[SCSI] aacraid: fix driver failure with Dell PowerEdge Expandable RAID Controller...
[linux-2.6/mini2440.git] / drivers / scsi / aacraid / commsup.c
blob53d415e812ee66b52129618afde00a53a3467f1d
1 /*
2 * Adaptec AAC series RAID controller driver
3 * (c) Copyright 2001 Red Hat Inc. <alan@redhat.com>
5 * based on the old aacraid driver that is..
6 * Adaptec aacraid device driver for Linux.
8 * Copyright (c) 2000-2007 Adaptec, Inc. (aacraid@adaptec.com)
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2, or (at your option)
13 * any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; see the file COPYING. If not, write to
22 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
24 * Module Name:
25 * commsup.c
27 * Abstract: Contain all routines that are required for FSA host/adapter
28 * communication.
32 #include <linux/kernel.h>
33 #include <linux/init.h>
34 #include <linux/types.h>
35 #include <linux/sched.h>
36 #include <linux/pci.h>
37 #include <linux/spinlock.h>
38 #include <linux/slab.h>
39 #include <linux/completion.h>
40 #include <linux/blkdev.h>
41 #include <linux/delay.h>
42 #include <linux/kthread.h>
43 #include <linux/interrupt.h>
44 #include <scsi/scsi.h>
45 #include <scsi/scsi_host.h>
46 #include <scsi/scsi_device.h>
47 #include <scsi/scsi_cmnd.h>
48 #include <asm/semaphore.h>
50 #include "aacraid.h"
52 /**
53 * fib_map_alloc - allocate the fib objects
54 * @dev: Adapter to allocate for
56 * Allocate and map the shared PCI space for the FIB blocks used to
57 * talk to the Adaptec firmware.
60 static int fib_map_alloc(struct aac_dev *dev)
62 dprintk((KERN_INFO
63 "allocate hardware fibs pci_alloc_consistent(%p, %d * (%d + %d), %p)\n",
64 dev->pdev, dev->max_fib_size, dev->scsi_host_ptr->can_queue,
65 AAC_NUM_MGT_FIB, &dev->hw_fib_pa));
66 if((dev->hw_fib_va = pci_alloc_consistent(dev->pdev, dev->max_fib_size
67 * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB),
68 &dev->hw_fib_pa))==NULL)
69 return -ENOMEM;
70 return 0;
73 /**
74 * aac_fib_map_free - free the fib objects
75 * @dev: Adapter to free
77 * Free the PCI mappings and the memory allocated for FIB blocks
78 * on this adapter.
81 void aac_fib_map_free(struct aac_dev *dev)
83 pci_free_consistent(dev->pdev,
84 dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB),
85 dev->hw_fib_va, dev->hw_fib_pa);
86 dev->hw_fib_va = NULL;
87 dev->hw_fib_pa = 0;
90 /**
91 * aac_fib_setup - setup the fibs
92 * @dev: Adapter to set up
94 * Allocate the PCI space for the fibs, map it and then intialise the
95 * fib area, the unmapped fib data and also the free list
98 int aac_fib_setup(struct aac_dev * dev)
100 struct fib *fibptr;
101 struct hw_fib *hw_fib;
102 dma_addr_t hw_fib_pa;
103 int i;
105 while (((i = fib_map_alloc(dev)) == -ENOMEM)
106 && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) {
107 dev->init->MaxIoCommands = cpu_to_le32((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) >> 1);
108 dev->scsi_host_ptr->can_queue = le32_to_cpu(dev->init->MaxIoCommands) - AAC_NUM_MGT_FIB;
110 if (i<0)
111 return -ENOMEM;
113 hw_fib = dev->hw_fib_va;
114 hw_fib_pa = dev->hw_fib_pa;
115 memset(hw_fib, 0, dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB));
117 * Initialise the fibs
119 for (i = 0, fibptr = &dev->fibs[i]; i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); i++, fibptr++)
121 fibptr->dev = dev;
122 fibptr->hw_fib_va = hw_fib;
123 fibptr->data = (void *) fibptr->hw_fib_va->data;
124 fibptr->next = fibptr+1; /* Forward chain the fibs */
125 init_MUTEX_LOCKED(&fibptr->event_wait);
126 spin_lock_init(&fibptr->event_lock);
127 hw_fib->header.XferState = cpu_to_le32(0xffffffff);
128 hw_fib->header.SenderSize = cpu_to_le16(dev->max_fib_size);
129 fibptr->hw_fib_pa = hw_fib_pa;
130 hw_fib = (struct hw_fib *)((unsigned char *)hw_fib + dev->max_fib_size);
131 hw_fib_pa = hw_fib_pa + dev->max_fib_size;
134 * Add the fib chain to the free list
136 dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL;
138 * Enable this to debug out of queue space
140 dev->free_fib = &dev->fibs[0];
141 return 0;
145 * aac_fib_alloc - allocate a fib
146 * @dev: Adapter to allocate the fib for
148 * Allocate a fib from the adapter fib pool. If the pool is empty we
149 * return NULL.
152 struct fib *aac_fib_alloc(struct aac_dev *dev)
154 struct fib * fibptr;
155 unsigned long flags;
156 spin_lock_irqsave(&dev->fib_lock, flags);
157 fibptr = dev->free_fib;
158 if(!fibptr){
159 spin_unlock_irqrestore(&dev->fib_lock, flags);
160 return fibptr;
162 dev->free_fib = fibptr->next;
163 spin_unlock_irqrestore(&dev->fib_lock, flags);
165 * Set the proper node type code and node byte size
167 fibptr->type = FSAFS_NTC_FIB_CONTEXT;
168 fibptr->size = sizeof(struct fib);
170 * Null out fields that depend on being zero at the start of
171 * each I/O
173 fibptr->hw_fib_va->header.XferState = 0;
174 fibptr->callback = NULL;
175 fibptr->callback_data = NULL;
177 return fibptr;
181 * aac_fib_free - free a fib
182 * @fibptr: fib to free up
184 * Frees up a fib and places it on the appropriate queue
187 void aac_fib_free(struct fib *fibptr)
189 unsigned long flags;
191 spin_lock_irqsave(&fibptr->dev->fib_lock, flags);
192 if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
193 aac_config.fib_timeouts++;
194 if (fibptr->hw_fib_va->header.XferState != 0) {
195 printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n",
196 (void*)fibptr,
197 le32_to_cpu(fibptr->hw_fib_va->header.XferState));
199 fibptr->next = fibptr->dev->free_fib;
200 fibptr->dev->free_fib = fibptr;
201 spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags);
205 * aac_fib_init - initialise a fib
206 * @fibptr: The fib to initialize
208 * Set up the generic fib fields ready for use
211 void aac_fib_init(struct fib *fibptr)
213 struct hw_fib *hw_fib = fibptr->hw_fib_va;
215 hw_fib->header.StructType = FIB_MAGIC;
216 hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size);
217 hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable);
218 hw_fib->header.SenderFibAddress = 0; /* Filled in later if needed */
219 hw_fib->header.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
220 hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size);
224 * fib_deallocate - deallocate a fib
225 * @fibptr: fib to deallocate
227 * Will deallocate and return to the free pool the FIB pointed to by the
228 * caller.
231 static void fib_dealloc(struct fib * fibptr)
233 struct hw_fib *hw_fib = fibptr->hw_fib_va;
234 BUG_ON(hw_fib->header.StructType != FIB_MAGIC);
235 hw_fib->header.XferState = 0;
239 * Commuication primitives define and support the queuing method we use to
240 * support host to adapter commuication. All queue accesses happen through
241 * these routines and are the only routines which have a knowledge of the
242 * how these queues are implemented.
246 * aac_get_entry - get a queue entry
247 * @dev: Adapter
248 * @qid: Queue Number
249 * @entry: Entry return
250 * @index: Index return
251 * @nonotify: notification control
253 * With a priority the routine returns a queue entry if the queue has free entries. If the queue
254 * is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is
255 * returned.
258 static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify)
260 struct aac_queue * q;
261 unsigned long idx;
264 * All of the queues wrap when they reach the end, so we check
265 * to see if they have reached the end and if they have we just
266 * set the index back to zero. This is a wrap. You could or off
267 * the high bits in all updates but this is a bit faster I think.
270 q = &dev->queues->queue[qid];
272 idx = *index = le32_to_cpu(*(q->headers.producer));
273 /* Interrupt Moderation, only interrupt for first two entries */
274 if (idx != le32_to_cpu(*(q->headers.consumer))) {
275 if (--idx == 0) {
276 if (qid == AdapNormCmdQueue)
277 idx = ADAP_NORM_CMD_ENTRIES;
278 else
279 idx = ADAP_NORM_RESP_ENTRIES;
281 if (idx != le32_to_cpu(*(q->headers.consumer)))
282 *nonotify = 1;
285 if (qid == AdapNormCmdQueue) {
286 if (*index >= ADAP_NORM_CMD_ENTRIES)
287 *index = 0; /* Wrap to front of the Producer Queue. */
288 } else {
289 if (*index >= ADAP_NORM_RESP_ENTRIES)
290 *index = 0; /* Wrap to front of the Producer Queue. */
293 if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) { /* Queue is full */
294 printk(KERN_WARNING "Queue %d full, %u outstanding.\n",
295 qid, q->numpending);
296 return 0;
297 } else {
298 *entry = q->base + *index;
299 return 1;
304 * aac_queue_get - get the next free QE
305 * @dev: Adapter
306 * @index: Returned index
307 * @priority: Priority of fib
308 * @fib: Fib to associate with the queue entry
309 * @wait: Wait if queue full
310 * @fibptr: Driver fib object to go with fib
311 * @nonotify: Don't notify the adapter
313 * Gets the next free QE off the requested priorty adapter command
314 * queue and associates the Fib with the QE. The QE represented by
315 * index is ready to insert on the queue when this routine returns
316 * success.
319 int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify)
321 struct aac_entry * entry = NULL;
322 int map = 0;
324 if (qid == AdapNormCmdQueue) {
325 /* if no entries wait for some if caller wants to */
326 while (!aac_get_entry(dev, qid, &entry, index, nonotify))
328 printk(KERN_ERR "GetEntries failed\n");
331 * Setup queue entry with a command, status and fib mapped
333 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
334 map = 1;
335 } else {
336 while(!aac_get_entry(dev, qid, &entry, index, nonotify))
338 /* if no entries wait for some if caller wants to */
341 * Setup queue entry with command, status and fib mapped
343 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
344 entry->addr = hw_fib->header.SenderFibAddress;
345 /* Restore adapters pointer to the FIB */
346 hw_fib->header.ReceiverFibAddress = hw_fib->header.SenderFibAddress; /* Let the adapter now where to find its data */
347 map = 0;
350 * If MapFib is true than we need to map the Fib and put pointers
351 * in the queue entry.
353 if (map)
354 entry->addr = cpu_to_le32(fibptr->hw_fib_pa);
355 return 0;
359 * Define the highest level of host to adapter communication routines.
360 * These routines will support host to adapter FS commuication. These
361 * routines have no knowledge of the commuication method used. This level
362 * sends and receives FIBs. This level has no knowledge of how these FIBs
363 * get passed back and forth.
367 * aac_fib_send - send a fib to the adapter
368 * @command: Command to send
369 * @fibptr: The fib
370 * @size: Size of fib data area
371 * @priority: Priority of Fib
372 * @wait: Async/sync select
373 * @reply: True if a reply is wanted
374 * @callback: Called with reply
375 * @callback_data: Passed to callback
377 * Sends the requested FIB to the adapter and optionally will wait for a
378 * response FIB. If the caller does not wish to wait for a response than
379 * an event to wait on must be supplied. This event will be set when a
380 * response FIB is received from the adapter.
383 int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size,
384 int priority, int wait, int reply, fib_callback callback,
385 void *callback_data)
387 struct aac_dev * dev = fibptr->dev;
388 struct hw_fib * hw_fib = fibptr->hw_fib_va;
389 unsigned long flags = 0;
390 unsigned long qflags;
392 if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned)))
393 return -EBUSY;
395 * There are 5 cases with the wait and reponse requested flags.
396 * The only invalid cases are if the caller requests to wait and
397 * does not request a response and if the caller does not want a
398 * response and the Fib is not allocated from pool. If a response
399 * is not requesed the Fib will just be deallocaed by the DPC
400 * routine when the response comes back from the adapter. No
401 * further processing will be done besides deleting the Fib. We
402 * will have a debug mode where the adapter can notify the host
403 * it had a problem and the host can log that fact.
405 if (wait && !reply) {
406 return -EINVAL;
407 } else if (!wait && reply) {
408 hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected);
409 FIB_COUNTER_INCREMENT(aac_config.AsyncSent);
410 } else if (!wait && !reply) {
411 hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected);
412 FIB_COUNTER_INCREMENT(aac_config.NoResponseSent);
413 } else if (wait && reply) {
414 hw_fib->header.XferState |= cpu_to_le32(ResponseExpected);
415 FIB_COUNTER_INCREMENT(aac_config.NormalSent);
418 * Map the fib into 32bits by using the fib number
421 hw_fib->header.SenderFibAddress = cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2);
422 hw_fib->header.SenderData = (u32)(fibptr - dev->fibs);
424 * Set FIB state to indicate where it came from and if we want a
425 * response from the adapter. Also load the command from the
426 * caller.
428 * Map the hw fib pointer as a 32bit value
430 hw_fib->header.Command = cpu_to_le16(command);
431 hw_fib->header.XferState |= cpu_to_le32(SentFromHost);
432 fibptr->hw_fib_va->header.Flags = 0; /* 0 the flags field - internal only*/
434 * Set the size of the Fib we want to send to the adapter
436 hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size);
437 if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) {
438 return -EMSGSIZE;
441 * Get a queue entry connect the FIB to it and send an notify
442 * the adapter a command is ready.
444 hw_fib->header.XferState |= cpu_to_le32(NormalPriority);
447 * Fill in the Callback and CallbackContext if we are not
448 * going to wait.
450 if (!wait) {
451 fibptr->callback = callback;
452 fibptr->callback_data = callback_data;
455 fibptr->done = 0;
456 fibptr->flags = 0;
458 FIB_COUNTER_INCREMENT(aac_config.FibsSent);
460 dprintk((KERN_DEBUG "Fib contents:.\n"));
461 dprintk((KERN_DEBUG " Command = %d.\n", le32_to_cpu(hw_fib->header.Command)));
462 dprintk((KERN_DEBUG " SubCommand = %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command)));
463 dprintk((KERN_DEBUG " XferState = %x.\n", le32_to_cpu(hw_fib->header.XferState)));
464 dprintk((KERN_DEBUG " hw_fib va being sent=%p\n",fibptr->hw_fib_va));
465 dprintk((KERN_DEBUG " hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa));
466 dprintk((KERN_DEBUG " fib being sent=%p\n",fibptr));
468 if (!dev->queues)
469 return -EBUSY;
471 if(wait)
472 spin_lock_irqsave(&fibptr->event_lock, flags);
473 aac_adapter_deliver(fibptr);
476 * If the caller wanted us to wait for response wait now.
479 if (wait) {
480 spin_unlock_irqrestore(&fibptr->event_lock, flags);
481 /* Only set for first known interruptable command */
482 if (wait < 0) {
484 * *VERY* Dangerous to time out a command, the
485 * assumption is made that we have no hope of
486 * functioning because an interrupt routing or other
487 * hardware failure has occurred.
489 unsigned long count = 36000000L; /* 3 minutes */
490 while (down_trylock(&fibptr->event_wait)) {
491 int blink;
492 if (--count == 0) {
493 struct aac_queue * q = &dev->queues->queue[AdapNormCmdQueue];
494 spin_lock_irqsave(q->lock, qflags);
495 q->numpending--;
496 spin_unlock_irqrestore(q->lock, qflags);
497 if (wait == -1) {
498 printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n"
499 "Usually a result of a PCI interrupt routing problem;\n"
500 "update mother board BIOS or consider utilizing one of\n"
501 "the SAFE mode kernel options (acpi, apic etc)\n");
503 return -ETIMEDOUT;
505 if ((blink = aac_adapter_check_health(dev)) > 0) {
506 if (wait == -1) {
507 printk(KERN_ERR "aacraid: aac_fib_send: adapter blinkLED 0x%x.\n"
508 "Usually a result of a serious unrecoverable hardware problem\n",
509 blink);
511 return -EFAULT;
513 udelay(5);
515 } else
516 (void)down_interruptible(&fibptr->event_wait);
517 spin_lock_irqsave(&fibptr->event_lock, flags);
518 if (fibptr->done == 0) {
519 fibptr->done = 2; /* Tell interrupt we aborted */
520 spin_unlock_irqrestore(&fibptr->event_lock, flags);
521 return -EINTR;
523 spin_unlock_irqrestore(&fibptr->event_lock, flags);
524 BUG_ON(fibptr->done == 0);
526 if(unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
527 return -ETIMEDOUT;
528 return 0;
531 * If the user does not want a response than return success otherwise
532 * return pending
534 if (reply)
535 return -EINPROGRESS;
536 else
537 return 0;
540 /**
541 * aac_consumer_get - get the top of the queue
542 * @dev: Adapter
543 * @q: Queue
544 * @entry: Return entry
546 * Will return a pointer to the entry on the top of the queue requested that
547 * we are a consumer of, and return the address of the queue entry. It does
548 * not change the state of the queue.
551 int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry)
553 u32 index;
554 int status;
555 if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) {
556 status = 0;
557 } else {
559 * The consumer index must be wrapped if we have reached
560 * the end of the queue, else we just use the entry
561 * pointed to by the header index
563 if (le32_to_cpu(*q->headers.consumer) >= q->entries)
564 index = 0;
565 else
566 index = le32_to_cpu(*q->headers.consumer);
567 *entry = q->base + index;
568 status = 1;
570 return(status);
574 * aac_consumer_free - free consumer entry
575 * @dev: Adapter
576 * @q: Queue
577 * @qid: Queue ident
579 * Frees up the current top of the queue we are a consumer of. If the
580 * queue was full notify the producer that the queue is no longer full.
583 void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid)
585 int wasfull = 0;
586 u32 notify;
588 if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer))
589 wasfull = 1;
591 if (le32_to_cpu(*q->headers.consumer) >= q->entries)
592 *q->headers.consumer = cpu_to_le32(1);
593 else
594 *q->headers.consumer = cpu_to_le32(le32_to_cpu(*q->headers.consumer)+1);
596 if (wasfull) {
597 switch (qid) {
599 case HostNormCmdQueue:
600 notify = HostNormCmdNotFull;
601 break;
602 case HostNormRespQueue:
603 notify = HostNormRespNotFull;
604 break;
605 default:
606 BUG();
607 return;
609 aac_adapter_notify(dev, notify);
614 * aac_fib_adapter_complete - complete adapter issued fib
615 * @fibptr: fib to complete
616 * @size: size of fib
618 * Will do all necessary work to complete a FIB that was sent from
619 * the adapter.
622 int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size)
624 struct hw_fib * hw_fib = fibptr->hw_fib_va;
625 struct aac_dev * dev = fibptr->dev;
626 struct aac_queue * q;
627 unsigned long nointr = 0;
628 unsigned long qflags;
630 if (hw_fib->header.XferState == 0) {
631 if (dev->comm_interface == AAC_COMM_MESSAGE)
632 kfree (hw_fib);
633 return 0;
636 * If we plan to do anything check the structure type first.
638 if ( hw_fib->header.StructType != FIB_MAGIC ) {
639 if (dev->comm_interface == AAC_COMM_MESSAGE)
640 kfree (hw_fib);
641 return -EINVAL;
644 * This block handles the case where the adapter had sent us a
645 * command and we have finished processing the command. We
646 * call completeFib when we are done processing the command
647 * and want to send a response back to the adapter. This will
648 * send the completed cdb to the adapter.
650 if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) {
651 if (dev->comm_interface == AAC_COMM_MESSAGE) {
652 kfree (hw_fib);
653 } else {
654 u32 index;
655 hw_fib->header.XferState |= cpu_to_le32(HostProcessed);
656 if (size) {
657 size += sizeof(struct aac_fibhdr);
658 if (size > le16_to_cpu(hw_fib->header.SenderSize))
659 return -EMSGSIZE;
660 hw_fib->header.Size = cpu_to_le16(size);
662 q = &dev->queues->queue[AdapNormRespQueue];
663 spin_lock_irqsave(q->lock, qflags);
664 aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr);
665 *(q->headers.producer) = cpu_to_le32(index + 1);
666 spin_unlock_irqrestore(q->lock, qflags);
667 if (!(nointr & (int)aac_config.irq_mod))
668 aac_adapter_notify(dev, AdapNormRespQueue);
671 else
673 printk(KERN_WARNING "aac_fib_adapter_complete: Unknown xferstate detected.\n");
674 BUG();
676 return 0;
680 * aac_fib_complete - fib completion handler
681 * @fib: FIB to complete
683 * Will do all necessary work to complete a FIB.
686 int aac_fib_complete(struct fib *fibptr)
688 struct hw_fib * hw_fib = fibptr->hw_fib_va;
691 * Check for a fib which has already been completed
694 if (hw_fib->header.XferState == 0)
695 return 0;
697 * If we plan to do anything check the structure type first.
700 if (hw_fib->header.StructType != FIB_MAGIC)
701 return -EINVAL;
703 * This block completes a cdb which orginated on the host and we
704 * just need to deallocate the cdb or reinit it. At this point the
705 * command is complete that we had sent to the adapter and this
706 * cdb could be reused.
708 if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) &&
709 (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)))
711 fib_dealloc(fibptr);
713 else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost))
716 * This handles the case when the host has aborted the I/O
717 * to the adapter because the adapter is not responding
719 fib_dealloc(fibptr);
720 } else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) {
721 fib_dealloc(fibptr);
722 } else {
723 BUG();
725 return 0;
729 * aac_printf - handle printf from firmware
730 * @dev: Adapter
731 * @val: Message info
733 * Print a message passed to us by the controller firmware on the
734 * Adaptec board
737 void aac_printf(struct aac_dev *dev, u32 val)
739 char *cp = dev->printfbuf;
740 if (dev->printf_enabled)
742 int length = val & 0xffff;
743 int level = (val >> 16) & 0xffff;
746 * The size of the printfbuf is set in port.c
747 * There is no variable or define for it
749 if (length > 255)
750 length = 255;
751 if (cp[length] != 0)
752 cp[length] = 0;
753 if (level == LOG_AAC_HIGH_ERROR)
754 printk(KERN_WARNING "%s:%s", dev->name, cp);
755 else
756 printk(KERN_INFO "%s:%s", dev->name, cp);
758 memset(cp, 0, 256);
763 * aac_handle_aif - Handle a message from the firmware
764 * @dev: Which adapter this fib is from
765 * @fibptr: Pointer to fibptr from adapter
767 * This routine handles a driver notify fib from the adapter and
768 * dispatches it to the appropriate routine for handling.
771 #define AIF_SNIFF_TIMEOUT (30*HZ)
772 static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr)
774 struct hw_fib * hw_fib = fibptr->hw_fib_va;
775 struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data;
776 u32 container;
777 struct scsi_device *device;
778 enum {
779 NOTHING,
780 DELETE,
781 ADD,
782 CHANGE
783 } device_config_needed;
785 /* Sniff for container changes */
787 if (!dev || !dev->fsa_dev)
788 return;
789 container = (u32)-1;
792 * We have set this up to try and minimize the number of
793 * re-configures that take place. As a result of this when
794 * certain AIF's come in we will set a flag waiting for another
795 * type of AIF before setting the re-config flag.
797 switch (le32_to_cpu(aifcmd->command)) {
798 case AifCmdDriverNotify:
799 switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
801 * Morph or Expand complete
803 case AifDenMorphComplete:
804 case AifDenVolumeExtendComplete:
805 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
806 if (container >= dev->maximum_num_containers)
807 break;
810 * Find the scsi_device associated with the SCSI
811 * address. Make sure we have the right array, and if
812 * so set the flag to initiate a new re-config once we
813 * see an AifEnConfigChange AIF come through.
816 if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) {
817 device = scsi_device_lookup(dev->scsi_host_ptr,
818 CONTAINER_TO_CHANNEL(container),
819 CONTAINER_TO_ID(container),
820 CONTAINER_TO_LUN(container));
821 if (device) {
822 dev->fsa_dev[container].config_needed = CHANGE;
823 dev->fsa_dev[container].config_waiting_on = AifEnConfigChange;
824 dev->fsa_dev[container].config_waiting_stamp = jiffies;
825 scsi_device_put(device);
831 * If we are waiting on something and this happens to be
832 * that thing then set the re-configure flag.
834 if (container != (u32)-1) {
835 if (container >= dev->maximum_num_containers)
836 break;
837 if ((dev->fsa_dev[container].config_waiting_on ==
838 le32_to_cpu(*(__le32 *)aifcmd->data)) &&
839 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
840 dev->fsa_dev[container].config_waiting_on = 0;
841 } else for (container = 0;
842 container < dev->maximum_num_containers; ++container) {
843 if ((dev->fsa_dev[container].config_waiting_on ==
844 le32_to_cpu(*(__le32 *)aifcmd->data)) &&
845 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
846 dev->fsa_dev[container].config_waiting_on = 0;
848 break;
850 case AifCmdEventNotify:
851 switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
853 * Add an Array.
855 case AifEnAddContainer:
856 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
857 if (container >= dev->maximum_num_containers)
858 break;
859 dev->fsa_dev[container].config_needed = ADD;
860 dev->fsa_dev[container].config_waiting_on =
861 AifEnConfigChange;
862 dev->fsa_dev[container].config_waiting_stamp = jiffies;
863 break;
866 * Delete an Array.
868 case AifEnDeleteContainer:
869 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
870 if (container >= dev->maximum_num_containers)
871 break;
872 dev->fsa_dev[container].config_needed = DELETE;
873 dev->fsa_dev[container].config_waiting_on =
874 AifEnConfigChange;
875 dev->fsa_dev[container].config_waiting_stamp = jiffies;
876 break;
879 * Container change detected. If we currently are not
880 * waiting on something else, setup to wait on a Config Change.
882 case AifEnContainerChange:
883 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
884 if (container >= dev->maximum_num_containers)
885 break;
886 if (dev->fsa_dev[container].config_waiting_on &&
887 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
888 break;
889 dev->fsa_dev[container].config_needed = CHANGE;
890 dev->fsa_dev[container].config_waiting_on =
891 AifEnConfigChange;
892 dev->fsa_dev[container].config_waiting_stamp = jiffies;
893 break;
895 case AifEnConfigChange:
896 break;
901 * If we are waiting on something and this happens to be
902 * that thing then set the re-configure flag.
904 if (container != (u32)-1) {
905 if (container >= dev->maximum_num_containers)
906 break;
907 if ((dev->fsa_dev[container].config_waiting_on ==
908 le32_to_cpu(*(__le32 *)aifcmd->data)) &&
909 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
910 dev->fsa_dev[container].config_waiting_on = 0;
911 } else for (container = 0;
912 container < dev->maximum_num_containers; ++container) {
913 if ((dev->fsa_dev[container].config_waiting_on ==
914 le32_to_cpu(*(__le32 *)aifcmd->data)) &&
915 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
916 dev->fsa_dev[container].config_waiting_on = 0;
918 break;
920 case AifCmdJobProgress:
922 * These are job progress AIF's. When a Clear is being
923 * done on a container it is initially created then hidden from
924 * the OS. When the clear completes we don't get a config
925 * change so we monitor the job status complete on a clear then
926 * wait for a container change.
929 if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
930 (((__le32 *)aifcmd->data)[6] == ((__le32 *)aifcmd->data)[5] ||
931 ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess))) {
932 for (container = 0;
933 container < dev->maximum_num_containers;
934 ++container) {
936 * Stomp on all config sequencing for all
937 * containers?
939 dev->fsa_dev[container].config_waiting_on =
940 AifEnContainerChange;
941 dev->fsa_dev[container].config_needed = ADD;
942 dev->fsa_dev[container].config_waiting_stamp =
943 jiffies;
946 if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
947 ((__le32 *)aifcmd->data)[6] == 0 &&
948 ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning)) {
949 for (container = 0;
950 container < dev->maximum_num_containers;
951 ++container) {
953 * Stomp on all config sequencing for all
954 * containers?
956 dev->fsa_dev[container].config_waiting_on =
957 AifEnContainerChange;
958 dev->fsa_dev[container].config_needed = DELETE;
959 dev->fsa_dev[container].config_waiting_stamp =
960 jiffies;
963 break;
966 device_config_needed = NOTHING;
967 for (container = 0; container < dev->maximum_num_containers;
968 ++container) {
969 if ((dev->fsa_dev[container].config_waiting_on == 0) &&
970 (dev->fsa_dev[container].config_needed != NOTHING) &&
971 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) {
972 device_config_needed =
973 dev->fsa_dev[container].config_needed;
974 dev->fsa_dev[container].config_needed = NOTHING;
975 break;
978 if (device_config_needed == NOTHING)
979 return;
982 * If we decided that a re-configuration needs to be done,
983 * schedule it here on the way out the door, please close the door
984 * behind you.
988 * Find the scsi_device associated with the SCSI address,
989 * and mark it as changed, invalidating the cache. This deals
990 * with changes to existing device IDs.
993 if (!dev || !dev->scsi_host_ptr)
994 return;
996 * force reload of disk info via aac_probe_container
998 if ((device_config_needed == CHANGE)
999 && (dev->fsa_dev[container].valid == 1))
1000 dev->fsa_dev[container].valid = 2;
1001 if ((device_config_needed == CHANGE) ||
1002 (device_config_needed == ADD))
1003 aac_probe_container(dev, container);
1004 device = scsi_device_lookup(dev->scsi_host_ptr,
1005 CONTAINER_TO_CHANNEL(container),
1006 CONTAINER_TO_ID(container),
1007 CONTAINER_TO_LUN(container));
1008 if (device) {
1009 switch (device_config_needed) {
1010 case DELETE:
1011 case CHANGE:
1012 scsi_rescan_device(&device->sdev_gendev);
1014 default:
1015 break;
1017 scsi_device_put(device);
1019 if (device_config_needed == ADD) {
1020 scsi_add_device(dev->scsi_host_ptr,
1021 CONTAINER_TO_CHANNEL(container),
1022 CONTAINER_TO_ID(container),
1023 CONTAINER_TO_LUN(container));
1028 static int _aac_reset_adapter(struct aac_dev *aac, int forced)
1030 int index, quirks;
1031 int retval;
1032 struct Scsi_Host *host;
1033 struct scsi_device *dev;
1034 struct scsi_cmnd *command;
1035 struct scsi_cmnd *command_list;
1036 int jafo = 0;
1039 * Assumptions:
1040 * - host is locked, unless called by the aacraid thread.
1041 * (a matter of convenience, due to legacy issues surrounding
1042 * eh_host_adapter_reset).
1043 * - in_reset is asserted, so no new i/o is getting to the
1044 * card.
1045 * - The card is dead, or will be very shortly ;-/ so no new
1046 * commands are completing in the interrupt service.
1048 host = aac->scsi_host_ptr;
1049 scsi_block_requests(host);
1050 aac_adapter_disable_int(aac);
1051 if (aac->thread->pid != current->pid) {
1052 spin_unlock_irq(host->host_lock);
1053 kthread_stop(aac->thread);
1054 jafo = 1;
1058 * If a positive health, means in a known DEAD PANIC
1059 * state and the adapter could be reset to `try again'.
1061 retval = aac_adapter_restart(aac, forced ? 0 : aac_adapter_check_health(aac));
1063 if (retval)
1064 goto out;
1067 * Loop through the fibs, close the synchronous FIBS
1069 for (retval = 1, index = 0; index < (aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); index++) {
1070 struct fib *fib = &aac->fibs[index];
1071 if (!(fib->hw_fib_va->header.XferState & cpu_to_le32(NoResponseExpected | Async)) &&
1072 (fib->hw_fib_va->header.XferState & cpu_to_le32(ResponseExpected))) {
1073 unsigned long flagv;
1074 spin_lock_irqsave(&fib->event_lock, flagv);
1075 up(&fib->event_wait);
1076 spin_unlock_irqrestore(&fib->event_lock, flagv);
1077 schedule();
1078 retval = 0;
1081 /* Give some extra time for ioctls to complete. */
1082 if (retval == 0)
1083 ssleep(2);
1084 index = aac->cardtype;
1087 * Re-initialize the adapter, first free resources, then carefully
1088 * apply the initialization sequence to come back again. Only risk
1089 * is a change in Firmware dropping cache, it is assumed the caller
1090 * will ensure that i/o is queisced and the card is flushed in that
1091 * case.
1093 aac_fib_map_free(aac);
1094 pci_free_consistent(aac->pdev, aac->comm_size, aac->comm_addr, aac->comm_phys);
1095 aac->comm_addr = NULL;
1096 aac->comm_phys = 0;
1097 kfree(aac->queues);
1098 aac->queues = NULL;
1099 free_irq(aac->pdev->irq, aac);
1100 kfree(aac->fsa_dev);
1101 aac->fsa_dev = NULL;
1102 quirks = aac_get_driver_ident(index)->quirks;
1103 if (quirks & AAC_QUIRK_31BIT) {
1104 if (((retval = pci_set_dma_mask(aac->pdev, DMA_31BIT_MASK))) ||
1105 ((retval = pci_set_consistent_dma_mask(aac->pdev, DMA_31BIT_MASK))))
1106 goto out;
1107 } else {
1108 if (((retval = pci_set_dma_mask(aac->pdev, DMA_32BIT_MASK))) ||
1109 ((retval = pci_set_consistent_dma_mask(aac->pdev, DMA_32BIT_MASK))))
1110 goto out;
1112 if ((retval = (*(aac_get_driver_ident(index)->init))(aac)))
1113 goto out;
1114 if (quirks & AAC_QUIRK_31BIT)
1115 if ((retval = pci_set_dma_mask(aac->pdev, DMA_32BIT_MASK)))
1116 goto out;
1117 if (jafo) {
1118 aac->thread = kthread_run(aac_command_thread, aac, aac->name);
1119 if (IS_ERR(aac->thread)) {
1120 retval = PTR_ERR(aac->thread);
1121 goto out;
1124 (void)aac_get_adapter_info(aac);
1125 if ((quirks & AAC_QUIRK_34SG) && (host->sg_tablesize > 34)) {
1126 host->sg_tablesize = 34;
1127 host->max_sectors = (host->sg_tablesize * 8) + 112;
1129 if ((quirks & AAC_QUIRK_17SG) && (host->sg_tablesize > 17)) {
1130 host->sg_tablesize = 17;
1131 host->max_sectors = (host->sg_tablesize * 8) + 112;
1133 aac_get_config_status(aac, 1);
1134 aac_get_containers(aac);
1136 * This is where the assumption that the Adapter is quiesced
1137 * is important.
1139 command_list = NULL;
1140 __shost_for_each_device(dev, host) {
1141 unsigned long flags;
1142 spin_lock_irqsave(&dev->list_lock, flags);
1143 list_for_each_entry(command, &dev->cmd_list, list)
1144 if (command->SCp.phase == AAC_OWNER_FIRMWARE) {
1145 command->SCp.buffer = (struct scatterlist *)command_list;
1146 command_list = command;
1148 spin_unlock_irqrestore(&dev->list_lock, flags);
1150 while ((command = command_list)) {
1151 command_list = (struct scsi_cmnd *)command->SCp.buffer;
1152 command->SCp.buffer = NULL;
1153 command->result = DID_OK << 16
1154 | COMMAND_COMPLETE << 8
1155 | SAM_STAT_TASK_SET_FULL;
1156 command->SCp.phase = AAC_OWNER_ERROR_HANDLER;
1157 command->scsi_done(command);
1159 retval = 0;
1161 out:
1162 aac->in_reset = 0;
1163 scsi_unblock_requests(host);
1164 if (jafo) {
1165 spin_lock_irq(host->host_lock);
1167 return retval;
1170 int aac_reset_adapter(struct aac_dev * aac, int forced)
1172 unsigned long flagv = 0;
1173 int retval;
1174 struct Scsi_Host * host;
1176 if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1177 return -EBUSY;
1179 if (aac->in_reset) {
1180 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1181 return -EBUSY;
1183 aac->in_reset = 1;
1184 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1187 * Wait for all commands to complete to this specific
1188 * target (block maximum 60 seconds). Although not necessary,
1189 * it does make us a good storage citizen.
1191 host = aac->scsi_host_ptr;
1192 scsi_block_requests(host);
1193 if (forced < 2) for (retval = 60; retval; --retval) {
1194 struct scsi_device * dev;
1195 struct scsi_cmnd * command;
1196 int active = 0;
1198 __shost_for_each_device(dev, host) {
1199 spin_lock_irqsave(&dev->list_lock, flagv);
1200 list_for_each_entry(command, &dev->cmd_list, list) {
1201 if (command->SCp.phase == AAC_OWNER_FIRMWARE) {
1202 active++;
1203 break;
1206 spin_unlock_irqrestore(&dev->list_lock, flagv);
1207 if (active)
1208 break;
1212 * We can exit If all the commands are complete
1214 if (active == 0)
1215 break;
1216 ssleep(1);
1219 /* Quiesce build, flush cache, write through mode */
1220 if (forced < 2)
1221 aac_send_shutdown(aac);
1222 spin_lock_irqsave(host->host_lock, flagv);
1223 retval = _aac_reset_adapter(aac, forced ? forced : ((aac_check_reset != 0) && (aac_check_reset != 1)));
1224 spin_unlock_irqrestore(host->host_lock, flagv);
1226 if ((forced < 2) && (retval == -ENODEV)) {
1227 /* Unwind aac_send_shutdown() IOP_RESET unsupported/disabled */
1228 struct fib * fibctx = aac_fib_alloc(aac);
1229 if (fibctx) {
1230 struct aac_pause *cmd;
1231 int status;
1233 aac_fib_init(fibctx);
1235 cmd = (struct aac_pause *) fib_data(fibctx);
1237 cmd->command = cpu_to_le32(VM_ContainerConfig);
1238 cmd->type = cpu_to_le32(CT_PAUSE_IO);
1239 cmd->timeout = cpu_to_le32(1);
1240 cmd->min = cpu_to_le32(1);
1241 cmd->noRescan = cpu_to_le32(1);
1242 cmd->count = cpu_to_le32(0);
1244 status = aac_fib_send(ContainerCommand,
1245 fibctx,
1246 sizeof(struct aac_pause),
1247 FsaNormal,
1248 -2 /* Timeout silently */, 1,
1249 NULL, NULL);
1251 if (status >= 0)
1252 aac_fib_complete(fibctx);
1253 aac_fib_free(fibctx);
1257 return retval;
1260 int aac_check_health(struct aac_dev * aac)
1262 int BlinkLED;
1263 unsigned long time_now, flagv = 0;
1264 struct list_head * entry;
1265 struct Scsi_Host * host;
1267 /* Extending the scope of fib_lock slightly to protect aac->in_reset */
1268 if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1269 return 0;
1271 if (aac->in_reset || !(BlinkLED = aac_adapter_check_health(aac))) {
1272 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1273 return 0; /* OK */
1276 aac->in_reset = 1;
1278 /* Fake up an AIF:
1279 * aac_aifcmd.command = AifCmdEventNotify = 1
1280 * aac_aifcmd.seqnum = 0xFFFFFFFF
1281 * aac_aifcmd.data[0] = AifEnExpEvent = 23
1282 * aac_aifcmd.data[1] = AifExeFirmwarePanic = 3
1283 * aac.aifcmd.data[2] = AifHighPriority = 3
1284 * aac.aifcmd.data[3] = BlinkLED
1287 time_now = jiffies/HZ;
1288 entry = aac->fib_list.next;
1291 * For each Context that is on the
1292 * fibctxList, make a copy of the
1293 * fib, and then set the event to wake up the
1294 * thread that is waiting for it.
1296 while (entry != &aac->fib_list) {
1298 * Extract the fibctx
1300 struct aac_fib_context *fibctx = list_entry(entry, struct aac_fib_context, next);
1301 struct hw_fib * hw_fib;
1302 struct fib * fib;
1304 * Check if the queue is getting
1305 * backlogged
1307 if (fibctx->count > 20) {
1309 * It's *not* jiffies folks,
1310 * but jiffies / HZ, so do not
1311 * panic ...
1313 u32 time_last = fibctx->jiffies;
1315 * Has it been > 2 minutes
1316 * since the last read off
1317 * the queue?
1319 if ((time_now - time_last) > aif_timeout) {
1320 entry = entry->next;
1321 aac_close_fib_context(aac, fibctx);
1322 continue;
1326 * Warning: no sleep allowed while
1327 * holding spinlock
1329 hw_fib = kzalloc(sizeof(struct hw_fib), GFP_ATOMIC);
1330 fib = kzalloc(sizeof(struct fib), GFP_ATOMIC);
1331 if (fib && hw_fib) {
1332 struct aac_aifcmd * aif;
1334 fib->hw_fib_va = hw_fib;
1335 fib->dev = aac;
1336 aac_fib_init(fib);
1337 fib->type = FSAFS_NTC_FIB_CONTEXT;
1338 fib->size = sizeof (struct fib);
1339 fib->data = hw_fib->data;
1340 aif = (struct aac_aifcmd *)hw_fib->data;
1341 aif->command = cpu_to_le32(AifCmdEventNotify);
1342 aif->seqnum = cpu_to_le32(0xFFFFFFFF);
1343 aif->data[0] = AifEnExpEvent;
1344 aif->data[1] = AifExeFirmwarePanic;
1345 aif->data[2] = AifHighPriority;
1346 aif->data[3] = BlinkLED;
1349 * Put the FIB onto the
1350 * fibctx's fibs
1352 list_add_tail(&fib->fiblink, &fibctx->fib_list);
1353 fibctx->count++;
1355 * Set the event to wake up the
1356 * thread that will waiting.
1358 up(&fibctx->wait_sem);
1359 } else {
1360 printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1361 kfree(fib);
1362 kfree(hw_fib);
1364 entry = entry->next;
1367 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1369 if (BlinkLED < 0) {
1370 printk(KERN_ERR "%s: Host adapter dead %d\n", aac->name, BlinkLED);
1371 goto out;
1374 printk(KERN_ERR "%s: Host adapter BLINK LED 0x%x\n", aac->name, BlinkLED);
1376 if (!aac_check_reset ||
1377 ((aac_check_reset != 1) &&
1378 (aac->supplement_adapter_info.SupportedOptions2 &
1379 cpu_to_le32(AAC_OPTION_IGNORE_RESET))))
1380 goto out;
1381 host = aac->scsi_host_ptr;
1382 if (aac->thread->pid != current->pid)
1383 spin_lock_irqsave(host->host_lock, flagv);
1384 BlinkLED = _aac_reset_adapter(aac, aac_check_reset != 1);
1385 if (aac->thread->pid != current->pid)
1386 spin_unlock_irqrestore(host->host_lock, flagv);
1387 return BlinkLED;
1389 out:
1390 aac->in_reset = 0;
1391 return BlinkLED;
1396 * aac_command_thread - command processing thread
1397 * @dev: Adapter to monitor
1399 * Waits on the commandready event in it's queue. When the event gets set
1400 * it will pull FIBs off it's queue. It will continue to pull FIBs off
1401 * until the queue is empty. When the queue is empty it will wait for
1402 * more FIBs.
1405 int aac_command_thread(void *data)
1407 struct aac_dev *dev = data;
1408 struct hw_fib *hw_fib, *hw_newfib;
1409 struct fib *fib, *newfib;
1410 struct aac_fib_context *fibctx;
1411 unsigned long flags;
1412 DECLARE_WAITQUEUE(wait, current);
1413 unsigned long next_jiffies = jiffies + HZ;
1414 unsigned long next_check_jiffies = next_jiffies;
1415 long difference = HZ;
1418 * We can only have one thread per adapter for AIF's.
1420 if (dev->aif_thread)
1421 return -EINVAL;
1424 * Let the DPC know it has a place to send the AIF's to.
1426 dev->aif_thread = 1;
1427 add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
1428 set_current_state(TASK_INTERRUPTIBLE);
1429 dprintk ((KERN_INFO "aac_command_thread start\n"));
1430 while(1)
1432 spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1433 while(!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) {
1434 struct list_head *entry;
1435 struct aac_aifcmd * aifcmd;
1437 set_current_state(TASK_RUNNING);
1439 entry = dev->queues->queue[HostNormCmdQueue].cmdq.next;
1440 list_del(entry);
1442 spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1443 fib = list_entry(entry, struct fib, fiblink);
1445 * We will process the FIB here or pass it to a
1446 * worker thread that is TBD. We Really can't
1447 * do anything at this point since we don't have
1448 * anything defined for this thread to do.
1450 hw_fib = fib->hw_fib_va;
1451 memset(fib, 0, sizeof(struct fib));
1452 fib->type = FSAFS_NTC_FIB_CONTEXT;
1453 fib->size = sizeof( struct fib );
1454 fib->hw_fib_va = hw_fib;
1455 fib->data = hw_fib->data;
1456 fib->dev = dev;
1458 * We only handle AifRequest fibs from the adapter.
1460 aifcmd = (struct aac_aifcmd *) hw_fib->data;
1461 if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) {
1462 /* Handle Driver Notify Events */
1463 aac_handle_aif(dev, fib);
1464 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1465 aac_fib_adapter_complete(fib, (u16)sizeof(u32));
1466 } else {
1467 struct list_head *entry;
1468 /* The u32 here is important and intended. We are using
1469 32bit wrapping time to fit the adapter field */
1471 u32 time_now, time_last;
1472 unsigned long flagv;
1473 unsigned num;
1474 struct hw_fib ** hw_fib_pool, ** hw_fib_p;
1475 struct fib ** fib_pool, ** fib_p;
1477 /* Sniff events */
1478 if ((aifcmd->command ==
1479 cpu_to_le32(AifCmdEventNotify)) ||
1480 (aifcmd->command ==
1481 cpu_to_le32(AifCmdJobProgress))) {
1482 aac_handle_aif(dev, fib);
1485 time_now = jiffies/HZ;
1488 * Warning: no sleep allowed while
1489 * holding spinlock. We take the estimate
1490 * and pre-allocate a set of fibs outside the
1491 * lock.
1493 num = le32_to_cpu(dev->init->AdapterFibsSize)
1494 / sizeof(struct hw_fib); /* some extra */
1495 spin_lock_irqsave(&dev->fib_lock, flagv);
1496 entry = dev->fib_list.next;
1497 while (entry != &dev->fib_list) {
1498 entry = entry->next;
1499 ++num;
1501 spin_unlock_irqrestore(&dev->fib_lock, flagv);
1502 hw_fib_pool = NULL;
1503 fib_pool = NULL;
1504 if (num
1505 && ((hw_fib_pool = kmalloc(sizeof(struct hw_fib *) * num, GFP_KERNEL)))
1506 && ((fib_pool = kmalloc(sizeof(struct fib *) * num, GFP_KERNEL)))) {
1507 hw_fib_p = hw_fib_pool;
1508 fib_p = fib_pool;
1509 while (hw_fib_p < &hw_fib_pool[num]) {
1510 if (!(*(hw_fib_p++) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL))) {
1511 --hw_fib_p;
1512 break;
1514 if (!(*(fib_p++) = kmalloc(sizeof(struct fib), GFP_KERNEL))) {
1515 kfree(*(--hw_fib_p));
1516 break;
1519 if ((num = hw_fib_p - hw_fib_pool) == 0) {
1520 kfree(fib_pool);
1521 fib_pool = NULL;
1522 kfree(hw_fib_pool);
1523 hw_fib_pool = NULL;
1525 } else {
1526 kfree(hw_fib_pool);
1527 hw_fib_pool = NULL;
1529 spin_lock_irqsave(&dev->fib_lock, flagv);
1530 entry = dev->fib_list.next;
1532 * For each Context that is on the
1533 * fibctxList, make a copy of the
1534 * fib, and then set the event to wake up the
1535 * thread that is waiting for it.
1537 hw_fib_p = hw_fib_pool;
1538 fib_p = fib_pool;
1539 while (entry != &dev->fib_list) {
1541 * Extract the fibctx
1543 fibctx = list_entry(entry, struct aac_fib_context, next);
1545 * Check if the queue is getting
1546 * backlogged
1548 if (fibctx->count > 20)
1551 * It's *not* jiffies folks,
1552 * but jiffies / HZ so do not
1553 * panic ...
1555 time_last = fibctx->jiffies;
1557 * Has it been > 2 minutes
1558 * since the last read off
1559 * the queue?
1561 if ((time_now - time_last) > aif_timeout) {
1562 entry = entry->next;
1563 aac_close_fib_context(dev, fibctx);
1564 continue;
1568 * Warning: no sleep allowed while
1569 * holding spinlock
1571 if (hw_fib_p < &hw_fib_pool[num]) {
1572 hw_newfib = *hw_fib_p;
1573 *(hw_fib_p++) = NULL;
1574 newfib = *fib_p;
1575 *(fib_p++) = NULL;
1577 * Make the copy of the FIB
1579 memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib));
1580 memcpy(newfib, fib, sizeof(struct fib));
1581 newfib->hw_fib_va = hw_newfib;
1583 * Put the FIB onto the
1584 * fibctx's fibs
1586 list_add_tail(&newfib->fiblink, &fibctx->fib_list);
1587 fibctx->count++;
1589 * Set the event to wake up the
1590 * thread that is waiting.
1592 up(&fibctx->wait_sem);
1593 } else {
1594 printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1596 entry = entry->next;
1599 * Set the status of this FIB
1601 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1602 aac_fib_adapter_complete(fib, sizeof(u32));
1603 spin_unlock_irqrestore(&dev->fib_lock, flagv);
1604 /* Free up the remaining resources */
1605 hw_fib_p = hw_fib_pool;
1606 fib_p = fib_pool;
1607 while (hw_fib_p < &hw_fib_pool[num]) {
1608 kfree(*hw_fib_p);
1609 kfree(*fib_p);
1610 ++fib_p;
1611 ++hw_fib_p;
1613 kfree(hw_fib_pool);
1614 kfree(fib_pool);
1616 kfree(fib);
1617 spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1620 * There are no more AIF's
1622 spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1625 * Background activity
1627 if ((time_before(next_check_jiffies,next_jiffies))
1628 && ((difference = next_check_jiffies - jiffies) <= 0)) {
1629 next_check_jiffies = next_jiffies;
1630 if (aac_check_health(dev) == 0) {
1631 difference = ((long)(unsigned)check_interval)
1632 * HZ;
1633 next_check_jiffies = jiffies + difference;
1634 } else if (!dev->queues)
1635 break;
1637 if (!time_before(next_check_jiffies,next_jiffies)
1638 && ((difference = next_jiffies - jiffies) <= 0)) {
1639 struct timeval now;
1640 int ret;
1642 /* Don't even try to talk to adapter if its sick */
1643 ret = aac_check_health(dev);
1644 if (!ret && !dev->queues)
1645 break;
1646 next_check_jiffies = jiffies
1647 + ((long)(unsigned)check_interval)
1648 * HZ;
1649 do_gettimeofday(&now);
1651 /* Synchronize our watches */
1652 if (((1000000 - (1000000 / HZ)) > now.tv_usec)
1653 && (now.tv_usec > (1000000 / HZ)))
1654 difference = (((1000000 - now.tv_usec) * HZ)
1655 + 500000) / 1000000;
1656 else if (ret == 0) {
1657 struct fib *fibptr;
1659 if ((fibptr = aac_fib_alloc(dev))) {
1660 __le32 *info;
1662 aac_fib_init(fibptr);
1664 info = (__le32 *) fib_data(fibptr);
1665 if (now.tv_usec > 500000)
1666 ++now.tv_sec;
1668 *info = cpu_to_le32(now.tv_sec);
1670 (void)aac_fib_send(SendHostTime,
1671 fibptr,
1672 sizeof(*info),
1673 FsaNormal,
1674 1, 1,
1675 NULL,
1676 NULL);
1677 aac_fib_complete(fibptr);
1678 aac_fib_free(fibptr);
1680 difference = (long)(unsigned)update_interval*HZ;
1681 } else {
1682 /* retry shortly */
1683 difference = 10 * HZ;
1685 next_jiffies = jiffies + difference;
1686 if (time_before(next_check_jiffies,next_jiffies))
1687 difference = next_check_jiffies - jiffies;
1689 if (difference <= 0)
1690 difference = 1;
1691 set_current_state(TASK_INTERRUPTIBLE);
1692 schedule_timeout(difference);
1694 if (kthread_should_stop())
1695 break;
1697 if (dev->queues)
1698 remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
1699 dev->aif_thread = 0;
1700 return 0;