry
;
630 spin_lock(&cp
->rx_spare_lock
);
631 if (list_empty(&cp
->rx_spare_list
)) {
632 /* try to do a quick recovery */
633 spin_unlock(&cp
->rx_spare_lock
);
634 cas_spare_recover(cp
, GFP_ATOMIC
);
635 spin_lock(&cp
->rx_spare_lock
);
636 if (list_empty(&cp
->rx_spare_list
)) {
637 if (netif_msg_rx_err(cp
))
638 printk(KERN_ERR
"%s: no spare buffers "
639 "available.\n", cp
->dev
->name
);
640 spin_unlock(&cp
->rx_spare_lock
);
645 entry
= cp
->rx_spare_list
.next
;
647 recover
= ++cp
->rx_spares_needed
;
648 spin_unlock(&cp
->rx_spare_lock
);
650 /* trigger the timer to do the recovery */
651 if ((recover
& (RX_SPARE_RECOVER_VAL
- 1)) == 0) {
653 atomic_inc(&cp
->reset_task_pending
);
654 atomic_inc(&cp
->reset_task_pending_spare
);
655 schedule_work(&cp
->reset_task
);
657 atomic_set(&cp
->reset_task_pending
, CAS_RESET_SPARE
);
658 schedule_work(&cp
->reset_task
);
661 return list_entry(entry
, cas_page_t
, list
);
665 static void cas_mif_poll(struct cas
*cp
, const int enable
)
669 cfg
= readl(cp
->regs
+ REG_MIF_CFG
);
670 cfg
&= (MIF_CFG_MDIO_0
| MIF_CFG_MDIO_1
);
672 if (cp
->phy_type
& CAS_PHY_MII_MDIO1
)
673 cfg
|= MIF_CFG_PHY_SELECT
;
675 /* poll and interrupt on link status change. */
677 cfg
|= MIF_CFG_POLL_EN
;
678 cfg
|= CAS_BASE(MIF_CFG_POLL_REG
, MII_BMSR
);
679 cfg
|= CAS_BASE(MIF_CFG_POLL_PHY
, cp
->phy_addr
);
681 writel((enable
) ? ~(BMSR_LSTATUS
| BMSR_ANEGCOMPLETE
) : 0xFFFF,
682 cp
->regs
+ REG_MIF_MASK
);
683 writel(cfg
, cp
->regs
+ REG_MIF_CFG
);
686 /* Must be invoked under cp->lock */
687 static void cas_begin_auto_negotiation(struct cas
*cp
, struct ethtool_cmd
*ep
)
693 int oldstate
= cp
->lstate
;
694 int link_was_not_down
= !(oldstate
== link_down
);
696 /* Setup link parameters */
699 lcntl
= cp
->link_cntl
;
700 if (ep
->autoneg
== AUTONEG_ENABLE
)
701 cp
->link_cntl
= BMCR_ANENABLE
;
704 if (ep
->speed
== SPEED_100
)
705 cp
->link_cntl
|= BMCR_SPEED100
;
706 else if (ep
->speed
== SPEED_1000
)
707 cp
->link_cntl
|= CAS_BMCR_SPEED1000
;
708 if (ep
->duplex
== DUPLEX_FULL
)
709 cp
->link_cntl
|= BMCR_FULLDPLX
;
712 changed
= (lcntl
!= cp
->link_cntl
);
715 if (cp
->lstate
== link_up
) {
716 printk(KERN_INFO
"%s: PCS link down.\n",
720 printk(KERN_INFO
"%s: link configuration changed\n",
724 cp
->lstate
= link_down
;
725 cp
->link_transition
= LINK_TRANSITION_LINK_DOWN
;
730 * WTZ: If the old state was link_up, we turn off the carrier
731 * to replicate everything we do elsewhere on a link-down
732 * event when we were already in a link-up state..
734 if (oldstate
== link_up
)
735 netif_carrier_off(cp
->dev
);
736 if (changed
&& link_was_not_down
) {
738 * WTZ: This branch will simply schedule a full reset after
739 * we explicitly changed link modes in an ioctl. See if this
740 * fixes the link-problems we were having for forced mode.
742 atomic_inc(&cp
->reset_task_pending
);
743 atomic_inc(&cp
->reset_task_pending_all
);
744 schedule_work(&cp
->reset_task
);
746 mod_timer(&cp
->link_timer
, jiffies
+ CAS_LINK_TIMEOUT
);
750 if (cp
->phy_type
& CAS_PHY_SERDES
) {
751 u32 val
= readl(cp
->regs
+ REG_PCS_MII_CTRL
);
753 if (cp
->link_cntl
& BMCR_ANENABLE
) {
754 val
|= (PCS_MII_RESTART_AUTONEG
| PCS_MII_AUTONEG_EN
);
755 cp
->lstate
= link_aneg
;
757 if (cp
->link_cntl
& BMCR_FULLDPLX
)
758 val
|= PCS_MII_CTRL_DUPLEX
;
759 val
&= ~PCS_MII_AUTONEG_EN
;
760 cp
->lstate
= link_force_ok
;
762 cp
->link_transition
= LINK_TRANSITION_LINK_CONFIG
;
763 writel(val
, cp
->regs
+ REG_PCS_MII_CTRL
);
767 ctl
= cas_phy_read(cp
, MII_BMCR
);
768 ctl
&= ~(BMCR_FULLDPLX
| BMCR_SPEED100
|
769 CAS_BMCR_SPEED1000
| BMCR_ANENABLE
);
770 ctl
|= cp
->link_cntl
;
771 if (ctl
& BMCR_ANENABLE
) {
772 ctl
|= BMCR_ANRESTART
;
773 cp
->lstate
= link_aneg
;
775 cp
->lstate
= link_force_ok
;
777 cp
->link_transition
= LINK_TRANSITION_LINK_CONFIG
;
778 cas_phy_write(cp
, MII_BMCR
, ctl
);
783 mod_timer(&cp
->link_timer
, jiffies
+ CAS_LINK_TIMEOUT
);
786 /* Must be invoked under cp->lock. */
787 static int cas_reset_mii_phy(struct cas
*cp
)
789 int limit
= STOP_TRIES_PHY
;
792 cas_phy_write(cp
, MII_BMCR
, BMCR_RESET
);
795 val
= cas_phy_read(cp
, MII_BMCR
);
796 if ((val
& BMCR_RESET
) == 0)
803 static void cas_saturn_firmware_load(struct cas
*cp
)
805 cas_saturn_patch_t
*patch
= cas_saturn_patch
;
807 cas_phy_powerdown(cp
);
809 /* expanded memory access mode */
810 cas_phy_write(cp
, DP83065_MII_MEM
, 0x0);
812 /* pointer configuration for new firmware */
813 cas_phy_write(cp
, DP83065_MII_REGE
, 0x8ff9);
814 cas_phy_write(cp
, DP83065_MII_REGD
, 0xbd);
815 cas_phy_write(cp
, DP83065_MII_REGE
, 0x8ffa);
816 cas_phy_write(cp
, DP83065_MII_REGD
, 0x82);
817 cas_phy_write(cp
, DP83065_MII_REGE
, 0x8ffb);
818 cas_phy_write(cp
, DP83065_MII_REGD
, 0x0);
819 cas_phy_write(cp
, DP83065_MII_REGE
, 0x8ffc);
820 cas_phy_write(cp
, DP83065_MII_REGD
, 0x39);
822 /* download new firmware */
823 cas_phy_write(cp
, DP83065_MII_MEM
, 0x1);
824 cas_phy_write(cp
, DP83065_MII_REGE
, patch
->addr
);
825 while (patch
->addr
) {
826 cas_phy_write(cp
, DP83065_MII_REGD
, patch
->val
);
830 /* enable firmware */
831 cas_phy_write(cp
, DP83065_MII_REGE
, 0x8ff8);
832 cas_phy_write(cp
, DP83065_MII_REGD
, 0x1);
836 /* phy initialization */
837 static void cas_phy_init(struct cas
*cp
)
841 /* if we're in MII/GMII mode, set up phy */
842 if (CAS_PHY_MII(cp
->phy_type
)) {
843 writel(PCS_DATAPATH_MODE_MII
,
844 cp
->regs
+ REG_PCS_DATAPATH_MODE
);
847 cas_reset_mii_phy(cp
); /* take out of isolate mode */
849 if (PHY_LUCENT_B0
== cp
->phy_id
) {
850 /* workaround link up/down issue with lucent */
851 cas_phy_write(cp
, LUCENT_MII_REG
, 0x8000);
852 cas_phy_write(cp
, MII_BMCR
, 0x00f1);
853 cas_phy_write(cp
, LUCENT_MII_REG
, 0x0);
855 } else if (PHY_BROADCOM_B0
== (cp
->phy_id
& 0xFFFFFFFC)) {
856 /* workarounds for broadcom phy */
857 cas_phy_write(cp
, BROADCOM_MII_REG8
, 0x0C20);
858 cas_phy_write(cp
, BROADCOM_MII_REG7
, 0x0012);
859 cas_phy_write(cp
, BROADCOM_MII_REG5
, 0x1804);
860 cas_phy_write(cp
, BROADCOM_MII_REG7
, 0x0013);
861 cas_phy_write(cp
, BROADCOM_MII_REG5
, 0x1204);
862 cas_phy_write(cp
, BROADCOM_MII_REG7
, 0x8006);
863 cas_phy_write(cp
, BROADCOM_MII_REG5
, 0x0132);
864 cas_phy_write(cp
, BROADCOM_MII_REG7
, 0x8006);
865 cas_phy_write(cp
, BROADCOM_MII_REG5
, 0x0232);
866 cas_phy_write(cp
, BROADCOM_MII_REG7
, 0x201F);
867 cas_phy_write(cp
, BROADCOM_MII_REG5
, 0x0A20);
869 } else if (PHY_BROADCOM_5411
== cp
->phy_id
) {
870 val
= cas_phy_read(cp
, BROADCOM_MII_REG4
);
871 val
= cas_phy_read(cp
, BROADCOM_MII_REG4
);
873 /* link workaround */
874 cas_phy_write(cp
, BROADCOM_MII_REG4
,
878 } else if (cp
->cas_flags
& CAS_FLAG_SATURN
) {
879 writel((cp
->phy_type
& CAS_PHY_MII_MDIO0
) ?
880 SATURN_PCFG_FSI
: 0x0,
881 cp
->regs
+ REG_SATURN_PCFG
);
883 /* load firmware to address 10Mbps auto-negotiation
884 * issue. NOTE: this will need to be changed if the
885 * default firmware gets fixed.
887 if (PHY_NS_DP83065
== cp
->phy_id
) {
888 cas_saturn_firmware_load(cp
);
893 /* advertise capabilities */
894 val
= cas_phy_read(cp
, MII_BMCR
);
895 val
&= ~BMCR_ANENABLE
;
896 cas_phy_write(cp
, MII_BMCR
, val
);
899 cas_phy_write(cp
, MII_ADVERTISE
,
900 cas_phy_read(cp
, MII_ADVERTISE
) |
901 (ADVERTISE_10HALF
| ADVERTISE_10FULL
|
902 ADVERTISE_100HALF
| ADVERTISE_100FULL
|
903 CAS_ADVERTISE_PAUSE
|
904 CAS_ADVERTISE_ASYM_PAUSE
));
906 if (cp
->cas_flags
& CAS_FLAG_1000MB_CAP
) {
907 /* make sure that we don't advertise half
908 * duplex to avoid a chip issue
910 val
= cas_phy_read(cp
, CAS_MII_1000_CTRL
);
911 val
&= ~CAS_ADVERTISE_1000HALF
;
912 val
|= CAS_ADVERTISE_1000FULL
;
913 cas_phy_write(cp
, CAS_MII_1000_CTRL
, val
);
917 /* reset pcs for serdes */
921 writel(PCS_DATAPATH_MODE_SERDES
,
922 cp
->regs
+ REG_PCS_DATAPATH_MODE
);
924 /* enable serdes pins on saturn */
925 if (cp
->cas_flags
& CAS_FLAG_SATURN
)
926 writel(0, cp
->regs
+ REG_SATURN_PCFG
);
928 /* Reset PCS unit. */
929 val
= readl(cp
->regs
+ REG_PCS_MII_CTRL
);
930 val
|= PCS_MII_RESET
;
931 writel(val
, cp
->regs
+ REG_PCS_MII_CTRL
);
934 while (limit
-- > 0) {
936 if ((readl(cp
->regs
+ REG_PCS_MII_CTRL
) &
941 printk(KERN_WARNING
"%s: PCS reset bit would not "
942 "clear [%08x].\n", cp
->dev
->name
,
943 readl(cp
->regs
+ REG_PCS_STATE_MACHINE
));
945 /* Make sure PCS is disabled while changing advertisement
948 writel(0x0, cp
->regs
+ REG_PCS_CFG
);
950 /* Advertise all capabilities except half-duplex. */
951 val
= readl(cp
->regs
+ REG_PCS_MII_ADVERT
);
952 val
&= ~PCS_MII_ADVERT_HD
;
953 val
|= (PCS_MII_ADVERT_FD
| PCS_MII_ADVERT_SYM_PAUSE
|
954 PCS_MII_ADVERT_ASYM_PAUSE
);
955 writel(val
, cp
->regs
+ REG_PCS_MII_ADVERT
);
958 writel(PCS_CFG_EN
, cp
->regs
+ REG_PCS_CFG
);
960 /* pcs workaround: enable sync detect */
961 writel(PCS_SERDES_CTRL_SYNCD_EN
,
962 cp
->regs
+ REG_PCS_SERDES_CTRL
);
967 static int cas_pcs_link_check(struct cas
*cp
)
969 u32 stat
, state_machine
;
972 /* The link status bit latches on zero, so you must
973 * read it twice in such a case to see a transition
974 * to the link being up.
976 stat
= readl(cp
->regs
+ REG_PCS_MII_STATUS
);
977 if ((stat
& PCS_MII_STATUS_LINK_STATUS
) == 0)
978 stat
= readl(cp
->regs
+ REG_PCS_MII_STATUS
);
980 /* The remote-fault indication is only valid
981 * when autoneg has completed.
983 if ((stat
& (PCS_MII_STATUS_AUTONEG_COMP
|
984 PCS_MII_STATUS_REMOTE_FAULT
)) ==
985 (PCS_MII_STATUS_AUTONEG_COMP
| PCS_MII_STATUS_REMOTE_FAULT
)) {
986 if (netif_msg_link(cp
))
987 printk(KERN_INFO
"%s: PCS RemoteFault\n",
991 /* work around link detection issue by querying the PCS state
994 state_machine
= readl(cp
->regs
+ REG_PCS_STATE_MACHINE
);
995 if ((state_machine
& PCS_SM_LINK_STATE_MASK
) != SM_LINK_STATE_UP
) {
996 stat
&= ~PCS_MII_STATUS_LINK_STATUS
;
997 } else if (state_machine
& PCS_SM_WORD_SYNC_STATE_MASK
) {
998 stat
|= PCS_MII_STATUS_LINK_STATUS
;
1001 if (stat
& PCS_MII_STATUS_LINK_STATUS
) {
1002 if (cp
->lstate
!= link_up
) {
1004 cp
->lstate
= link_up
;
1005 cp
->link_transition
= LINK_TRANSITION_LINK_UP
;
1007 cas_set_link_modes(cp
);
1008 netif_carrier_on(cp
->dev
);
1011 } else if (cp
->lstate
== link_up
) {
1012 cp
->lstate
= link_down
;
1013 if (link_transition_timeout
!= 0 &&
1014 cp
->link_transition
!= LINK_TRANSITION_REQUESTED_RESET
&&
1015 !cp
->link_transition_jiffies_valid
) {
1017 * force a reset, as a workaround for the
1018 * link-failure problem. May want to move this to a
1019 * point a bit earlier in the sequence. If we had
1020 * generated a reset a short time ago, we'll wait for
1021 * the link timer to check the status until a
1022 * timer expires (link_transistion_jiffies_valid is
1023 * true when the timer is running.) Instead of using
1024 * a system timer, we just do a check whenever the
1025 * link timer is running - this clears the flag after
1029 cp
->link_transition
= LINK_TRANSITION_REQUESTED_RESET
;
1030 cp
->link_transition_jiffies
= jiffies
;
1031 cp
->link_transition_jiffies_valid
= 1;
1033 cp
->link_transition
= LINK_TRANSITION_ON_FAILURE
;
1035 netif_carrier_off(cp
->dev
);
1036 if (cp
->opened
&& netif_msg_link(cp
)) {
1037 printk(KERN_INFO
"%s: PCS link down.\n",
1041 /* Cassini only: if you force a mode, there can be
1042 * sync problems on link down. to fix that, the following
1043 * things need to be checked:
1044 * 1) read serialink state register
1045 * 2) read pcs status register to verify link down.
1046 * 3) if link down and serial link == 0x03, then you need
1047 * to global reset the chip.
1049 if ((cp
->cas_flags
& CAS_FLAG_REG_PLUS
) == 0) {
1050 /* should check to see if we're in a forced mode */
1051 stat
= readl(cp
->regs
+ REG_PCS_SERDES_STATE
);
1055 } else if (cp
->lstate
== link_down
) {
1056 if (link_transition_timeout
!= 0 &&
1057 cp
->link_transition
!= LINK_TRANSITION_REQUESTED_RESET
&&
1058 !cp
->link_transition_jiffies_valid
) {
1059 /* force a reset, as a workaround for the
1060 * link-failure problem. May want to move
1061 * this to a point a bit earlier in the
1065 cp
->link_transition
= LINK_TRANSITION_REQUESTED_RESET
;
1066 cp
->link_transition_jiffies
= jiffies
;
1067 cp
->link_transition_jiffies_valid
= 1;
1069 cp
->link_transition
= LINK_TRANSITION_STILL_FAILED
;
1076 static int cas_pcs_interrupt(struct net_device
*dev
,
1077 struct cas
*cp
, u32 status
)
1079 u32 stat
= readl(cp
->regs
+ REG_PCS_INTR_STATUS
);
1081 if ((stat
& PCS_INTR_STATUS_LINK_CHANGE
) == 0)
1083 return cas_pcs_link_check(cp
);
1086 static int cas_txmac_interrupt(struct net_device
*dev
,
1087 struct cas
*cp
, u32 status
)
1089 u32 txmac_stat
= readl(cp
->regs
+ REG_MAC_TX_STATUS
);
1094 if (netif_msg_intr(cp
))
1095 printk(KERN_DEBUG
"%s: txmac interrupt, txmac_stat: 0x%x\n",
1096 cp
->dev
->name
, txmac_stat
);
1098 /* Defer timer expiration is quite normal,
1099 * don't even log the event.
1101 if ((txmac_stat
& MAC_TX_DEFER_TIMER
) &&
1102 !(txmac_stat
& ~MAC_TX_DEFER_TIMER
))
1105 spin_lock(&cp
->stat_lock
[0]);
1106 if (txmac_stat
& MAC_TX_UNDERRUN
) {
1107 printk(KERN_ERR
"%s: TX MAC xmit underrun.\n",
1109 cp
->net_stats
[0].tx_fifo_errors
++;
1112 if (txmac_stat
& MAC_TX_MAX_PACKET_ERR
) {
1113 printk(KERN_ERR
"%s: TX MAC max packet size error.\n",
1115 cp
->net_stats
[0].tx_errors
++;
1118 /* The rest are all cases of one of the 16-bit TX
1119 * counters expiring.
1121 if (txmac_stat
& MAC_TX_COLL_NORMAL
)
1122 cp
->net_stats
[0].collisions
+= 0x10000;
1124 if (txmac_stat
& MAC_TX_COLL_EXCESS
) {
1125 cp
->net_stats
[0].tx_aborted_errors
+= 0x10000;
1126 cp
->net_stats
[0].collisions
+= 0x10000;
1129 if (txmac_stat
& MAC_TX_COLL_LATE
) {
1130 cp
->net_stats
[0].tx_aborted_errors
+= 0x10000;
1131 cp
->net_stats
[0].collisions
+= 0x10000;
1133 spin_unlock(&cp
->stat_lock
[0]);
1135 /* We do not keep track of MAC_TX_COLL_FIRST and
1136 * MAC_TX_PEAK_ATTEMPTS events.
1141 static void cas_load_firmware(struct cas
*cp
, cas_hp_inst_t
*firmware
)
1143 cas_hp_inst_t
*inst
;
1148 while ((inst
= firmware
) && inst
->note
) {
1149 writel(i
, cp
->regs
+ REG_HP_INSTR_RAM_ADDR
);
1151 val
= CAS_BASE(HP_INSTR_RAM_HI_VAL
, inst
->val
);
1152 val
|= CAS_BASE(HP_INSTR_RAM_HI_MASK
, inst
->mask
);
1153 writel(val
, cp
->regs
+ REG_HP_INSTR_RAM_DATA_HI
);
1155 val
= CAS_BASE(HP_INSTR_RAM_MID_OUTARG
, inst
->outarg
>> 10);
1156 val
|= CAS_BASE(HP_INSTR_RAM_MID_OUTOP
, inst
->outop
);
1157 val
|= CAS_BASE(HP_INSTR_RAM_MID_FNEXT
, inst
->fnext
);
1158 val
|= CAS_BASE(HP_INSTR_RAM_MID_FOFF
, inst
->foff
);
1159 val
|= CAS_BASE(HP_INSTR_RAM_MID_SNEXT
, inst
->snext
);
1160 val
|= CAS_BASE(HP_INSTR_RAM_MID_SOFF
, inst
->soff
);
1161 val
|= CAS_BASE(HP_INSTR_RAM_MID_OP
, inst
->op
);
1162 writel(val
, cp
->regs
+ REG_HP_INSTR_RAM_DATA_MID
);
1164 val
= CAS_BASE(HP_INSTR_RAM_LOW_OUTMASK
, inst
->outmask
);
1165 val
|= CAS_BASE(HP_INSTR_RAM_LOW_OUTSHIFT
, inst
->outshift
);
1166 val
|= CAS_BASE(HP_INSTR_RAM_LOW_OUTEN
, inst
->outenab
);
1167 val
|= CAS_BASE(HP_INSTR_RAM_LOW_OUTARG
, inst
->outarg
);
1168 writel(val
, cp
->regs
+ REG_HP_INSTR_RAM_DATA_LOW
);
1174 static void cas_init_rx_dma(struct cas
*cp
)
1176 u64 desc_dma
= cp
->block_dvma
;
1180 /* rx free descriptors */
1181 val
= CAS_BASE(RX_CFG_SWIVEL
, RX_SWIVEL_OFF_VAL
);
1182 val
|= CAS_BASE(RX_CFG_DESC_RING
, RX_DESC_RINGN_INDEX(0));
1183 val
|= CAS_BASE(RX_CFG_COMP_RING
, RX_COMP_RINGN_INDEX(0));
1184 if ((N_RX_DESC_RINGS
> 1) &&
1185 (cp
->cas_flags
& CAS_FLAG_REG_PLUS
)) /* do desc 2 */
1186 val
|= CAS_BASE(RX_CFG_DESC_RING1
, RX_DESC_RINGN_INDEX(1));
1187 writel(val
, cp
->regs
+ REG_RX_CFG
);
1189 val
= (unsigned long) cp
->init_rxds
[0] -
1190 (unsigned long) cp
->init_block
;
1191 writel((desc_dma
+ val
) >> 32, cp
->regs
+ REG_RX_DB_HI
);
1192 writel((desc_dma
+ val
) & 0xffffffff, cp
->regs
+ REG_RX_DB_LOW
);
1193 writel(RX_DESC_RINGN_SIZE(0) - 4, cp
->regs
+ REG_RX_KICK
);
1195 if (cp
->cas_flags
& CAS_FLAG_REG_PLUS
) {
1196 /* rx desc 2 is for IPSEC packets. however,
1197 * we don't it that for that purpose.
1199 val
= (unsigned long) cp
->init_rxds
[1] -
1200 (unsigned long) cp
->init_block
;
1201 writel((desc_dma
+ val
) >> 32, cp
->regs
+ REG_PLUS_RX_DB1_HI
);
1202 writel((desc_dma
+ val
) & 0xffffffff, cp
->regs
+
1203 REG_PLUS_RX_DB1_LOW
);
1204 writel(RX_DESC_RINGN_SIZE(1) - 4, cp
->regs
+
1208 /* rx completion registers */
1209 val
= (unsigned long) cp
->init_rxcs
[0] -
1210 (unsigned long) cp
->init_block
;
1211 writel((desc_dma
+ val
) >> 32, cp
->regs
+ REG_RX_CB_HI
);
1212 writel((desc_dma
+ val
) & 0xffffffff, cp
->regs
+ REG_RX_CB_LOW
);
1214 if (cp
->cas_flags
& CAS_FLAG_REG_PLUS
) {
1216 for (i
= 1; i
< MAX_RX_COMP_RINGS
; i
++) {
1217 val
= (unsigned long) cp
->init_rxcs
[i
] -
1218 (unsigned long) cp
->init_block
;
1219 writel((desc_dma
+ val
) >> 32, cp
->regs
+
1220 REG_PLUS_RX_CBN_HI(i
));
1221 writel((desc_dma
+ val
) & 0xffffffff, cp
->regs
+
1222 REG_PLUS_RX_CBN_LOW(i
));
1226 /* read selective clear regs to prevent spurious interrupts
1227 * on reset because complete == kick.
1228 * selective clear set up to prevent interrupts on resets
1230 readl(cp
->regs
+ REG_INTR_STATUS_ALIAS
);
1231 writel(INTR_RX_DONE
| INTR_RX_BUF_UNAVAIL
, cp
->regs
+ REG_ALIAS_CLEAR
);
1232 if (cp
->cas_flags
& CAS_FLAG_REG_PLUS
) {
1233 for (i
= 1; i
< N_RX_COMP_RINGS
; i
++)
1234 readl(cp
->regs
+ REG_PLUS_INTRN_STATUS_ALIAS(i
));
1236 /* 2 is different from 3 and 4 */
1237 if (N_RX_COMP_RINGS
> 1)
1238 writel(INTR_RX_DONE_ALT
| INTR_RX_BUF_UNAVAIL_1
,
1239 cp
->regs
+ REG_PLUS_ALIASN_CLEAR(1));
1241 for (i
= 2; i
< N_RX_COMP_RINGS
; i
++)
1242 writel(INTR_RX_DONE_ALT
,
1243 cp
->regs
+ REG_PLUS_ALIASN_CLEAR(i
));
1246 /* set up pause thresholds */
1247 val
= CAS_BASE(RX_PAUSE_THRESH_OFF
,
1248 cp
->rx_pause_off
/ RX_PAUSE_THRESH_QUANTUM
);
1249 val
|= CAS_BASE(RX_PAUSE_THRESH_ON
,
1250 cp
->rx_pause_on
/ RX_PAUSE_THRESH_QUANTUM
);
1251 writel(val
, cp
->regs
+ REG_RX_PAUSE_THRESH
);
1253 /* zero out dma reassembly buffers */
1254 for (i
= 0; i
< 64; i
++) {
1255 writel(i
, cp
->regs
+ REG_RX_TABLE_ADDR
);
1256 writel(0x0, cp
->regs
+ REG_RX_TABLE_DATA_LOW
);
1257 writel(0x0, cp
->regs
+ REG_RX_TABLE_DATA_MID
);
1258 writel(0x0, cp
->regs
+ REG_RX_TABLE_DATA_HI
);
1261 /* make sure address register is 0 for normal operation */
1262 writel(0x0, cp
->regs
+ REG_RX_CTRL_FIFO_ADDR
);
1263 writel(0x0, cp
->regs
+ REG_RX_IPP_FIFO_ADDR
);
1265 /* interrupt mitigation */
1267 val
= CAS_BASE(RX_BLANK_INTR_TIME
, RX_BLANK_INTR_TIME_VAL
);
1268 val
|= CAS_BASE(RX_BLANK_INTR_PKT
, RX_BLANK_INTR_PKT_VAL
);
1269 writel(val
, cp
->regs
+ REG_RX_BLANK
);
1271 writel(0x0, cp
->regs
+ REG_RX_BLANK
);
1274 /* interrupt generation as a function of low water marks for
1275 * free desc and completion entries. these are used to trigger
1276 * housekeeping for rx descs. we don't use the free interrupt
1277 * as it's not very useful
1279 /* val = CAS_BASE(RX_AE_THRESH_FREE, RX_AE_FREEN_VAL(0)); */
1280 val
= CAS_BASE(RX_AE_THRESH_COMP
, RX_AE_COMP_VAL
);
1281 writel(val
, cp
->regs
+ REG_RX_AE_THRESH
);
1282 if (cp
->cas_flags
& CAS_FLAG_REG_PLUS
) {
1283 val
= CAS_BASE(RX_AE1_THRESH_FREE
, RX_AE_FREEN_VAL(1));
1284 writel(val
, cp
->regs
+ REG_PLUS_RX_AE1_THRESH
);
1287 /* Random early detect registers. useful for congestion avoidance.
1288 * this should be tunable.
1290 writel(0x0, cp
->regs
+ REG_RX_RED
);
1292 /* receive page sizes. default == 2K (0x800) */
1294 if (cp
->page_size
== 0x1000)
1296 else if (cp
->page_size
== 0x2000)
1298 else if (cp
->page_size
== 0x4000)
1301 /* round mtu + offset. constrain to page size. */
1302 size
= cp
->dev
->mtu
+ 64;
1303 if (size
> cp
->page_size
)
1304 size
= cp
->page_size
;
1308 else if (size
<= 0x800)
1310 else if (size
<= 0x1000)
1315 cp
->mtu_stride
= 1 << (i
+ 10);
1316 val
= CAS_BASE(RX_PAGE_SIZE
, val
);
1317 val
|= CAS_BASE(RX_PAGE_SIZE_MTU_STRIDE
, i
);
1318 val
|= CAS_BASE(RX_PAGE_SIZE_MTU_COUNT
, cp
->page_size
>> (i
+ 10));
1319 val
|= CAS_BASE(RX_PAGE_SIZE_MTU_OFF
, 0x1);
1320 writel(val
, cp
->regs
+ REG_RX_PAGE_SIZE
);
1322 /* enable the header parser if desired */
1323 if (CAS_HP_FIRMWARE
== cas_prog_null
)
1326 val
= CAS_BASE(HP_CFG_NUM_CPU
, CAS_NCPUS
> 63 ? 0 : CAS_NCPUS
);
1327 val
|= HP_CFG_PARSE_EN
| HP_CFG_SYN_INC_MASK
;
1328 val
|= CAS_BASE(HP_CFG_TCP_THRESH
, HP_TCP_THRESH_VAL
);
1329 writel(val
, cp
->regs
+ REG_HP_CFG
);
1332 static inline void cas_rxc_init(struct cas_rx_comp
*rxc
)
1334 memset(rxc
, 0, sizeof(*rxc
));
1335 rxc
->word4
= cpu_to_le64(RX_COMP4_ZERO
);
1338 /* NOTE: we use the ENC RX DESC ring for spares. the rx_page[0,1]
1339 * flipping is protected by the fact that the chip will not
1340 * hand back the same page index while it's being processed.
1342 static inline cas_page_t
*cas_page_spare(struct cas
*cp
, const int index
)
1344 cas_page_t
*page
= cp
->rx_pages
[1][index
];
1347 if (page_count(page
->buffer
) == 1)
1350 new = cas_page_dequeue(cp
);
1352 spin_lock(&cp
->rx_inuse_lock
);
1353 list_add(&page
->list
, &cp
->rx_inuse_list
);
1354 spin_unlock(&cp
->rx_inuse_lock
);
1359 /* this needs to be changed if we actually use the ENC RX DESC ring */
1360 static cas_page_t
*cas_page_swap(struct cas
*cp
, const int ring
,
1363 cas_page_t
**page0
= cp
->rx_pages
[0];
1364 cas_page_t
**page1
= cp
->rx_pages
[1];
1366 /* swap if buffer is in use */
1367 if (page_count(page0
[index
]->buffer
) > 1) {
1368 cas_page_t
*new = cas_page_spare(cp
, index
);
1370 page1
[index
] = page0
[index
];
1374 RX_USED_SET(page0
[index
], 0);
1375 return page0
[index
];
1378 static void cas_clean_rxds(struct cas
*cp
)
1380 /* only clean ring 0 as ring 1 is used for spare buffers */
1381 struct cas_rx_desc
*rxd
= cp
->init_rxds
[0];
1384 /* release all rx flows */
1385 for (i
= 0; i
< N_RX_FLOWS
; i
++) {
1386 struct sk_buff
*skb
;
1387 while ((skb
= __skb_dequeue(&cp
->rx_flows
[i
]))) {
1388 cas_skb_release(skb
);
1392 /* initialize descriptors */
1393 size
= RX_DESC_RINGN_SIZE(0);
1394 for (i
= 0; i
< size
; i
++) {
1395 cas_page_t
*page
= cas_page_swap(cp
, 0, i
);
1396 rxd
[i
].buffer
= cpu_to_le64(page
->dma_addr
);
1397 rxd
[i
].index
= cpu_to_le64(CAS_BASE(RX_INDEX_NUM
, i
) |
1398 CAS_BASE(RX_INDEX_RING
, 0));
1401 cp
->rx_old
[0] = RX_DESC_RINGN_SIZE(0) - 4;
1403 cp
->cas_flags
&= ~CAS_FLAG_RXD_POST(0);
1406 static void cas_clean_rxcs(struct cas
*cp
)
1410 /* take ownership of rx comp descriptors */
1411 memset(cp
->rx_cur
, 0, sizeof(*cp
->rx_cur
)*N_RX_COMP_RINGS
);
1412 memset(cp
->rx_new
, 0, sizeof(*cp
->rx_new
)*N_RX_COMP_RINGS
);
1413 for (i
= 0; i
< N_RX_COMP_RINGS
; i
++) {
1414 struct cas_rx_comp
*rxc
= cp
->init_rxcs
[i
];
1415 for (j
= 0; j
< RX_COMP_RINGN_SIZE(i
); j
++) {
1416 cas_rxc_init(rxc
+ j
);
1422 /* When we get a RX fifo overflow, the RX unit is probably hung
1423 * so we do the following.
1425 * If any part of the reset goes wrong, we return 1 and that causes the
1426 * whole chip to be reset.
1428 static int cas_rxmac_reset(struct cas
*cp
)
1430 struct net_device
*dev
= cp
->dev
;
1434 /* First, reset MAC RX. */
1435 writel(cp
->mac_rx_cfg
& ~MAC_RX_CFG_EN
, cp
->regs
+ REG_MAC_RX_CFG
);
1436 for (limit
= 0; limit
< STOP_TRIES
; limit
++) {
1437 if (!(readl(cp
->regs
+ REG_MAC_RX_CFG
) & MAC_RX_CFG_EN
))
1441 if (limit
== STOP_TRIES
) {
1442 printk(KERN_ERR
"%s: RX MAC will not disable, resetting whole "
1443 "chip.\n", dev
->name
);
1447 /* Second, disable RX DMA. */
1448 writel(0, cp
->regs
+ REG_RX_CFG
);
1449 for (limit
= 0; limit
< STOP_TRIES
; limit
++) {
1450 if (!(readl(cp
->regs
+ REG_RX_CFG
) & RX_CFG_DMA_EN
))
1454 if (limit
== STOP_TRIES
) {
1455 printk(KERN_ERR
"%s: RX DMA will not disable, resetting whole "
1456 "chip.\n", dev
->name
);
1462 /* Execute RX reset command. */
1463 writel(SW_RESET_RX
, cp
->regs
+ REG_SW_RESET
);
1464 for (limit
= 0; limit
< STOP_TRIES
; limit
++) {
1465 if (!(readl(cp
->regs
+ REG_SW_RESET
) & SW_RESET_RX
))
1469 if (limit
== STOP_TRIES
) {
1470 printk(KERN_ERR
"%s: RX reset command will not execute, "
1471 "resetting whole chip.\n", dev
->name
);
1475 /* reset driver rx state */
1479 /* Now, reprogram the rest of RX unit. */
1480 cas_init_rx_dma(cp
);
1483 val
= readl(cp
->regs
+ REG_RX_CFG
);
1484 writel(val
| RX_CFG_DMA_EN
, cp
->regs
+ REG_RX_CFG
);
1485 writel(MAC_RX_FRAME_RECV
, cp
->regs
+ REG_MAC_RX_MASK
);
1486 val
= readl(cp
->regs
+ REG_MAC_RX_CFG
);
1487 writel(val
| MAC_RX_CFG_EN
, cp
->regs
+ REG_MAC_RX_CFG
);
1492 static int cas_rxmac_interrupt(struct net_device
*dev
, struct cas
*cp
,
1495 u32 stat
= readl(cp
->regs
+ REG_MAC_RX_STATUS
);
1500 if (netif_msg_intr(cp
))
1501 printk(KERN_DEBUG
"%s: rxmac interrupt, stat: 0x%x\n",
1502 cp
->dev
->name
, stat
);
1504 /* these are all rollovers */
1505 spin_lock(&cp
->stat_lock
[0]);
1506 if (stat
& MAC_RX_ALIGN_ERR
)
1507 cp
->net_stats
[0].rx_frame_errors
+= 0x10000;
1509 if (stat
& MAC_RX_CRC_ERR
)
1510 cp
->net_stats
[0].rx_crc_errors
+= 0x10000;
1512 if (stat
& MAC_RX_LEN_ERR
)
1513 cp
->net_stats
[0].rx_length_errors
+= 0x10000;
1515 if (stat
& MAC_RX_OVERFLOW
) {
1516 cp
->net_stats
[0].rx_over_errors
++;
1517 cp
->net_stats
[0].rx_fifo_errors
++;
1520 /* We do not track MAC_RX_FRAME_COUNT and MAC_RX_VIOL_ERR
1523 spin_unlock(&cp
->stat_lock
[0]);
1527 static int cas_mac_interrupt(struct net_device
*dev
, struct cas
*cp
,
1530 u32 stat
= readl(cp
->regs
+ REG_MAC_CTRL_STATUS
);
1535 if (netif_msg_intr(cp
))
1536 printk(KERN_DEBUG
"%s: mac interrupt, stat: 0x%x\n",
1537 cp
->dev
->name
, stat
);
1539 /* This interrupt is just for pause frame and pause
1540 * tracking. It is useful for diagnostics and debug
1541 * but probably by default we will mask these events.
1543 if (stat
& MAC_CTRL_PAUSE_STATE
)
1544 cp
->pause_entered
++;
1546 if (stat
& MAC_CTRL_PAUSE_RECEIVED
)
1547 cp
->pause_last_time_recvd
= (stat
>> 16);
1553 /* Must be invoked under cp->lock. */
1554 static inline int cas_mdio_link_not_up(struct cas
*cp
)
1558 switch (cp
->lstate
) {
1559 case link_force_ret
:
1560 if (netif_msg_link(cp
))
1561 printk(KERN_INFO
"%s: Autoneg failed again, keeping"
1562 " forced mode\n", cp
->dev
->name
);
1563 cas_phy_write(cp
, MII_BMCR
, cp
->link_fcntl
);
1564 cp
->timer_ticks
= 5;
1565 cp
->lstate
= link_force_ok
;
1566 cp
->link_transition
= LINK_TRANSITION_LINK_CONFIG
;
1570 val
= cas_phy_read(cp
, MII_BMCR
);
1572 /* Try forced modes. we try things in the following order:
1573 * 1000 full -> 100 full/half -> 10 half
1575 val
&= ~(BMCR_ANRESTART
| BMCR_ANENABLE
);
1576 val
|= BMCR_FULLDPLX
;
1577 val
|= (cp
->cas_flags
& CAS_FLAG_1000MB_CAP
) ?
1578 CAS_BMCR_SPEED1000
: BMCR_SPEED100
;
1579 cas_phy_write(cp
, MII_BMCR
, val
);
1580 cp
->timer_ticks
= 5;
1581 cp
->lstate
= link_force_try
;
1582 cp
->link_transition
= LINK_TRANSITION_LINK_CONFIG
;
1585 case link_force_try
:
1586 /* Downgrade from 1000 to 100 to 10 Mbps if necessary. */
1587 val
= cas_phy_read(cp
, MII_BMCR
);
1588 cp
->timer_ticks
= 5;
1589 if (val
& CAS_BMCR_SPEED1000
) { /* gigabit */
1590 val
&= ~CAS_BMCR_SPEED1000
;
1591 val
|= (BMCR_SPEED100
| BMCR_FULLDPLX
);
1592 cas_phy_write(cp
, MII_BMCR
, val
);
1596 if (val
& BMCR_SPEED100
) {
1597 if (val
& BMCR_FULLDPLX
) /* fd failed */
1598 val
&= ~BMCR_FULLDPLX
;
1599 else { /* 100Mbps failed */
1600 val
&= ~BMCR_SPEED100
;
1602 cas_phy_write(cp
, MII_BMCR
, val
);
1612 /* must be invoked with cp->lock held */
1613 static int cas_mii_link_check(struct cas
*cp
, const u16 bmsr
)
1617 if (bmsr
& BMSR_LSTATUS
) {
1618 /* Ok, here we got a link. If we had it due to a forced
1619 * fallback, and we were configured for autoneg, we
1620 * retry a short autoneg pass. If you know your hub is
1621 * broken, use ethtool ;)
1623 if ((cp
->lstate
== link_force_try
) &&
1624 (cp
->link_cntl
& BMCR_ANENABLE
)) {
1625 cp
->lstate
= link_force_ret
;
1626 cp
->link_transition
= LINK_TRANSITION_LINK_CONFIG
;
1627 cas_mif_poll(cp
, 0);
1628 cp
->link_fcntl
= cas_phy_read(cp
, MII_BMCR
);
1629 cp
->timer_ticks
= 5;
1630 if (cp
->opened
&& netif_msg_link(cp
))
1631 printk(KERN_INFO
"%s: Got link after fallback, retrying"
1632 " autoneg once...\n", cp
->dev
->name
);
1633 cas_phy_write(cp
, MII_BMCR
,
1634 cp
->link_fcntl
| BMCR_ANENABLE
|
1636 cas_mif_poll(cp
, 1);
1638 } else if (cp
->lstate
!= link_up
) {
1639 cp
->lstate
= link_up
;
1640 cp
->link_transition
= LINK_TRANSITION_LINK_UP
;
1643 cas_set_link_modes(cp
);
1644 netif_carrier_on(cp
->dev
);
1650 /* link not up. if the link was previously up, we restart the
1654 if (cp
->lstate
== link_up
) {
1655 cp
->lstate
= link_down
;
1656 cp
->link_transition
= LINK_TRANSITION_LINK_DOWN
;
1658 netif_carrier_off(cp
->dev
);
1659 if (cp
->opened
&& netif_msg_link(cp
))
1660 printk(KERN_INFO
"%s: Link down\n",
1664 } else if (++cp
->timer_ticks
> 10)
1665 cas_mdio_link_not_up(cp
);
1670 static int cas_mif_interrupt(struct net_device
*dev
, struct cas
*cp
,
1673 u32 stat
= readl(cp
->regs
+ REG_MIF_STATUS
);
1676 /* check for a link change */
1677 if (CAS_VAL(MIF_STATUS_POLL_STATUS
, stat
) == 0)
1680 bmsr
= CAS_VAL(MIF_STATUS_POLL_DATA
, stat
);
1681 return cas_mii_link_check(cp
, bmsr
);
1684 static int cas_pci_interrupt(struct net_device
*dev
, struct cas
*cp
,
1687 u32 stat
= readl(cp
->regs
+ REG_PCI_ERR_STATUS
);
1692 printk(KERN_ERR
"%s: PCI error [%04x:%04x] ", dev
->name
, stat
,
1693 readl(cp
->regs
+ REG_BIM_DIAG
));
1695 /* cassini+ has this reserved */
1696 if ((stat
& PCI_ERR_BADACK
) &&
1697 ((cp
->cas_flags
& CAS_FLAG_REG_PLUS
) == 0))
1698 printk("<No ACK64# during ABS64 cycle> ");
1700 if (stat
& PCI_ERR_DTRTO
)
1701 printk("<Delayed transaction timeout> ");
1702 if (stat
& PCI_ERR_OTHER
)
1704 if (stat
& PCI_ERR_BIM_DMA_WRITE
)
1705 printk("<BIM DMA 0 write req> ");
1706 if (stat
& PCI_ERR_BIM_DMA_READ
)
1707 printk("<BIM DMA 0 read req> ");
1710 if (stat
& PCI_ERR_OTHER
) {
1713 /* Interrogate PCI config space for the
1716 pci_read_config_word(cp
->pdev
, PCI_STATUS
, &cfg
);
1717 printk(KERN_ERR
"%s: Read PCI cfg space status [%04x]\n",
1719 if (cfg
& PCI_STATUS_PARITY
)
1720 printk(KERN_ERR
"%s: PCI parity error detected.\n",
1722 if (cfg
& PCI_STATUS_SIG_TARGET_ABORT
)
1723 printk(KERN_ERR
"%s: PCI target abort.\n",
1725 if (cfg
& PCI_STATUS_REC_TARGET_ABORT
)
1726 printk(KERN_ERR
"%s: PCI master acks target abort.\n",
1728 if (cfg
& PCI_STATUS_REC_MASTER_ABORT
)
1729 printk(KERN_ERR
"%s: PCI master abort.\n", dev
->name
);
1730 if (cfg
& PCI_STATUS_SIG_SYSTEM_ERROR
)
1731 printk(KERN_ERR
"%s: PCI system error SERR#.\n",
1733 if (cfg
& PCI_STATUS_DETECTED_PARITY
)
1734 printk(KERN_ERR
"%s: PCI parity error.\n",
1737 /* Write the error bits back to clear them. */
1738 cfg
&= (PCI_STATUS_PARITY
|
1739 PCI_STATUS_SIG_TARGET_ABORT
|
1740 PCI_STATUS_REC_TARGET_ABORT
|
1741 PCI_STATUS_REC_MASTER_ABORT
|
1742 PCI_STATUS_SIG_SYSTEM_ERROR
|
1743 PCI_STATUS_DETECTED_PARITY
);
1744 pci_write_config_word(cp
->pdev
, PCI_STATUS
, cfg
);
1747 /* For all PCI errors, we should reset the chip. */
1751 /* All non-normal interrupt conditions get serviced here.
1752 * Returns non-zero if we should just exit the interrupt
1753 * handler right now (ie. if we reset the card which invalidates
1754 * all of the other original irq status bits).
1756 static int cas_abnormal_irq(struct net_device
*dev
, struct cas
*cp
,
1759 if (status
& INTR_RX_TAG_ERROR
) {
1760 /* corrupt RX tag framing */
1761 if (netif_msg_rx_err(cp
))
1762 printk(KERN_DEBUG
"%s: corrupt rx tag framing\n",
1764 spin_lock(&cp
->stat_lock
[0]);
1765 cp
->net_stats
[0].rx_errors
++;
1766 spin_unlock(&cp
->stat_lock
[0]);
1770 if (status
& INTR_RX_LEN_MISMATCH
) {
1771 /* length mismatch. */
1772 if (netif_msg_rx_err(cp
))
1773 printk(KERN_DEBUG
"%s: length mismatch for rx frame\n",
1775 spin_lock(&cp
->stat_lock
[0]);
1776 cp
->net_stats
[0].rx_errors
++;
1777 spin_unlock(&cp
->stat_lock
[0]);
1781 if (status
& INTR_PCS_STATUS
) {
1782 if (cas_pcs_interrupt(dev
, cp
, status
))
1786 if (status
& INTR_TX_MAC_STATUS
) {
1787 if (cas_txmac_interrupt(dev
, cp
, status
))
1791 if (status
& INTR_RX_MAC_STATUS
) {
1792 if (cas_rxmac_interrupt(dev
, cp
, status
))
1796 if (status
& INTR_MAC_CTRL_STATUS
) {
1797 if (cas_mac_interrupt(dev
, cp
, status
))
1801 if (status
& INTR_MIF_STATUS
) {
1802 if (cas_mif_interrupt(dev
, cp
, status
))
1806 if (status
& INTR_PCI_ERROR_STATUS
) {
1807 if (cas_pci_interrupt(dev
, cp
, status
))
1814 atomic_inc(&cp
->reset_task_pending
);
1815 atomic_inc(&cp
->reset_task_pending_all
);
1816 printk(KERN_ERR
"%s:reset called in cas_abnormal_irq [0x%x]\n",
1818 schedule_work(&cp
->reset_task
);
1820 atomic_set(&cp
->reset_task_pending
, CAS_RESET_ALL
);
1821 printk(KERN_ERR
"reset called in cas_abnormal_irq\n");
1822 schedule_work(&cp
->reset_task
);
1827 /* NOTE: CAS_TABORT returns 1 or 2 so that it can be used when
1828 * determining whether to do a netif_stop/wakeup
1830 #define CAS_TABORT(x) (((x)->cas_flags & CAS_FLAG_TARGET_ABORT) ? 2 : 1)
1831 #define CAS_ROUND_PAGE(x) (((x) + PAGE_SIZE - 1) & PAGE_MASK)
1832 static inline int cas_calc_tabort(struct cas
*cp
, const unsigned long addr
,
1835 unsigned long off
= addr
+ len
;
1837 if (CAS_TABORT(cp
) == 1)
1839 if ((CAS_ROUND_PAGE(off
) - off
) > TX_TARGET_ABORT_LEN
)
1841 return TX_TARGET_ABORT_LEN
;
1844 static inline void cas_tx_ringN(struct cas
*cp
, int ring
, int limit
)
1846 struct cas_tx_desc
*txds
;
1847 struct sk_buff
**skbs
;
1848 struct net_device
*dev
= cp
->dev
;
1851 spin_lock(&cp
->tx_lock
[ring
]);
1852 txds
= cp
->init_txds
[ring
];
1853 skbs
= cp
->tx_skbs
[ring
];
1854 entry
= cp
->tx_old
[ring
];
1856 count
= TX_BUFF_COUNT(ring
, entry
, limit
);
1857 while (entry
!= limit
) {
1858 struct sk_buff
*skb
= skbs
[entry
];
1864 /* this should never occur */
1865 entry
= TX_DESC_NEXT(ring
, entry
);
1869 /* however, we might get only a partial skb release. */
1870 count
-= skb_shinfo(skb
)->nr_frags
+
1871 + cp
->tx_tiny_use
[ring
][entry
].nbufs
+ 1;
1875 if (netif_msg_tx_done(cp
))
1876 printk(KERN_DEBUG
"%s: tx[%d] done, slot %d\n",
1877 cp
->dev
->name
, ring
, entry
);
1880 cp
->tx_tiny_use
[ring
][entry
].nbufs
= 0;
1882 for (frag
= 0; frag
<= skb_shinfo(skb
)->nr_frags
; frag
++) {
1883 struct cas_tx_desc
*txd
= txds
+ entry
;
1885 daddr
= le64_to_cpu(txd
->buffer
);
1886 dlen
= CAS_VAL(TX_DESC_BUFLEN
,
1887 le64_to_cpu(txd
->control
));
1888 pci_unmap_page(cp
->pdev
, daddr
, dlen
,
1890 entry
= TX_DESC_NEXT(ring
, entry
);
1892 /* tiny buffer may follow */
1893 if (cp
->tx_tiny_use
[ring
][entry
].used
) {
1894 cp
->tx_tiny_use
[ring
][entry
].used
= 0;
1895 entry
= TX_DESC_NEXT(ring
, entry
);
1899 spin_lock(&cp
->stat_lock
[ring
]);
1900 cp
->net_stats
[ring
].tx_packets
++;
1901 cp
->net_stats
[ring
].tx_bytes
+= skb
->len
;
1902 spin_unlock(&cp
->stat_lock
[ring
]);
1903 dev_kfree_skb_irq(skb
);
1905 cp
->tx_old
[ring
] = entry
;
1907 /* this is wrong for multiple tx rings. the net device needs
1908 * multiple queues for this to do the right thing. we wait
1909 * for 2*packets to be available when using tiny buffers
1911 if (netif_queue_stopped(dev
) &&
1912 (TX_BUFFS_AVAIL(cp
, ring
) > CAS_TABORT(cp
)*(MAX_SKB_FRAGS
+ 1)))
1913 netif_wake_queue(dev
);
1914 spin_unlock(&cp
->tx_lock
[ring
]);
1917 static void cas_tx(struct net_device
*dev
, struct cas
*cp
,
1921 #ifdef USE_TX_COMPWB
1922 u64 compwb
= le64_to_cpu(cp
->init_block
->tx_compwb
);
1924 if (netif_msg_intr(cp
))
1925 printk(KERN_DEBUG
"%s: tx interrupt, status: 0x%x, %llx\n",
1926 cp
->dev
->name
, status
, (unsigned long long)compwb
);
1927 /* process all the rings */
1928 for (ring
= 0; ring
< N_TX_RINGS
; ring
++) {
1929 #ifdef USE_TX_COMPWB
1930 /* use the completion writeback registers */
1931 limit
= (CAS_VAL(TX_COMPWB_MSB
, compwb
) << 8) |
1932 CAS_VAL(TX_COMPWB_LSB
, compwb
);
1933 compwb
= TX_COMPWB_NEXT(compwb
);
1935 limit
= readl(cp
->regs
+ REG_TX_COMPN(ring
));
1937 if (cp
->tx_old
[ring
] != limit
)
1938 cas_tx_ringN(cp
, ring
, limit
);
1943 static int cas_rx_process_pkt(struct cas
*cp
, struct cas_rx_comp
*rxc
,
1944 int entry
, const u64
*words
,
1945 struct sk_buff
**skbref
)
1947 int dlen
, hlen
, len
, i
, alloclen
;
1948 int off
, swivel
= RX_SWIVEL_OFF_VAL
;
1949 struct cas_page
*page
;
1950 struct sk_buff
*skb
;
1951 void *addr
, *crcaddr
;
1955 hlen
= CAS_VAL(RX_COMP2_HDR_SIZE
, words
[1]);
1956 dlen
= CAS_VAL(RX_COMP1_DATA_SIZE
, words
[0]);
1959 if (RX_COPY_ALWAYS
|| (words
[2] & RX_COMP3_SMALL_PKT
))
1962 alloclen
= max(hlen
, RX_COPY_MIN
);
1964 skb
= dev_alloc_skb(alloclen
+ swivel
+ cp
->crc_size
);
1969 skb_reserve(skb
, swivel
);
1972 addr
= crcaddr
= NULL
;
1973 if (hlen
) { /* always copy header pages */
1974 i
= CAS_VAL(RX_COMP2_HDR_INDEX
, words
[1]);
1975 page
= cp
->rx_pages
[CAS_VAL(RX_INDEX_RING
, i
)][CAS_VAL(RX_INDEX_NUM
, i
)];
1976 off
= CAS_VAL(RX_COMP2_HDR_OFF
, words
[1]) * 0x100 +
1980 if (!dlen
) /* attach FCS */
1982 pci_dma_sync_single_for_cpu(cp
->pdev
, page
->dma_addr
+ off
, i
,
1983 PCI_DMA_FROMDEVICE
);
1984 addr
= cas_page_map(page
->buffer
);
1985 memcpy(p
, addr
+ off
, i
);
1986 pci_dma_sync_single_for_device(cp
->pdev
, page
->dma_addr
+ off
, i
,
1987 PCI_DMA_FROMDEVICE
);
1988 cas_page_unmap(addr
);
1989 RX_USED_ADD(page
, 0x100);
1995 if (alloclen
< (hlen
+ dlen
)) {
1996 skb_frag_t
*frag
= skb_shinfo(skb
)->frags
;
1998 /* normal or jumbo packets. we use frags */
1999 i
= CAS_VAL(RX_COMP1_DATA_INDEX
, words
[0]);
2000 page
= cp
->rx_pages
[CAS_VAL(RX_INDEX_RING
, i
)][CAS_VAL(RX_INDEX_NUM
, i
)];
2001 off
= CAS_VAL(RX_COMP1_DATA_OFF
, words
[0]) + swivel
;
2003 hlen
= min(cp
->page_size
- off
, dlen
);
2005 if (netif_msg_rx_err(cp
)) {
2006 printk(KERN_DEBUG
"%s: rx page overflow: "
2007 "%d\n", cp
->dev
->name
, hlen
);
2009 dev_kfree_skb_irq(skb
);
2013 if (i
== dlen
) /* attach FCS */
2015 pci_dma_sync_single_for_cpu(cp
->pdev
, page
->dma_addr
+ off
, i
,
2016 PCI_DMA_FROMDEVICE
);
2018 /* make sure we always copy a header */
2020 if (p
== (char *) skb
->data
) { /* not split */
2021 addr
= cas_page_map(page
->buffer
);
2022 memcpy(p
, addr
+ off
, RX_COPY_MIN
);
2023 pci_dma_sync_single_for_device(cp
->pdev
, page
->dma_addr
+ off
, i
,
2024 PCI_DMA_FROMDEVICE
);
2025 cas_page_unmap(addr
);
2027 swivel
= RX_COPY_MIN
;
2028 RX_USED_ADD(page
, cp
->mtu_stride
);
2030 RX_USED_ADD(page
, hlen
);
2032 skb_put(skb
, alloclen
);
2034 skb_shinfo(skb
)->nr_frags
++;
2035 skb
->data_len
+= hlen
- swivel
;
2036 skb
->truesize
+= hlen
- swivel
;
2037 skb
->len
+= hlen
- swivel
;
2039 get_page(page
->buffer
);
2040 frag
->page
= page
->buffer
;
2041 frag
->page_offset
= off
;
2042 frag
->size
= hlen
- swivel
;
2044 /* any more data? */
2045 if ((words
[0] & RX_COMP1_SPLIT_PKT
) && ((dlen
-= hlen
) > 0)) {
2049 i
= CAS_VAL(RX_COMP2_NEXT_INDEX
, words
[1]);
2050 page
= cp
->rx_pages
[CAS_VAL(RX_INDEX_RING
, i
)][CAS_VAL(RX_INDEX_NUM
, i
)];
2051 pci_dma_sync_single_for_cpu(cp
->pdev
, page
->dma_addr
,
2052 hlen
+ cp
->crc_size
,
2053 PCI_DMA_FROMDEVICE
);
2054 pci_dma_sync_single_for_device(cp
->pdev
, page
->dma_addr
,
2055 hlen
+ cp
->crc_size
,
2056 PCI_DMA_FROMDEVICE
);
2058 skb_shinfo(skb
)->nr_frags
++;
2059 skb
->data_len
+= hlen
;
2063 get_page(page
->buffer
);
2064 frag
->page
= page
->buffer
;
2065 frag
->page_offset
= 0;
2067 RX_USED_ADD(page
, hlen
+ cp
->crc_size
);
2071 addr
= cas_page_map(page
->buffer
);
2072 crcaddr
= addr
+ off
+ hlen
;
2076 /* copying packet */
2080 i
= CAS_VAL(RX_COMP1_DATA_INDEX
, words
[0]);
2081 page
= cp
->rx_pages
[CAS_VAL(RX_INDEX_RING
, i
)][CAS_VAL(RX_INDEX_NUM
, i
)];
2082 off
= CAS_VAL(RX_COMP1_DATA_OFF
, words
[0]) + swivel
;
2083 hlen
= min(cp
->page_size
- off
, dlen
);
2085 if (netif_msg_rx_err(cp
)) {
2086 printk(KERN_DEBUG
"%s: rx page overflow: "
2087 "%d\n", cp
->dev
->name
, hlen
);
2089 dev_kfree_skb_irq(skb
);
2093 if (i
== dlen
) /* attach FCS */
2095 pci_dma_sync_single_for_cpu(cp
->pdev
, page
->dma_addr
+ off
, i
,
2096 PCI_DMA_FROMDEVICE
);
2097 addr
= cas_page_map(page
->buffer
);
2098 memcpy(p
, addr
+ off
, i
);
2099 pci_dma_sync_single_for_device(cp
->pdev
, page
->dma_addr
+ off
, i
,
2100 PCI_DMA_FROMDEVICE
);
2101 cas_page_unmap(addr
);
2102 if (p
== (char *) skb
->data
) /* not split */
2103 RX_USED_ADD(page
, cp
->mtu_stride
);
2105 RX_USED_ADD(page
, i
);
2107 /* any more data? */
2108 if ((words
[0] & RX_COMP1_SPLIT_PKT
) && ((dlen
-= hlen
) > 0)) {
2110 i
= CAS_VAL(RX_COMP2_NEXT_INDEX
, words
[1]);
2111 page
= cp
->rx_pages
[CAS_VAL(RX_INDEX_RING
, i
)][CAS_VAL(RX_INDEX_NUM
, i
)];
2112 pci_dma_sync_single_for_cpu(cp
->pdev
, page
->dma_addr
,
2113 dlen
+ cp
->crc_size
,
2114 PCI_DMA_FROMDEVICE
);
2115 addr
= cas_page_map(page
->buffer
);
2116 memcpy(p
, addr
, dlen
+ cp
->crc_size
);
2117 pci_dma_sync_single_for_device(cp
->pdev
, page
->dma_addr
,
2118 dlen
+ cp
->crc_size
,
2119 PCI_DMA_FROMDEVICE
);
2120 cas_page_unmap(addr
);
2121 RX_USED_ADD(page
, dlen
+ cp
->crc_size
);
2126 crcaddr
= skb
->data
+ alloclen
;
2128 skb_put(skb
, alloclen
);
2131 csum
= (__force __sum16
)htons(CAS_VAL(RX_COMP4_TCP_CSUM
, words
[3]));
2133 /* checksum includes FCS. strip it out. */
2134 csum
= csum_fold(csum_partial(crcaddr
, cp
->crc_size
,
2135 csum_unfold(csum
)));
2137 cas_page_unmap(addr
);
2139 skb
->csum
= csum_unfold(~csum
);
2140 skb
->ip_summed
= CHECKSUM_COMPLETE
;
2141 skb
->protocol
= eth_type_trans(skb
, cp
->dev
);
2146 /* we can handle up to 64 rx flows at a time. we do the same thing
2147 * as nonreassm except that we batch up the buffers.
2148 * NOTE: we currently just treat each flow as a bunch of packets that
2149 * we pass up. a better way would be to coalesce the packets
2150 * into a jumbo packet. to do that, we need to do the following:
2151 * 1) the first packet will have a clean split between header and
2153 * 2) each time the next flow packet comes in, extend the
2154 * data length and merge the checksums.
2155 * 3) on flow release, fix up the header.
2156 * 4) make sure the higher layer doesn't care.
2157 * because packets get coalesced, we shouldn't run into fragment count
2160 static inline void cas_rx_flow_pkt(struct cas
*cp
, const u64
*words
,
2161 struct sk_buff
*skb
)
2163 int flowid
= CAS_VAL(RX_COMP3_FLOWID
, words
[2]) & (N_RX_FLOWS
- 1);
2164 struct sk_buff_head
*flow
= &cp
->rx_flows
[flowid
];
2166 /* this is protected at a higher layer, so no need to
2167 * do any additional locking here. stick the buffer
2170 __skb_insert(skb
, flow
->prev
, (struct sk_buff
*) flow
, flow
);
2171 if (words
[0] & RX_COMP1_RELEASE_FLOW
) {
2172 while ((skb
= __skb_dequeue(flow
))) {
2173 cas_skb_release(skb
);
2178 /* put rx descriptor back on ring. if a buffer is in use by a higher
2179 * layer, this will need to put in a replacement.
2181 static void cas_post_page(struct cas
*cp
, const int ring
, const int index
)
2186 entry
= cp
->rx_old
[ring
];
2188 new = cas_page_swap(cp
, ring
, index
);
2189 cp
->init_rxds
[ring
][entry
].buffer
= cpu_to_le64(new->dma_addr
);
2190 cp
->init_rxds
[ring
][entry
].index
=
2191 cpu_to_le64(CAS_BASE(RX_INDEX_NUM
, index
) |
2192 CAS_BASE(RX_INDEX_RING
, ring
));
2194 entry
= RX_DESC_ENTRY(ring
, entry
+ 1);
2195 cp
->rx_old
[ring
] = entry
;
2201 writel(entry
, cp
->regs
+ REG_RX_KICK
);
2202 else if ((N_RX_DESC_RINGS
> 1) &&
2203 (cp
->cas_flags
& CAS_FLAG_REG_PLUS
))
2204 writel(entry
, cp
->regs
+ REG_PLUS_RX_KICK1
);
2208 /* only when things are bad */
2209 static int cas_post_rxds_ringN(struct cas
*cp
, int ring
, int num
)
2211 unsigned int entry
, last
, count
, released
;
2213 cas_page_t
**page
= cp
->rx_pages
[ring
];
2215 entry
= cp
->rx_old
[ring
];
2217 if (netif_msg_intr(cp
))
2218 printk(KERN_DEBUG
"%s: rxd[%d] interrupt, done: %d\n",
2219 cp
->dev
->name
, ring
, entry
);
2222 count
= entry
& 0x3;
2223 last
= RX_DESC_ENTRY(ring
, num
? entry
+ num
- 4: entry
- 4);
2225 while (entry
!= last
) {
2226 /* make a new buffer if it's still in use */
2227 if (page_count(page
[entry
]->buffer
) > 1) {
2228 cas_page_t
*new = cas_page_dequeue(cp
);
2230 /* let the timer know that we need to
2233 cp
->cas_flags
|= CAS_FLAG_RXD_POST(ring
);
2234 if (!timer_pending(&cp
->link_timer
))
2235 mod_timer(&cp
->link_timer
, jiffies
+
2236 CAS_LINK_FAST_TIMEOUT
);
2237 cp
->rx_old
[ring
] = entry
;
2238 cp
->rx_last
[ring
] = num
? num
- released
: 0;
2241 spin_lock(&cp
->rx_inuse_lock
);
2242 list_add(&page
[entry
]->list
, &cp
->rx_inuse_list
);
2243 spin_unlock(&cp
->rx_inuse_lock
);
2244 cp
->init_rxds
[ring
][entry
].buffer
=
2245 cpu_to_le64(new->dma_addr
);
2255 entry
= RX_DESC_ENTRY(ring
, entry
+ 1);
2257 cp
->rx_old
[ring
] = entry
;
2263 writel(cluster
, cp
->regs
+ REG_RX_KICK
);
2264 else if ((N_RX_DESC_RINGS
> 1) &&
2265 (cp
->cas_flags
& CAS_FLAG_REG_PLUS
))
2266 writel(cluster
, cp
->regs
+ REG_PLUS_RX_KICK1
);
2271 /* process a completion ring. packets are set up in three basic ways:
2272 * small packets: should be copied header + data in single buffer.
2273 * large packets: header and data in a single buffer.
2274 * split packets: header in a separate buffer from data.
2275 * data may be in multiple pages. data may be > 256
2276 * bytes but in a single page.
2278 * NOTE: RX page posting is done in this routine as well. while there's
2279 * the capability of using multiple RX completion rings, it isn't
2280 * really worthwhile due to the fact that the page posting will
2281 * force serialization on the single descriptor ring.
2283 static int cas_rx_ringN(struct cas
*cp
, int ring
, int budget
)
2285 struct cas_rx_comp
*rxcs
= cp
->init_rxcs
[ring
];
2289 if (netif_msg_intr(cp
))
2290 printk(KERN_DEBUG
"%s: rx[%d] interrupt, done: %d/%d\n",
2291 cp
->dev
->name
, ring
,
2292 readl(cp
->regs
+ REG_RX_COMP_HEAD
),
2295 entry
= cp
->rx_new
[ring
];
2298 struct cas_rx_comp
*rxc
= rxcs
+ entry
;
2299 struct sk_buff
*skb
;
2304 words
[0] = le64_to_cpu(rxc
->word1
);
2305 words
[1] = le64_to_cpu(rxc
->word2
);
2306 words
[2] = le64_to_cpu(rxc
->word3
);
2307 words
[3] = le64_to_cpu(rxc
->word4
);
2309 /* don't touch if still owned by hw */
2310 type
= CAS_VAL(RX_COMP1_TYPE
, words
[0]);
2314 /* hw hasn't cleared the zero bit yet */
2315 if (words
[3] & RX_COMP4_ZERO
) {
2319 /* get info on the packet */
2320 if (words
[3] & (RX_COMP4_LEN_MISMATCH
| RX_COMP4_BAD
)) {
2321 spin_lock(&cp
->stat_lock
[ring
]);
2322 cp
->net_stats
[ring
].rx_errors
++;
2323 if (words
[3] & RX_COMP4_LEN_MISMATCH
)
2324 cp
->net_stats
[ring
].rx_length_errors
++;
2325 if (words
[3] & RX_COMP4_BAD
)
2326 cp
->net_stats
[ring
].rx_crc_errors
++;
2327 spin_unlock(&cp
->stat_lock
[ring
]);
2329 /* We'll just return it to Cassini. */
2331 spin_lock(&cp
->stat_lock
[ring
]);
2332 ++cp
->net_stats
[ring
].rx_dropped
;
2333 spin_unlock(&cp
->stat_lock
[ring
]);
2337 len
= cas_rx_process_pkt(cp
, rxc
, entry
, words
, &skb
);
2343 /* see if it's a flow re-assembly or not. the driver
2344 * itself handles release back up.
2346 if (RX_DONT_BATCH
|| (type
== 0x2)) {
2347 /* non-reassm: these always get released */
2348 cas_skb_release(skb
);
2350 cas_rx_flow_pkt(cp
, words
, skb
);
2353 spin_lock(&cp
->stat_lock
[ring
]);
2354 cp
->net_stats
[ring
].rx_packets
++;
2355 cp
->net_stats
[ring
].rx_bytes
+= len
;
2356 spin_unlock(&cp
->stat_lock
[ring
]);
2357 cp
->dev
->last_rx
= jiffies
;
2362 /* should it be released? */
2363 if (words
[0] & RX_COMP1_RELEASE_HDR
) {
2364 i
= CAS_VAL(RX_COMP2_HDR_INDEX
, words
[1]);
2365 dring
= CAS_VAL(RX_INDEX_RING
, i
);
2366 i
= CAS_VAL(RX_INDEX_NUM
, i
);
2367 cas_post_page(cp
, dring
, i
);
2370 if (words
[0] & RX_COMP1_RELEASE_DATA
) {
2371 i
= CAS_VAL(RX_COMP1_DATA_INDEX
, words
[0]);
2372 dring
= CAS_VAL(RX_INDEX_RING
, i
);
2373 i
= CAS_VAL(RX_INDEX_NUM
, i
);
2374 cas_post_page(cp
, dring
, i
);
2377 if (words
[0] & RX_COMP1_RELEASE_NEXT
) {
2378 i
= CAS_VAL(RX_COMP2_NEXT_INDEX
, words
[1]);
2379 dring
= CAS_VAL(RX_INDEX_RING
, i
);
2380 i
= CAS_VAL(RX_INDEX_NUM
, i
);
2381 cas_post_page(cp
, dring
, i
);
2384 /* skip to the next entry */
2385 entry
= RX_COMP_ENTRY(ring
, entry
+ 1 +
2386 CAS_VAL(RX_COMP1_SKIP
, words
[0]));
2388 if (budget
&& (npackets
>= budget
))
2392 cp
->rx_new
[ring
] = entry
;
2395 printk(KERN_INFO
"%s: Memory squeeze, deferring packet.\n",
2401 /* put completion entries back on the ring */
2402 static void cas_post_rxcs_ringN(struct net_device
*dev
,
2403 struct cas
*cp
, int ring
)
2405 struct cas_rx_comp
*rxc
= cp
->init_rxcs
[ring
];
2408 last
= cp
->rx_cur
[ring
];
2409 entry
= cp
->rx_new
[ring
];
2410 if (netif_msg_intr(cp
))
2411 printk(KERN_DEBUG
"%s: rxc[%d] interrupt, done: %d/%d\n",
2412 dev
->name
, ring
, readl(cp
->regs
+ REG_RX_COMP_HEAD
),
2415 /* zero and re-mark descriptors */
2416 while (last
!= entry
) {
2417 cas_rxc_init(rxc
+ last
);
2418 last
= RX_COMP_ENTRY(ring
, last
+ 1);
2420 cp
->rx_cur
[ring
] = last
;
2423 writel(last
, cp
->regs
+ REG_RX_COMP_TAIL
);
2424 else if (cp
->cas_flags
& CAS_FLAG_REG_PLUS
)
2425 writel(last
, cp
->regs
+ REG_PLUS_RX_COMPN_TAIL(ring
));
2430 /* cassini can use all four PCI interrupts for the completion ring.
2431 * rings 3 and 4 are identical
2433 #if defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
2434 static inline void cas_handle_irqN(struct net_device
*dev
,
2435 struct cas
*cp
, const u32 status
,
2438 if (status
& (INTR_RX_COMP_FULL_ALT
| INTR_RX_COMP_AF_ALT
))
2439 cas_post_rxcs_ringN(dev
, cp
, ring
);
2442 static irqreturn_t
cas_interruptN(int irq
, void *dev_id
)
2444 struct net_device
*dev
= dev_id
;
2445 struct cas
*cp
= netdev_priv(dev
);
2446 unsigned long flags
;
2448 u32 status
= readl(cp
->regs
+ REG_PLUS_INTRN_STATUS(ring
));
2450 /* check for shared irq */
2454 ring
= (irq
== cp
->pci_irq_INTC
) ? 2 : 3;
2455 spin_lock_irqsave(&cp
->lock
, flags
);
2456 if (status
& INTR_RX_DONE_ALT
) { /* handle rx separately */
2459 netif_rx_schedule(dev
, &cp
->napi
);
2461 cas_rx_ringN(cp
, ring
, 0);
2463 status
&= ~INTR_RX_DONE_ALT
;
2467 cas_handle_irqN(dev
, cp
, status
, ring
);
2468 spin_unlock_irqrestore(&cp
->lock
, flags
);
2474 /* everything but rx packets */
2475 static inline void cas_handle_irq1(struct cas
*cp
, const u32 status
)
2477 if (status
& INTR_RX_BUF_UNAVAIL_1
) {
2478 /* Frame arrived, no free RX buffers available.
2479 * NOTE: we can get this on a link transition. */
2480 cas_post_rxds_ringN(cp
, 1, 0);
2481 spin_lock(&cp
->stat_lock
[1]);
2482 cp
->net_stats
[1].rx_dropped
++;
2483 spin_unlock(&cp
->stat_lock
[1]);
2486 if (status
& INTR_RX_BUF_AE_1
)
2487 cas_post_rxds_ringN(cp
, 1, RX_DESC_RINGN_SIZE(1) -
2488 RX_AE_FREEN_VAL(1));
2490 if (status
& (INTR_RX_COMP_AF
| INTR_RX_COMP_FULL
))
2491 cas_post_rxcs_ringN(cp
, 1);
2494 /* ring 2 handles a few more events than 3 and 4 */
2495 static irqreturn_t
cas_interrupt1(int irq
, void *dev_id
)
2497 struct net_device
*dev
= dev_id
;
2498 struct cas
*cp
= netdev_priv(dev
);
2499 unsigned long flags
;
2500 u32 status
= readl(cp
->regs
+ REG_PLUS_INTRN_STATUS(1));
2502 /* check for shared interrupt */
2506 spin_lock_irqsave(&cp
->lock
, flags
);
2507 if (status
& INTR_RX_DONE_ALT
) { /* handle rx separately */
2510 netif_rx_schedule(dev
, &cp
->napi
);
2512 cas_rx_ringN(cp
, 1, 0);
2514 status
&= ~INTR_RX_DONE_ALT
;
2517 cas_handle_irq1(cp
, status
);
2518 spin_unlock_irqrestore(&cp
->lock
, flags
);
2523 static inline void cas_handle_irq(struct net_device
*dev
,
2524 struct cas
*cp
, const u32 status
)
2526 /* housekeeping interrupts */
2527 if (status
& INTR_ERROR_MASK
)
2528 cas_abnormal_irq(dev
, cp
, status
);
2530 if (status
& INTR_RX_BUF_UNAVAIL
) {
2531 /* Frame arrived, no free RX buffers available.
2532 * NOTE: we can get this on a link transition.
2534 cas_post_rxds_ringN(cp
, 0, 0);
2535 spin_lock(&cp
->stat_lock
[0]);
2536 cp
->net_stats
[0].rx_dropped
++;
2537 spin_unlock(&cp
->stat_lock
[0]);
2538 } else if (status
& INTR_RX_BUF_AE
) {
2539 cas_post_rxds_ringN(cp
, 0, RX_DESC_RINGN_SIZE(0) -
2540 RX_AE_FREEN_VAL(0));
2543 if (status
& (INTR_RX_COMP_AF
| INTR_RX_COMP_FULL
))
2544 cas_post_rxcs_ringN(dev
, cp
, 0);
2547 static irqreturn_t
cas_interrupt(int irq
, void *dev_id
)
2549 struct net_device
*dev
= dev_id
;
2550 struct cas
*cp
= netdev_priv(dev
);
2551 unsigned long flags
;
2552 u32 status
= readl(cp
->regs
+ REG_INTR_STATUS
);
2557 spin_lock_irqsave(&cp
->lock
, flags
);
2558 if (status
& (INTR_TX_ALL
| INTR_TX_INTME
)) {
2559 cas_tx(dev
, cp
, status
);
2560 status
&= ~(INTR_TX_ALL
| INTR_TX_INTME
);
2563 if (status
& INTR_RX_DONE
) {
2566 netif_rx_schedule(dev
, &cp
->napi
);
2568 cas_rx_ringN(cp
, 0, 0);
2570 status
&= ~INTR_RX_DONE
;
2574 cas_handle_irq(dev
, cp
, status
);
2575 spin_unlock_irqrestore(&cp
->lock
, flags
);
2581 static int cas_poll(struct napi_struct
*napi
, int budget
)
2583 struct cas
*cp
= container_of(napi
, struct cas
, napi
);
2584 struct net_device
*dev
= cp
->dev
;
2585 int i
, enable_intr
, credits
;
2586 u32 status
= readl(cp
->regs
+ REG_INTR_STATUS
);
2587 unsigned long flags
;
2589 spin_lock_irqsave(&cp
->lock
, flags
);
2590 cas_tx(dev
, cp
, status
);
2591 spin_unlock_irqrestore(&cp
->lock
, flags
);
2593 /* NAPI rx packets. we spread the credits across all of the
2596 * to make sure we're fair with the work we loop through each
2597 * ring N_RX_COMP_RING times with a request of
2598 * budget / N_RX_COMP_RINGS
2602 for (i
= 0; i
< N_RX_COMP_RINGS
; i
++) {
2604 for (j
= 0; j
< N_RX_COMP_RINGS
; j
++) {
2605 credits
+= cas_rx_ringN(cp
, j
, budget
/ N_RX_COMP_RINGS
);
2606 if (credits
>= budget
) {
2614 /* final rx completion */
2615 spin_lock_irqsave(&cp
->lock
, flags
);
2617 cas_handle_irq(dev
, cp
, status
);
2620 if (N_RX_COMP_RINGS
> 1) {
2621 status
= readl(cp
->regs
+ REG_PLUS_INTRN_STATUS(1));
2623 cas_handle_irq1(dev
, cp
, status
);
2628 if (N_RX_COMP_RINGS
> 2) {
2629 status
= readl(cp
->regs
+ REG_PLUS_INTRN_STATUS(2));
2631 cas_handle_irqN(dev
, cp
, status
, 2);
2636 if (N_RX_COMP_RINGS
> 3) {
2637 status
= readl(cp
->regs
+ REG_PLUS_INTRN_STATUS(3));
2639 cas_handle_irqN(dev
, cp
, status
, 3);
2642 spin_unlock_irqrestore(&cp
->lock
, flags
);
2644 netif_rx_complete(dev
, napi
);
2645 cas_unmask_intr(cp
);
2651 #ifdef CONFIG_NET_POLL_CONTROLLER
2652 static void cas_netpoll(struct net_device
*dev
)
2654 struct cas
*cp
= netdev_priv(dev
);
2656 cas_disable_irq(cp
, 0);
2657 cas_interrupt(cp
->pdev
->irq
, dev
);
2658 cas_enable_irq(cp
, 0);
2661 if (N_RX_COMP_RINGS
> 1) {
2662 /* cas_interrupt1(); */
2666 if (N_RX_COMP_RINGS
> 2) {
2667 /* cas_interruptN(); */
2671 if (N_RX_COMP_RINGS
> 3) {
2672 /* cas_interruptN(); */
2678 static void cas_tx_timeout(struct net_device
*dev
)
2680 struct cas
*cp
= netdev_priv(dev
);
2682 printk(KERN_ERR
"%s: transmit timed out, resetting\n", dev
->name
);
2683 if (!cp
->hw_running
) {
2684 printk("%s: hrm.. hw not running!\n", dev
->name
);
2688 printk(KERN_ERR
"%s: MIF_STATE[%08x]\n",
2689 dev
->name
, readl(cp
->regs
+ REG_MIF_STATE_MACHINE
));
2691 printk(KERN_ERR
"%s: MAC_STATE[%08x]\n",
2692 dev
->name
, readl(cp
->regs
+ REG_MAC_STATE_MACHINE
));
2694 printk(KERN_ERR
"%s: TX_STATE[%08x:%08x:%08x] "
2695 "FIFO[%08x:%08x:%08x] SM1[%08x] SM2[%08x]\n",
2697 readl(cp
->regs
+ REG_TX_CFG
),
2698 readl(cp
->regs
+ REG_MAC_TX_STATUS
),
2699 readl(cp
->regs
+ REG_MAC_TX_CFG
),
2700 readl(cp
->regs
+ REG_TX_FIFO_PKT_CNT
),
2701 readl(cp
->regs
+ REG_TX_FIFO_WRITE_PTR
),
2702 readl(cp
->regs
+ REG_TX_FIFO_READ_PTR
),
2703 readl(cp
->regs
+ REG_TX_SM_1
),
2704 readl(cp
->regs
+ REG_TX_SM_2
));
2706 printk(KERN_ERR
"%s: RX_STATE[%08x:%08x:%08x]\n",
2708 readl(cp
->regs
+ REG_RX_CFG
),
2709 readl(cp
->regs
+ REG_MAC_RX_STATUS
),
2710 readl(cp
->regs
+ REG_MAC_RX_CFG
));
2712 printk(KERN_ERR
"%s: HP_STATE[%08x:%08x:%08x:%08x]\n",
2714 readl(cp
->regs
+ REG_HP_STATE_MACHINE
),
2715 readl(cp
->regs
+ REG_HP_STATUS0
),
2716 readl(cp
->regs
+ REG_HP_STATUS1
),
2717 readl(cp
->regs
+ REG_HP_STATUS2
));
2720 atomic_inc(&cp
->reset_task_pending
);
2721 atomic_inc(&cp
->reset_task_pending_all
);
2722 schedule_work(&cp
->reset_task
);
2724 atomic_set(&cp
->reset_task_pending
, CAS_RESET_ALL
);
2725 schedule_work(&cp
->reset_task
);
2729 static inline int cas_intme(int ring
, int entry
)
2731 /* Algorithm: IRQ every 1/2 of descriptors. */
2732 if (!(entry
& ((TX_DESC_RINGN_SIZE(ring
) >> 1) - 1)))
2738 static void cas_write_txd(struct cas
*cp
, int ring
, int entry
,
2739 dma_addr_t mapping
, int len
, u64 ctrl
, int last
)
2741 struct cas_tx_desc
*txd
= cp
->init_txds
[ring
] + entry
;
2743 ctrl
|= CAS_BASE(TX_DESC_BUFLEN
, len
);
2744 if (cas_intme(ring
, entry
))
2745 ctrl
|= TX_DESC_INTME
;
2747 ctrl
|= TX_DESC_EOF
;
2748 txd
->control
= cpu_to_le64(ctrl
);
2749 txd
->buffer
= cpu_to_le64(mapping
);
2752 static inline void *tx_tiny_buf(struct cas
*cp
, const int ring
,
2755 return cp
->tx_tiny_bufs
[ring
] + TX_TINY_BUF_LEN
*entry
;
2758 static inline dma_addr_t
tx_tiny_map(struct cas
*cp
, const int ring
,
2759 const int entry
, const int tentry
)
2761 cp
->tx_tiny_use
[ring
][tentry
].nbufs
++;
2762 cp
->tx_tiny_use
[ring
][entry
].used
= 1;
2763 return cp
->tx_tiny_dvma
[ring
] + TX_TINY_BUF_LEN
*entry
;
2766 static inline int cas_xmit_tx_ringN(struct cas
*cp
, int ring
,
2767 struct sk_buff
*skb
)
2769 struct net_device
*dev
= cp
->dev
;
2770 int entry
, nr_frags
, frag
, tabort
, tentry
;
2772 unsigned long flags
;
2776 spin_lock_irqsave(&cp
->tx_lock
[ring
], flags
);
2778 /* This is a hard error, log it. */
2779 if (TX_BUFFS_AVAIL(cp
, ring
) <=
2780 CAS_TABORT(cp
)*(skb_shinfo(skb
)->nr_frags
+ 1)) {
2781 netif_stop_queue(dev
);
2782 spin_unlock_irqrestore(&cp
->tx_lock
[ring
], flags
);
2783 printk(KERN_ERR PFX
"%s: BUG! Tx Ring full when "
2784 "queue awake!\n", dev
->name
);
2789 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
2790 const u64 csum_start_off
= skb_transport_offset(skb
);
2791 const u64 csum_stuff_off
= csum_start_off
+ skb
->csum_offset
;
2793 ctrl
= TX_DESC_CSUM_EN
|
2794 CAS_BASE(TX_DESC_CSUM_START
, csum_start_off
) |
2795 CAS_BASE(TX_DESC_CSUM_STUFF
, csum_stuff_off
);
2798 entry
= cp
->tx_new
[ring
];
2799 cp
->tx_skbs
[ring
][entry
] = skb
;
2801 nr_frags
= skb_shinfo(skb
)->nr_frags
;
2802 len
= skb_headlen(skb
);
2803 mapping
= pci_map_page(cp
->pdev
, virt_to_page(skb
->data
),
2804 offset_in_page(skb
->data
), len
,
2808 tabort
= cas_calc_tabort(cp
, (unsigned long) skb
->data
, len
);
2809 if (unlikely(tabort
)) {
2810 /* NOTE: len is always > tabort */
2811 cas_write_txd(cp
, ring
, entry
, mapping
, len
- tabort
,
2812 ctrl
| TX_DESC_SOF
, 0);
2813 entry
= TX_DESC_NEXT(ring
, entry
);
2815 skb_copy_from_linear_data_offset(skb
, len
- tabort
,
2816 tx_tiny_buf(cp
, ring
, entry
), tabort
);
2817 mapping
= tx_tiny_map(cp
, ring
, entry
, tentry
);
2818 cas_write_txd(cp
, ring
, entry
, mapping
, tabort
, ctrl
,
2821 cas_write_txd(cp
, ring
, entry
, mapping
, len
, ctrl
|
2822 TX_DESC_SOF
, (nr_frags
== 0));
2824 entry
= TX_DESC_NEXT(ring
, entry
);
2826 for (frag
= 0; frag
< nr_frags
; frag
++) {
2827 skb_frag_t
*fragp
= &skb_shinfo(skb
)->frags
[frag
];
2830 mapping
= pci_map_page(cp
->pdev
, fragp
->page
,
2831 fragp
->page_offset
, len
,
2834 tabort
= cas_calc_tabort(cp
, fragp
->page_offset
, len
);
2835 if (unlikely(tabort
)) {
2838 /* NOTE: len is always > tabort */
2839 cas_write_txd(cp
, ring
, entry
, mapping
, len
- tabort
,
2841 entry
= TX_DESC_NEXT(ring
, entry
);
2843 addr
= cas_page_map(fragp
->page
);
2844 memcpy(tx_tiny_buf(cp
, ring
, entry
),
2845 addr
+ fragp
->page_offset
+ len
- tabort
,
2847 cas_page_unmap(addr
);
2848 mapping
= tx_tiny_map(cp
, ring
, entry
, tentry
);
2852 cas_write_txd(cp
, ring
, entry
, mapping
, len
, ctrl
,
2853 (frag
+ 1 == nr_frags
));
2854 entry
= TX_DESC_NEXT(ring
, entry
);
2857 cp
->tx_new
[ring
] = entry
;
2858 if (TX_BUFFS_AVAIL(cp
, ring
) <= CAS_TABORT(cp
)*(MAX_SKB_FRAGS
+ 1))
2859 netif_stop_queue(dev
);
2861 if (netif_msg_tx_queued(cp
))
2862 printk(KERN_DEBUG
"%s: tx[%d] queued, slot %d, skblen %d, "
2864 dev
->name
, ring
, entry
, skb
->len
,
2865 TX_BUFFS_AVAIL(cp
, ring
));
2866 writel(entry
, cp
->regs
+ REG_TX_KICKN(ring
));
2867 spin_unlock_irqrestore(&cp
->tx_lock
[ring
], flags
);
2871 static int cas_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
2873 struct cas
*cp
= netdev_priv(dev
);
2875 /* this is only used as a load-balancing hint, so it doesn't
2876 * need to be SMP safe
2880 if (skb_padto(skb
, cp
->min_frame_size
))
2883 /* XXX: we need some higher-level QoS hooks to steer packets to
2884 * individual queues.
2886 if (cas_xmit_tx_ringN(cp
, ring
++ & N_TX_RINGS_MASK
, skb
))
2888 dev
->trans_start
= jiffies
;
2892 static void cas_init_tx_dma(struct cas
*cp
)
2894 u64 desc_dma
= cp
->block_dvma
;
2899 /* set up tx completion writeback registers. must be 8-byte aligned */
2900 #ifdef USE_TX_COMPWB
2901 off
= offsetof(struct cas_init_block
, tx_compwb
);
2902 writel((desc_dma
+ off
) >> 32, cp
->regs
+ REG_TX_COMPWB_DB_HI
);
2903 writel((desc_dma
+ off
) & 0xffffffff, cp
->regs
+ REG_TX_COMPWB_DB_LOW
);
2906 /* enable completion writebacks, enable paced mode,
2907 * disable read pipe, and disable pre-interrupt compwbs
2909 val
= TX_CFG_COMPWB_Q1
| TX_CFG_COMPWB_Q2
|
2910 TX_CFG_COMPWB_Q3
| TX_CFG_COMPWB_Q4
|
2911 TX_CFG_DMA_RDPIPE_DIS
| TX_CFG_PACED_MODE
|
2912 TX_CFG_INTR_COMPWB_DIS
;
2914 /* write out tx ring info and tx desc bases */
2915 for (i
= 0; i
< MAX_TX_RINGS
; i
++) {
2916 off
= (unsigned long) cp
->init_txds
[i
] -
2917 (unsigned long) cp
->init_block
;
2919 val
|= CAS_TX_RINGN_BASE(i
);
2920 writel((desc_dma
+ off
) >> 32, cp
->regs
+ REG_TX_DBN_HI(i
));
2921 writel((desc_dma
+ off
) & 0xffffffff, cp
->regs
+
2923 /* don't zero out the kick register here as the system
2927 writel(val
, cp
->regs
+ REG_TX_CFG
);
2929 /* program max burst sizes. these numbers should be different
2933 writel(0x800, cp
->regs
+ REG_TX_MAXBURST_0
);
2934 writel(0x1600, cp
->regs
+ REG_TX_MAXBURST_1
);
2935 writel(0x2400, cp
->regs
+ REG_TX_MAXBURST_2
);
2936 writel(0x4800, cp
->regs
+ REG_TX_MAXBURST_3
);
2938 writel(0x800, cp
->regs
+ REG_TX_MAXBURST_0
);
2939 writel(0x800, cp
->regs
+ REG_TX_MAXBURST_1
);
2940 writel(0x800, cp
->regs
+ REG_TX_MAXBURST_2
);
2941 writel(0x800, cp
->regs
+ REG_TX_MAXBURST_3
);
2945 /* Must be invoked under cp->lock. */
2946 static inline void cas_init_dma(struct cas
*cp
)
2948 cas_init_tx_dma(cp
);
2949 cas_init_rx_dma(cp
);
2952 /* Must be invoked under cp->lock. */
2953 static u32
cas_setup_multicast(struct cas
*cp
)
2958 if (cp
->dev
->flags
& IFF_PROMISC
) {
2959 rxcfg
|= MAC_RX_CFG_PROMISC_EN
;
2961 } else if (cp
->dev
->flags
& IFF_ALLMULTI
) {
2962 for (i
=0; i
< 16; i
++)
2963 writel(0xFFFF, cp
->regs
+ REG_MAC_HASH_TABLEN(i
));
2964 rxcfg
|= MAC_RX_CFG_HASH_FILTER_EN
;
2969 struct dev_mc_list
*dmi
= cp
->dev
->mc_list
;
2972 /* use the alternate mac address registers for the
2973 * first 15 multicast addresses
2975 for (i
= 1; i
<= CAS_MC_EXACT_MATCH_SIZE
; i
++) {
2977 writel(0x0, cp
->regs
+ REG_MAC_ADDRN(i
*3 + 0));
2978 writel(0x0, cp
->regs
+ REG_MAC_ADDRN(i
*3 + 1));
2979 writel(0x0, cp
->regs
+ REG_MAC_ADDRN(i
*3 + 2));
2982 writel((dmi
->dmi_addr
[4] << 8) | dmi
->dmi_addr
[5],
2983 cp
->regs
+ REG_MAC_ADDRN(i
*3 + 0));
2984 writel((dmi
->dmi_addr
[2] << 8) | dmi
->dmi_addr
[3],
2985 cp
->regs
+ REG_MAC_ADDRN(i
*3 + 1));
2986 writel((dmi
->dmi_addr
[0] << 8) | dmi
->dmi_addr
[1],
2987 cp
->regs
+ REG_MAC_ADDRN(i
*3 + 2));
2991 /* use hw hash table for the next series of
2992 * multicast addresses
2994 memset(hash_table
, 0, sizeof(hash_table
));
2996 crc
= ether_crc_le(ETH_ALEN
, dmi
->dmi_addr
);
2998 hash_table
[crc
>> 4] |= 1 << (15 - (crc
& 0xf));
3001 for (i
=0; i
< 16; i
++)
3002 writel(hash_table
[i
], cp
->regs
+
3003 REG_MAC_HASH_TABLEN(i
));
3004 rxcfg
|= MAC_RX_CFG_HASH_FILTER_EN
;
3010 /* must be invoked under cp->stat_lock[N_TX_RINGS] */
3011 static void cas_clear_mac_err(struct cas
*cp
)
3013 writel(0, cp
->regs
+ REG_MAC_COLL_NORMAL
);
3014 writel(0, cp
->regs
+ REG_MAC_COLL_FIRST
);
3015 writel(0, cp
->regs
+ REG_MAC_COLL_EXCESS
);
3016 writel(0, cp
->regs
+ REG_MAC_COLL_LATE
);
3017 writel(0, cp
->regs
+ REG_MAC_TIMER_DEFER
);
3018 writel(0, cp
->regs
+ REG_MAC_ATTEMPTS_PEAK
);
3019 writel(0, cp
->regs
+ REG_MAC_RECV_FRAME
);
3020 writel(0, cp
->regs
+ REG_MAC_LEN_ERR
);
3021 writel(0, cp
->regs
+ REG_MAC_ALIGN_ERR
);
3022 writel(0, cp
->regs
+ REG_MAC_FCS_ERR
);
3023 writel(0, cp
->regs
+ REG_MAC_RX_CODE_ERR
);
3027 static void cas_mac_reset(struct cas
*cp
)
3031 /* do both TX and RX reset */
3032 writel(0x1, cp
->regs
+ REG_MAC_TX_RESET
);
3033 writel(0x1, cp
->regs
+ REG_MAC_RX_RESET
);
3038 if (readl(cp
->regs
+ REG_MAC_TX_RESET
) == 0)
3046 if (readl(cp
->regs
+ REG_MAC_RX_RESET
) == 0)
3051 if (readl(cp
->regs
+ REG_MAC_TX_RESET
) |
3052 readl(cp
->regs
+ REG_MAC_RX_RESET
))
3053 printk(KERN_ERR
"%s: mac tx[%d]/rx[%d] reset failed [%08x]\n",
3054 cp
->dev
->name
, readl(cp
->regs
+ REG_MAC_TX_RESET
),
3055 readl(cp
->regs
+ REG_MAC_RX_RESET
),
3056 readl(cp
->regs
+ REG_MAC_STATE_MACHINE
));
3060 /* Must be invoked under cp->lock. */
3061 static void cas_init_mac(struct cas
*cp
)
3063 unsigned char *e
= &cp
->dev
->dev_addr
[0];
3065 #ifdef CONFIG_CASSINI_MULTICAST_REG_WRITE
3070 /* setup core arbitration weight register */
3071 writel(CAWR_RR_DIS
, cp
->regs
+ REG_CAWR
);
3073 /* XXX Use pci_dma_burst_advice() */
3074 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
3075 /* set the infinite burst register for chips that don't have
3078 if ((cp
->cas_flags
& CAS_FLAG_TARGET_ABORT
) == 0)
3079 writel(INF_BURST_EN
, cp
->regs
+ REG_INF_BURST
);
3082 writel(0x1BF0, cp
->regs
+ REG_MAC_SEND_PAUSE
);
3084 writel(0x00, cp
->regs
+ REG_MAC_IPG0
);
3085 writel(0x08, cp
->regs
+ REG_MAC_IPG1
);
3086 writel(0x04, cp
->regs
+ REG_MAC_IPG2
);
3088 /* change later for 802.3z */
3089 writel(0x40, cp
->regs
+ REG_MAC_SLOT_TIME
);
3091 /* min frame + FCS */
3092 writel(ETH_ZLEN
+ 4, cp
->regs
+ REG_MAC_FRAMESIZE_MIN
);
3094 /* Ethernet payload + header + FCS + optional VLAN tag. NOTE: we
3095 * specify the maximum frame size to prevent RX tag errors on
3098 writel(CAS_BASE(MAC_FRAMESIZE_MAX_BURST
, 0x2000) |
3099 CAS_BASE(MAC_FRAMESIZE_MAX_FRAME
,
3100 (CAS_MAX_MTU
+ ETH_HLEN
+ 4 + 4)),
3101 cp
->regs
+ REG_MAC_FRAMESIZE_MAX
);
3103 /* NOTE: crc_size is used as a surrogate for half-duplex.
3104 * workaround saturn half-duplex issue by increasing preamble
3107 if ((cp
->cas_flags
& CAS_FLAG_SATURN
) && cp
->crc_size
)
3108 writel(0x41, cp
->regs
+ REG_MAC_PA_SIZE
);
3110 writel(0x07, cp
->regs
+ REG_MAC_PA_SIZE
);
3111 writel(0x04, cp
->regs
+ REG_MAC_JAM_SIZE
);
3112 writel(0x10, cp
->regs
+ REG_MAC_ATTEMPT_LIMIT
);
3113 writel(0x8808, cp
->regs
+ REG_MAC_CTRL_TYPE
);
3115 writel((e
[5] | (e
[4] << 8)) & 0x3ff, cp
->regs
+ REG_MAC_RANDOM_SEED
);
3117 writel(0, cp
->regs
+ REG_MAC_ADDR_FILTER0
);
3118 writel(0, cp
->regs
+ REG_MAC_ADDR_FILTER1
);
3119 writel(0, cp
->regs
+ REG_MAC_ADDR_FILTER2
);
3120 writel(0, cp
->regs
+ REG_MAC_ADDR_FILTER2_1_MASK
);
3121 writel(0, cp
->regs
+ REG_MAC_ADDR_FILTER0_MASK
);
3123 /* setup mac address in perfect filter array */
3124 for (i
= 0; i
< 45; i
++)
3125 writel(0x0, cp
->regs
+ REG_MAC_ADDRN(i
));
3127 writel((e
[4] << 8) | e
[5], cp
->regs
+ REG_MAC_ADDRN(0));
3128 writel((e
[2] << 8) | e
[3], cp
->regs
+ REG_MAC_ADDRN(1));
3129 writel((e
[0] << 8) | e
[1], cp
->regs
+ REG_MAC_ADDRN(2));
3131 writel(0x0001, cp
->regs
+ REG_MAC_ADDRN(42));
3132 writel(0xc200, cp
->regs
+ REG_MAC_ADDRN(43));
3133 writel(0x0180, cp
->regs
+ REG_MAC_ADDRN(44));
3135 #ifndef CONFIG_CASSINI_MULTICAST_REG_WRITE
3136 cp
->mac_rx_cfg
= cas_setup_multicast(cp
);
3138 /* WTZ: Do what Adrian did in cas_set_multicast. Doing
3139 * a writel does not seem to be necessary because Cassini
3140 * seems to preserve the configuration when we do the reset.
3141 * If the chip is in trouble, though, it is not clear if we
3142 * can really count on this behavior. cas_set_multicast uses
3143 * spin_lock_irqsave, but we are called only in cas_init_hw and
3144 * cas_init_hw is protected by cas_lock_all, which calls
3145 * spin_lock_irq (so it doesn't need to save the flags, and
3146 * we should be OK for the writel, as that is the only
3149 cp
->mac_rx_cfg
= rxcfg
= cas_setup_multicast(cp
);
3150 writel(rxcfg
, cp
->regs
+ REG_MAC_RX_CFG
);
3152 spin_lock(&cp
->stat_lock
[N_TX_RINGS
]);
3153 cas_clear_mac_err(cp
);
3154 spin_unlock(&cp
->stat_lock
[N_TX_RINGS
]);
3156 /* Setup MAC interrupts. We want to get all of the interesting
3157 * counter expiration events, but we do not want to hear about
3158 * normal rx/tx as the DMA engine tells us that.
3160 writel(MAC_TX_FRAME_XMIT
, cp
->regs
+ REG_MAC_TX_MASK
);
3161 writel(MAC_RX_FRAME_RECV
, cp
->regs
+ REG_MAC_RX_MASK
);
3163 /* Don't enable even the PAUSE interrupts for now, we
3164 * make no use of those events other than to record them.
3166 writel(0xffffffff, cp
->regs
+ REG_MAC_CTRL_MASK
);
3169 /* Must be invoked under cp->lock. */
3170 static void cas_init_pause_thresholds(struct cas
*cp
)
3172 /* Calculate pause thresholds. Setting the OFF threshold to the
3173 * full RX fifo size effectively disables PAUSE generation
3175 if (cp
->rx_fifo_size
<= (2 * 1024)) {
3176 cp
->rx_pause_off
= cp
->rx_pause_on
= cp
->rx_fifo_size
;
3178 int max_frame
= (cp
->dev
->mtu
+ ETH_HLEN
+ 4 + 4 + 64) & ~63;
3179 if (max_frame
* 3 > cp
->rx_fifo_size
) {
3180 cp
->rx_pause_off
= 7104;
3181 cp
->rx_pause_on
= 960;
3183 int off
= (cp
->rx_fifo_size
- (max_frame
* 2));
3184 int on
= off
- max_frame
;
3185 cp
->rx_pause_off
= off
;
3186 cp
->rx_pause_on
= on
;
3191 static int cas_vpd_match(const void __iomem
*p
, const char *str
)
3193 int len
= strlen(str
) + 1;
3196 for (i
= 0; i
< len
; i
++) {
3197 if (readb(p
+ i
) != str
[i
])
3204 /* get the mac address by reading the vpd information in the rom.
3205 * also get the phy type and determine if there's an entropy generator.
3206 * NOTE: this is a bit convoluted for the following reasons:
3207 * 1) vpd info has order-dependent mac addresses for multinic cards
3208 * 2) the only way to determine the nic order is to use the slot
3210 * 3) fiber cards don't have bridges, so their slot numbers don't
3212 * 4) we don't actually know we have a fiber card until after
3213 * the mac addresses are parsed.
3215 static int cas_get_vpd_info(struct cas
*cp
, unsigned char *dev_addr
,
3218 void __iomem
*p
= cp
->regs
+ REG_EXPANSION_ROM_RUN_START
;
3219 void __iomem
*base
, *kstart
;
3222 #define VPD_FOUND_MAC 0x01
3223 #define VPD_FOUND_PHY 0x02
3225 int phy_type
= CAS_PHY_MII_MDIO0
; /* default phy type */
3228 /* give us access to the PROM */
3229 writel(BIM_LOCAL_DEV_PROM
| BIM_LOCAL_DEV_PAD
,
3230 cp
->regs
+ REG_BIM_LOCAL_DEV_EN
);
3232 /* check for an expansion rom */
3233 if (readb(p
) != 0x55 || readb(p
+ 1) != 0xaa)
3234 goto use_random_mac_addr
;
3236 /* search for beginning of vpd */
3238 for (i
= 2; i
< EXPANSION_ROM_SIZE
; i
++) {
3239 /* check for PCIR */
3240 if ((readb(p
+ i
+ 0) == 0x50) &&
3241 (readb(p
+ i
+ 1) == 0x43) &&
3242 (readb(p
+ i
+ 2) == 0x49) &&
3243 (readb(p
+ i
+ 3) == 0x52)) {
3244 base
= p
+ (readb(p
+ i
+ 8) |
3245 (readb(p
+ i
+ 9) << 8));
3250 if (!base
|| (readb(base
) != 0x82))
3251 goto use_random_mac_addr
;
3253 i
= (readb(base
+ 1) | (readb(base
+ 2) << 8)) + 3;
3254 while (i
< EXPANSION_ROM_SIZE
) {
3255 if (readb(base
+ i
) != 0x90) /* no vpd found */
3256 goto use_random_mac_addr
;
3258 /* found a vpd field */
3259 len
= readb(base
+ i
+ 1) | (readb(base
+ i
+ 2) << 8);
3261 /* extract keywords */
3262 kstart
= base
+ i
+ 3;
3264 while ((p
- kstart
) < len
) {
3265 int klen
= readb(p
+ 2);
3271 /* look for the following things:
3272 * -- correct length == 29
3273 * 3 (type) + 2 (size) +
3274 * 18 (strlen("local-mac-address") + 1) +
3276 * -- VPD Instance 'I'
3277 * -- VPD Type Bytes 'B'
3278 * -- VPD data length == 6
3279 * -- property string == local-mac-address
3281 * -- correct length == 24
3282 * 3 (type) + 2 (size) +
3283 * 12 (strlen("entropy-dev") + 1) +
3284 * 7 (strlen("vms110") + 1)
3285 * -- VPD Instance 'I'
3286 * -- VPD Type String 'B'
3287 * -- VPD data length == 7
3288 * -- property string == entropy-dev
3290 * -- correct length == 18
3291 * 3 (type) + 2 (size) +
3292 * 9 (strlen("phy-type") + 1) +
3293 * 4 (strlen("pcs") + 1)
3294 * -- VPD Instance 'I'
3295 * -- VPD Type String 'S'
3296 * -- VPD data length == 4
3297 * -- property string == phy-type
3299 * -- correct length == 23
3300 * 3 (type) + 2 (size) +
3301 * 14 (strlen("phy-interface") + 1) +
3302 * 4 (strlen("pcs") + 1)
3303 * -- VPD Instance 'I'
3304 * -- VPD Type String 'S'
3305 * -- VPD data length == 4
3306 * -- property string == phy-interface
3308 if (readb(p
) != 'I')
3311 /* finally, check string and length */
3312 type
= readb(p
+ 3);
3314 if ((klen
== 29) && readb(p
+ 4) == 6 &&
3315 cas_vpd_match(p
+ 5,
3316 "local-mac-address")) {
3317 if (mac_off
++ > offset
)
3320 /* set mac address */
3321 for (j
= 0; j
< 6; j
++)
3331 #ifdef USE_ENTROPY_DEV
3333 cas_vpd_match(p
+ 5, "entropy-dev") &&
3334 cas_vpd_match(p
+ 17, "vms110")) {
3335 cp
->cas_flags
|= CAS_FLAG_ENTROPY_DEV
;
3340 if (found
& VPD_FOUND_PHY
)
3343 if ((klen
== 18) && readb(p
+ 4) == 4 &&
3344 cas_vpd_match(p
+ 5, "phy-type")) {
3345 if (cas_vpd_match(p
+ 14, "pcs")) {
3346 phy_type
= CAS_PHY_SERDES
;
3351 if ((klen
== 23) && readb(p
+ 4) == 4 &&
3352 cas_vpd_match(p
+ 5, "phy-interface")) {
3353 if (cas_vpd_match(p
+ 19, "pcs")) {
3354 phy_type
= CAS_PHY_SERDES
;
3359 found
|= VPD_FOUND_MAC
;
3363 found
|= VPD_FOUND_PHY
;
3371 use_random_mac_addr
:
3372 if (found
& VPD_FOUND_MAC
)
3375 /* Sun MAC prefix then 3 random bytes. */
3376 printk(PFX
"MAC address not found in ROM VPD\n");
3380 get_random_bytes(dev_addr
+ 3, 3);
3383 writel(0, cp
->regs
+ REG_BIM_LOCAL_DEV_EN
);
3387 /* check pci invariants */
3388 static void cas_check_pci_invariants(struct cas
*cp
)
3390 struct pci_dev
*pdev
= cp
->pdev
;
3393 if ((pdev
->vendor
== PCI_VENDOR_ID_SUN
) &&
3394 (pdev
->device
== PCI_DEVICE_ID_SUN_CASSINI
)) {
3395 if (pdev
->revision
>= CAS_ID_REVPLUS
)
3396 cp
->cas_flags
|= CAS_FLAG_REG_PLUS
;
3397 if (pdev
->revision
< CAS_ID_REVPLUS02u
)
3398 cp
->cas_flags
|= CAS_FLAG_TARGET_ABORT
;
3400 /* Original Cassini supports HW CSUM, but it's not
3401 * enabled by default as it can trigger TX hangs.
3403 if (pdev
->revision
< CAS_ID_REV2
)
3404 cp
->cas_flags
|= CAS_FLAG_NO_HW_CSUM
;
3406 /* Only sun has original cassini chips. */
3407 cp
->cas_flags
|= CAS_FLAG_REG_PLUS
;
3409 /* We use a flag because the same phy might be externally
3412 if ((pdev
->vendor
== PCI_VENDOR_ID_NS
) &&
3413 (pdev
->device
== PCI_DEVICE_ID_NS_SATURN
))
3414 cp
->cas_flags
|= CAS_FLAG_SATURN
;
3419 static int cas_check_invariants(struct cas
*cp
)
3421 struct pci_dev
*pdev
= cp
->pdev
;
3425 /* get page size for rx buffers. */
3427 #ifdef USE_PAGE_ORDER
3428 if (PAGE_SHIFT
< CAS_JUMBO_PAGE_SHIFT
) {
3429 /* see if we can allocate larger pages */
3430 struct page
*page
= alloc_pages(GFP_ATOMIC
,
3431 CAS_JUMBO_PAGE_SHIFT
-
3434 __free_pages(page
, CAS_JUMBO_PAGE_SHIFT
- PAGE_SHIFT
);
3435 cp
->page_order
= CAS_JUMBO_PAGE_SHIFT
- PAGE_SHIFT
;
3437 printk(PFX
"MTU limited to %d bytes\n", CAS_MAX_MTU
);
3441 cp
->page_size
= (PAGE_SIZE
<< cp
->page_order
);
3443 /* Fetch the FIFO configurations. */
3444 cp
->tx_fifo_size
= readl(cp
->regs
+ REG_TX_FIFO_SIZE
) * 64;
3445 cp
->rx_fifo_size
= RX_FIFO_SIZE
;
3447 /* finish phy determination. MDIO1 takes precedence over MDIO0 if
3448 * they're both connected.
3450 cp
->phy_type
= cas_get_vpd_info(cp
, cp
->dev
->dev_addr
,
3451 PCI_SLOT(pdev
->devfn
));
3452 if (cp
->phy_type
& CAS_PHY_SERDES
) {
3453 cp
->cas_flags
|= CAS_FLAG_1000MB_CAP
;
3454 return 0; /* no more checking needed */
3458 cfg
= readl(cp
->regs
+ REG_MIF_CFG
);
3459 if (cfg
& MIF_CFG_MDIO_1
) {
3460 cp
->phy_type
= CAS_PHY_MII_MDIO1
;
3461 } else if (cfg
& MIF_CFG_MDIO_0
) {
3462 cp
->phy_type
= CAS_PHY_MII_MDIO0
;
3465 cas_mif_poll(cp
, 0);
3466 writel(PCS_DATAPATH_MODE_MII
, cp
->regs
+ REG_PCS_DATAPATH_MODE
);
3468 for (i
= 0; i
< 32; i
++) {
3472 for (j
= 0; j
< 3; j
++) {
3474 phy_id
= cas_phy_read(cp
, MII_PHYSID1
) << 16;
3475 phy_id
|= cas_phy_read(cp
, MII_PHYSID2
);
3476 if (phy_id
&& (phy_id
!= 0xFFFFFFFF)) {
3477 cp
->phy_id
= phy_id
;
3482 printk(KERN_ERR PFX
"MII phy did not respond [%08x]\n",
3483 readl(cp
->regs
+ REG_MIF_STATE_MACHINE
));
3487 /* see if we can do gigabit */
3488 cfg
= cas_phy_read(cp
, MII_BMSR
);
3489 if ((cfg
& CAS_BMSR_1000_EXTEND
) &&
3490 cas_phy_read(cp
, CAS_MII_1000_EXTEND
))
3491 cp
->cas_flags
|= CAS_FLAG_1000MB_CAP
;
3495 /* Must be invoked under cp->lock. */
3496 static inline void cas_start_dma(struct cas
*cp
)
3503 val
= readl(cp
->regs
+ REG_TX_CFG
) | TX_CFG_DMA_EN
;
3504 writel(val
, cp
->regs
+ REG_TX_CFG
);
3505 val
= readl(cp
->regs
+ REG_RX_CFG
) | RX_CFG_DMA_EN
;
3506 writel(val
, cp
->regs
+ REG_RX_CFG
);
3508 /* enable the mac */
3509 val
= readl(cp
->regs
+ REG_MAC_TX_CFG
) | MAC_TX_CFG_EN
;
3510 writel(val
, cp
->regs
+ REG_MAC_TX_CFG
);
3511 val
= readl(cp
->regs
+ REG_MAC_RX_CFG
) | MAC_RX_CFG_EN
;
3512 writel(val
, cp
->regs
+ REG_MAC_RX_CFG
);
3516 val
= readl(cp
->regs
+ REG_MAC_TX_CFG
);
3517 if ((val
& MAC_TX_CFG_EN
))
3521 if (i
< 0) txfailed
= 1;
3524 val
= readl(cp
->regs
+ REG_MAC_RX_CFG
);
3525 if ((val
& MAC_RX_CFG_EN
)) {
3528 "%s: enabling mac failed [tx:%08x:%08x].\n",
3530 readl(cp
->regs
+ REG_MIF_STATE_MACHINE
),
3531 readl(cp
->regs
+ REG_MAC_STATE_MACHINE
));
3533 goto enable_rx_done
;
3537 printk(KERN_ERR
"%s: enabling mac failed [%s:%08x:%08x].\n",
3539 (txfailed
? "tx,rx":"rx"),
3540 readl(cp
->regs
+ REG_MIF_STATE_MACHINE
),
3541 readl(cp
->regs
+ REG_MAC_STATE_MACHINE
));
3544 cas_unmask_intr(cp
); /* enable interrupts */
3545 writel(RX_DESC_RINGN_SIZE(0) - 4, cp
->regs
+ REG_RX_KICK
);
3546 writel(0, cp
->regs
+ REG_RX_COMP_TAIL
);
3548 if (cp
->cas_flags
& CAS_FLAG_REG_PLUS
) {
3549 if (N_RX_DESC_RINGS
> 1)
3550 writel(RX_DESC_RINGN_SIZE(1) - 4,
3551 cp
->regs
+ REG_PLUS_RX_KICK1
);
3553 for (i
= 1; i
< N_RX_COMP_RINGS
; i
++)
3554 writel(0, cp
->regs
+ REG_PLUS_RX_COMPN_TAIL(i
));
3558 /* Must be invoked under cp->lock. */
3559 static void cas_read_pcs_link_mode(struct cas
*cp
, int *fd
, int *spd
,
3562 u32 val
= readl(cp
->regs
+ REG_PCS_MII_LPA
);
3563 *fd
= (val
& PCS_MII_LPA_FD
) ? 1 : 0;
3564 *pause
= (val
& PCS_MII_LPA_SYM_PAUSE
) ? 0x01 : 0x00;
3565 if (val
& PCS_MII_LPA_ASYM_PAUSE
)
3570 /* Must be invoked under cp->lock. */
3571 static void cas_read_mii_link_mode(struct cas
*cp
, int *fd
, int *spd
,
3580 /* use GMII registers */
3581 val
= cas_phy_read(cp
, MII_LPA
);
3582 if (val
& CAS_LPA_PAUSE
)
3585 if (val
& CAS_LPA_ASYM_PAUSE
)
3588 if (val
& LPA_DUPLEX
)
3593 if (cp
->cas_flags
& CAS_FLAG_1000MB_CAP
) {
3594 val
= cas_phy_read(cp
, CAS_MII_1000_STATUS
);
3595 if (val
& (CAS_LPA_1000FULL
| CAS_LPA_1000HALF
))
3597 if (val
& CAS_LPA_1000FULL
)
3602 /* A link-up condition has occurred, initialize and enable the
3605 * Must be invoked under cp->lock.
3607 static void cas_set_link_modes(struct cas
*cp
)
3610 int full_duplex
, speed
, pause
;
3616 if (CAS_PHY_MII(cp
->phy_type
)) {
3617 cas_mif_poll(cp
, 0);
3618 val
= cas_phy_read(cp
, MII_BMCR
);
3619 if (val
& BMCR_ANENABLE
) {
3620 cas_read_mii_link_mode(cp
, &full_duplex
, &speed
,
3623 if (val
& BMCR_FULLDPLX
)
3626 if (val
& BMCR_SPEED100
)
3628 else if (val
& CAS_BMCR_SPEED1000
)
3629 speed
= (cp
->cas_flags
& CAS_FLAG_1000MB_CAP
) ?
3632 cas_mif_poll(cp
, 1);
3635 val
= readl(cp
->regs
+ REG_PCS_MII_CTRL
);
3636 cas_read_pcs_link_mode(cp
, &full_duplex
, &speed
, &pause
);
3637 if ((val
& PCS_MII_AUTONEG_EN
) == 0) {
3638 if (val
& PCS_MII_CTRL_DUPLEX
)
3643 if (netif_msg_link(cp
))
3644 printk(KERN_INFO
"%s: Link up at %d Mbps, %s-duplex.\n",
3645 cp
->dev
->name
, speed
, (full_duplex
? "full" : "half"));
3647 val
= MAC_XIF_TX_MII_OUTPUT_EN
| MAC_XIF_LINK_LED
;
3648 if (CAS_PHY_MII(cp
->phy_type
)) {
3649 val
|= MAC_XIF_MII_BUFFER_OUTPUT_EN
;
3651 val
|= MAC_XIF_DISABLE_ECHO
;
3654 val
|= MAC_XIF_FDPLX_LED
;
3656 val
|= MAC_XIF_GMII_MODE
;
3657 writel(val
, cp
->regs
+ REG_MAC_XIF_CFG
);
3659 /* deal with carrier and collision detect. */
3660 val
= MAC_TX_CFG_IPG_EN
;
3662 val
|= MAC_TX_CFG_IGNORE_CARRIER
;
3663 val
|= MAC_TX_CFG_IGNORE_COLL
;
3665 #ifndef USE_CSMA_CD_PROTO
3666 val
|= MAC_TX_CFG_NEVER_GIVE_UP_EN
;
3667 val
|= MAC_TX_CFG_NEVER_GIVE_UP_LIM
;
3670 /* val now set up for REG_MAC_TX_CFG */
3672 /* If gigabit and half-duplex, enable carrier extension
3673 * mode. increase slot time to 512 bytes as well.
3674 * else, disable it and make sure slot time is 64 bytes.
3675 * also activate checksum bug workaround
3677 if ((speed
== 1000) && !full_duplex
) {
3678 writel(val
| MAC_TX_CFG_CARRIER_EXTEND
,
3679 cp
->regs
+ REG_MAC_TX_CFG
);
3681 val
= readl(cp
->regs
+ REG_MAC_RX_CFG
);
3682 val
&= ~MAC_RX_CFG_STRIP_FCS
; /* checksum workaround */
3683 writel(val
| MAC_RX_CFG_CARRIER_EXTEND
,
3684 cp
->regs
+ REG_MAC_RX_CFG
);
3686 writel(0x200, cp
->regs
+ REG_MAC_SLOT_TIME
);
3689 /* minimum size gigabit frame at half duplex */
3690 cp
->min_frame_size
= CAS_1000MB_MIN_FRAME
;
3693 writel(val
, cp
->regs
+ REG_MAC_TX_CFG
);
3695 /* checksum bug workaround. don't strip FCS when in
3698 val
= readl(cp
->regs
+ REG_MAC_RX_CFG
);
3700 val
|= MAC_RX_CFG_STRIP_FCS
;
3702 cp
->min_frame_size
= CAS_MIN_MTU
;
3704 val
&= ~MAC_RX_CFG_STRIP_FCS
;
3706 cp
->min_frame_size
= CAS_MIN_FRAME
;
3708 writel(val
& ~MAC_RX_CFG_CARRIER_EXTEND
,
3709 cp
->regs
+ REG_MAC_RX_CFG
);
3710 writel(0x40, cp
->regs
+ REG_MAC_SLOT_TIME
);
3713 if (netif_msg_link(cp
)) {
3715 printk(KERN_INFO
"%s: Pause is enabled "
3716 "(rxfifo: %d off: %d on: %d)\n",
3721 } else if (pause
& 0x10) {
3722 printk(KERN_INFO
"%s: TX pause enabled\n",
3725 printk(KERN_INFO
"%s: Pause is disabled\n",
3730 val
= readl(cp
->regs
+ REG_MAC_CTRL_CFG
);
3731 val
&= ~(MAC_CTRL_CFG_SEND_PAUSE_EN
| MAC_CTRL_CFG_RECV_PAUSE_EN
);
3732 if (pause
) { /* symmetric or asymmetric pause */
3733 val
|= MAC_CTRL_CFG_SEND_PAUSE_EN
;
3734 if (pause
& 0x01) { /* symmetric pause */
3735 val
|= MAC_CTRL_CFG_RECV_PAUSE_EN
;
3738 writel(val
, cp
->regs
+ REG_MAC_CTRL_CFG
);
3742 /* Must be invoked under cp->lock. */
3743 static void cas_init_hw(struct cas
*cp
, int restart_link
)
3748 cas_init_pause_thresholds(cp
);
3753 /* Default aneg parameters */
3754 cp
->timer_ticks
= 0;
3755 cas_begin_auto_negotiation(cp
, NULL
);
3756 } else if (cp
->lstate
== link_up
) {
3757 cas_set_link_modes(cp
);
3758 netif_carrier_on(cp
->dev
);
3762 /* Must be invoked under cp->lock. on earlier cassini boards,
3763 * SOFT_0 is tied to PCI reset. we use this to force a pci reset,
3764 * let it settle out, and then restore pci state.
3766 static void cas_hard_reset(struct cas
*cp
)
3768 writel(BIM_LOCAL_DEV_SOFT_0
, cp
->regs
+ REG_BIM_LOCAL_DEV_EN
);
3770 pci_restore_state(cp
->pdev
);
3774 static void cas_global_reset(struct cas
*cp
, int blkflag
)
3778 /* issue a global reset. don't use RSTOUT. */
3779 if (blkflag
&& !CAS_PHY_MII(cp
->phy_type
)) {
3780 /* For PCS, when the blkflag is set, we should set the
3781 * SW_REST_BLOCK_PCS_SLINK bit to prevent the results of
3782 * the last autonegotiation from being cleared. We'll
3783 * need some special handling if the chip is set into a
3786 writel((SW_RESET_TX
| SW_RESET_RX
| SW_RESET_BLOCK_PCS_SLINK
),
3787 cp
->regs
+ REG_SW_RESET
);
3789 writel(SW_RESET_TX
| SW_RESET_RX
, cp
->regs
+ REG_SW_RESET
);
3792 /* need to wait at least 3ms before polling register */
3796 while (limit
-- > 0) {
3797 u32 val
= readl(cp
->regs
+ REG_SW_RESET
);
3798 if ((val
& (SW_RESET_TX
| SW_RESET_RX
)) == 0)
3802 printk(KERN_ERR
"%s: sw reset failed.\n", cp
->dev
->name
);
3805 /* enable various BIM interrupts */
3806 writel(BIM_CFG_DPAR_INTR_ENABLE
| BIM_CFG_RMA_INTR_ENABLE
|
3807 BIM_CFG_RTA_INTR_ENABLE
, cp
->regs
+ REG_BIM_CFG
);
3809 /* clear out pci error status mask for handled errors.
3810 * we don't deal with DMA counter overflows as they happen
3813 writel(0xFFFFFFFFU
& ~(PCI_ERR_BADACK
| PCI_ERR_DTRTO
|
3814 PCI_ERR_OTHER
| PCI_ERR_BIM_DMA_WRITE
|
3815 PCI_ERR_BIM_DMA_READ
), cp
->regs
+
3816 REG_PCI_ERR_STATUS_MASK
);
3818 /* set up for MII by default to address mac rx reset timeout
3821 writel(PCS_DATAPATH_MODE_MII
, cp
->regs
+ REG_PCS_DATAPATH_MODE
);
3824 static void cas_reset(struct cas
*cp
, int blkflag
)
3829 cas_global_reset(cp
, blkflag
);
3831 cas_entropy_reset(cp
);
3833 /* disable dma engines. */
3834 val
= readl(cp
->regs
+ REG_TX_CFG
);
3835 val
&= ~TX_CFG_DMA_EN
;
3836 writel(val
, cp
->regs
+ REG_TX_CFG
);
3838 val
= readl(cp
->regs
+ REG_RX_CFG
);
3839 val
&= ~RX_CFG_DMA_EN
;
3840 writel(val
, cp
->regs
+ REG_RX_CFG
);
3842 /* program header parser */
3843 if ((cp
->cas_flags
& CAS_FLAG_TARGET_ABORT
) ||
3844 (CAS_HP_ALT_FIRMWARE
== cas_prog_null
)) {
3845 cas_load_firmware(cp
, CAS_HP_FIRMWARE
);
3847 cas_load_firmware(cp
, CAS_HP_ALT_FIRMWARE
);
3850 /* clear out error registers */
3851 spin_lock(&cp
->stat_lock
[N_TX_RINGS
]);
3852 cas_clear_mac_err(cp
);
3853 spin_unlock(&cp
->stat_lock
[N_TX_RINGS
]);
3856 /* Shut down the chip, must be called with pm_mutex held. */
3857 static void cas_shutdown(struct cas
*cp
)
3859 unsigned long flags
;
3861 /* Make us not-running to avoid timers respawning */
3864 del_timer_sync(&cp
->link_timer
);
3866 /* Stop the reset task */
3868 while (atomic_read(&cp
->reset_task_pending_mtu
) ||
3869 atomic_read(&cp
->reset_task_pending_spare
) ||
3870 atomic_read(&cp
->reset_task_pending_all
))
3874 while (atomic_read(&cp
->reset_task_pending
))
3877 /* Actually stop the chip */
3878 cas_lock_all_save(cp
, flags
);
3880 if (cp
->cas_flags
& CAS_FLAG_SATURN
)
3881 cas_phy_powerdown(cp
);
3882 cas_unlock_all_restore(cp
, flags
);
3885 static int cas_change_mtu(struct net_device
*dev
, int new_mtu
)
3887 struct cas
*cp
= netdev_priv(dev
);
3889 if (new_mtu
< CAS_MIN_MTU
|| new_mtu
> CAS_MAX_MTU
)
3893 if (!netif_running(dev
) || !netif_device_present(dev
))
3896 /* let the reset task handle it */
3898 atomic_inc(&cp
->reset_task_pending
);
3899 if ((cp
->phy_type
& CAS_PHY_SERDES
)) {
3900 atomic_inc(&cp
->reset_task_pending_all
);
3902 atomic_inc(&cp
->reset_task_pending_mtu
);
3904 schedule_work(&cp
->reset_task
);
3906 atomic_set(&cp
->reset_task_pending
, (cp
->phy_type
& CAS_PHY_SERDES
) ?
3907 CAS_RESET_ALL
: CAS_RESET_MTU
);
3908 printk(KERN_ERR
"reset called in cas_change_mtu\n");
3909 schedule_work(&cp
->reset_task
);
3912 flush_scheduled_work();
3916 static void cas_clean_txd(struct cas
*cp
, int ring
)
3918 struct cas_tx_desc
*txd
= cp
->init_txds
[ring
];
3919 struct sk_buff
*skb
, **skbs
= cp
->tx_skbs
[ring
];
3923 size
= TX_DESC_RINGN_SIZE(ring
);
3924 for (i
= 0; i
< size
; i
++) {
3927 if (skbs
[i
] == NULL
)
3933 for (frag
= 0; frag
<= skb_shinfo(skb
)->nr_frags
; frag
++) {
3934 int ent
= i
& (size
- 1);
3936 /* first buffer is never a tiny buffer and so
3937 * needs to be unmapped.
3939 daddr
= le64_to_cpu(txd
[ent
].buffer
);
3940 dlen
= CAS_VAL(TX_DESC_BUFLEN
,
3941 le64_to_cpu(txd
[ent
].control
));
3942 pci_unmap_page(cp
->pdev
, daddr
, dlen
,
3945 if (frag
!= skb_shinfo(skb
)->nr_frags
) {
3948 /* next buffer might by a tiny buffer.
3951 ent
= i
& (size
- 1);
3952 if (cp
->tx_tiny_use
[ring
][ent
].used
)
3956 dev_kfree_skb_any(skb
);
3959 /* zero out tiny buf usage */
3960 memset(cp
->tx_tiny_use
[ring
], 0, size
*sizeof(*cp
->tx_tiny_use
[ring
]));
3963 /* freed on close */
3964 static inline void cas_free_rx_desc(struct cas
*cp
, int ring
)
3966 cas_page_t
**page
= cp
->rx_pages
[ring
];
3969 size
= RX_DESC_RINGN_SIZE(ring
);
3970 for (i
= 0; i
< size
; i
++) {
3972 cas_page_free(cp
, page
[i
]);
3978 static void cas_free_rxds(struct cas
*cp
)
3982 for (i
= 0; i
< N_RX_DESC_RINGS
; i
++)
3983 cas_free_rx_desc(cp
, i
);
3986 /* Must be invoked under cp->lock. */
3987 static void cas_clean_rings(struct cas
*cp
)
3991 /* need to clean all tx rings */
3992 memset(cp
->tx_old
, 0, sizeof(*cp
->tx_old
)*N_TX_RINGS
);
3993 memset(cp
->tx_new
, 0, sizeof(*cp
->tx_new
)*N_TX_RINGS
);
3994 for (i
= 0; i
< N_TX_RINGS
; i
++)
3995 cas_clean_txd(cp
, i
);
3997 /* zero out init block */
3998 memset(cp
->init_block
, 0, sizeof(struct cas_init_block
));
4003 /* allocated on open */
4004 static inline int cas_alloc_rx_desc(struct cas
*cp
, int ring
)
4006 cas_page_t
**page
= cp
->rx_pages
[ring
];
4009 size
= RX_DESC_RINGN_SIZE(ring
);
4010 for (i
= 0; i
< size
; i
++) {
4011 if ((page
[i
] = cas_page_alloc(cp
, GFP_KERNEL
)) == NULL
)
4017 static int cas_alloc_rxds(struct cas
*cp
)
4021 for (i
= 0; i
< N_RX_DESC_RINGS
; i
++) {
4022 if (cas_alloc_rx_desc(cp
, i
) < 0) {
4030 static void cas_reset_task(struct work_struct
*work
)
4032 struct cas
*cp
= container_of(work
, struct cas
, reset_task
);
4034 int pending
= atomic_read(&cp
->reset_task_pending
);
4036 int pending_all
= atomic_read(&cp
->reset_task_pending_all
);
4037 int pending_spare
= atomic_read(&cp
->reset_task_pending_spare
);
4038 int pending_mtu
= atomic_read(&cp
->reset_task_pending_mtu
);
4040 if (pending_all
== 0 && pending_spare
== 0 && pending_mtu
== 0) {
4041 /* We can have more tasks scheduled than actually
4044 atomic_dec(&cp
->reset_task_pending
);
4048 /* The link went down, we reset the ring, but keep
4049 * DMA stopped. Use this function for reset
4052 if (cp
->hw_running
) {
4053 unsigned long flags
;
4055 /* Make sure we don't get interrupts or tx packets */
4056 netif_device_detach(cp
->dev
);
4057 cas_lock_all_save(cp
, flags
);
4060 /* We call cas_spare_recover when we call cas_open.
4061 * but we do not initialize the lists cas_spare_recover
4062 * uses until cas_open is called.
4064 cas_spare_recover(cp
, GFP_ATOMIC
);
4067 /* test => only pending_spare set */
4068 if (!pending_all
&& !pending_mtu
)
4071 if (pending
== CAS_RESET_SPARE
)
4074 /* when pending == CAS_RESET_ALL, the following
4075 * call to cas_init_hw will restart auto negotiation.
4076 * Setting the second argument of cas_reset to
4077 * !(pending == CAS_RESET_ALL) will set this argument
4078 * to 1 (avoiding reinitializing the PHY for the normal
4079 * PCS case) when auto negotiation is not restarted.
4082 cas_reset(cp
, !(pending_all
> 0));
4084 cas_clean_rings(cp
);
4085 cas_init_hw(cp
, (pending_all
> 0));
4087 cas_reset(cp
, !(pending
== CAS_RESET_ALL
));
4089 cas_clean_rings(cp
);
4090 cas_init_hw(cp
, pending
== CAS_RESET_ALL
);
4094 cas_unlock_all_restore(cp
, flags
);
4095 netif_device_attach(cp
->dev
);
4098 atomic_sub(pending_all
, &cp
->reset_task_pending_all
);
4099 atomic_sub(pending_spare
, &cp
->reset_task_pending_spare
);
4100 atomic_sub(pending_mtu
, &cp
->reset_task_pending_mtu
);
4101 atomic_dec(&cp
->reset_task_pending
);
4103 atomic_set(&cp
->reset_task_pending
, 0);
4107 static void cas_link_timer(unsigned long data
)
4109 struct cas
*cp
= (struct cas
*) data
;
4110 int mask
, pending
= 0, reset
= 0;
4111 unsigned long flags
;
4113 if (link_transition_timeout
!= 0 &&
4114 cp
->link_transition_jiffies_valid
&&
4115 ((jiffies
- cp
->link_transition_jiffies
) >
4116 (link_transition_timeout
))) {
4117 /* One-second counter so link-down workaround doesn't
4118 * cause resets to occur so fast as to fool the switch
4119 * into thinking the link is down.
4121 cp
->link_transition_jiffies_valid
= 0;
4124 if (!cp
->hw_running
)
4127 spin_lock_irqsave(&cp
->lock
, flags
);
4129 cas_entropy_gather(cp
);
4131 /* If the link task is still pending, we just
4132 * reschedule the link timer
4135 if (atomic_read(&cp
->reset_task_pending_all
) ||
4136 atomic_read(&cp
->reset_task_pending_spare
) ||
4137 atomic_read(&cp
->reset_task_pending_mtu
))
4140 if (atomic_read(&cp
->reset_task_pending
))
4144 /* check for rx cleaning */
4145 if ((mask
= (cp
->cas_flags
& CAS_FLAG_RXD_POST_MASK
))) {
4148 for (i
= 0; i
< MAX_RX_DESC_RINGS
; i
++) {
4149 rmask
= CAS_FLAG_RXD_POST(i
);
4150 if ((mask
& rmask
) == 0)
4153 /* post_rxds will do a mod_timer */
4154 if (cas_post_rxds_ringN(cp
, i
, cp
->rx_last
[i
]) < 0) {
4158 cp
->cas_flags
&= ~rmask
;
4162 if (CAS_PHY_MII(cp
->phy_type
)) {
4164 cas_mif_poll(cp
, 0);
4165 bmsr
= cas_phy_read(cp
, MII_BMSR
);
4166 /* WTZ: Solaris driver reads this twice, but that
4167 * may be due to the PCS case and the use of a
4168 * common implementation. Read it twice here to be
4171 bmsr
= cas_phy_read(cp
, MII_BMSR
);
4172 cas_mif_poll(cp
, 1);
4173 readl(cp
->regs
+ REG_MIF_STATUS
); /* avoid dups */
4174 reset
= cas_mii_link_check(cp
, bmsr
);
4176 reset
= cas_pcs_link_check(cp
);
4182 /* check for tx state machine confusion */
4183 if ((readl(cp
->regs
+ REG_MAC_TX_STATUS
) & MAC_TX_FRAME_XMIT
) == 0) {
4184 u32 val
= readl(cp
->regs
+ REG_MAC_STATE_MACHINE
);
4186 int tlm
= CAS_VAL(MAC_SM_TLM
, val
);
4188 if (((tlm
== 0x5) || (tlm
== 0x3)) &&
4189 (CAS_VAL(MAC_SM_ENCAP_SM
, val
) == 0)) {
4190 if (netif_msg_tx_err(cp
))
4191 printk(KERN_DEBUG
"%s: tx err: "
4192 "MAC_STATE[%08x]\n",
4193 cp
->dev
->name
, val
);
4198 val
= readl(cp
->regs
+ REG_TX_FIFO_PKT_CNT
);
4199 wptr
= readl(cp
->regs
+ REG_TX_FIFO_WRITE_PTR
);
4200 rptr
= readl(cp
->regs
+ REG_TX_FIFO_READ_PTR
);
4201 if ((val
== 0) && (wptr
!= rptr
)) {
4202 if (netif_msg_tx_err(cp
))
4203 printk(KERN_DEBUG
"%s: tx err: "
4204 "TX_FIFO[%08x:%08x:%08x]\n",
4205 cp
->dev
->name
, val
, wptr
, rptr
);
4216 atomic_inc(&cp
->reset_task_pending
);
4217 atomic_inc(&cp
->reset_task_pending_all
);
4218 schedule_work(&cp
->reset_task
);
4220 atomic_set(&cp
->reset_task_pending
, CAS_RESET_ALL
);
4221 printk(KERN_ERR
"reset called in cas_link_timer\n");
4222 schedule_work(&cp
->reset_task
);
4227 mod_timer(&cp
->link_timer
, jiffies
+ CAS_LINK_TIMEOUT
);
4229 spin_unlock_irqrestore(&cp
->lock
, flags
);
4232 /* tiny buffers are used to avoid target abort issues with
4235 static void cas_tx_tiny_free(struct cas
*cp
)
4237 struct pci_dev
*pdev
= cp
->pdev
;
4240 for (i
= 0; i
< N_TX_RINGS
; i
++) {
4241 if (!cp
->tx_tiny_bufs
[i
])
4244 pci_free_consistent(pdev
, TX_TINY_BUF_BLOCK
,
4245 cp
->tx_tiny_bufs
[i
],
4246 cp
->tx_tiny_dvma
[i
]);
4247 cp
->tx_tiny_bufs
[i
] = NULL
;
4251 static int cas_tx_tiny_alloc(struct cas
*cp
)
4253 struct pci_dev
*pdev
= cp
->pdev
;
4256 for (i
= 0; i
< N_TX_RINGS
; i
++) {
4257 cp
->tx_tiny_bufs
[i
] =
4258 pci_alloc_consistent(pdev
, TX_TINY_BUF_BLOCK
,
4259 &cp
->tx_tiny_dvma
[i
]);
4260 if (!cp
->tx_tiny_bufs
[i
]) {
4261 cas_tx_tiny_free(cp
);
4269 static int cas_open(struct net_device
*dev
)
4271 struct cas
*cp
= netdev_priv(dev
);
4273 unsigned long flags
;
4275 mutex_lock(&cp
->pm_mutex
);
4277 hw_was_up
= cp
->hw_running
;
4279 /* The power-management mutex protects the hw_running
4280 * etc. state so it is safe to do this bit without cp->lock
4282 if (!cp
->hw_running
) {
4283 /* Reset the chip */
4284 cas_lock_all_save(cp
, flags
);
4285 /* We set the second arg to cas_reset to zero
4286 * because cas_init_hw below will have its second
4287 * argument set to non-zero, which will force
4288 * autonegotiation to start.
4292 cas_unlock_all_restore(cp
, flags
);
4295 if (cas_tx_tiny_alloc(cp
) < 0)
4298 /* alloc rx descriptors */
4300 if (cas_alloc_rxds(cp
) < 0)
4303 /* allocate spares */
4305 cas_spare_recover(cp
, GFP_KERNEL
);
4307 /* We can now request the interrupt as we know it's masked
4308 * on the controller. cassini+ has up to 4 interrupts
4309 * that can be used, but you need to do explicit pci interrupt
4310 * mapping to expose them
4312 if (request_irq(cp
->pdev
->irq
, cas_interrupt
,
4313 IRQF_SHARED
, dev
->name
, (void *) dev
)) {
4314 printk(KERN_ERR
"%s: failed to request irq !\n",
4321 napi_enable(&cp
->napi
);
4324 cas_lock_all_save(cp
, flags
);
4325 cas_clean_rings(cp
);
4326 cas_init_hw(cp
, !hw_was_up
);
4328 cas_unlock_all_restore(cp
, flags
);
4330 netif_start_queue(dev
);
4331 mutex_unlock(&cp
->pm_mutex
);
4338 cas_tx_tiny_free(cp
);
4339 mutex_unlock(&cp
->pm_mutex
);
4343 static int cas_close(struct net_device
*dev
)
4345 unsigned long flags
;
4346 struct cas
*cp
= netdev_priv(dev
);
4349 napi_disable(&cp
->napi
);
4351 /* Make sure we don't get distracted by suspend/resume */
4352 mutex_lock(&cp
->pm_mutex
);
4354 netif_stop_queue(dev
);
4356 /* Stop traffic, mark us closed */
4357 cas_lock_all_save(cp
, flags
);
4361 cas_begin_auto_negotiation(cp
, NULL
);
4362 cas_clean_rings(cp
);
4363 cas_unlock_all_restore(cp
, flags
);
4365 free_irq(cp
->pdev
->irq
, (void *) dev
);
4368 cas_tx_tiny_free(cp
);
4369 mutex_unlock(&cp
->pm_mutex
);
4374 const char name
[ETH_GSTRING_LEN
];
4375 } ethtool_cassini_statnames
[] = {
4382 {"rx_frame_errors"},
4383 {"rx_length_errors"},
4386 {"tx_aborted_errors"},
4393 #define CAS_NUM_STAT_KEYS ARRAY_SIZE(ethtool_cassini_statnames)
4396 const int offsets
; /* neg. values for 2nd arg to cas_read_phy */
4397 } ethtool_register_table
[] = {
4412 {REG_PCS_MII_STATUS
},
4413 {REG_PCS_STATE_MACHINE
},
4414 {REG_MAC_COLL_EXCESS
},
4417 #define CAS_REG_LEN ARRAY_SIZE(ethtool_register_table)
4418 #define CAS_MAX_REGS (sizeof (u32)*CAS_REG_LEN)
4420 static void cas_read_regs(struct cas
*cp
, u8
*ptr
, int len
)
4424 unsigned long flags
;
4426 spin_lock_irqsave(&cp
->lock
, flags
);
4427 for (i
= 0, p
= ptr
; i
< len
; i
++, p
+= sizeof(u32
)) {
4430 if (ethtool_register_table
[i
].offsets
< 0) {
4431 hval
= cas_phy_read(cp
,
4432 -ethtool_register_table
[i
].offsets
);
4435 val
= readl(cp
->regs
+ethtool_register_table
[i
].offsets
);
4437 memcpy(p
, (u8
*)&val
, sizeof(u32
));
4439 spin_unlock_irqrestore(&cp
->lock
, flags
);
4442 static struct net_device_stats
*cas_get_stats(struct net_device
*dev
)
4444 struct cas
*cp
= netdev_priv(dev
);
4445 struct net_device_stats
*stats
= cp
->net_stats
;
4446 unsigned long flags
;
4450 /* we collate all of the stats into net_stats[N_TX_RING] */
4451 if (!cp
->hw_running
)
4452 return stats
+ N_TX_RINGS
;
4454 /* collect outstanding stats */
4455 /* WTZ: the Cassini spec gives these as 16 bit counters but
4456 * stored in 32-bit words. Added a mask of 0xffff to be safe,
4457 * in case the chip somehow puts any garbage in the other bits.
4458 * Also, counter usage didn't seem to mach what Adrian did
4459 * in the parts of the code that set these quantities. Made
4462 spin_lock_irqsave(&cp
->stat_lock
[N_TX_RINGS
], flags
);
4463 stats
[N_TX_RINGS
].rx_crc_errors
+=
4464 readl(cp
->regs
+ REG_MAC_FCS_ERR
) & 0xffff;
4465 stats
[N_TX_RINGS
].rx_frame_errors
+=
4466 readl(cp
->regs
+ REG_MAC_ALIGN_ERR
) &0xffff;
4467 stats
[N_TX_RINGS
].rx_length_errors
+=
4468 readl(cp
->regs
+ REG_MAC_LEN_ERR
) & 0xffff;
4470 tmp
= (readl(cp
->regs
+ REG_MAC_COLL_EXCESS
) & 0xffff) +
4471 (readl(cp
->regs
+ REG_MAC_COLL_LATE
) & 0xffff);
4472 stats
[N_TX_RINGS
].tx_aborted_errors
+= tmp
;
4473 stats
[N_TX_RINGS
].collisions
+=
4474 tmp
+ (readl(cp
->regs
+ REG_MAC_COLL_NORMAL
) & 0xffff);
4476 stats
[N_TX_RINGS
].tx_aborted_errors
+=
4477 readl(cp
->regs
+ REG_MAC_COLL_EXCESS
);
4478 stats
[N_TX_RINGS
].collisions
+= readl(cp
->regs
+ REG_MAC_COLL_EXCESS
) +
4479 readl(cp
->regs
+ REG_MAC_COLL_LATE
);
4481 cas_clear_mac_err(cp
);
4483 /* saved bits that are unique to ring 0 */
4484 spin_lock(&cp
->stat_lock
[0]);
4485 stats
[N_TX_RINGS
].collisions
+= stats
[0].collisions
;
4486 stats
[N_TX_RINGS
].rx_over_errors
+= stats
[0].rx_over_errors
;
4487 stats
[N_TX_RINGS
].rx_frame_errors
+= stats
[0].rx_frame_errors
;
4488 stats
[N_TX_RINGS
].rx_fifo_errors
+= stats
[0].rx_fifo_errors
;
4489 stats
[N_TX_RINGS
].tx_aborted_errors
+= stats
[0].tx_aborted_errors
;
4490 stats
[N_TX_RINGS
].tx_fifo_errors
+= stats
[0].tx_fifo_errors
;
4491 spin_unlock(&cp
->stat_lock
[0]);
4493 for (i
= 0; i
< N_TX_RINGS
; i
++) {
4494 spin_lock(&cp
->stat_lock
[i
]);
4495 stats
[N_TX_RINGS
].rx_length_errors
+=
4496 stats
[i
].rx_length_errors
;
4497 stats
[N_TX_RINGS
].rx_crc_errors
+= stats
[i
].rx_crc_errors
;
4498 stats
[N_TX_RINGS
].rx_packets
+= stats
[i
].rx_packets
;
4499 stats
[N_TX_RINGS
].tx_packets
+= stats
[i
].tx_packets
;
4500 stats
[N_TX_RINGS
].rx_bytes
+= stats
[i
].rx_bytes
;
4501 stats
[N_TX_RINGS
].tx_bytes
+= stats
[i
].tx_bytes
;
4502 stats
[N_TX_RINGS
].rx_errors
+= stats
[i
].rx_errors
;
4503 stats
[N_TX_RINGS
].tx_errors
+= stats
[i
].tx_errors
;
4504 stats
[N_TX_RINGS
].rx_dropped
+= stats
[i
].rx_dropped
;
4505 stats
[N_TX_RINGS
].tx_dropped
+= stats
[i
].tx_dropped
;
4506 memset(stats
+ i
, 0, sizeof(struct net_device_stats
));
4507 spin_unlock(&cp
->stat_lock
[i
]);
4509 spin_unlock_irqrestore(&cp
->stat_lock
[N_TX_RINGS
], flags
);
4510 return stats
+ N_TX_RINGS
;
4514 static void cas_set_multicast(struct net_device
*dev
)
4516 struct cas
*cp
= netdev_priv(dev
);
4517 u32 rxcfg
, rxcfg_new
;
4518 unsigned long flags
;
4519 int limit
= STOP_TRIES
;
4521 if (!cp
->hw_running
)
4524 spin_lock_irqsave(&cp
->lock
, flags
);
4525 rxcfg
= readl(cp
->regs
+ REG_MAC_RX_CFG
);
4527 /* disable RX MAC and wait for completion */
4528 writel(rxcfg
& ~MAC_RX_CFG_EN
, cp
->regs
+ REG_MAC_RX_CFG
);
4529 while (readl(cp
->regs
+ REG_MAC_RX_CFG
) & MAC_RX_CFG_EN
) {
4535 /* disable hash filter and wait for completion */
4537 rxcfg
&= ~(MAC_RX_CFG_PROMISC_EN
| MAC_RX_CFG_HASH_FILTER_EN
);
4538 writel(rxcfg
& ~MAC_RX_CFG_EN
, cp
->regs
+ REG_MAC_RX_CFG
);
4539 while (readl(cp
->regs
+ REG_MAC_RX_CFG
) & MAC_RX_CFG_HASH_FILTER_EN
) {
4545 /* program hash filters */
4546 cp
->mac_rx_cfg
= rxcfg_new
= cas_setup_multicast(cp
);
4548 writel(rxcfg
, cp
->regs
+ REG_MAC_RX_CFG
);
4549 spin_unlock_irqrestore(&cp
->lock
, flags
);
4552 static void cas_get_drvinfo(struct net_device
*dev
, struct ethtool_drvinfo
*info
)
4554 struct cas
*cp
= netdev_priv(dev
);
4555 strncpy(info
->driver
, DRV_MODULE_NAME
, ETHTOOL_BUSINFO_LEN
);
4556 strncpy(info
->version
, DRV_MODULE_VERSION
, ETHTOOL_BUSINFO_LEN
);
4557 info
->fw_version
[0] = '\0';
4558 strncpy(info
->bus_info
, pci_name(cp
->pdev
), ETHTOOL_BUSINFO_LEN
);
4559 info
->regdump_len
= cp
->casreg_len
< CAS_MAX_REGS
?
4560 cp
->casreg_len
: CAS_MAX_REGS
;
4561 info
->n_stats
= CAS_NUM_STAT_KEYS
;
4564 static int cas_get_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
4566 struct cas
*cp
= netdev_priv(dev
);
4568 int full_duplex
, speed
, pause
;
4569 unsigned long flags
;
4570 enum link_state linkstate
= link_up
;
4572 cmd
->advertising
= 0;
4573 cmd
->supported
= SUPPORTED_Autoneg
;
4574 if (cp
->cas_flags
& CAS_FLAG_1000MB_CAP
) {
4575 cmd
->supported
|= SUPPORTED_1000baseT_Full
;
4576 cmd
->advertising
|= ADVERTISED_1000baseT_Full
;
4579 /* Record PHY settings if HW is on. */
4580 spin_lock_irqsave(&cp
->lock
, flags
);
4582 linkstate
= cp
->lstate
;
4583 if (CAS_PHY_MII(cp
->phy_type
)) {
4584 cmd
->port
= PORT_MII
;
4585 cmd
->transceiver
= (cp
->cas_flags
& CAS_FLAG_SATURN
) ?
4586 XCVR_INTERNAL
: XCVR_EXTERNAL
;
4587 cmd
->phy_address
= cp
->phy_addr
;
4588 cmd
->advertising
|= ADVERTISED_TP
| ADVERTISED_MII
|
4589 ADVERTISED_10baseT_Half
|
4590 ADVERTISED_10baseT_Full
|
4591 ADVERTISED_100baseT_Half
|
4592 ADVERTISED_100baseT_Full
;
4595 (SUPPORTED_10baseT_Half
|
4596 SUPPORTED_10baseT_Full
|
4597 SUPPORTED_100baseT_Half
|
4598 SUPPORTED_100baseT_Full
|
4599 SUPPORTED_TP
| SUPPORTED_MII
);
4601 if (cp
->hw_running
) {
4602 cas_mif_poll(cp
, 0);
4603 bmcr
= cas_phy_read(cp
, MII_BMCR
);
4604 cas_read_mii_link_mode(cp
, &full_duplex
,
4606 cas_mif_poll(cp
, 1);
4610 cmd
->port
= PORT_FIBRE
;
4611 cmd
->transceiver
= XCVR_INTERNAL
;
4612 cmd
->phy_address
= 0;
4613 cmd
->supported
|= SUPPORTED_FIBRE
;
4614 cmd
->advertising
|= ADVERTISED_FIBRE
;
4616 if (cp
->hw_running
) {
4617 /* pcs uses the same bits as mii */
4618 bmcr
= readl(cp
->regs
+ REG_PCS_MII_CTRL
);
4619 cas_read_pcs_link_mode(cp
, &full_duplex
,
4623 spin_unlock_irqrestore(&cp
->lock
, flags
);
4625 if (bmcr
& BMCR_ANENABLE
) {
4626 cmd
->advertising
|= ADVERTISED_Autoneg
;
4627 cmd
->autoneg
= AUTONEG_ENABLE
;
4628 cmd
->speed
= ((speed
== 10) ?
4631 SPEED_1000
: SPEED_100
));
4632 cmd
->duplex
= full_duplex
? DUPLEX_FULL
: DUPLEX_HALF
;
4634 cmd
->autoneg
= AUTONEG_DISABLE
;
4636 (bmcr
& CAS_BMCR_SPEED1000
) ?
4638 ((bmcr
& BMCR_SPEED100
) ? SPEED_100
:
4641 (bmcr
& BMCR_FULLDPLX
) ?
4642 DUPLEX_FULL
: DUPLEX_HALF
;
4644 if (linkstate
!= link_up
) {
4645 /* Force these to "unknown" if the link is not up and
4646 * autonogotiation in enabled. We can set the link
4647 * speed to 0, but not cmd->duplex,
4648 * because its legal values are 0 and 1. Ethtool will
4649 * print the value reported in parentheses after the
4650 * word "Unknown" for unrecognized values.
4652 * If in forced mode, we report the speed and duplex
4653 * settings that we configured.
4655 if (cp
->link_cntl
& BMCR_ANENABLE
) {
4659 cmd
->speed
= SPEED_10
;
4660 if (cp
->link_cntl
& BMCR_SPEED100
) {
4661 cmd
->speed
= SPEED_100
;
4662 } else if (cp
->link_cntl
& CAS_BMCR_SPEED1000
) {
4663 cmd
->speed
= SPEED_1000
;
4665 cmd
->duplex
= (cp
->link_cntl
& BMCR_FULLDPLX
)?
4666 DUPLEX_FULL
: DUPLEX_HALF
;
4672 static int cas_set_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
4674 struct cas
*cp
= netdev_priv(dev
);
4675 unsigned long flags
;
4677 /* Verify the settings we care about. */
4678 if (cmd
->autoneg
!= AUTONEG_ENABLE
&&
4679 cmd
->autoneg
!= AUTONEG_DISABLE
)
4682 if (cmd
->autoneg
== AUTONEG_DISABLE
&&
4683 ((cmd
->speed
!= SPEED_1000
&&
4684 cmd
->speed
!= SPEED_100
&&
4685 cmd
->speed
!= SPEED_10
) ||
4686 (cmd
->duplex
!= DUPLEX_HALF
&&
4687 cmd
->duplex
!= DUPLEX_FULL
)))
4690 /* Apply settings and restart link process. */
4691 spin_lock_irqsave(&cp
->lock
, flags
);
4692 cas_begin_auto_negotiation(cp
, cmd
);
4693 spin_unlock_irqrestore(&cp
->lock
, flags
);
4697 static int cas_nway_reset(struct net_device
*dev
)
4699 struct cas
*cp
= netdev_priv(dev
);
4700 unsigned long flags
;
4702 if ((cp
->link_cntl
& BMCR_ANENABLE
) == 0)
4705 /* Restart link process. */
4706 spin_lock_irqsave(&cp
->lock
, flags
);
4707 cas_begin_auto_negotiation(cp
, NULL
);
4708 spin_unlock_irqrestore(&cp
->lock
, flags
);
4713 static u32
cas_get_link(struct net_device
*dev
)
4715 struct cas
*cp
= netdev_priv(dev
);
4716 return cp
->lstate
== link_up
;
4719 static u32
cas_get_msglevel(struct net_device
*dev
)
4721 struct cas
*cp
= netdev_priv(dev
);
4722 return cp
->msg_enable
;
4725 static void cas_set_msglevel(struct net_device
*dev
, u32 value
)
4727 struct cas
*cp
= netdev_priv(dev
);
4728 cp
->msg_enable
= value
;
4731 static int cas_get_regs_len(struct net_device
*dev
)
4733 struct cas
*cp
= netdev_priv(dev
);
4734 return cp
->casreg_len
< CAS_MAX_REGS
? cp
->casreg_len
: CAS_MAX_REGS
;
4737 static void cas_get_regs(struct net_device
*dev
, struct ethtool_regs
*regs
,
4740 struct cas
*cp
= netdev_priv(dev
);
4742 /* cas_read_regs handles locks (cp->lock). */
4743 cas_read_regs(cp
, p
, regs
->len
/ sizeof(u32
));
4746 static int cas_get_sset_count(struct net_device
*dev
, int sset
)
4750 return CAS_NUM_STAT_KEYS
;
4756 static void cas_get_strings(struct net_device
*dev
, u32 stringset
, u8
*data
)
4758 memcpy(data
, ðtool_cassini_statnames
,
4759 CAS_NUM_STAT_KEYS
* ETH_GSTRING_LEN
);
4762 static void cas_get_ethtool_stats(struct net_device
*dev
,
4763 struct ethtool_stats
*estats
, u64
*data
)
4765 struct cas
*cp
= netdev_priv(dev
);
4766 struct net_device_stats
*stats
= cas_get_stats(cp
->dev
);
4768 data
[i
++] = stats
->collisions
;
4769 data
[i
++] = stats
->rx_bytes
;
4770 data
[i
++] = stats
->rx_crc_errors
;
4771 data
[i
++] = stats
->rx_dropped
;
4772 data
[i
++] = stats
->rx_errors
;
4773 data
[i
++] = stats
->rx_fifo_errors
;
4774 data
[i
++] = stats
->rx_frame_errors
;
4775 data
[i
++] = stats
->rx_length_errors
;
4776 data
[i
++] = stats
->rx_over_errors
;
4777 data
[i
++] = stats
->rx_packets
;
4778 data
[i
++] = stats
->tx_aborted_errors
;
4779 data
[i
++] = stats
->tx_bytes
;
4780 data
[i
++] = stats
->tx_dropped
;
4781 data
[i
++] = stats
->tx_errors
;
4782 data
[i
++] = stats
->tx_fifo_errors
;
4783 data
[i
++] = stats
->tx_packets
;
4784 BUG_ON(i
!= CAS_NUM_STAT_KEYS
);
4787 static const struct ethtool_ops cas_ethtool_ops
= {
4788 .get_drvinfo
= cas_get_drvinfo
,
4789 .get_settings
= cas_get_settings
,
4790 .set_settings
= cas_set_settings
,
4791 .nway_reset
= cas_nway_reset
,
4792 .get_link
= cas_get_link
,
4793 .get_msglevel
= cas_get_msglevel
,
4794 .set_msglevel
= cas_set_msglevel
,
4795 .get_regs_len
= cas_get_regs_len
,
4796 .get_regs
= cas_get_regs
,
4797 .get_sset_count
= cas_get_sset_count
,
4798 .get_strings
= cas_get_strings
,
4799 .get_ethtool_stats
= cas_get_ethtool_stats
,
4802 static int cas_ioctl(struct net_device
*dev
, struct ifreq
*ifr
, int cmd
)
4804 struct cas
*cp
= netdev_priv(dev
);
4805 struct mii_ioctl_data
*data
= if_mii(ifr
);
4806 unsigned long flags
;
4807 int rc
= -EOPNOTSUPP
;
4809 /* Hold the PM mutex while doing ioctl's or we may collide
4810 * with open/close and power management and oops.
4812 mutex_lock(&cp
->pm_mutex
);
4814 case SIOCGMIIPHY
: /* Get address of MII PHY in use. */
4815 data
->phy_id
= cp
->phy_addr
;
4816 /* Fallthrough... */
4818 case SIOCGMIIREG
: /* Read MII PHY register. */
4819 spin_lock_irqsave(&cp
->lock
, flags
);
4820 cas_mif_poll(cp
, 0);
4821 data
->val_out
= cas_phy_read(cp
, data
->reg_num
& 0x1f);
4822 cas_mif_poll(cp
, 1);
4823 spin_unlock_irqrestore(&cp
->lock
, flags
);
4827 case SIOCSMIIREG
: /* Write MII PHY register. */
4828 if (!capable(CAP_NET_ADMIN
)) {
4832 spin_lock_irqsave(&cp
->lock
, flags
);
4833 cas_mif_poll(cp
, 0);
4834 rc
= cas_phy_write(cp
, data
->reg_num
& 0x1f, data
->val_in
);
4835 cas_mif_poll(cp
, 1);
4836 spin_unlock_irqrestore(&cp
->lock
, flags
);
4842 mutex_unlock(&cp
->pm_mutex
);
4846 /* When this chip sits underneath an Intel 31154 bridge, it is the
4847 * only subordinate device and we can tweak the bridge settings to
4848 * reflect that fact.
4850 static void __devinit
cas_program_bridge(struct pci_dev
*cas_pdev
)
4852 struct pci_dev
*pdev
= cas_pdev
->bus
->self
;
4858 if (pdev
->vendor
!= 0x8086 || pdev
->device
!= 0x537c)
4861 /* Clear bit 10 (Bus Parking Control) in the Secondary
4862 * Arbiter Control/Status Register which lives at offset
4863 * 0x41. Using a 32-bit word read/modify/write at 0x40
4864 * is much simpler so that's how we do this.
4866 pci_read_config_dword(pdev
, 0x40, &val
);
4868 pci_write_config_dword(pdev
, 0x40, val
);
4870 /* Max out the Multi-Transaction Timer settings since
4871 * Cassini is the only device present.
4873 * The register is 16-bit and lives at 0x50. When the
4874 * settings are enabled, it extends the GRANT# signal
4875 * for a requestor after a transaction is complete. This
4876 * allows the next request to run without first needing
4877 * to negotiate the GRANT# signal back.
4879 * Bits 12:10 define the grant duration:
4887 * All other values are illegal.
4889 * Bits 09:00 define which REQ/GNT signal pairs get the
4890 * GRANT# signal treatment. We set them all.
4892 pci_write_config_word(pdev
, 0x50, (5 << 10) | 0x3ff);
4894 /* The Read Prefecth Policy register is 16-bit and sits at
4895 * offset 0x52. It enables a "smart" pre-fetch policy. We
4896 * enable it and max out all of the settings since only one
4897 * device is sitting underneath and thus bandwidth sharing is
4900 * The register has several 3 bit fields, which indicates a
4901 * multiplier applied to the base amount of prefetching the
4902 * chip would do. These fields are at:
4904 * 15:13 --- ReRead Primary Bus
4905 * 12:10 --- FirstRead Primary Bus
4906 * 09:07 --- ReRead Secondary Bus
4907 * 06:04 --- FirstRead Secondary Bus
4909 * Bits 03:00 control which REQ/GNT pairs the prefetch settings
4910 * get enabled on. Bit 3 is a grouped enabler which controls
4911 * all of the REQ/GNT pairs from [8:3]. Bits 2 to 0 control
4912 * the individual REQ/GNT pairs [2:0].
4914 pci_write_config_word(pdev
, 0x52,
4921 /* Force cacheline size to 0x8 */
4922 pci_write_config_byte(pdev
, PCI_CACHE_LINE_SIZE
, 0x08);
4924 /* Force latency timer to maximum setting so Cassini can
4925 * sit on the bus as long as it likes.
4927 pci_write_config_byte(pdev
, PCI_LATENCY_TIMER
, 0xff);
4930 static int __devinit
cas_init_one(struct pci_dev
*pdev
,
4931 const struct pci_device_id
*ent
)
4933 static int cas_version_printed
= 0;
4934 unsigned long casreg_len
;
4935 struct net_device
*dev
;
4937 int i
, err
, pci_using_dac
;
4939 u8 orig_cacheline_size
= 0, cas_cacheline_size
= 0;
4940 DECLARE_MAC_BUF(mac
);
4942 if (cas_version_printed
++ == 0)
4943 printk(KERN_INFO
"%s", version
);
4945 err
= pci_enable_device(pdev
);
4947 dev_err(&pdev
->dev
, "Cannot enable PCI device, aborting.\n");
4951 if (!(pci_resource_flags(pdev
, 0) & IORESOURCE_MEM
)) {
4952 dev_err(&pdev
->dev
, "Cannot find proper PCI device "
4953 "base address, aborting.\n");
4955 goto err_out_disable_pdev
;
4958 dev
= alloc_etherdev(sizeof(*cp
));
4960 dev_err(&pdev
->dev
, "Etherdev alloc failed, aborting.\n");
4962 goto err_out_disable_pdev
;
4964 SET_NETDEV_DEV(dev
, &pdev
->dev
);
4966 err
= pci_request_regions(pdev
, dev
->name
);
4968 dev_err(&pdev
->dev
, "Cannot obtain PCI resources, aborting.\n");
4969 goto err_out_free_netdev
;
4971 pci_set_master(pdev
);
4973 /* we must always turn on parity response or else parity
4974 * doesn't get generated properly. disable SERR/PERR as well.
4975 * in addition, we want to turn MWI on.
4977 pci_read_config_word(pdev
, PCI_COMMAND
, &pci_cmd
);
4978 pci_cmd
&= ~PCI_COMMAND_SERR
;
4979 pci_cmd
|= PCI_COMMAND_PARITY
;
4980 pci_write_config_word(pdev
, PCI_COMMAND
, pci_cmd
);
4981 if (pci_try_set_mwi(pdev
))
4982 printk(KERN_WARNING PFX
"Could not enable MWI for %s\n",
4985 cas_program_bridge(pdev
);
4988 * On some architectures, the default cache line size set
4989 * by pci_try_set_mwi reduces perforamnce. We have to increase
4990 * it for this case. To start, we'll print some configuration
4994 pci_read_config_byte(pdev
, PCI_CACHE_LINE_SIZE
,
4995 &orig_cacheline_size
);
4996 if (orig_cacheline_size
< CAS_PREF_CACHELINE_SIZE
) {
4997 cas_cacheline_size
=
4998 (CAS_PREF_CACHELINE_SIZE
< SMP_CACHE_BYTES
) ?
4999 CAS_PREF_CACHELINE_SIZE
: SMP_CACHE_BYTES
;
5000 if (pci_write_config_byte(pdev
,
5001 PCI_CACHE_LINE_SIZE
,
5002 cas_cacheline_size
)) {
5003 dev_err(&pdev
->dev
, "Could not set PCI cache "
5005 goto err_write_cacheline
;
5011 /* Configure DMA attributes. */
5012 if (!pci_set_dma_mask(pdev
, DMA_64BIT_MASK
)) {
5014 err
= pci_set_consistent_dma_mask(pdev
,
5017 dev_err(&pdev
->dev
, "Unable to obtain 64-bit DMA "
5018 "for consistent allocations\n");
5019 goto err_out_free_res
;
5023 err
= pci_set_dma_mask(pdev
, DMA_32BIT_MASK
);
5025 dev_err(&pdev
->dev
, "No usable DMA configuration, "
5027 goto err_out_free_res
;
5032 casreg_len
= pci_resource_len(pdev
, 0);
5034 cp
= netdev_priv(dev
);
5037 /* A value of 0 indicates we never explicitly set it */
5038 cp
->orig_cacheline_size
= cas_cacheline_size
? orig_cacheline_size
: 0;
5041 cp
->msg_enable
= (cassini_debug
< 0) ? CAS_DEF_MSG_ENABLE
:
5044 cp
->link_transition
= LINK_TRANSITION_UNKNOWN
;
5045 cp
->link_transition_jiffies_valid
= 0;
5047 spin_lock_init(&cp
->lock
);
5048 spin_lock_init(&cp
->rx_inuse_lock
);
5049 spin_lock_init(&cp
->rx_spare_lock
);
5050 for (i
= 0; i
< N_TX_RINGS
; i
++) {
5051 spin_lock_init(&cp
->stat_lock
[i
]);
5052 spin_lock_init(&cp
->tx_lock
[i
]);
5054 spin_lock_init(&cp
->stat_lock
[N_TX_RINGS
]);
5055 mutex_init(&cp
->pm_mutex
);
5057 init_timer(&cp
->link_timer
);
5058 cp
->link_timer
.function
= cas_link_timer
;
5059 cp
->link_timer
.data
= (unsigned long) cp
;
5062 /* Just in case the implementation of atomic operations
5063 * change so that an explicit initialization is necessary.
5065 atomic_set(&cp
->reset_task_pending
, 0);
5066 atomic_set(&cp
->reset_task_pending_all
, 0);
5067 atomic_set(&cp
->reset_task_pending_spare
, 0);
5068 atomic_set(&cp
->reset_task_pending_mtu
, 0);
5070 INIT_WORK(&cp
->reset_task
, cas_reset_task
);
5072 /* Default link parameters */
5073 if (link_mode
>= 0 && link_mode
<= 6)
5074 cp
->link_cntl
= link_modes
[link_mode
];
5076 cp
->link_cntl
= BMCR_ANENABLE
;
5077 cp
->lstate
= link_down
;
5078 cp
->link_transition
= LINK_TRANSITION_LINK_DOWN
;
5079 netif_carrier_off(cp
->dev
);
5080 cp
->timer_ticks
= 0;
5082 /* give us access to cassini registers */
5083 cp
->regs
= pci_iomap(pdev
, 0, casreg_len
);
5085 dev_err(&pdev
->dev
, "Cannot map device registers, aborting.\n");
5086 goto err_out_free_res
;
5088 cp
->casreg_len
= casreg_len
;
5090 pci_save_state(pdev
);
5091 cas_check_pci_invariants(cp
);
5094 if (cas_check_invariants(cp
))
5095 goto err_out_iounmap
;
5097 cp
->init_block
= (struct cas_init_block
*)
5098 pci_alloc_consistent(pdev
, sizeof(struct cas_init_block
),
5100 if (!cp
->init_block
) {
5101 dev_err(&pdev
->dev
, "Cannot allocate init block, aborting.\n");
5102 goto err_out_iounmap
;
5105 for (i
= 0; i
< N_TX_RINGS
; i
++)
5106 cp
->init_txds
[i
] = cp
->init_block
->txds
[i
];
5108 for (i
= 0; i
< N_RX_DESC_RINGS
; i
++)
5109 cp
->init_rxds
[i
] = cp
->init_block
->rxds
[i
];
5111 for (i
= 0; i
< N_RX_COMP_RINGS
; i
++)
5112 cp
->init_rxcs
[i
] = cp
->init_block
->rxcs
[i
];
5114 for (i
= 0; i
< N_RX_FLOWS
; i
++)
5115 skb_queue_head_init(&cp
->rx_flows
[i
]);
5117 dev
->open
= cas_open
;
5118 dev
->stop
= cas_close
;
5119 dev
->hard_start_xmit
= cas_start_xmit
;
5120 dev
->get_stats
= cas_get_stats
;
5121 dev
->set_multicast_list
= cas_set_multicast
;
5122 dev
->do_ioctl
= cas_ioctl
;
5123 dev
->ethtool_ops
= &cas_ethtool_ops
;
5124 dev
->tx_timeout
= cas_tx_timeout
;
5125 dev
->watchdog_timeo
= CAS_TX_TIMEOUT
;
5126 dev
->change_mtu
= cas_change_mtu
;
5128 netif_napi_add(dev
, &cp
->napi
, cas_poll
, 64);
5130 #ifdef CONFIG_NET_POLL_CONTROLLER
5131 dev
->poll_controller
= cas_netpoll
;
5133 dev
->irq
= pdev
->irq
;
5136 /* Cassini features. */
5137 if ((cp
->cas_flags
& CAS_FLAG_NO_HW_CSUM
) == 0)
5138 dev
->features
|= NETIF_F_HW_CSUM
| NETIF_F_SG
;
5141 dev
->features
|= NETIF_F_HIGHDMA
;
5143 if (register_netdev(dev
)) {
5144 dev_err(&pdev
->dev
, "Cannot register net device, aborting.\n");
5145 goto err_out_free_consistent
;
5148 i
= readl(cp
->regs
+ REG_BIM_CFG
);
5149 printk(KERN_INFO
"%s: Sun Cassini%s (%sbit/%sMHz PCI/%s) "
5150 "Ethernet[%d] %s\n", dev
->name
,
5151 (cp
->cas_flags
& CAS_FLAG_REG_PLUS
) ? "+" : "",
5152 (i
& BIM_CFG_32BIT
) ? "32" : "64",
5153 (i
& BIM_CFG_66MHZ
) ? "66" : "33",
5154 (cp
->phy_type
== CAS_PHY_SERDES
) ? "Fi" : "Cu", pdev
->irq
,
5155 print_mac(mac
, dev
->dev_addr
));
5157 pci_set_drvdata(pdev
, dev
);
5159 cas_entropy_reset(cp
);
5161 cas_begin_auto_negotiation(cp
, NULL
);
5164 err_out_free_consistent
:
5165 pci_free_consistent(pdev
, sizeof(struct cas_init_block
),
5166 cp
->init_block
, cp
->block_dvma
);
5169 mutex_lock(&cp
->pm_mutex
);
5172 mutex_unlock(&cp
->pm_mutex
);
5174 pci_iounmap(pdev
, cp
->regs
);
5178 pci_release_regions(pdev
);
5180 err_write_cacheline
:
5181 /* Try to restore it in case the error occured after we
5184 pci_write_config_byte(pdev
, PCI_CACHE_LINE_SIZE
, orig_cacheline_size
);
5186 err_out_free_netdev
:
5189 err_out_disable_pdev
:
5190 pci_disable_device(pdev
);
5191 pci_set_drvdata(pdev
, NULL
);
5195 static void __devexit
cas_remove_one(struct pci_dev
*pdev
)
5197 struct net_device
*dev
= pci_get_drvdata(pdev
);
5202 cp
= netdev_priv(dev
);
5203 unregister_netdev(dev
);
5205 mutex_lock(&cp
->pm_mutex
);
5206 flush_scheduled_work();
5209 mutex_unlock(&cp
->pm_mutex
);
5212 if (cp
->orig_cacheline_size
) {
5213 /* Restore the cache line size if we had modified
5216 pci_write_config_byte(pdev
, PCI_CACHE_LINE_SIZE
,
5217 cp
->orig_cacheline_size
);
5220 pci_free_consistent(pdev
, sizeof(struct cas_init_block
),
5221 cp
->init_block
, cp
->block_dvma
);
5222 pci_iounmap(pdev
, cp
->regs
);
5224 pci_release_regions(pdev
);
5225 pci_disable_device(pdev
);
5226 pci_set_drvdata(pdev
, NULL
);
5230 static int cas_suspend(struct pci_dev
*pdev
, pm_message_t state
)
5232 struct net_device
*dev
= pci_get_drvdata(pdev
);
5233 struct cas
*cp
= netdev_priv(dev
);
5234 unsigned long flags
;
5236 mutex_lock(&cp
->pm_mutex
);
5238 /* If the driver is opened, we stop the DMA */
5240 netif_device_detach(dev
);
5242 cas_lock_all_save(cp
, flags
);
5244 /* We can set the second arg of cas_reset to 0
5245 * because on resume, we'll call cas_init_hw with
5246 * its second arg set so that autonegotiation is
5250 cas_clean_rings(cp
);
5251 cas_unlock_all_restore(cp
, flags
);
5256 mutex_unlock(&cp
->pm_mutex
);
5261 static int cas_resume(struct pci_dev
*pdev
)
5263 struct net_device
*dev
= pci_get_drvdata(pdev
);
5264 struct cas
*cp
= netdev_priv(dev
);
5266 printk(KERN_INFO
"%s: resuming\n", dev
->name
);
5268 mutex_lock(&cp
->pm_mutex
);
5271 unsigned long flags
;
5272 cas_lock_all_save(cp
, flags
);
5275 cas_clean_rings(cp
);
5277 cas_unlock_all_restore(cp
, flags
);
5279 netif_device_attach(dev
);
5281 mutex_unlock(&cp
->pm_mutex
);
5284 #endif /* CONFIG_PM */
5286 static struct pci_driver cas_driver
= {
5287 .name
= DRV_MODULE_NAME
,
5288 .id_table
= cas_pci_tbl
,
5289 .probe
= cas_init_one
,
5290 .remove
= __devexit_p(cas_remove_one
),
5292 .suspend
= cas_suspend
,
5293 .resume
= cas_resume
5297 static int __init
cas_init(void)
5299 if (linkdown_timeout
> 0)
5300 link_transition_timeout
= linkdown_timeout
* HZ
;
5302 link_transition_timeout
= 0;
5304 return pci_register_driver(&cas_driver
);
5307 static void __exit
cas_cleanup(void)
5309 pci_unregister_driver(&cas_driver
);
5312 module_init(cas_init
);
5313 module_exit(cas_cleanup
);