2 * Adaptec AAC series RAID controller driver
3 * (c) Copyright 2001 Red Hat Inc. <alan@redhat.com>
5 * based on the old aacraid driver that is..
6 * Adaptec aacraid device driver for Linux.
8 * Copyright (c) 2000-2007 Adaptec, Inc. (aacraid@adaptec.com)
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2, or (at your option)
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; see the file COPYING. If not, write to
22 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * Abstract: Contain all routines that are required for FSA host/adapter
32 #include <linux/kernel.h>
33 #include <linux/init.h>
34 #include <linux/types.h>
35 #include <linux/sched.h>
36 #include <linux/pci.h>
37 #include <linux/spinlock.h>
38 #include <linux/slab.h>
39 #include <linux/completion.h>
40 #include <linux/blkdev.h>
41 #include <linux/delay.h>
42 #include <linux/kthread.h>
43 #include <linux/interrupt.h>
44 #include <scsi/scsi.h>
45 #include <scsi/scsi_host.h>
46 #include <scsi/scsi_device.h>
47 #include <scsi/scsi_cmnd.h>
48 #include <asm/semaphore.h>
53 * fib_map_alloc - allocate the fib objects
54 * @dev: Adapter to allocate for
56 * Allocate and map the shared PCI space for the FIB blocks used to
57 * talk to the Adaptec firmware.
60 static int fib_map_alloc(struct aac_dev
*dev
)
63 "allocate hardware fibs pci_alloc_consistent(%p, %d * (%d + %d), %p)\n",
64 dev
->pdev
, dev
->max_fib_size
, dev
->scsi_host_ptr
->can_queue
,
65 AAC_NUM_MGT_FIB
, &dev
->hw_fib_pa
));
66 if((dev
->hw_fib_va
= pci_alloc_consistent(dev
->pdev
, dev
->max_fib_size
67 * (dev
->scsi_host_ptr
->can_queue
+ AAC_NUM_MGT_FIB
),
68 &dev
->hw_fib_pa
))==NULL
)
74 * aac_fib_map_free - free the fib objects
75 * @dev: Adapter to free
77 * Free the PCI mappings and the memory allocated for FIB blocks
81 void aac_fib_map_free(struct aac_dev
*dev
)
83 pci_free_consistent(dev
->pdev
,
84 dev
->max_fib_size
* (dev
->scsi_host_ptr
->can_queue
+ AAC_NUM_MGT_FIB
),
85 dev
->hw_fib_va
, dev
->hw_fib_pa
);
86 dev
->hw_fib_va
= NULL
;
91 * aac_fib_setup - setup the fibs
92 * @dev: Adapter to set up
94 * Allocate the PCI space for the fibs, map it and then intialise the
95 * fib area, the unmapped fib data and also the free list
98 int aac_fib_setup(struct aac_dev
* dev
)
101 struct hw_fib
*hw_fib
;
102 dma_addr_t hw_fib_pa
;
105 while (((i
= fib_map_alloc(dev
)) == -ENOMEM
)
106 && (dev
->scsi_host_ptr
->can_queue
> (64 - AAC_NUM_MGT_FIB
))) {
107 dev
->init
->MaxIoCommands
= cpu_to_le32((dev
->scsi_host_ptr
->can_queue
+ AAC_NUM_MGT_FIB
) >> 1);
108 dev
->scsi_host_ptr
->can_queue
= le32_to_cpu(dev
->init
->MaxIoCommands
) - AAC_NUM_MGT_FIB
;
113 hw_fib
= dev
->hw_fib_va
;
114 hw_fib_pa
= dev
->hw_fib_pa
;
115 memset(hw_fib
, 0, dev
->max_fib_size
* (dev
->scsi_host_ptr
->can_queue
+ AAC_NUM_MGT_FIB
));
117 * Initialise the fibs
119 for (i
= 0, fibptr
= &dev
->fibs
[i
]; i
< (dev
->scsi_host_ptr
->can_queue
+ AAC_NUM_MGT_FIB
); i
++, fibptr
++)
122 fibptr
->hw_fib_va
= hw_fib
;
123 fibptr
->data
= (void *) fibptr
->hw_fib_va
->data
;
124 fibptr
->next
= fibptr
+1; /* Forward chain the fibs */
125 init_MUTEX_LOCKED(&fibptr
->event_wait
);
126 spin_lock_init(&fibptr
->event_lock
);
127 hw_fib
->header
.XferState
= cpu_to_le32(0xffffffff);
128 hw_fib
->header
.SenderSize
= cpu_to_le16(dev
->max_fib_size
);
129 fibptr
->hw_fib_pa
= hw_fib_pa
;
130 hw_fib
= (struct hw_fib
*)((unsigned char *)hw_fib
+ dev
->max_fib_size
);
131 hw_fib_pa
= hw_fib_pa
+ dev
->max_fib_size
;
134 * Add the fib chain to the free list
136 dev
->fibs
[dev
->scsi_host_ptr
->can_queue
+ AAC_NUM_MGT_FIB
- 1].next
= NULL
;
138 * Enable this to debug out of queue space
140 dev
->free_fib
= &dev
->fibs
[0];
145 * aac_fib_alloc - allocate a fib
146 * @dev: Adapter to allocate the fib for
148 * Allocate a fib from the adapter fib pool. If the pool is empty we
152 struct fib
*aac_fib_alloc(struct aac_dev
*dev
)
156 spin_lock_irqsave(&dev
->fib_lock
, flags
);
157 fibptr
= dev
->free_fib
;
159 spin_unlock_irqrestore(&dev
->fib_lock
, flags
);
162 dev
->free_fib
= fibptr
->next
;
163 spin_unlock_irqrestore(&dev
->fib_lock
, flags
);
165 * Set the proper node type code and node byte size
167 fibptr
->type
= FSAFS_NTC_FIB_CONTEXT
;
168 fibptr
->size
= sizeof(struct fib
);
170 * Null out fields that depend on being zero at the start of
173 fibptr
->hw_fib_va
->header
.XferState
= 0;
174 fibptr
->callback
= NULL
;
175 fibptr
->callback_data
= NULL
;
181 * aac_fib_free - free a fib
182 * @fibptr: fib to free up
184 * Frees up a fib and places it on the appropriate queue
187 void aac_fib_free(struct fib
*fibptr
)
191 spin_lock_irqsave(&fibptr
->dev
->fib_lock
, flags
);
192 if (unlikely(fibptr
->flags
& FIB_CONTEXT_FLAG_TIMED_OUT
))
193 aac_config
.fib_timeouts
++;
194 if (fibptr
->hw_fib_va
->header
.XferState
!= 0) {
195 printk(KERN_WARNING
"aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n",
197 le32_to_cpu(fibptr
->hw_fib_va
->header
.XferState
));
199 fibptr
->next
= fibptr
->dev
->free_fib
;
200 fibptr
->dev
->free_fib
= fibptr
;
201 spin_unlock_irqrestore(&fibptr
->dev
->fib_lock
, flags
);
205 * aac_fib_init - initialise a fib
206 * @fibptr: The fib to initialize
208 * Set up the generic fib fields ready for use
211 void aac_fib_init(struct fib
*fibptr
)
213 struct hw_fib
*hw_fib
= fibptr
->hw_fib_va
;
215 hw_fib
->header
.StructType
= FIB_MAGIC
;
216 hw_fib
->header
.Size
= cpu_to_le16(fibptr
->dev
->max_fib_size
);
217 hw_fib
->header
.XferState
= cpu_to_le32(HostOwned
| FibInitialized
| FibEmpty
| FastResponseCapable
);
218 hw_fib
->header
.SenderFibAddress
= 0; /* Filled in later if needed */
219 hw_fib
->header
.ReceiverFibAddress
= cpu_to_le32(fibptr
->hw_fib_pa
);
220 hw_fib
->header
.SenderSize
= cpu_to_le16(fibptr
->dev
->max_fib_size
);
224 * fib_deallocate - deallocate a fib
225 * @fibptr: fib to deallocate
227 * Will deallocate and return to the free pool the FIB pointed to by the
231 static void fib_dealloc(struct fib
* fibptr
)
233 struct hw_fib
*hw_fib
= fibptr
->hw_fib_va
;
234 BUG_ON(hw_fib
->header
.StructType
!= FIB_MAGIC
);
235 hw_fib
->header
.XferState
= 0;
239 * Commuication primitives define and support the queuing method we use to
240 * support host to adapter commuication. All queue accesses happen through
241 * these routines and are the only routines which have a knowledge of the
242 * how these queues are implemented.
246 * aac_get_entry - get a queue entry
249 * @entry: Entry return
250 * @index: Index return
251 * @nonotify: notification control
253 * With a priority the routine returns a queue entry if the queue has free entries. If the queue
254 * is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is
258 static int aac_get_entry (struct aac_dev
* dev
, u32 qid
, struct aac_entry
**entry
, u32
* index
, unsigned long *nonotify
)
260 struct aac_queue
* q
;
264 * All of the queues wrap when they reach the end, so we check
265 * to see if they have reached the end and if they have we just
266 * set the index back to zero. This is a wrap. You could or off
267 * the high bits in all updates but this is a bit faster I think.
270 q
= &dev
->queues
->queue
[qid
];
272 idx
= *index
= le32_to_cpu(*(q
->headers
.producer
));
273 /* Interrupt Moderation, only interrupt for first two entries */
274 if (idx
!= le32_to_cpu(*(q
->headers
.consumer
))) {
276 if (qid
== AdapNormCmdQueue
)
277 idx
= ADAP_NORM_CMD_ENTRIES
;
279 idx
= ADAP_NORM_RESP_ENTRIES
;
281 if (idx
!= le32_to_cpu(*(q
->headers
.consumer
)))
285 if (qid
== AdapNormCmdQueue
) {
286 if (*index
>= ADAP_NORM_CMD_ENTRIES
)
287 *index
= 0; /* Wrap to front of the Producer Queue. */
289 if (*index
>= ADAP_NORM_RESP_ENTRIES
)
290 *index
= 0; /* Wrap to front of the Producer Queue. */
293 if ((*index
+ 1) == le32_to_cpu(*(q
->headers
.consumer
))) { /* Queue is full */
294 printk(KERN_WARNING
"Queue %d full, %u outstanding.\n",
298 *entry
= q
->base
+ *index
;
304 * aac_queue_get - get the next free QE
306 * @index: Returned index
307 * @priority: Priority of fib
308 * @fib: Fib to associate with the queue entry
309 * @wait: Wait if queue full
310 * @fibptr: Driver fib object to go with fib
311 * @nonotify: Don't notify the adapter
313 * Gets the next free QE off the requested priorty adapter command
314 * queue and associates the Fib with the QE. The QE represented by
315 * index is ready to insert on the queue when this routine returns
319 int aac_queue_get(struct aac_dev
* dev
, u32
* index
, u32 qid
, struct hw_fib
* hw_fib
, int wait
, struct fib
* fibptr
, unsigned long *nonotify
)
321 struct aac_entry
* entry
= NULL
;
324 if (qid
== AdapNormCmdQueue
) {
325 /* if no entries wait for some if caller wants to */
326 while (!aac_get_entry(dev
, qid
, &entry
, index
, nonotify
))
328 printk(KERN_ERR
"GetEntries failed\n");
331 * Setup queue entry with a command, status and fib mapped
333 entry
->size
= cpu_to_le32(le16_to_cpu(hw_fib
->header
.Size
));
336 while(!aac_get_entry(dev
, qid
, &entry
, index
, nonotify
))
338 /* if no entries wait for some if caller wants to */
341 * Setup queue entry with command, status and fib mapped
343 entry
->size
= cpu_to_le32(le16_to_cpu(hw_fib
->header
.Size
));
344 entry
->addr
= hw_fib
->header
.SenderFibAddress
;
345 /* Restore adapters pointer to the FIB */
346 hw_fib
->header
.ReceiverFibAddress
= hw_fib
->header
.SenderFibAddress
; /* Let the adapter now where to find its data */
350 * If MapFib is true than we need to map the Fib and put pointers
351 * in the queue entry.
354 entry
->addr
= cpu_to_le32(fibptr
->hw_fib_pa
);
359 * Define the highest level of host to adapter communication routines.
360 * These routines will support host to adapter FS commuication. These
361 * routines have no knowledge of the commuication method used. This level
362 * sends and receives FIBs. This level has no knowledge of how these FIBs
363 * get passed back and forth.
367 * aac_fib_send - send a fib to the adapter
368 * @command: Command to send
370 * @size: Size of fib data area
371 * @priority: Priority of Fib
372 * @wait: Async/sync select
373 * @reply: True if a reply is wanted
374 * @callback: Called with reply
375 * @callback_data: Passed to callback
377 * Sends the requested FIB to the adapter and optionally will wait for a
378 * response FIB. If the caller does not wish to wait for a response than
379 * an event to wait on must be supplied. This event will be set when a
380 * response FIB is received from the adapter.
383 int aac_fib_send(u16 command
, struct fib
*fibptr
, unsigned long size
,
384 int priority
, int wait
, int reply
, fib_callback callback
,
387 struct aac_dev
* dev
= fibptr
->dev
;
388 struct hw_fib
* hw_fib
= fibptr
->hw_fib_va
;
389 unsigned long flags
= 0;
390 unsigned long qflags
;
392 if (!(hw_fib
->header
.XferState
& cpu_to_le32(HostOwned
)))
395 * There are 5 cases with the wait and reponse requested flags.
396 * The only invalid cases are if the caller requests to wait and
397 * does not request a response and if the caller does not want a
398 * response and the Fib is not allocated from pool. If a response
399 * is not requesed the Fib will just be deallocaed by the DPC
400 * routine when the response comes back from the adapter. No
401 * further processing will be done besides deleting the Fib. We
402 * will have a debug mode where the adapter can notify the host
403 * it had a problem and the host can log that fact.
405 if (wait
&& !reply
) {
407 } else if (!wait
&& reply
) {
408 hw_fib
->header
.XferState
|= cpu_to_le32(Async
| ResponseExpected
);
409 FIB_COUNTER_INCREMENT(aac_config
.AsyncSent
);
410 } else if (!wait
&& !reply
) {
411 hw_fib
->header
.XferState
|= cpu_to_le32(NoResponseExpected
);
412 FIB_COUNTER_INCREMENT(aac_config
.NoResponseSent
);
413 } else if (wait
&& reply
) {
414 hw_fib
->header
.XferState
|= cpu_to_le32(ResponseExpected
);
415 FIB_COUNTER_INCREMENT(aac_config
.NormalSent
);
418 * Map the fib into 32bits by using the fib number
421 hw_fib
->header
.SenderFibAddress
= cpu_to_le32(((u32
)(fibptr
- dev
->fibs
)) << 2);
422 hw_fib
->header
.SenderData
= (u32
)(fibptr
- dev
->fibs
);
424 * Set FIB state to indicate where it came from and if we want a
425 * response from the adapter. Also load the command from the
428 * Map the hw fib pointer as a 32bit value
430 hw_fib
->header
.Command
= cpu_to_le16(command
);
431 hw_fib
->header
.XferState
|= cpu_to_le32(SentFromHost
);
432 fibptr
->hw_fib_va
->header
.Flags
= 0; /* 0 the flags field - internal only*/
434 * Set the size of the Fib we want to send to the adapter
436 hw_fib
->header
.Size
= cpu_to_le16(sizeof(struct aac_fibhdr
) + size
);
437 if (le16_to_cpu(hw_fib
->header
.Size
) > le16_to_cpu(hw_fib
->header
.SenderSize
)) {
441 * Get a queue entry connect the FIB to it and send an notify
442 * the adapter a command is ready.
444 hw_fib
->header
.XferState
|= cpu_to_le32(NormalPriority
);
447 * Fill in the Callback and CallbackContext if we are not
451 fibptr
->callback
= callback
;
452 fibptr
->callback_data
= callback_data
;
458 FIB_COUNTER_INCREMENT(aac_config
.FibsSent
);
460 dprintk((KERN_DEBUG
"Fib contents:.\n"));
461 dprintk((KERN_DEBUG
" Command = %d.\n", le32_to_cpu(hw_fib
->header
.Command
)));
462 dprintk((KERN_DEBUG
" SubCommand = %d.\n", le32_to_cpu(((struct aac_query_mount
*)fib_data(fibptr
))->command
)));
463 dprintk((KERN_DEBUG
" XferState = %x.\n", le32_to_cpu(hw_fib
->header
.XferState
)));
464 dprintk((KERN_DEBUG
" hw_fib va being sent=%p\n",fibptr
->hw_fib_va
));
465 dprintk((KERN_DEBUG
" hw_fib pa being sent=%lx\n",(ulong
)fibptr
->hw_fib_pa
));
466 dprintk((KERN_DEBUG
" fib being sent=%p\n",fibptr
));
472 spin_lock_irqsave(&fibptr
->event_lock
, flags
);
473 aac_adapter_deliver(fibptr
);
476 * If the caller wanted us to wait for response wait now.
480 spin_unlock_irqrestore(&fibptr
->event_lock
, flags
);
481 /* Only set for first known interruptable command */
484 * *VERY* Dangerous to time out a command, the
485 * assumption is made that we have no hope of
486 * functioning because an interrupt routing or other
487 * hardware failure has occurred.
489 unsigned long count
= 36000000L; /* 3 minutes */
490 while (down_trylock(&fibptr
->event_wait
)) {
493 struct aac_queue
* q
= &dev
->queues
->queue
[AdapNormCmdQueue
];
494 spin_lock_irqsave(q
->lock
, qflags
);
496 spin_unlock_irqrestore(q
->lock
, qflags
);
498 printk(KERN_ERR
"aacraid: aac_fib_send: first asynchronous command timed out.\n"
499 "Usually a result of a PCI interrupt routing problem;\n"
500 "update mother board BIOS or consider utilizing one of\n"
501 "the SAFE mode kernel options (acpi, apic etc)\n");
505 if ((blink
= aac_adapter_check_health(dev
)) > 0) {
507 printk(KERN_ERR
"aacraid: aac_fib_send: adapter blinkLED 0x%x.\n"
508 "Usually a result of a serious unrecoverable hardware problem\n",
516 (void)down_interruptible(&fibptr
->event_wait
);
517 spin_lock_irqsave(&fibptr
->event_lock
, flags
);
518 if (fibptr
->done
== 0) {
519 fibptr
->done
= 2; /* Tell interrupt we aborted */
520 spin_unlock_irqrestore(&fibptr
->event_lock
, flags
);
523 spin_unlock_irqrestore(&fibptr
->event_lock
, flags
);
524 BUG_ON(fibptr
->done
== 0);
526 if(unlikely(fibptr
->flags
& FIB_CONTEXT_FLAG_TIMED_OUT
))
531 * If the user does not want a response than return success otherwise
541 * aac_consumer_get - get the top of the queue
544 * @entry: Return entry
546 * Will return a pointer to the entry on the top of the queue requested that
547 * we are a consumer of, and return the address of the queue entry. It does
548 * not change the state of the queue.
551 int aac_consumer_get(struct aac_dev
* dev
, struct aac_queue
* q
, struct aac_entry
**entry
)
555 if (le32_to_cpu(*q
->headers
.producer
) == le32_to_cpu(*q
->headers
.consumer
)) {
559 * The consumer index must be wrapped if we have reached
560 * the end of the queue, else we just use the entry
561 * pointed to by the header index
563 if (le32_to_cpu(*q
->headers
.consumer
) >= q
->entries
)
566 index
= le32_to_cpu(*q
->headers
.consumer
);
567 *entry
= q
->base
+ index
;
574 * aac_consumer_free - free consumer entry
579 * Frees up the current top of the queue we are a consumer of. If the
580 * queue was full notify the producer that the queue is no longer full.
583 void aac_consumer_free(struct aac_dev
* dev
, struct aac_queue
*q
, u32 qid
)
588 if ((le32_to_cpu(*q
->headers
.producer
)+1) == le32_to_cpu(*q
->headers
.consumer
))
591 if (le32_to_cpu(*q
->headers
.consumer
) >= q
->entries
)
592 *q
->headers
.consumer
= cpu_to_le32(1);
594 *q
->headers
.consumer
= cpu_to_le32(le32_to_cpu(*q
->headers
.consumer
)+1);
599 case HostNormCmdQueue
:
600 notify
= HostNormCmdNotFull
;
602 case HostNormRespQueue
:
603 notify
= HostNormRespNotFull
;
609 aac_adapter_notify(dev
, notify
);
614 * aac_fib_adapter_complete - complete adapter issued fib
615 * @fibptr: fib to complete
618 * Will do all necessary work to complete a FIB that was sent from
622 int aac_fib_adapter_complete(struct fib
*fibptr
, unsigned short size
)
624 struct hw_fib
* hw_fib
= fibptr
->hw_fib_va
;
625 struct aac_dev
* dev
= fibptr
->dev
;
626 struct aac_queue
* q
;
627 unsigned long nointr
= 0;
628 unsigned long qflags
;
630 if (hw_fib
->header
.XferState
== 0) {
631 if (dev
->comm_interface
== AAC_COMM_MESSAGE
)
636 * If we plan to do anything check the structure type first.
638 if ( hw_fib
->header
.StructType
!= FIB_MAGIC
) {
639 if (dev
->comm_interface
== AAC_COMM_MESSAGE
)
644 * This block handles the case where the adapter had sent us a
645 * command and we have finished processing the command. We
646 * call completeFib when we are done processing the command
647 * and want to send a response back to the adapter. This will
648 * send the completed cdb to the adapter.
650 if (hw_fib
->header
.XferState
& cpu_to_le32(SentFromAdapter
)) {
651 if (dev
->comm_interface
== AAC_COMM_MESSAGE
) {
655 hw_fib
->header
.XferState
|= cpu_to_le32(HostProcessed
);
657 size
+= sizeof(struct aac_fibhdr
);
658 if (size
> le16_to_cpu(hw_fib
->header
.SenderSize
))
660 hw_fib
->header
.Size
= cpu_to_le16(size
);
662 q
= &dev
->queues
->queue
[AdapNormRespQueue
];
663 spin_lock_irqsave(q
->lock
, qflags
);
664 aac_queue_get(dev
, &index
, AdapNormRespQueue
, hw_fib
, 1, NULL
, &nointr
);
665 *(q
->headers
.producer
) = cpu_to_le32(index
+ 1);
666 spin_unlock_irqrestore(q
->lock
, qflags
);
667 if (!(nointr
& (int)aac_config
.irq_mod
))
668 aac_adapter_notify(dev
, AdapNormRespQueue
);
673 printk(KERN_WARNING
"aac_fib_adapter_complete: Unknown xferstate detected.\n");
680 * aac_fib_complete - fib completion handler
681 * @fib: FIB to complete
683 * Will do all necessary work to complete a FIB.
686 int aac_fib_complete(struct fib
*fibptr
)
688 struct hw_fib
* hw_fib
= fibptr
->hw_fib_va
;
691 * Check for a fib which has already been completed
694 if (hw_fib
->header
.XferState
== 0)
697 * If we plan to do anything check the structure type first.
700 if (hw_fib
->header
.StructType
!= FIB_MAGIC
)
703 * This block completes a cdb which orginated on the host and we
704 * just need to deallocate the cdb or reinit it. At this point the
705 * command is complete that we had sent to the adapter and this
706 * cdb could be reused.
708 if((hw_fib
->header
.XferState
& cpu_to_le32(SentFromHost
)) &&
709 (hw_fib
->header
.XferState
& cpu_to_le32(AdapterProcessed
)))
713 else if(hw_fib
->header
.XferState
& cpu_to_le32(SentFromHost
))
716 * This handles the case when the host has aborted the I/O
717 * to the adapter because the adapter is not responding
720 } else if(hw_fib
->header
.XferState
& cpu_to_le32(HostOwned
)) {
729 * aac_printf - handle printf from firmware
733 * Print a message passed to us by the controller firmware on the
737 void aac_printf(struct aac_dev
*dev
, u32 val
)
739 char *cp
= dev
->printfbuf
;
740 if (dev
->printf_enabled
)
742 int length
= val
& 0xffff;
743 int level
= (val
>> 16) & 0xffff;
746 * The size of the printfbuf is set in port.c
747 * There is no variable or define for it
753 if (level
== LOG_AAC_HIGH_ERROR
)
754 printk(KERN_WARNING
"%s:%s", dev
->name
, cp
);
756 printk(KERN_INFO
"%s:%s", dev
->name
, cp
);
763 * aac_handle_aif - Handle a message from the firmware
764 * @dev: Which adapter this fib is from
765 * @fibptr: Pointer to fibptr from adapter
767 * This routine handles a driver notify fib from the adapter and
768 * dispatches it to the appropriate routine for handling.
771 #define AIF_SNIFF_TIMEOUT (30*HZ)
772 static void aac_handle_aif(struct aac_dev
* dev
, struct fib
* fibptr
)
774 struct hw_fib
* hw_fib
= fibptr
->hw_fib_va
;
775 struct aac_aifcmd
* aifcmd
= (struct aac_aifcmd
*)hw_fib
->data
;
777 struct scsi_device
*device
;
783 } device_config_needed
;
785 /* Sniff for container changes */
787 if (!dev
|| !dev
->fsa_dev
)
792 * We have set this up to try and minimize the number of
793 * re-configures that take place. As a result of this when
794 * certain AIF's come in we will set a flag waiting for another
795 * type of AIF before setting the re-config flag.
797 switch (le32_to_cpu(aifcmd
->command
)) {
798 case AifCmdDriverNotify
:
799 switch (le32_to_cpu(((__le32
*)aifcmd
->data
)[0])) {
801 * Morph or Expand complete
803 case AifDenMorphComplete
:
804 case AifDenVolumeExtendComplete
:
805 container
= le32_to_cpu(((__le32
*)aifcmd
->data
)[1]);
806 if (container
>= dev
->maximum_num_containers
)
810 * Find the scsi_device associated with the SCSI
811 * address. Make sure we have the right array, and if
812 * so set the flag to initiate a new re-config once we
813 * see an AifEnConfigChange AIF come through.
816 if ((dev
!= NULL
) && (dev
->scsi_host_ptr
!= NULL
)) {
817 device
= scsi_device_lookup(dev
->scsi_host_ptr
,
818 CONTAINER_TO_CHANNEL(container
),
819 CONTAINER_TO_ID(container
),
820 CONTAINER_TO_LUN(container
));
822 dev
->fsa_dev
[container
].config_needed
= CHANGE
;
823 dev
->fsa_dev
[container
].config_waiting_on
= AifEnConfigChange
;
824 dev
->fsa_dev
[container
].config_waiting_stamp
= jiffies
;
825 scsi_device_put(device
);
831 * If we are waiting on something and this happens to be
832 * that thing then set the re-configure flag.
834 if (container
!= (u32
)-1) {
835 if (container
>= dev
->maximum_num_containers
)
837 if ((dev
->fsa_dev
[container
].config_waiting_on
==
838 le32_to_cpu(*(__le32
*)aifcmd
->data
)) &&
839 time_before(jiffies
, dev
->fsa_dev
[container
].config_waiting_stamp
+ AIF_SNIFF_TIMEOUT
))
840 dev
->fsa_dev
[container
].config_waiting_on
= 0;
841 } else for (container
= 0;
842 container
< dev
->maximum_num_containers
; ++container
) {
843 if ((dev
->fsa_dev
[container
].config_waiting_on
==
844 le32_to_cpu(*(__le32
*)aifcmd
->data
)) &&
845 time_before(jiffies
, dev
->fsa_dev
[container
].config_waiting_stamp
+ AIF_SNIFF_TIMEOUT
))
846 dev
->fsa_dev
[container
].config_waiting_on
= 0;
850 case AifCmdEventNotify
:
851 switch (le32_to_cpu(((__le32
*)aifcmd
->data
)[0])) {
855 case AifEnAddContainer
:
856 container
= le32_to_cpu(((__le32
*)aifcmd
->data
)[1]);
857 if (container
>= dev
->maximum_num_containers
)
859 dev
->fsa_dev
[container
].config_needed
= ADD
;
860 dev
->fsa_dev
[container
].config_waiting_on
=
862 dev
->fsa_dev
[container
].config_waiting_stamp
= jiffies
;
868 case AifEnDeleteContainer
:
869 container
= le32_to_cpu(((__le32
*)aifcmd
->data
)[1]);
870 if (container
>= dev
->maximum_num_containers
)
872 dev
->fsa_dev
[container
].config_needed
= DELETE
;
873 dev
->fsa_dev
[container
].config_waiting_on
=
875 dev
->fsa_dev
[container
].config_waiting_stamp
= jiffies
;
879 * Container change detected. If we currently are not
880 * waiting on something else, setup to wait on a Config Change.
882 case AifEnContainerChange
:
883 container
= le32_to_cpu(((__le32
*)aifcmd
->data
)[1]);
884 if (container
>= dev
->maximum_num_containers
)
886 if (dev
->fsa_dev
[container
].config_waiting_on
&&
887 time_before(jiffies
, dev
->fsa_dev
[container
].config_waiting_stamp
+ AIF_SNIFF_TIMEOUT
))
889 dev
->fsa_dev
[container
].config_needed
= CHANGE
;
890 dev
->fsa_dev
[container
].config_waiting_on
=
892 dev
->fsa_dev
[container
].config_waiting_stamp
= jiffies
;
895 case AifEnConfigChange
:
901 * If we are waiting on something and this happens to be
902 * that thing then set the re-configure flag.
904 if (container
!= (u32
)-1) {
905 if (container
>= dev
->maximum_num_containers
)
907 if ((dev
->fsa_dev
[container
].config_waiting_on
==
908 le32_to_cpu(*(__le32
*)aifcmd
->data
)) &&
909 time_before(jiffies
, dev
->fsa_dev
[container
].config_waiting_stamp
+ AIF_SNIFF_TIMEOUT
))
910 dev
->fsa_dev
[container
].config_waiting_on
= 0;
911 } else for (container
= 0;
912 container
< dev
->maximum_num_containers
; ++container
) {
913 if ((dev
->fsa_dev
[container
].config_waiting_on
==
914 le32_to_cpu(*(__le32
*)aifcmd
->data
)) &&
915 time_before(jiffies
, dev
->fsa_dev
[container
].config_waiting_stamp
+ AIF_SNIFF_TIMEOUT
))
916 dev
->fsa_dev
[container
].config_waiting_on
= 0;
920 case AifCmdJobProgress
:
922 * These are job progress AIF's. When a Clear is being
923 * done on a container it is initially created then hidden from
924 * the OS. When the clear completes we don't get a config
925 * change so we monitor the job status complete on a clear then
926 * wait for a container change.
929 if (((__le32
*)aifcmd
->data
)[1] == cpu_to_le32(AifJobCtrZero
) &&
930 (((__le32
*)aifcmd
->data
)[6] == ((__le32
*)aifcmd
->data
)[5] ||
931 ((__le32
*)aifcmd
->data
)[4] == cpu_to_le32(AifJobStsSuccess
))) {
933 container
< dev
->maximum_num_containers
;
936 * Stomp on all config sequencing for all
939 dev
->fsa_dev
[container
].config_waiting_on
=
940 AifEnContainerChange
;
941 dev
->fsa_dev
[container
].config_needed
= ADD
;
942 dev
->fsa_dev
[container
].config_waiting_stamp
=
946 if (((__le32
*)aifcmd
->data
)[1] == cpu_to_le32(AifJobCtrZero
) &&
947 ((__le32
*)aifcmd
->data
)[6] == 0 &&
948 ((__le32
*)aifcmd
->data
)[4] == cpu_to_le32(AifJobStsRunning
)) {
950 container
< dev
->maximum_num_containers
;
953 * Stomp on all config sequencing for all
956 dev
->fsa_dev
[container
].config_waiting_on
=
957 AifEnContainerChange
;
958 dev
->fsa_dev
[container
].config_needed
= DELETE
;
959 dev
->fsa_dev
[container
].config_waiting_stamp
=
966 device_config_needed
= NOTHING
;
967 for (container
= 0; container
< dev
->maximum_num_containers
;
969 if ((dev
->fsa_dev
[container
].config_waiting_on
== 0) &&
970 (dev
->fsa_dev
[container
].config_needed
!= NOTHING
) &&
971 time_before(jiffies
, dev
->fsa_dev
[container
].config_waiting_stamp
+ AIF_SNIFF_TIMEOUT
)) {
972 device_config_needed
=
973 dev
->fsa_dev
[container
].config_needed
;
974 dev
->fsa_dev
[container
].config_needed
= NOTHING
;
978 if (device_config_needed
== NOTHING
)
982 * If we decided that a re-configuration needs to be done,
983 * schedule it here on the way out the door, please close the door
988 * Find the scsi_device associated with the SCSI address,
989 * and mark it as changed, invalidating the cache. This deals
990 * with changes to existing device IDs.
993 if (!dev
|| !dev
->scsi_host_ptr
)
996 * force reload of disk info via aac_probe_container
998 if ((device_config_needed
== CHANGE
)
999 && (dev
->fsa_dev
[container
].valid
== 1))
1000 dev
->fsa_dev
[container
].valid
= 2;
1001 if ((device_config_needed
== CHANGE
) ||
1002 (device_config_needed
== ADD
))
1003 aac_probe_container(dev
, container
);
1004 device
= scsi_device_lookup(dev
->scsi_host_ptr
,
1005 CONTAINER_TO_CHANNEL(container
),
1006 CONTAINER_TO_ID(container
),
1007 CONTAINER_TO_LUN(container
));
1009 switch (device_config_needed
) {
1012 scsi_rescan_device(&device
->sdev_gendev
);
1017 scsi_device_put(device
);
1019 if (device_config_needed
== ADD
) {
1020 scsi_add_device(dev
->scsi_host_ptr
,
1021 CONTAINER_TO_CHANNEL(container
),
1022 CONTAINER_TO_ID(container
),
1023 CONTAINER_TO_LUN(container
));
1028 static int _aac_reset_adapter(struct aac_dev
*aac
, int forced
)
1032 struct Scsi_Host
*host
;
1033 struct scsi_device
*dev
;
1034 struct scsi_cmnd
*command
;
1035 struct scsi_cmnd
*command_list
;
1040 * - host is locked, unless called by the aacraid thread.
1041 * (a matter of convenience, due to legacy issues surrounding
1042 * eh_host_adapter_reset).
1043 * - in_reset is asserted, so no new i/o is getting to the
1045 * - The card is dead, or will be very shortly ;-/ so no new
1046 * commands are completing in the interrupt service.
1048 host
= aac
->scsi_host_ptr
;
1049 scsi_block_requests(host
);
1050 aac_adapter_disable_int(aac
);
1051 if (aac
->thread
->pid
!= current
->pid
) {
1052 spin_unlock_irq(host
->host_lock
);
1053 kthread_stop(aac
->thread
);
1058 * If a positive health, means in a known DEAD PANIC
1059 * state and the adapter could be reset to `try again'.
1061 retval
= aac_adapter_restart(aac
, forced
? 0 : aac_adapter_check_health(aac
));
1067 * Loop through the fibs, close the synchronous FIBS
1069 for (retval
= 1, index
= 0; index
< (aac
->scsi_host_ptr
->can_queue
+ AAC_NUM_MGT_FIB
); index
++) {
1070 struct fib
*fib
= &aac
->fibs
[index
];
1071 if (!(fib
->hw_fib_va
->header
.XferState
& cpu_to_le32(NoResponseExpected
| Async
)) &&
1072 (fib
->hw_fib_va
->header
.XferState
& cpu_to_le32(ResponseExpected
))) {
1073 unsigned long flagv
;
1074 spin_lock_irqsave(&fib
->event_lock
, flagv
);
1075 up(&fib
->event_wait
);
1076 spin_unlock_irqrestore(&fib
->event_lock
, flagv
);
1081 /* Give some extra time for ioctls to complete. */
1084 index
= aac
->cardtype
;
1087 * Re-initialize the adapter, first free resources, then carefully
1088 * apply the initialization sequence to come back again. Only risk
1089 * is a change in Firmware dropping cache, it is assumed the caller
1090 * will ensure that i/o is queisced and the card is flushed in that
1093 aac_fib_map_free(aac
);
1094 pci_free_consistent(aac
->pdev
, aac
->comm_size
, aac
->comm_addr
, aac
->comm_phys
);
1095 aac
->comm_addr
= NULL
;
1099 free_irq(aac
->pdev
->irq
, aac
);
1100 kfree(aac
->fsa_dev
);
1101 aac
->fsa_dev
= NULL
;
1102 quirks
= aac_get_driver_ident(index
)->quirks
;
1103 if (quirks
& AAC_QUIRK_31BIT
) {
1104 if (((retval
= pci_set_dma_mask(aac
->pdev
, DMA_31BIT_MASK
))) ||
1105 ((retval
= pci_set_consistent_dma_mask(aac
->pdev
, DMA_31BIT_MASK
))))
1108 if (((retval
= pci_set_dma_mask(aac
->pdev
, DMA_32BIT_MASK
))) ||
1109 ((retval
= pci_set_consistent_dma_mask(aac
->pdev
, DMA_32BIT_MASK
))))
1112 if ((retval
= (*(aac_get_driver_ident(index
)->init
))(aac
)))
1114 if (quirks
& AAC_QUIRK_31BIT
)
1115 if ((retval
= pci_set_dma_mask(aac
->pdev
, DMA_32BIT_MASK
)))
1118 aac
->thread
= kthread_run(aac_command_thread
, aac
, aac
->name
);
1119 if (IS_ERR(aac
->thread
)) {
1120 retval
= PTR_ERR(aac
->thread
);
1124 (void)aac_get_adapter_info(aac
);
1125 if ((quirks
& AAC_QUIRK_34SG
) && (host
->sg_tablesize
> 34)) {
1126 host
->sg_tablesize
= 34;
1127 host
->max_sectors
= (host
->sg_tablesize
* 8) + 112;
1129 if ((quirks
& AAC_QUIRK_17SG
) && (host
->sg_tablesize
> 17)) {
1130 host
->sg_tablesize
= 17;
1131 host
->max_sectors
= (host
->sg_tablesize
* 8) + 112;
1133 aac_get_config_status(aac
, 1);
1134 aac_get_containers(aac
);
1136 * This is where the assumption that the Adapter is quiesced
1139 command_list
= NULL
;
1140 __shost_for_each_device(dev
, host
) {
1141 unsigned long flags
;
1142 spin_lock_irqsave(&dev
->list_lock
, flags
);
1143 list_for_each_entry(command
, &dev
->cmd_list
, list
)
1144 if (command
->SCp
.phase
== AAC_OWNER_FIRMWARE
) {
1145 command
->SCp
.buffer
= (struct scatterlist
*)command_list
;
1146 command_list
= command
;
1148 spin_unlock_irqrestore(&dev
->list_lock
, flags
);
1150 while ((command
= command_list
)) {
1151 command_list
= (struct scsi_cmnd
*)command
->SCp
.buffer
;
1152 command
->SCp
.buffer
= NULL
;
1153 command
->result
= DID_OK
<< 16
1154 | COMMAND_COMPLETE
<< 8
1155 | SAM_STAT_TASK_SET_FULL
;
1156 command
->SCp
.phase
= AAC_OWNER_ERROR_HANDLER
;
1157 command
->scsi_done(command
);
1163 scsi_unblock_requests(host
);
1165 spin_lock_irq(host
->host_lock
);
1170 int aac_reset_adapter(struct aac_dev
* aac
, int forced
)
1172 unsigned long flagv
= 0;
1174 struct Scsi_Host
* host
;
1176 if (spin_trylock_irqsave(&aac
->fib_lock
, flagv
) == 0)
1179 if (aac
->in_reset
) {
1180 spin_unlock_irqrestore(&aac
->fib_lock
, flagv
);
1184 spin_unlock_irqrestore(&aac
->fib_lock
, flagv
);
1187 * Wait for all commands to complete to this specific
1188 * target (block maximum 60 seconds). Although not necessary,
1189 * it does make us a good storage citizen.
1191 host
= aac
->scsi_host_ptr
;
1192 scsi_block_requests(host
);
1193 if (forced
< 2) for (retval
= 60; retval
; --retval
) {
1194 struct scsi_device
* dev
;
1195 struct scsi_cmnd
* command
;
1198 __shost_for_each_device(dev
, host
) {
1199 spin_lock_irqsave(&dev
->list_lock
, flagv
);
1200 list_for_each_entry(command
, &dev
->cmd_list
, list
) {
1201 if (command
->SCp
.phase
== AAC_OWNER_FIRMWARE
) {
1206 spin_unlock_irqrestore(&dev
->list_lock
, flagv
);
1212 * We can exit If all the commands are complete
1219 /* Quiesce build, flush cache, write through mode */
1221 aac_send_shutdown(aac
);
1222 spin_lock_irqsave(host
->host_lock
, flagv
);
1223 retval
= _aac_reset_adapter(aac
, forced
? forced
: ((aac_check_reset
!= 0) && (aac_check_reset
!= 1)));
1224 spin_unlock_irqrestore(host
->host_lock
, flagv
);
1226 if ((forced
< 2) && (retval
== -ENODEV
)) {
1227 /* Unwind aac_send_shutdown() IOP_RESET unsupported/disabled */
1228 struct fib
* fibctx
= aac_fib_alloc(aac
);
1230 struct aac_pause
*cmd
;
1233 aac_fib_init(fibctx
);
1235 cmd
= (struct aac_pause
*) fib_data(fibctx
);
1237 cmd
->command
= cpu_to_le32(VM_ContainerConfig
);
1238 cmd
->type
= cpu_to_le32(CT_PAUSE_IO
);
1239 cmd
->timeout
= cpu_to_le32(1);
1240 cmd
->min
= cpu_to_le32(1);
1241 cmd
->noRescan
= cpu_to_le32(1);
1242 cmd
->count
= cpu_to_le32(0);
1244 status
= aac_fib_send(ContainerCommand
,
1246 sizeof(struct aac_pause
),
1248 -2 /* Timeout silently */, 1,
1252 aac_fib_complete(fibctx
);
1253 aac_fib_free(fibctx
);
1260 int aac_check_health(struct aac_dev
* aac
)
1263 unsigned long time_now
, flagv
= 0;
1264 struct list_head
* entry
;
1265 struct Scsi_Host
* host
;
1267 /* Extending the scope of fib_lock slightly to protect aac->in_reset */
1268 if (spin_trylock_irqsave(&aac
->fib_lock
, flagv
) == 0)
1271 if (aac
->in_reset
|| !(BlinkLED
= aac_adapter_check_health(aac
))) {
1272 spin_unlock_irqrestore(&aac
->fib_lock
, flagv
);
1279 * aac_aifcmd.command = AifCmdEventNotify = 1
1280 * aac_aifcmd.seqnum = 0xFFFFFFFF
1281 * aac_aifcmd.data[0] = AifEnExpEvent = 23
1282 * aac_aifcmd.data[1] = AifExeFirmwarePanic = 3
1283 * aac.aifcmd.data[2] = AifHighPriority = 3
1284 * aac.aifcmd.data[3] = BlinkLED
1287 time_now
= jiffies
/HZ
;
1288 entry
= aac
->fib_list
.next
;
1291 * For each Context that is on the
1292 * fibctxList, make a copy of the
1293 * fib, and then set the event to wake up the
1294 * thread that is waiting for it.
1296 while (entry
!= &aac
->fib_list
) {
1298 * Extract the fibctx
1300 struct aac_fib_context
*fibctx
= list_entry(entry
, struct aac_fib_context
, next
);
1301 struct hw_fib
* hw_fib
;
1304 * Check if the queue is getting
1307 if (fibctx
->count
> 20) {
1309 * It's *not* jiffies folks,
1310 * but jiffies / HZ, so do not
1313 u32 time_last
= fibctx
->jiffies
;
1315 * Has it been > 2 minutes
1316 * since the last read off
1319 if ((time_now
- time_last
) > aif_timeout
) {
1320 entry
= entry
->next
;
1321 aac_close_fib_context(aac
, fibctx
);
1326 * Warning: no sleep allowed while
1329 hw_fib
= kzalloc(sizeof(struct hw_fib
), GFP_ATOMIC
);
1330 fib
= kzalloc(sizeof(struct fib
), GFP_ATOMIC
);
1331 if (fib
&& hw_fib
) {
1332 struct aac_aifcmd
* aif
;
1334 fib
->hw_fib_va
= hw_fib
;
1337 fib
->type
= FSAFS_NTC_FIB_CONTEXT
;
1338 fib
->size
= sizeof (struct fib
);
1339 fib
->data
= hw_fib
->data
;
1340 aif
= (struct aac_aifcmd
*)hw_fib
->data
;
1341 aif
->command
= cpu_to_le32(AifCmdEventNotify
);
1342 aif
->seqnum
= cpu_to_le32(0xFFFFFFFF);
1343 aif
->data
[0] = AifEnExpEvent
;
1344 aif
->data
[1] = AifExeFirmwarePanic
;
1345 aif
->data
[2] = AifHighPriority
;
1346 aif
->data
[3] = BlinkLED
;
1349 * Put the FIB onto the
1352 list_add_tail(&fib
->fiblink
, &fibctx
->fib_list
);
1355 * Set the event to wake up the
1356 * thread that will waiting.
1358 up(&fibctx
->wait_sem
);
1360 printk(KERN_WARNING
"aifd: didn't allocate NewFib.\n");
1364 entry
= entry
->next
;
1367 spin_unlock_irqrestore(&aac
->fib_lock
, flagv
);
1370 printk(KERN_ERR
"%s: Host adapter dead %d\n", aac
->name
, BlinkLED
);
1374 printk(KERN_ERR
"%s: Host adapter BLINK LED 0x%x\n", aac
->name
, BlinkLED
);
1376 if (!aac_check_reset
||
1377 ((aac_check_reset
!= 1) &&
1378 (aac
->supplement_adapter_info
.SupportedOptions2
&
1379 cpu_to_le32(AAC_OPTION_IGNORE_RESET
))))
1381 host
= aac
->scsi_host_ptr
;
1382 if (aac
->thread
->pid
!= current
->pid
)
1383 spin_lock_irqsave(host
->host_lock
, flagv
);
1384 BlinkLED
= _aac_reset_adapter(aac
, aac_check_reset
!= 1);
1385 if (aac
->thread
->pid
!= current
->pid
)
1386 spin_unlock_irqrestore(host
->host_lock
, flagv
);
1396 * aac_command_thread - command processing thread
1397 * @dev: Adapter to monitor
1399 * Waits on the commandready event in it's queue. When the event gets set
1400 * it will pull FIBs off it's queue. It will continue to pull FIBs off
1401 * until the queue is empty. When the queue is empty it will wait for
1405 int aac_command_thread(void *data
)
1407 struct aac_dev
*dev
= data
;
1408 struct hw_fib
*hw_fib
, *hw_newfib
;
1409 struct fib
*fib
, *newfib
;
1410 struct aac_fib_context
*fibctx
;
1411 unsigned long flags
;
1412 DECLARE_WAITQUEUE(wait
, current
);
1413 unsigned long next_jiffies
= jiffies
+ HZ
;
1414 unsigned long next_check_jiffies
= next_jiffies
;
1415 long difference
= HZ
;
1418 * We can only have one thread per adapter for AIF's.
1420 if (dev
->aif_thread
)
1424 * Let the DPC know it has a place to send the AIF's to.
1426 dev
->aif_thread
= 1;
1427 add_wait_queue(&dev
->queues
->queue
[HostNormCmdQueue
].cmdready
, &wait
);
1428 set_current_state(TASK_INTERRUPTIBLE
);
1429 dprintk ((KERN_INFO
"aac_command_thread start\n"));
1432 spin_lock_irqsave(dev
->queues
->queue
[HostNormCmdQueue
].lock
, flags
);
1433 while(!list_empty(&(dev
->queues
->queue
[HostNormCmdQueue
].cmdq
))) {
1434 struct list_head
*entry
;
1435 struct aac_aifcmd
* aifcmd
;
1437 set_current_state(TASK_RUNNING
);
1439 entry
= dev
->queues
->queue
[HostNormCmdQueue
].cmdq
.next
;
1442 spin_unlock_irqrestore(dev
->queues
->queue
[HostNormCmdQueue
].lock
, flags
);
1443 fib
= list_entry(entry
, struct fib
, fiblink
);
1445 * We will process the FIB here or pass it to a
1446 * worker thread that is TBD. We Really can't
1447 * do anything at this point since we don't have
1448 * anything defined for this thread to do.
1450 hw_fib
= fib
->hw_fib_va
;
1451 memset(fib
, 0, sizeof(struct fib
));
1452 fib
->type
= FSAFS_NTC_FIB_CONTEXT
;
1453 fib
->size
= sizeof( struct fib
);
1454 fib
->hw_fib_va
= hw_fib
;
1455 fib
->data
= hw_fib
->data
;
1458 * We only handle AifRequest fibs from the adapter.
1460 aifcmd
= (struct aac_aifcmd
*) hw_fib
->data
;
1461 if (aifcmd
->command
== cpu_to_le32(AifCmdDriverNotify
)) {
1462 /* Handle Driver Notify Events */
1463 aac_handle_aif(dev
, fib
);
1464 *(__le32
*)hw_fib
->data
= cpu_to_le32(ST_OK
);
1465 aac_fib_adapter_complete(fib
, (u16
)sizeof(u32
));
1467 struct list_head
*entry
;
1468 /* The u32 here is important and intended. We are using
1469 32bit wrapping time to fit the adapter field */
1471 u32 time_now
, time_last
;
1472 unsigned long flagv
;
1474 struct hw_fib
** hw_fib_pool
, ** hw_fib_p
;
1475 struct fib
** fib_pool
, ** fib_p
;
1478 if ((aifcmd
->command
==
1479 cpu_to_le32(AifCmdEventNotify
)) ||
1481 cpu_to_le32(AifCmdJobProgress
))) {
1482 aac_handle_aif(dev
, fib
);
1485 time_now
= jiffies
/HZ
;
1488 * Warning: no sleep allowed while
1489 * holding spinlock. We take the estimate
1490 * and pre-allocate a set of fibs outside the
1493 num
= le32_to_cpu(dev
->init
->AdapterFibsSize
)
1494 / sizeof(struct hw_fib
); /* some extra */
1495 spin_lock_irqsave(&dev
->fib_lock
, flagv
);
1496 entry
= dev
->fib_list
.next
;
1497 while (entry
!= &dev
->fib_list
) {
1498 entry
= entry
->next
;
1501 spin_unlock_irqrestore(&dev
->fib_lock
, flagv
);
1505 && ((hw_fib_pool
= kmalloc(sizeof(struct hw_fib
*) * num
, GFP_KERNEL
)))
1506 && ((fib_pool
= kmalloc(sizeof(struct fib
*) * num
, GFP_KERNEL
)))) {
1507 hw_fib_p
= hw_fib_pool
;
1509 while (hw_fib_p
< &hw_fib_pool
[num
]) {
1510 if (!(*(hw_fib_p
++) = kmalloc(sizeof(struct hw_fib
), GFP_KERNEL
))) {
1514 if (!(*(fib_p
++) = kmalloc(sizeof(struct fib
), GFP_KERNEL
))) {
1515 kfree(*(--hw_fib_p
));
1519 if ((num
= hw_fib_p
- hw_fib_pool
) == 0) {
1529 spin_lock_irqsave(&dev
->fib_lock
, flagv
);
1530 entry
= dev
->fib_list
.next
;
1532 * For each Context that is on the
1533 * fibctxList, make a copy of the
1534 * fib, and then set the event to wake up the
1535 * thread that is waiting for it.
1537 hw_fib_p
= hw_fib_pool
;
1539 while (entry
!= &dev
->fib_list
) {
1541 * Extract the fibctx
1543 fibctx
= list_entry(entry
, struct aac_fib_context
, next
);
1545 * Check if the queue is getting
1548 if (fibctx
->count
> 20)
1551 * It's *not* jiffies folks,
1552 * but jiffies / HZ so do not
1555 time_last
= fibctx
->jiffies
;
1557 * Has it been > 2 minutes
1558 * since the last read off
1561 if ((time_now
- time_last
) > aif_timeout
) {
1562 entry
= entry
->next
;
1563 aac_close_fib_context(dev
, fibctx
);
1568 * Warning: no sleep allowed while
1571 if (hw_fib_p
< &hw_fib_pool
[num
]) {
1572 hw_newfib
= *hw_fib_p
;
1573 *(hw_fib_p
++) = NULL
;
1577 * Make the copy of the FIB
1579 memcpy(hw_newfib
, hw_fib
, sizeof(struct hw_fib
));
1580 memcpy(newfib
, fib
, sizeof(struct fib
));
1581 newfib
->hw_fib_va
= hw_newfib
;
1583 * Put the FIB onto the
1586 list_add_tail(&newfib
->fiblink
, &fibctx
->fib_list
);
1589 * Set the event to wake up the
1590 * thread that is waiting.
1592 up(&fibctx
->wait_sem
);
1594 printk(KERN_WARNING
"aifd: didn't allocate NewFib.\n");
1596 entry
= entry
->next
;
1599 * Set the status of this FIB
1601 *(__le32
*)hw_fib
->data
= cpu_to_le32(ST_OK
);
1602 aac_fib_adapter_complete(fib
, sizeof(u32
));
1603 spin_unlock_irqrestore(&dev
->fib_lock
, flagv
);
1604 /* Free up the remaining resources */
1605 hw_fib_p
= hw_fib_pool
;
1607 while (hw_fib_p
< &hw_fib_pool
[num
]) {
1617 spin_lock_irqsave(dev
->queues
->queue
[HostNormCmdQueue
].lock
, flags
);
1620 * There are no more AIF's
1622 spin_unlock_irqrestore(dev
->queues
->queue
[HostNormCmdQueue
].lock
, flags
);
1625 * Background activity
1627 if ((time_before(next_check_jiffies
,next_jiffies
))
1628 && ((difference
= next_check_jiffies
- jiffies
) <= 0)) {
1629 next_check_jiffies
= next_jiffies
;
1630 if (aac_check_health(dev
) == 0) {
1631 difference
= ((long)(unsigned)check_interval
)
1633 next_check_jiffies
= jiffies
+ difference
;
1634 } else if (!dev
->queues
)
1637 if (!time_before(next_check_jiffies
,next_jiffies
)
1638 && ((difference
= next_jiffies
- jiffies
) <= 0)) {
1642 /* Don't even try to talk to adapter if its sick */
1643 ret
= aac_check_health(dev
);
1644 if (!ret
&& !dev
->queues
)
1646 next_check_jiffies
= jiffies
1647 + ((long)(unsigned)check_interval
)
1649 do_gettimeofday(&now
);
1651 /* Synchronize our watches */
1652 if (((1000000 - (1000000 / HZ
)) > now
.tv_usec
)
1653 && (now
.tv_usec
> (1000000 / HZ
)))
1654 difference
= (((1000000 - now
.tv_usec
) * HZ
)
1655 + 500000) / 1000000;
1656 else if (ret
== 0) {
1659 if ((fibptr
= aac_fib_alloc(dev
))) {
1662 aac_fib_init(fibptr
);
1664 info
= (__le32
*) fib_data(fibptr
);
1665 if (now
.tv_usec
> 500000)
1668 *info
= cpu_to_le32(now
.tv_sec
);
1670 (void)aac_fib_send(SendHostTime
,
1677 aac_fib_complete(fibptr
);
1678 aac_fib_free(fibptr
);
1680 difference
= (long)(unsigned)update_interval
*HZ
;
1683 difference
= 10 * HZ
;
1685 next_jiffies
= jiffies
+ difference
;
1686 if (time_before(next_check_jiffies
,next_jiffies
))
1687 difference
= next_check_jiffies
- jiffies
;
1689 if (difference
<= 0)
1691 set_current_state(TASK_INTERRUPTIBLE
);
1692 schedule_timeout(difference
);
1694 if (kthread_should_stop())
1698 remove_wait_queue(&dev
->queues
->queue
[HostNormCmdQueue
].cmdready
, &wait
);
1699 dev
->aif_thread
= 0;