NET: llc, zero sockaddr_llc struct
[linux-2.6/mini2440.git] / drivers / usb / gadget / amd5536udc.c
blob826f3adde5d8a4ac0df29265d88cadd1ab541d05
1 /*
2 * amd5536.c -- AMD 5536 UDC high/full speed USB device controller
4 * Copyright (C) 2005-2007 AMD (http://www.amd.com)
5 * Author: Thomas Dahlmann
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 * The AMD5536 UDC is part of the x86 southbridge AMD Geode CS5536.
24 * It is a USB Highspeed DMA capable USB device controller. Beside ep0 it
25 * provides 4 IN and 4 OUT endpoints (bulk or interrupt type).
27 * Make sure that UDC is assigned to port 4 by BIOS settings (port can also
28 * be used as host port) and UOC bits PAD_EN and APU are set (should be done
29 * by BIOS init).
31 * UDC DMA requires 32-bit aligned buffers so DMA with gadget ether does not
32 * work without updating NET_IP_ALIGN. Or PIO mode (module param "use_dma=0")
33 * can be used with gadget ether.
36 /* debug control */
37 /* #define UDC_VERBOSE */
39 /* Driver strings */
40 #define UDC_MOD_DESCRIPTION "AMD 5536 UDC - USB Device Controller"
41 #define UDC_DRIVER_VERSION_STRING "01.00.0206 - $Revision: #3 $"
43 /* system */
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/kernel.h>
47 #include <linux/delay.h>
48 #include <linux/ioport.h>
49 #include <linux/sched.h>
50 #include <linux/slab.h>
51 #include <linux/smp_lock.h>
52 #include <linux/errno.h>
53 #include <linux/init.h>
54 #include <linux/timer.h>
55 #include <linux/list.h>
56 #include <linux/interrupt.h>
57 #include <linux/ioctl.h>
58 #include <linux/fs.h>
59 #include <linux/dmapool.h>
60 #include <linux/moduleparam.h>
61 #include <linux/device.h>
62 #include <linux/io.h>
63 #include <linux/irq.h>
65 #include <asm/byteorder.h>
66 #include <asm/system.h>
67 #include <asm/unaligned.h>
69 /* gadget stack */
70 #include <linux/usb/ch9.h>
71 #include <linux/usb/gadget.h>
73 /* udc specific */
74 #include "amd5536udc.h"
77 static void udc_tasklet_disconnect(unsigned long);
78 static void empty_req_queue(struct udc_ep *);
79 static int udc_probe(struct udc *dev);
80 static void udc_basic_init(struct udc *dev);
81 static void udc_setup_endpoints(struct udc *dev);
82 static void udc_soft_reset(struct udc *dev);
83 static struct udc_request *udc_alloc_bna_dummy(struct udc_ep *ep);
84 static void udc_free_request(struct usb_ep *usbep, struct usb_request *usbreq);
85 static int udc_free_dma_chain(struct udc *dev, struct udc_request *req);
86 static int udc_create_dma_chain(struct udc_ep *ep, struct udc_request *req,
87 unsigned long buf_len, gfp_t gfp_flags);
88 static int udc_remote_wakeup(struct udc *dev);
89 static int udc_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id);
90 static void udc_pci_remove(struct pci_dev *pdev);
92 /* description */
93 static const char mod_desc[] = UDC_MOD_DESCRIPTION;
94 static const char name[] = "amd5536udc";
96 /* structure to hold endpoint function pointers */
97 static const struct usb_ep_ops udc_ep_ops;
99 /* received setup data */
100 static union udc_setup_data setup_data;
102 /* pointer to device object */
103 static struct udc *udc;
105 /* irq spin lock for soft reset */
106 static DEFINE_SPINLOCK(udc_irq_spinlock);
107 /* stall spin lock */
108 static DEFINE_SPINLOCK(udc_stall_spinlock);
111 * slave mode: pending bytes in rx fifo after nyet,
112 * used if EPIN irq came but no req was available
114 static unsigned int udc_rxfifo_pending;
116 /* count soft resets after suspend to avoid loop */
117 static int soft_reset_occured;
118 static int soft_reset_after_usbreset_occured;
120 /* timer */
121 static struct timer_list udc_timer;
122 static int stop_timer;
124 /* set_rde -- Is used to control enabling of RX DMA. Problem is
125 * that UDC has only one bit (RDE) to enable/disable RX DMA for
126 * all OUT endpoints. So we have to handle race conditions like
127 * when OUT data reaches the fifo but no request was queued yet.
128 * This cannot be solved by letting the RX DMA disabled until a
129 * request gets queued because there may be other OUT packets
130 * in the FIFO (important for not blocking control traffic).
131 * The value of set_rde controls the correspondig timer.
133 * set_rde -1 == not used, means it is alloed to be set to 0 or 1
134 * set_rde 0 == do not touch RDE, do no start the RDE timer
135 * set_rde 1 == timer function will look whether FIFO has data
136 * set_rde 2 == set by timer function to enable RX DMA on next call
138 static int set_rde = -1;
140 static DECLARE_COMPLETION(on_exit);
141 static struct timer_list udc_pollstall_timer;
142 static int stop_pollstall_timer;
143 static DECLARE_COMPLETION(on_pollstall_exit);
145 /* tasklet for usb disconnect */
146 static DECLARE_TASKLET(disconnect_tasklet, udc_tasklet_disconnect,
147 (unsigned long) &udc);
150 /* endpoint names used for print */
151 static const char ep0_string[] = "ep0in";
152 static const char *ep_string[] = {
153 ep0_string,
154 "ep1in-int", "ep2in-bulk", "ep3in-bulk", "ep4in-bulk", "ep5in-bulk",
155 "ep6in-bulk", "ep7in-bulk", "ep8in-bulk", "ep9in-bulk", "ep10in-bulk",
156 "ep11in-bulk", "ep12in-bulk", "ep13in-bulk", "ep14in-bulk",
157 "ep15in-bulk", "ep0out", "ep1out-bulk", "ep2out-bulk", "ep3out-bulk",
158 "ep4out-bulk", "ep5out-bulk", "ep6out-bulk", "ep7out-bulk",
159 "ep8out-bulk", "ep9out-bulk", "ep10out-bulk", "ep11out-bulk",
160 "ep12out-bulk", "ep13out-bulk", "ep14out-bulk", "ep15out-bulk"
163 /* DMA usage flag */
164 static int use_dma = 1;
165 /* packet per buffer dma */
166 static int use_dma_ppb = 1;
167 /* with per descr. update */
168 static int use_dma_ppb_du;
169 /* buffer fill mode */
170 static int use_dma_bufferfill_mode;
171 /* full speed only mode */
172 static int use_fullspeed;
173 /* tx buffer size for high speed */
174 static unsigned long hs_tx_buf = UDC_EPIN_BUFF_SIZE;
176 /* module parameters */
177 module_param(use_dma, bool, S_IRUGO);
178 MODULE_PARM_DESC(use_dma, "true for DMA");
179 module_param(use_dma_ppb, bool, S_IRUGO);
180 MODULE_PARM_DESC(use_dma_ppb, "true for DMA in packet per buffer mode");
181 module_param(use_dma_ppb_du, bool, S_IRUGO);
182 MODULE_PARM_DESC(use_dma_ppb_du,
183 "true for DMA in packet per buffer mode with descriptor update");
184 module_param(use_fullspeed, bool, S_IRUGO);
185 MODULE_PARM_DESC(use_fullspeed, "true for fullspeed only");
187 /*---------------------------------------------------------------------------*/
188 /* Prints UDC device registers and endpoint irq registers */
189 static void print_regs(struct udc *dev)
191 DBG(dev, "------- Device registers -------\n");
192 DBG(dev, "dev config = %08x\n", readl(&dev->regs->cfg));
193 DBG(dev, "dev control = %08x\n", readl(&dev->regs->ctl));
194 DBG(dev, "dev status = %08x\n", readl(&dev->regs->sts));
195 DBG(dev, "\n");
196 DBG(dev, "dev int's = %08x\n", readl(&dev->regs->irqsts));
197 DBG(dev, "dev intmask = %08x\n", readl(&dev->regs->irqmsk));
198 DBG(dev, "\n");
199 DBG(dev, "dev ep int's = %08x\n", readl(&dev->regs->ep_irqsts));
200 DBG(dev, "dev ep intmask = %08x\n", readl(&dev->regs->ep_irqmsk));
201 DBG(dev, "\n");
202 DBG(dev, "USE DMA = %d\n", use_dma);
203 if (use_dma && use_dma_ppb && !use_dma_ppb_du) {
204 DBG(dev, "DMA mode = PPBNDU (packet per buffer "
205 "WITHOUT desc. update)\n");
206 dev_info(&dev->pdev->dev, "DMA mode (%s)\n", "PPBNDU");
207 } else if (use_dma && use_dma_ppb_du && use_dma_ppb_du) {
208 DBG(dev, "DMA mode = PPBDU (packet per buffer "
209 "WITH desc. update)\n");
210 dev_info(&dev->pdev->dev, "DMA mode (%s)\n", "PPBDU");
212 if (use_dma && use_dma_bufferfill_mode) {
213 DBG(dev, "DMA mode = BF (buffer fill mode)\n");
214 dev_info(&dev->pdev->dev, "DMA mode (%s)\n", "BF");
216 if (!use_dma) {
217 dev_info(&dev->pdev->dev, "FIFO mode\n");
219 DBG(dev, "-------------------------------------------------------\n");
222 /* Masks unused interrupts */
223 static int udc_mask_unused_interrupts(struct udc *dev)
225 u32 tmp;
227 /* mask all dev interrupts */
228 tmp = AMD_BIT(UDC_DEVINT_SVC) |
229 AMD_BIT(UDC_DEVINT_ENUM) |
230 AMD_BIT(UDC_DEVINT_US) |
231 AMD_BIT(UDC_DEVINT_UR) |
232 AMD_BIT(UDC_DEVINT_ES) |
233 AMD_BIT(UDC_DEVINT_SI) |
234 AMD_BIT(UDC_DEVINT_SOF)|
235 AMD_BIT(UDC_DEVINT_SC);
236 writel(tmp, &dev->regs->irqmsk);
238 /* mask all ep interrupts */
239 writel(UDC_EPINT_MSK_DISABLE_ALL, &dev->regs->ep_irqmsk);
241 return 0;
244 /* Enables endpoint 0 interrupts */
245 static int udc_enable_ep0_interrupts(struct udc *dev)
247 u32 tmp;
249 DBG(dev, "udc_enable_ep0_interrupts()\n");
251 /* read irq mask */
252 tmp = readl(&dev->regs->ep_irqmsk);
253 /* enable ep0 irq's */
254 tmp &= AMD_UNMASK_BIT(UDC_EPINT_IN_EP0)
255 & AMD_UNMASK_BIT(UDC_EPINT_OUT_EP0);
256 writel(tmp, &dev->regs->ep_irqmsk);
258 return 0;
261 /* Enables device interrupts for SET_INTF and SET_CONFIG */
262 static int udc_enable_dev_setup_interrupts(struct udc *dev)
264 u32 tmp;
266 DBG(dev, "enable device interrupts for setup data\n");
268 /* read irq mask */
269 tmp = readl(&dev->regs->irqmsk);
271 /* enable SET_INTERFACE, SET_CONFIG and other needed irq's */
272 tmp &= AMD_UNMASK_BIT(UDC_DEVINT_SI)
273 & AMD_UNMASK_BIT(UDC_DEVINT_SC)
274 & AMD_UNMASK_BIT(UDC_DEVINT_UR)
275 & AMD_UNMASK_BIT(UDC_DEVINT_SVC)
276 & AMD_UNMASK_BIT(UDC_DEVINT_ENUM);
277 writel(tmp, &dev->regs->irqmsk);
279 return 0;
282 /* Calculates fifo start of endpoint based on preceeding endpoints */
283 static int udc_set_txfifo_addr(struct udc_ep *ep)
285 struct udc *dev;
286 u32 tmp;
287 int i;
289 if (!ep || !(ep->in))
290 return -EINVAL;
292 dev = ep->dev;
293 ep->txfifo = dev->txfifo;
295 /* traverse ep's */
296 for (i = 0; i < ep->num; i++) {
297 if (dev->ep[i].regs) {
298 /* read fifo size */
299 tmp = readl(&dev->ep[i].regs->bufin_framenum);
300 tmp = AMD_GETBITS(tmp, UDC_EPIN_BUFF_SIZE);
301 ep->txfifo += tmp;
304 return 0;
307 /* CNAK pending field: bit0 = ep0in, bit16 = ep0out */
308 static u32 cnak_pending;
310 static void UDC_QUEUE_CNAK(struct udc_ep *ep, unsigned num)
312 if (readl(&ep->regs->ctl) & AMD_BIT(UDC_EPCTL_NAK)) {
313 DBG(ep->dev, "NAK could not be cleared for ep%d\n", num);
314 cnak_pending |= 1 << (num);
315 ep->naking = 1;
316 } else
317 cnak_pending = cnak_pending & (~(1 << (num)));
321 /* Enables endpoint, is called by gadget driver */
322 static int
323 udc_ep_enable(struct usb_ep *usbep, const struct usb_endpoint_descriptor *desc)
325 struct udc_ep *ep;
326 struct udc *dev;
327 u32 tmp;
328 unsigned long iflags;
329 u8 udc_csr_epix;
330 unsigned maxpacket;
332 if (!usbep
333 || usbep->name == ep0_string
334 || !desc
335 || desc->bDescriptorType != USB_DT_ENDPOINT)
336 return -EINVAL;
338 ep = container_of(usbep, struct udc_ep, ep);
339 dev = ep->dev;
341 DBG(dev, "udc_ep_enable() ep %d\n", ep->num);
343 if (!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN)
344 return -ESHUTDOWN;
346 spin_lock_irqsave(&dev->lock, iflags);
347 ep->desc = desc;
349 ep->halted = 0;
351 /* set traffic type */
352 tmp = readl(&dev->ep[ep->num].regs->ctl);
353 tmp = AMD_ADDBITS(tmp, desc->bmAttributes, UDC_EPCTL_ET);
354 writel(tmp, &dev->ep[ep->num].regs->ctl);
356 /* set max packet size */
357 maxpacket = le16_to_cpu(desc->wMaxPacketSize);
358 tmp = readl(&dev->ep[ep->num].regs->bufout_maxpkt);
359 tmp = AMD_ADDBITS(tmp, maxpacket, UDC_EP_MAX_PKT_SIZE);
360 ep->ep.maxpacket = maxpacket;
361 writel(tmp, &dev->ep[ep->num].regs->bufout_maxpkt);
363 /* IN ep */
364 if (ep->in) {
366 /* ep ix in UDC CSR register space */
367 udc_csr_epix = ep->num;
369 /* set buffer size (tx fifo entries) */
370 tmp = readl(&dev->ep[ep->num].regs->bufin_framenum);
371 /* double buffering: fifo size = 2 x max packet size */
372 tmp = AMD_ADDBITS(
373 tmp,
374 maxpacket * UDC_EPIN_BUFF_SIZE_MULT
375 / UDC_DWORD_BYTES,
376 UDC_EPIN_BUFF_SIZE);
377 writel(tmp, &dev->ep[ep->num].regs->bufin_framenum);
379 /* calc. tx fifo base addr */
380 udc_set_txfifo_addr(ep);
382 /* flush fifo */
383 tmp = readl(&ep->regs->ctl);
384 tmp |= AMD_BIT(UDC_EPCTL_F);
385 writel(tmp, &ep->regs->ctl);
387 /* OUT ep */
388 } else {
389 /* ep ix in UDC CSR register space */
390 udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS;
392 /* set max packet size UDC CSR */
393 tmp = readl(&dev->csr->ne[ep->num - UDC_CSR_EP_OUT_IX_OFS]);
394 tmp = AMD_ADDBITS(tmp, maxpacket,
395 UDC_CSR_NE_MAX_PKT);
396 writel(tmp, &dev->csr->ne[ep->num - UDC_CSR_EP_OUT_IX_OFS]);
398 if (use_dma && !ep->in) {
399 /* alloc and init BNA dummy request */
400 ep->bna_dummy_req = udc_alloc_bna_dummy(ep);
401 ep->bna_occurred = 0;
404 if (ep->num != UDC_EP0OUT_IX)
405 dev->data_ep_enabled = 1;
408 /* set ep values */
409 tmp = readl(&dev->csr->ne[udc_csr_epix]);
410 /* max packet */
411 tmp = AMD_ADDBITS(tmp, maxpacket, UDC_CSR_NE_MAX_PKT);
412 /* ep number */
413 tmp = AMD_ADDBITS(tmp, desc->bEndpointAddress, UDC_CSR_NE_NUM);
414 /* ep direction */
415 tmp = AMD_ADDBITS(tmp, ep->in, UDC_CSR_NE_DIR);
416 /* ep type */
417 tmp = AMD_ADDBITS(tmp, desc->bmAttributes, UDC_CSR_NE_TYPE);
418 /* ep config */
419 tmp = AMD_ADDBITS(tmp, ep->dev->cur_config, UDC_CSR_NE_CFG);
420 /* ep interface */
421 tmp = AMD_ADDBITS(tmp, ep->dev->cur_intf, UDC_CSR_NE_INTF);
422 /* ep alt */
423 tmp = AMD_ADDBITS(tmp, ep->dev->cur_alt, UDC_CSR_NE_ALT);
424 /* write reg */
425 writel(tmp, &dev->csr->ne[udc_csr_epix]);
427 /* enable ep irq */
428 tmp = readl(&dev->regs->ep_irqmsk);
429 tmp &= AMD_UNMASK_BIT(ep->num);
430 writel(tmp, &dev->regs->ep_irqmsk);
433 * clear NAK by writing CNAK
434 * avoid BNA for OUT DMA, don't clear NAK until DMA desc. written
436 if (!use_dma || ep->in) {
437 tmp = readl(&ep->regs->ctl);
438 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
439 writel(tmp, &ep->regs->ctl);
440 ep->naking = 0;
441 UDC_QUEUE_CNAK(ep, ep->num);
443 tmp = desc->bEndpointAddress;
444 DBG(dev, "%s enabled\n", usbep->name);
446 spin_unlock_irqrestore(&dev->lock, iflags);
447 return 0;
450 /* Resets endpoint */
451 static void ep_init(struct udc_regs __iomem *regs, struct udc_ep *ep)
453 u32 tmp;
455 VDBG(ep->dev, "ep-%d reset\n", ep->num);
456 ep->desc = NULL;
457 ep->ep.ops = &udc_ep_ops;
458 INIT_LIST_HEAD(&ep->queue);
460 ep->ep.maxpacket = (u16) ~0;
461 /* set NAK */
462 tmp = readl(&ep->regs->ctl);
463 tmp |= AMD_BIT(UDC_EPCTL_SNAK);
464 writel(tmp, &ep->regs->ctl);
465 ep->naking = 1;
467 /* disable interrupt */
468 tmp = readl(&regs->ep_irqmsk);
469 tmp |= AMD_BIT(ep->num);
470 writel(tmp, &regs->ep_irqmsk);
472 if (ep->in) {
473 /* unset P and IN bit of potential former DMA */
474 tmp = readl(&ep->regs->ctl);
475 tmp &= AMD_UNMASK_BIT(UDC_EPCTL_P);
476 writel(tmp, &ep->regs->ctl);
478 tmp = readl(&ep->regs->sts);
479 tmp |= AMD_BIT(UDC_EPSTS_IN);
480 writel(tmp, &ep->regs->sts);
482 /* flush the fifo */
483 tmp = readl(&ep->regs->ctl);
484 tmp |= AMD_BIT(UDC_EPCTL_F);
485 writel(tmp, &ep->regs->ctl);
488 /* reset desc pointer */
489 writel(0, &ep->regs->desptr);
492 /* Disables endpoint, is called by gadget driver */
493 static int udc_ep_disable(struct usb_ep *usbep)
495 struct udc_ep *ep = NULL;
496 unsigned long iflags;
498 if (!usbep)
499 return -EINVAL;
501 ep = container_of(usbep, struct udc_ep, ep);
502 if (usbep->name == ep0_string || !ep->desc)
503 return -EINVAL;
505 DBG(ep->dev, "Disable ep-%d\n", ep->num);
507 spin_lock_irqsave(&ep->dev->lock, iflags);
508 udc_free_request(&ep->ep, &ep->bna_dummy_req->req);
509 empty_req_queue(ep);
510 ep_init(ep->dev->regs, ep);
511 spin_unlock_irqrestore(&ep->dev->lock, iflags);
513 return 0;
516 /* Allocates request packet, called by gadget driver */
517 static struct usb_request *
518 udc_alloc_request(struct usb_ep *usbep, gfp_t gfp)
520 struct udc_request *req;
521 struct udc_data_dma *dma_desc;
522 struct udc_ep *ep;
524 if (!usbep)
525 return NULL;
527 ep = container_of(usbep, struct udc_ep, ep);
529 VDBG(ep->dev, "udc_alloc_req(): ep%d\n", ep->num);
530 req = kzalloc(sizeof(struct udc_request), gfp);
531 if (!req)
532 return NULL;
534 req->req.dma = DMA_DONT_USE;
535 INIT_LIST_HEAD(&req->queue);
537 if (ep->dma) {
538 /* ep0 in requests are allocated from data pool here */
539 dma_desc = pci_pool_alloc(ep->dev->data_requests, gfp,
540 &req->td_phys);
541 if (!dma_desc) {
542 kfree(req);
543 return NULL;
546 VDBG(ep->dev, "udc_alloc_req: req = %p dma_desc = %p, "
547 "td_phys = %lx\n",
548 req, dma_desc,
549 (unsigned long)req->td_phys);
550 /* prevent from using desc. - set HOST BUSY */
551 dma_desc->status = AMD_ADDBITS(dma_desc->status,
552 UDC_DMA_STP_STS_BS_HOST_BUSY,
553 UDC_DMA_STP_STS_BS);
554 dma_desc->bufptr = cpu_to_le32(DMA_DONT_USE);
555 req->td_data = dma_desc;
556 req->td_data_last = NULL;
557 req->chain_len = 1;
560 return &req->req;
563 /* Frees request packet, called by gadget driver */
564 static void
565 udc_free_request(struct usb_ep *usbep, struct usb_request *usbreq)
567 struct udc_ep *ep;
568 struct udc_request *req;
570 if (!usbep || !usbreq)
571 return;
573 ep = container_of(usbep, struct udc_ep, ep);
574 req = container_of(usbreq, struct udc_request, req);
575 VDBG(ep->dev, "free_req req=%p\n", req);
576 BUG_ON(!list_empty(&req->queue));
577 if (req->td_data) {
578 VDBG(ep->dev, "req->td_data=%p\n", req->td_data);
580 /* free dma chain if created */
581 if (req->chain_len > 1) {
582 udc_free_dma_chain(ep->dev, req);
585 pci_pool_free(ep->dev->data_requests, req->td_data,
586 req->td_phys);
588 kfree(req);
591 /* Init BNA dummy descriptor for HOST BUSY and pointing to itself */
592 static void udc_init_bna_dummy(struct udc_request *req)
594 if (req) {
595 /* set last bit */
596 req->td_data->status |= AMD_BIT(UDC_DMA_IN_STS_L);
597 /* set next pointer to itself */
598 req->td_data->next = req->td_phys;
599 /* set HOST BUSY */
600 req->td_data->status
601 = AMD_ADDBITS(req->td_data->status,
602 UDC_DMA_STP_STS_BS_DMA_DONE,
603 UDC_DMA_STP_STS_BS);
604 #ifdef UDC_VERBOSE
605 pr_debug("bna desc = %p, sts = %08x\n",
606 req->td_data, req->td_data->status);
607 #endif
611 /* Allocate BNA dummy descriptor */
612 static struct udc_request *udc_alloc_bna_dummy(struct udc_ep *ep)
614 struct udc_request *req = NULL;
615 struct usb_request *_req = NULL;
617 /* alloc the dummy request */
618 _req = udc_alloc_request(&ep->ep, GFP_ATOMIC);
619 if (_req) {
620 req = container_of(_req, struct udc_request, req);
621 ep->bna_dummy_req = req;
622 udc_init_bna_dummy(req);
624 return req;
627 /* Write data to TX fifo for IN packets */
628 static void
629 udc_txfifo_write(struct udc_ep *ep, struct usb_request *req)
631 u8 *req_buf;
632 u32 *buf;
633 int i, j;
634 unsigned bytes = 0;
635 unsigned remaining = 0;
637 if (!req || !ep)
638 return;
640 req_buf = req->buf + req->actual;
641 prefetch(req_buf);
642 remaining = req->length - req->actual;
644 buf = (u32 *) req_buf;
646 bytes = ep->ep.maxpacket;
647 if (bytes > remaining)
648 bytes = remaining;
650 /* dwords first */
651 for (i = 0; i < bytes / UDC_DWORD_BYTES; i++) {
652 writel(*(buf + i), ep->txfifo);
655 /* remaining bytes must be written by byte access */
656 for (j = 0; j < bytes % UDC_DWORD_BYTES; j++) {
657 writeb((u8)(*(buf + i) >> (j << UDC_BITS_PER_BYTE_SHIFT)),
658 ep->txfifo);
661 /* dummy write confirm */
662 writel(0, &ep->regs->confirm);
665 /* Read dwords from RX fifo for OUT transfers */
666 static int udc_rxfifo_read_dwords(struct udc *dev, u32 *buf, int dwords)
668 int i;
670 VDBG(dev, "udc_read_dwords(): %d dwords\n", dwords);
672 for (i = 0; i < dwords; i++) {
673 *(buf + i) = readl(dev->rxfifo);
675 return 0;
678 /* Read bytes from RX fifo for OUT transfers */
679 static int udc_rxfifo_read_bytes(struct udc *dev, u8 *buf, int bytes)
681 int i, j;
682 u32 tmp;
684 VDBG(dev, "udc_read_bytes(): %d bytes\n", bytes);
686 /* dwords first */
687 for (i = 0; i < bytes / UDC_DWORD_BYTES; i++) {
688 *((u32 *)(buf + (i<<2))) = readl(dev->rxfifo);
691 /* remaining bytes must be read by byte access */
692 if (bytes % UDC_DWORD_BYTES) {
693 tmp = readl(dev->rxfifo);
694 for (j = 0; j < bytes % UDC_DWORD_BYTES; j++) {
695 *(buf + (i<<2) + j) = (u8)(tmp & UDC_BYTE_MASK);
696 tmp = tmp >> UDC_BITS_PER_BYTE;
700 return 0;
703 /* Read data from RX fifo for OUT transfers */
704 static int
705 udc_rxfifo_read(struct udc_ep *ep, struct udc_request *req)
707 u8 *buf;
708 unsigned buf_space;
709 unsigned bytes = 0;
710 unsigned finished = 0;
712 /* received number bytes */
713 bytes = readl(&ep->regs->sts);
714 bytes = AMD_GETBITS(bytes, UDC_EPSTS_RX_PKT_SIZE);
716 buf_space = req->req.length - req->req.actual;
717 buf = req->req.buf + req->req.actual;
718 if (bytes > buf_space) {
719 if ((buf_space % ep->ep.maxpacket) != 0) {
720 DBG(ep->dev,
721 "%s: rx %d bytes, rx-buf space = %d bytesn\n",
722 ep->ep.name, bytes, buf_space);
723 req->req.status = -EOVERFLOW;
725 bytes = buf_space;
727 req->req.actual += bytes;
729 /* last packet ? */
730 if (((bytes % ep->ep.maxpacket) != 0) || (!bytes)
731 || ((req->req.actual == req->req.length) && !req->req.zero))
732 finished = 1;
734 /* read rx fifo bytes */
735 VDBG(ep->dev, "ep %s: rxfifo read %d bytes\n", ep->ep.name, bytes);
736 udc_rxfifo_read_bytes(ep->dev, buf, bytes);
738 return finished;
741 /* create/re-init a DMA descriptor or a DMA descriptor chain */
742 static int prep_dma(struct udc_ep *ep, struct udc_request *req, gfp_t gfp)
744 int retval = 0;
745 u32 tmp;
747 VDBG(ep->dev, "prep_dma\n");
748 VDBG(ep->dev, "prep_dma ep%d req->td_data=%p\n",
749 ep->num, req->td_data);
751 /* set buffer pointer */
752 req->td_data->bufptr = req->req.dma;
754 /* set last bit */
755 req->td_data->status |= AMD_BIT(UDC_DMA_IN_STS_L);
757 /* build/re-init dma chain if maxpkt scatter mode, not for EP0 */
758 if (use_dma_ppb) {
760 retval = udc_create_dma_chain(ep, req, ep->ep.maxpacket, gfp);
761 if (retval != 0) {
762 if (retval == -ENOMEM)
763 DBG(ep->dev, "Out of DMA memory\n");
764 return retval;
766 if (ep->in) {
767 if (req->req.length == ep->ep.maxpacket) {
768 /* write tx bytes */
769 req->td_data->status =
770 AMD_ADDBITS(req->td_data->status,
771 ep->ep.maxpacket,
772 UDC_DMA_IN_STS_TXBYTES);
779 if (ep->in) {
780 VDBG(ep->dev, "IN: use_dma_ppb=%d req->req.len=%d "
781 "maxpacket=%d ep%d\n",
782 use_dma_ppb, req->req.length,
783 ep->ep.maxpacket, ep->num);
785 * if bytes < max packet then tx bytes must
786 * be written in packet per buffer mode
788 if (!use_dma_ppb || req->req.length < ep->ep.maxpacket
789 || ep->num == UDC_EP0OUT_IX
790 || ep->num == UDC_EP0IN_IX) {
791 /* write tx bytes */
792 req->td_data->status =
793 AMD_ADDBITS(req->td_data->status,
794 req->req.length,
795 UDC_DMA_IN_STS_TXBYTES);
796 /* reset frame num */
797 req->td_data->status =
798 AMD_ADDBITS(req->td_data->status,
800 UDC_DMA_IN_STS_FRAMENUM);
802 /* set HOST BUSY */
803 req->td_data->status =
804 AMD_ADDBITS(req->td_data->status,
805 UDC_DMA_STP_STS_BS_HOST_BUSY,
806 UDC_DMA_STP_STS_BS);
807 } else {
808 VDBG(ep->dev, "OUT set host ready\n");
809 /* set HOST READY */
810 req->td_data->status =
811 AMD_ADDBITS(req->td_data->status,
812 UDC_DMA_STP_STS_BS_HOST_READY,
813 UDC_DMA_STP_STS_BS);
816 /* clear NAK by writing CNAK */
817 if (ep->naking) {
818 tmp = readl(&ep->regs->ctl);
819 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
820 writel(tmp, &ep->regs->ctl);
821 ep->naking = 0;
822 UDC_QUEUE_CNAK(ep, ep->num);
827 return retval;
830 /* Completes request packet ... caller MUST hold lock */
831 static void
832 complete_req(struct udc_ep *ep, struct udc_request *req, int sts)
833 __releases(ep->dev->lock)
834 __acquires(ep->dev->lock)
836 struct udc *dev;
837 unsigned halted;
839 VDBG(ep->dev, "complete_req(): ep%d\n", ep->num);
841 dev = ep->dev;
842 /* unmap DMA */
843 if (req->dma_mapping) {
844 if (ep->in)
845 pci_unmap_single(dev->pdev,
846 req->req.dma,
847 req->req.length,
848 PCI_DMA_TODEVICE);
849 else
850 pci_unmap_single(dev->pdev,
851 req->req.dma,
852 req->req.length,
853 PCI_DMA_FROMDEVICE);
854 req->dma_mapping = 0;
855 req->req.dma = DMA_DONT_USE;
858 halted = ep->halted;
859 ep->halted = 1;
861 /* set new status if pending */
862 if (req->req.status == -EINPROGRESS)
863 req->req.status = sts;
865 /* remove from ep queue */
866 list_del_init(&req->queue);
868 VDBG(ep->dev, "req %p => complete %d bytes at %s with sts %d\n",
869 &req->req, req->req.length, ep->ep.name, sts);
871 spin_unlock(&dev->lock);
872 req->req.complete(&ep->ep, &req->req);
873 spin_lock(&dev->lock);
874 ep->halted = halted;
877 /* frees pci pool descriptors of a DMA chain */
878 static int udc_free_dma_chain(struct udc *dev, struct udc_request *req)
881 int ret_val = 0;
882 struct udc_data_dma *td;
883 struct udc_data_dma *td_last = NULL;
884 unsigned int i;
886 DBG(dev, "free chain req = %p\n", req);
888 /* do not free first desc., will be done by free for request */
889 td_last = req->td_data;
890 td = phys_to_virt(td_last->next);
892 for (i = 1; i < req->chain_len; i++) {
894 pci_pool_free(dev->data_requests, td,
895 (dma_addr_t) td_last->next);
896 td_last = td;
897 td = phys_to_virt(td_last->next);
900 return ret_val;
903 /* Iterates to the end of a DMA chain and returns last descriptor */
904 static struct udc_data_dma *udc_get_last_dma_desc(struct udc_request *req)
906 struct udc_data_dma *td;
908 td = req->td_data;
909 while (td && !(td->status & AMD_BIT(UDC_DMA_IN_STS_L))) {
910 td = phys_to_virt(td->next);
913 return td;
917 /* Iterates to the end of a DMA chain and counts bytes received */
918 static u32 udc_get_ppbdu_rxbytes(struct udc_request *req)
920 struct udc_data_dma *td;
921 u32 count;
923 td = req->td_data;
924 /* received number bytes */
925 count = AMD_GETBITS(td->status, UDC_DMA_OUT_STS_RXBYTES);
927 while (td && !(td->status & AMD_BIT(UDC_DMA_IN_STS_L))) {
928 td = phys_to_virt(td->next);
929 /* received number bytes */
930 if (td) {
931 count += AMD_GETBITS(td->status,
932 UDC_DMA_OUT_STS_RXBYTES);
936 return count;
940 /* Creates or re-inits a DMA chain */
941 static int udc_create_dma_chain(
942 struct udc_ep *ep,
943 struct udc_request *req,
944 unsigned long buf_len, gfp_t gfp_flags
947 unsigned long bytes = req->req.length;
948 unsigned int i;
949 dma_addr_t dma_addr;
950 struct udc_data_dma *td = NULL;
951 struct udc_data_dma *last = NULL;
952 unsigned long txbytes;
953 unsigned create_new_chain = 0;
954 unsigned len;
956 VDBG(ep->dev, "udc_create_dma_chain: bytes=%ld buf_len=%ld\n",
957 bytes, buf_len);
958 dma_addr = DMA_DONT_USE;
960 /* unset L bit in first desc for OUT */
961 if (!ep->in) {
962 req->td_data->status &= AMD_CLEAR_BIT(UDC_DMA_IN_STS_L);
965 /* alloc only new desc's if not already available */
966 len = req->req.length / ep->ep.maxpacket;
967 if (req->req.length % ep->ep.maxpacket) {
968 len++;
971 if (len > req->chain_len) {
972 /* shorter chain already allocated before */
973 if (req->chain_len > 1) {
974 udc_free_dma_chain(ep->dev, req);
976 req->chain_len = len;
977 create_new_chain = 1;
980 td = req->td_data;
981 /* gen. required number of descriptors and buffers */
982 for (i = buf_len; i < bytes; i += buf_len) {
983 /* create or determine next desc. */
984 if (create_new_chain) {
986 td = pci_pool_alloc(ep->dev->data_requests,
987 gfp_flags, &dma_addr);
988 if (!td)
989 return -ENOMEM;
991 td->status = 0;
992 } else if (i == buf_len) {
993 /* first td */
994 td = (struct udc_data_dma *) phys_to_virt(
995 req->td_data->next);
996 td->status = 0;
997 } else {
998 td = (struct udc_data_dma *) phys_to_virt(last->next);
999 td->status = 0;
1003 if (td)
1004 td->bufptr = req->req.dma + i; /* assign buffer */
1005 else
1006 break;
1008 /* short packet ? */
1009 if ((bytes - i) >= buf_len) {
1010 txbytes = buf_len;
1011 } else {
1012 /* short packet */
1013 txbytes = bytes - i;
1016 /* link td and assign tx bytes */
1017 if (i == buf_len) {
1018 if (create_new_chain) {
1019 req->td_data->next = dma_addr;
1020 } else {
1021 /* req->td_data->next = virt_to_phys(td); */
1023 /* write tx bytes */
1024 if (ep->in) {
1025 /* first desc */
1026 req->td_data->status =
1027 AMD_ADDBITS(req->td_data->status,
1028 ep->ep.maxpacket,
1029 UDC_DMA_IN_STS_TXBYTES);
1030 /* second desc */
1031 td->status = AMD_ADDBITS(td->status,
1032 txbytes,
1033 UDC_DMA_IN_STS_TXBYTES);
1035 } else {
1036 if (create_new_chain) {
1037 last->next = dma_addr;
1038 } else {
1039 /* last->next = virt_to_phys(td); */
1041 if (ep->in) {
1042 /* write tx bytes */
1043 td->status = AMD_ADDBITS(td->status,
1044 txbytes,
1045 UDC_DMA_IN_STS_TXBYTES);
1048 last = td;
1050 /* set last bit */
1051 if (td) {
1052 td->status |= AMD_BIT(UDC_DMA_IN_STS_L);
1053 /* last desc. points to itself */
1054 req->td_data_last = td;
1057 return 0;
1060 /* Enabling RX DMA */
1061 static void udc_set_rde(struct udc *dev)
1063 u32 tmp;
1065 VDBG(dev, "udc_set_rde()\n");
1066 /* stop RDE timer */
1067 if (timer_pending(&udc_timer)) {
1068 set_rde = 0;
1069 mod_timer(&udc_timer, jiffies - 1);
1071 /* set RDE */
1072 tmp = readl(&dev->regs->ctl);
1073 tmp |= AMD_BIT(UDC_DEVCTL_RDE);
1074 writel(tmp, &dev->regs->ctl);
1077 /* Queues a request packet, called by gadget driver */
1078 static int
1079 udc_queue(struct usb_ep *usbep, struct usb_request *usbreq, gfp_t gfp)
1081 int retval = 0;
1082 u8 open_rxfifo = 0;
1083 unsigned long iflags;
1084 struct udc_ep *ep;
1085 struct udc_request *req;
1086 struct udc *dev;
1087 u32 tmp;
1089 /* check the inputs */
1090 req = container_of(usbreq, struct udc_request, req);
1092 if (!usbep || !usbreq || !usbreq->complete || !usbreq->buf
1093 || !list_empty(&req->queue))
1094 return -EINVAL;
1096 ep = container_of(usbep, struct udc_ep, ep);
1097 if (!ep->desc && (ep->num != 0 && ep->num != UDC_EP0OUT_IX))
1098 return -EINVAL;
1100 VDBG(ep->dev, "udc_queue(): ep%d-in=%d\n", ep->num, ep->in);
1101 dev = ep->dev;
1103 if (!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN)
1104 return -ESHUTDOWN;
1106 /* map dma (usually done before) */
1107 if (ep->dma && usbreq->length != 0
1108 && (usbreq->dma == DMA_DONT_USE || usbreq->dma == 0)) {
1109 VDBG(dev, "DMA map req %p\n", req);
1110 if (ep->in)
1111 usbreq->dma = pci_map_single(dev->pdev,
1112 usbreq->buf,
1113 usbreq->length,
1114 PCI_DMA_TODEVICE);
1115 else
1116 usbreq->dma = pci_map_single(dev->pdev,
1117 usbreq->buf,
1118 usbreq->length,
1119 PCI_DMA_FROMDEVICE);
1120 req->dma_mapping = 1;
1123 VDBG(dev, "%s queue req %p, len %d req->td_data=%p buf %p\n",
1124 usbep->name, usbreq, usbreq->length,
1125 req->td_data, usbreq->buf);
1127 spin_lock_irqsave(&dev->lock, iflags);
1128 usbreq->actual = 0;
1129 usbreq->status = -EINPROGRESS;
1130 req->dma_done = 0;
1132 /* on empty queue just do first transfer */
1133 if (list_empty(&ep->queue)) {
1134 /* zlp */
1135 if (usbreq->length == 0) {
1136 /* IN zlp's are handled by hardware */
1137 complete_req(ep, req, 0);
1138 VDBG(dev, "%s: zlp\n", ep->ep.name);
1140 * if set_config or set_intf is waiting for ack by zlp
1141 * then set CSR_DONE
1143 if (dev->set_cfg_not_acked) {
1144 tmp = readl(&dev->regs->ctl);
1145 tmp |= AMD_BIT(UDC_DEVCTL_CSR_DONE);
1146 writel(tmp, &dev->regs->ctl);
1147 dev->set_cfg_not_acked = 0;
1149 /* setup command is ACK'ed now by zlp */
1150 if (dev->waiting_zlp_ack_ep0in) {
1151 /* clear NAK by writing CNAK in EP0_IN */
1152 tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
1153 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1154 writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
1155 dev->ep[UDC_EP0IN_IX].naking = 0;
1156 UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX],
1157 UDC_EP0IN_IX);
1158 dev->waiting_zlp_ack_ep0in = 0;
1160 goto finished;
1162 if (ep->dma) {
1163 retval = prep_dma(ep, req, gfp);
1164 if (retval != 0)
1165 goto finished;
1166 /* write desc pointer to enable DMA */
1167 if (ep->in) {
1168 /* set HOST READY */
1169 req->td_data->status =
1170 AMD_ADDBITS(req->td_data->status,
1171 UDC_DMA_IN_STS_BS_HOST_READY,
1172 UDC_DMA_IN_STS_BS);
1175 /* disabled rx dma while descriptor update */
1176 if (!ep->in) {
1177 /* stop RDE timer */
1178 if (timer_pending(&udc_timer)) {
1179 set_rde = 0;
1180 mod_timer(&udc_timer, jiffies - 1);
1182 /* clear RDE */
1183 tmp = readl(&dev->regs->ctl);
1184 tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_RDE);
1185 writel(tmp, &dev->regs->ctl);
1186 open_rxfifo = 1;
1189 * if BNA occurred then let BNA dummy desc.
1190 * point to current desc.
1192 if (ep->bna_occurred) {
1193 VDBG(dev, "copy to BNA dummy desc.\n");
1194 memcpy(ep->bna_dummy_req->td_data,
1195 req->td_data,
1196 sizeof(struct udc_data_dma));
1199 /* write desc pointer */
1200 writel(req->td_phys, &ep->regs->desptr);
1202 /* clear NAK by writing CNAK */
1203 if (ep->naking) {
1204 tmp = readl(&ep->regs->ctl);
1205 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1206 writel(tmp, &ep->regs->ctl);
1207 ep->naking = 0;
1208 UDC_QUEUE_CNAK(ep, ep->num);
1211 if (ep->in) {
1212 /* enable ep irq */
1213 tmp = readl(&dev->regs->ep_irqmsk);
1214 tmp &= AMD_UNMASK_BIT(ep->num);
1215 writel(tmp, &dev->regs->ep_irqmsk);
1219 } else if (ep->dma) {
1222 * prep_dma not used for OUT ep's, this is not possible
1223 * for PPB modes, because of chain creation reasons
1225 if (ep->in) {
1226 retval = prep_dma(ep, req, gfp);
1227 if (retval != 0)
1228 goto finished;
1231 VDBG(dev, "list_add\n");
1232 /* add request to ep queue */
1233 if (req) {
1235 list_add_tail(&req->queue, &ep->queue);
1237 /* open rxfifo if out data queued */
1238 if (open_rxfifo) {
1239 /* enable DMA */
1240 req->dma_going = 1;
1241 udc_set_rde(dev);
1242 if (ep->num != UDC_EP0OUT_IX)
1243 dev->data_ep_queued = 1;
1245 /* stop OUT naking */
1246 if (!ep->in) {
1247 if (!use_dma && udc_rxfifo_pending) {
1248 DBG(dev, "udc_queue(): pending bytes in "
1249 "rxfifo after nyet\n");
1251 * read pending bytes afer nyet:
1252 * referring to isr
1254 if (udc_rxfifo_read(ep, req)) {
1255 /* finish */
1256 complete_req(ep, req, 0);
1258 udc_rxfifo_pending = 0;
1264 finished:
1265 spin_unlock_irqrestore(&dev->lock, iflags);
1266 return retval;
1269 /* Empty request queue of an endpoint; caller holds spinlock */
1270 static void empty_req_queue(struct udc_ep *ep)
1272 struct udc_request *req;
1274 ep->halted = 1;
1275 while (!list_empty(&ep->queue)) {
1276 req = list_entry(ep->queue.next,
1277 struct udc_request,
1278 queue);
1279 complete_req(ep, req, -ESHUTDOWN);
1283 /* Dequeues a request packet, called by gadget driver */
1284 static int udc_dequeue(struct usb_ep *usbep, struct usb_request *usbreq)
1286 struct udc_ep *ep;
1287 struct udc_request *req;
1288 unsigned halted;
1289 unsigned long iflags;
1291 ep = container_of(usbep, struct udc_ep, ep);
1292 if (!usbep || !usbreq || (!ep->desc && (ep->num != 0
1293 && ep->num != UDC_EP0OUT_IX)))
1294 return -EINVAL;
1296 req = container_of(usbreq, struct udc_request, req);
1298 spin_lock_irqsave(&ep->dev->lock, iflags);
1299 halted = ep->halted;
1300 ep->halted = 1;
1301 /* request in processing or next one */
1302 if (ep->queue.next == &req->queue) {
1303 if (ep->dma && req->dma_going) {
1304 if (ep->in)
1305 ep->cancel_transfer = 1;
1306 else {
1307 u32 tmp;
1308 u32 dma_sts;
1309 /* stop potential receive DMA */
1310 tmp = readl(&udc->regs->ctl);
1311 writel(tmp & AMD_UNMASK_BIT(UDC_DEVCTL_RDE),
1312 &udc->regs->ctl);
1314 * Cancel transfer later in ISR
1315 * if descriptor was touched.
1317 dma_sts = AMD_GETBITS(req->td_data->status,
1318 UDC_DMA_OUT_STS_BS);
1319 if (dma_sts != UDC_DMA_OUT_STS_BS_HOST_READY)
1320 ep->cancel_transfer = 1;
1321 else {
1322 udc_init_bna_dummy(ep->req);
1323 writel(ep->bna_dummy_req->td_phys,
1324 &ep->regs->desptr);
1326 writel(tmp, &udc->regs->ctl);
1330 complete_req(ep, req, -ECONNRESET);
1331 ep->halted = halted;
1333 spin_unlock_irqrestore(&ep->dev->lock, iflags);
1334 return 0;
1337 /* Halt or clear halt of endpoint */
1338 static int
1339 udc_set_halt(struct usb_ep *usbep, int halt)
1341 struct udc_ep *ep;
1342 u32 tmp;
1343 unsigned long iflags;
1344 int retval = 0;
1346 if (!usbep)
1347 return -EINVAL;
1349 pr_debug("set_halt %s: halt=%d\n", usbep->name, halt);
1351 ep = container_of(usbep, struct udc_ep, ep);
1352 if (!ep->desc && (ep->num != 0 && ep->num != UDC_EP0OUT_IX))
1353 return -EINVAL;
1354 if (!ep->dev->driver || ep->dev->gadget.speed == USB_SPEED_UNKNOWN)
1355 return -ESHUTDOWN;
1357 spin_lock_irqsave(&udc_stall_spinlock, iflags);
1358 /* halt or clear halt */
1359 if (halt) {
1360 if (ep->num == 0)
1361 ep->dev->stall_ep0in = 1;
1362 else {
1364 * set STALL
1365 * rxfifo empty not taken into acount
1367 tmp = readl(&ep->regs->ctl);
1368 tmp |= AMD_BIT(UDC_EPCTL_S);
1369 writel(tmp, &ep->regs->ctl);
1370 ep->halted = 1;
1372 /* setup poll timer */
1373 if (!timer_pending(&udc_pollstall_timer)) {
1374 udc_pollstall_timer.expires = jiffies +
1375 HZ * UDC_POLLSTALL_TIMER_USECONDS
1376 / (1000 * 1000);
1377 if (!stop_pollstall_timer) {
1378 DBG(ep->dev, "start polltimer\n");
1379 add_timer(&udc_pollstall_timer);
1383 } else {
1384 /* ep is halted by set_halt() before */
1385 if (ep->halted) {
1386 tmp = readl(&ep->regs->ctl);
1387 /* clear stall bit */
1388 tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S);
1389 /* clear NAK by writing CNAK */
1390 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1391 writel(tmp, &ep->regs->ctl);
1392 ep->halted = 0;
1393 UDC_QUEUE_CNAK(ep, ep->num);
1396 spin_unlock_irqrestore(&udc_stall_spinlock, iflags);
1397 return retval;
1400 /* gadget interface */
1401 static const struct usb_ep_ops udc_ep_ops = {
1402 .enable = udc_ep_enable,
1403 .disable = udc_ep_disable,
1405 .alloc_request = udc_alloc_request,
1406 .free_request = udc_free_request,
1408 .queue = udc_queue,
1409 .dequeue = udc_dequeue,
1411 .set_halt = udc_set_halt,
1412 /* fifo ops not implemented */
1415 /*-------------------------------------------------------------------------*/
1417 /* Get frame counter (not implemented) */
1418 static int udc_get_frame(struct usb_gadget *gadget)
1420 return -EOPNOTSUPP;
1423 /* Remote wakeup gadget interface */
1424 static int udc_wakeup(struct usb_gadget *gadget)
1426 struct udc *dev;
1428 if (!gadget)
1429 return -EINVAL;
1430 dev = container_of(gadget, struct udc, gadget);
1431 udc_remote_wakeup(dev);
1433 return 0;
1436 /* gadget operations */
1437 static const struct usb_gadget_ops udc_ops = {
1438 .wakeup = udc_wakeup,
1439 .get_frame = udc_get_frame,
1442 /* Setups endpoint parameters, adds endpoints to linked list */
1443 static void make_ep_lists(struct udc *dev)
1445 /* make gadget ep lists */
1446 INIT_LIST_HEAD(&dev->gadget.ep_list);
1447 list_add_tail(&dev->ep[UDC_EPIN_STATUS_IX].ep.ep_list,
1448 &dev->gadget.ep_list);
1449 list_add_tail(&dev->ep[UDC_EPIN_IX].ep.ep_list,
1450 &dev->gadget.ep_list);
1451 list_add_tail(&dev->ep[UDC_EPOUT_IX].ep.ep_list,
1452 &dev->gadget.ep_list);
1454 /* fifo config */
1455 dev->ep[UDC_EPIN_STATUS_IX].fifo_depth = UDC_EPIN_SMALLINT_BUFF_SIZE;
1456 if (dev->gadget.speed == USB_SPEED_FULL)
1457 dev->ep[UDC_EPIN_IX].fifo_depth = UDC_FS_EPIN_BUFF_SIZE;
1458 else if (dev->gadget.speed == USB_SPEED_HIGH)
1459 dev->ep[UDC_EPIN_IX].fifo_depth = hs_tx_buf;
1460 dev->ep[UDC_EPOUT_IX].fifo_depth = UDC_RXFIFO_SIZE;
1463 /* init registers at driver load time */
1464 static int startup_registers(struct udc *dev)
1466 u32 tmp;
1468 /* init controller by soft reset */
1469 udc_soft_reset(dev);
1471 /* mask not needed interrupts */
1472 udc_mask_unused_interrupts(dev);
1474 /* put into initial config */
1475 udc_basic_init(dev);
1476 /* link up all endpoints */
1477 udc_setup_endpoints(dev);
1479 /* program speed */
1480 tmp = readl(&dev->regs->cfg);
1481 if (use_fullspeed) {
1482 tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_FS, UDC_DEVCFG_SPD);
1483 } else {
1484 tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_HS, UDC_DEVCFG_SPD);
1486 writel(tmp, &dev->regs->cfg);
1488 return 0;
1491 /* Inits UDC context */
1492 static void udc_basic_init(struct udc *dev)
1494 u32 tmp;
1496 DBG(dev, "udc_basic_init()\n");
1498 dev->gadget.speed = USB_SPEED_UNKNOWN;
1500 /* stop RDE timer */
1501 if (timer_pending(&udc_timer)) {
1502 set_rde = 0;
1503 mod_timer(&udc_timer, jiffies - 1);
1505 /* stop poll stall timer */
1506 if (timer_pending(&udc_pollstall_timer)) {
1507 mod_timer(&udc_pollstall_timer, jiffies - 1);
1509 /* disable DMA */
1510 tmp = readl(&dev->regs->ctl);
1511 tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_RDE);
1512 tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_TDE);
1513 writel(tmp, &dev->regs->ctl);
1515 /* enable dynamic CSR programming */
1516 tmp = readl(&dev->regs->cfg);
1517 tmp |= AMD_BIT(UDC_DEVCFG_CSR_PRG);
1518 /* set self powered */
1519 tmp |= AMD_BIT(UDC_DEVCFG_SP);
1520 /* set remote wakeupable */
1521 tmp |= AMD_BIT(UDC_DEVCFG_RWKP);
1522 writel(tmp, &dev->regs->cfg);
1524 make_ep_lists(dev);
1526 dev->data_ep_enabled = 0;
1527 dev->data_ep_queued = 0;
1530 /* Sets initial endpoint parameters */
1531 static void udc_setup_endpoints(struct udc *dev)
1533 struct udc_ep *ep;
1534 u32 tmp;
1535 u32 reg;
1537 DBG(dev, "udc_setup_endpoints()\n");
1539 /* read enum speed */
1540 tmp = readl(&dev->regs->sts);
1541 tmp = AMD_GETBITS(tmp, UDC_DEVSTS_ENUM_SPEED);
1542 if (tmp == UDC_DEVSTS_ENUM_SPEED_HIGH) {
1543 dev->gadget.speed = USB_SPEED_HIGH;
1544 } else if (tmp == UDC_DEVSTS_ENUM_SPEED_FULL) {
1545 dev->gadget.speed = USB_SPEED_FULL;
1548 /* set basic ep parameters */
1549 for (tmp = 0; tmp < UDC_EP_NUM; tmp++) {
1550 ep = &dev->ep[tmp];
1551 ep->dev = dev;
1552 ep->ep.name = ep_string[tmp];
1553 ep->num = tmp;
1554 /* txfifo size is calculated at enable time */
1555 ep->txfifo = dev->txfifo;
1557 /* fifo size */
1558 if (tmp < UDC_EPIN_NUM) {
1559 ep->fifo_depth = UDC_TXFIFO_SIZE;
1560 ep->in = 1;
1561 } else {
1562 ep->fifo_depth = UDC_RXFIFO_SIZE;
1563 ep->in = 0;
1566 ep->regs = &dev->ep_regs[tmp];
1568 * ep will be reset only if ep was not enabled before to avoid
1569 * disabling ep interrupts when ENUM interrupt occurs but ep is
1570 * not enabled by gadget driver
1572 if (!ep->desc) {
1573 ep_init(dev->regs, ep);
1576 if (use_dma) {
1578 * ep->dma is not really used, just to indicate that
1579 * DMA is active: remove this
1580 * dma regs = dev control regs
1582 ep->dma = &dev->regs->ctl;
1584 /* nak OUT endpoints until enable - not for ep0 */
1585 if (tmp != UDC_EP0IN_IX && tmp != UDC_EP0OUT_IX
1586 && tmp > UDC_EPIN_NUM) {
1587 /* set NAK */
1588 reg = readl(&dev->ep[tmp].regs->ctl);
1589 reg |= AMD_BIT(UDC_EPCTL_SNAK);
1590 writel(reg, &dev->ep[tmp].regs->ctl);
1591 dev->ep[tmp].naking = 1;
1596 /* EP0 max packet */
1597 if (dev->gadget.speed == USB_SPEED_FULL) {
1598 dev->ep[UDC_EP0IN_IX].ep.maxpacket = UDC_FS_EP0IN_MAX_PKT_SIZE;
1599 dev->ep[UDC_EP0OUT_IX].ep.maxpacket =
1600 UDC_FS_EP0OUT_MAX_PKT_SIZE;
1601 } else if (dev->gadget.speed == USB_SPEED_HIGH) {
1602 dev->ep[UDC_EP0IN_IX].ep.maxpacket = UDC_EP0IN_MAX_PKT_SIZE;
1603 dev->ep[UDC_EP0OUT_IX].ep.maxpacket = UDC_EP0OUT_MAX_PKT_SIZE;
1607 * with suspend bug workaround, ep0 params for gadget driver
1608 * are set at gadget driver bind() call
1610 dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IX].ep;
1611 dev->ep[UDC_EP0IN_IX].halted = 0;
1612 INIT_LIST_HEAD(&dev->gadget.ep0->ep_list);
1614 /* init cfg/alt/int */
1615 dev->cur_config = 0;
1616 dev->cur_intf = 0;
1617 dev->cur_alt = 0;
1620 /* Bringup after Connect event, initial bringup to be ready for ep0 events */
1621 static void usb_connect(struct udc *dev)
1624 dev_info(&dev->pdev->dev, "USB Connect\n");
1626 dev->connected = 1;
1628 /* put into initial config */
1629 udc_basic_init(dev);
1631 /* enable device setup interrupts */
1632 udc_enable_dev_setup_interrupts(dev);
1636 * Calls gadget with disconnect event and resets the UDC and makes
1637 * initial bringup to be ready for ep0 events
1639 static void usb_disconnect(struct udc *dev)
1642 dev_info(&dev->pdev->dev, "USB Disconnect\n");
1644 dev->connected = 0;
1646 /* mask interrupts */
1647 udc_mask_unused_interrupts(dev);
1649 /* REVISIT there doesn't seem to be a point to having this
1650 * talk to a tasklet ... do it directly, we already hold
1651 * the spinlock needed to process the disconnect.
1654 tasklet_schedule(&disconnect_tasklet);
1657 /* Tasklet for disconnect to be outside of interrupt context */
1658 static void udc_tasklet_disconnect(unsigned long par)
1660 struct udc *dev = (struct udc *)(*((struct udc **) par));
1661 u32 tmp;
1663 DBG(dev, "Tasklet disconnect\n");
1664 spin_lock_irq(&dev->lock);
1666 if (dev->driver) {
1667 spin_unlock(&dev->lock);
1668 dev->driver->disconnect(&dev->gadget);
1669 spin_lock(&dev->lock);
1671 /* empty queues */
1672 for (tmp = 0; tmp < UDC_EP_NUM; tmp++) {
1673 empty_req_queue(&dev->ep[tmp]);
1678 /* disable ep0 */
1679 ep_init(dev->regs,
1680 &dev->ep[UDC_EP0IN_IX]);
1683 if (!soft_reset_occured) {
1684 /* init controller by soft reset */
1685 udc_soft_reset(dev);
1686 soft_reset_occured++;
1689 /* re-enable dev interrupts */
1690 udc_enable_dev_setup_interrupts(dev);
1691 /* back to full speed ? */
1692 if (use_fullspeed) {
1693 tmp = readl(&dev->regs->cfg);
1694 tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_FS, UDC_DEVCFG_SPD);
1695 writel(tmp, &dev->regs->cfg);
1698 spin_unlock_irq(&dev->lock);
1701 /* Reset the UDC core */
1702 static void udc_soft_reset(struct udc *dev)
1704 unsigned long flags;
1706 DBG(dev, "Soft reset\n");
1708 * reset possible waiting interrupts, because int.
1709 * status is lost after soft reset,
1710 * ep int. status reset
1712 writel(UDC_EPINT_MSK_DISABLE_ALL, &dev->regs->ep_irqsts);
1713 /* device int. status reset */
1714 writel(UDC_DEV_MSK_DISABLE, &dev->regs->irqsts);
1716 spin_lock_irqsave(&udc_irq_spinlock, flags);
1717 writel(AMD_BIT(UDC_DEVCFG_SOFTRESET), &dev->regs->cfg);
1718 readl(&dev->regs->cfg);
1719 spin_unlock_irqrestore(&udc_irq_spinlock, flags);
1723 /* RDE timer callback to set RDE bit */
1724 static void udc_timer_function(unsigned long v)
1726 u32 tmp;
1728 spin_lock_irq(&udc_irq_spinlock);
1730 if (set_rde > 0) {
1732 * open the fifo if fifo was filled on last timer call
1733 * conditionally
1735 if (set_rde > 1) {
1736 /* set RDE to receive setup data */
1737 tmp = readl(&udc->regs->ctl);
1738 tmp |= AMD_BIT(UDC_DEVCTL_RDE);
1739 writel(tmp, &udc->regs->ctl);
1740 set_rde = -1;
1741 } else if (readl(&udc->regs->sts)
1742 & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY)) {
1744 * if fifo empty setup polling, do not just
1745 * open the fifo
1747 udc_timer.expires = jiffies + HZ/UDC_RDE_TIMER_DIV;
1748 if (!stop_timer) {
1749 add_timer(&udc_timer);
1751 } else {
1753 * fifo contains data now, setup timer for opening
1754 * the fifo when timer expires to be able to receive
1755 * setup packets, when data packets gets queued by
1756 * gadget layer then timer will forced to expire with
1757 * set_rde=0 (RDE is set in udc_queue())
1759 set_rde++;
1760 /* debug: lhadmot_timer_start = 221070 */
1761 udc_timer.expires = jiffies + HZ*UDC_RDE_TIMER_SECONDS;
1762 if (!stop_timer) {
1763 add_timer(&udc_timer);
1767 } else
1768 set_rde = -1; /* RDE was set by udc_queue() */
1769 spin_unlock_irq(&udc_irq_spinlock);
1770 if (stop_timer)
1771 complete(&on_exit);
1775 /* Handle halt state, used in stall poll timer */
1776 static void udc_handle_halt_state(struct udc_ep *ep)
1778 u32 tmp;
1779 /* set stall as long not halted */
1780 if (ep->halted == 1) {
1781 tmp = readl(&ep->regs->ctl);
1782 /* STALL cleared ? */
1783 if (!(tmp & AMD_BIT(UDC_EPCTL_S))) {
1785 * FIXME: MSC spec requires that stall remains
1786 * even on receivng of CLEAR_FEATURE HALT. So
1787 * we would set STALL again here to be compliant.
1788 * But with current mass storage drivers this does
1789 * not work (would produce endless host retries).
1790 * So we clear halt on CLEAR_FEATURE.
1792 DBG(ep->dev, "ep %d: set STALL again\n", ep->num);
1793 tmp |= AMD_BIT(UDC_EPCTL_S);
1794 writel(tmp, &ep->regs->ctl);*/
1796 /* clear NAK by writing CNAK */
1797 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1798 writel(tmp, &ep->regs->ctl);
1799 ep->halted = 0;
1800 UDC_QUEUE_CNAK(ep, ep->num);
1805 /* Stall timer callback to poll S bit and set it again after */
1806 static void udc_pollstall_timer_function(unsigned long v)
1808 struct udc_ep *ep;
1809 int halted = 0;
1811 spin_lock_irq(&udc_stall_spinlock);
1813 * only one IN and OUT endpoints are handled
1814 * IN poll stall
1816 ep = &udc->ep[UDC_EPIN_IX];
1817 udc_handle_halt_state(ep);
1818 if (ep->halted)
1819 halted = 1;
1820 /* OUT poll stall */
1821 ep = &udc->ep[UDC_EPOUT_IX];
1822 udc_handle_halt_state(ep);
1823 if (ep->halted)
1824 halted = 1;
1826 /* setup timer again when still halted */
1827 if (!stop_pollstall_timer && halted) {
1828 udc_pollstall_timer.expires = jiffies +
1829 HZ * UDC_POLLSTALL_TIMER_USECONDS
1830 / (1000 * 1000);
1831 add_timer(&udc_pollstall_timer);
1833 spin_unlock_irq(&udc_stall_spinlock);
1835 if (stop_pollstall_timer)
1836 complete(&on_pollstall_exit);
1839 /* Inits endpoint 0 so that SETUP packets are processed */
1840 static void activate_control_endpoints(struct udc *dev)
1842 u32 tmp;
1844 DBG(dev, "activate_control_endpoints\n");
1846 /* flush fifo */
1847 tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
1848 tmp |= AMD_BIT(UDC_EPCTL_F);
1849 writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
1851 /* set ep0 directions */
1852 dev->ep[UDC_EP0IN_IX].in = 1;
1853 dev->ep[UDC_EP0OUT_IX].in = 0;
1855 /* set buffer size (tx fifo entries) of EP0_IN */
1856 tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->bufin_framenum);
1857 if (dev->gadget.speed == USB_SPEED_FULL)
1858 tmp = AMD_ADDBITS(tmp, UDC_FS_EPIN0_BUFF_SIZE,
1859 UDC_EPIN_BUFF_SIZE);
1860 else if (dev->gadget.speed == USB_SPEED_HIGH)
1861 tmp = AMD_ADDBITS(tmp, UDC_EPIN0_BUFF_SIZE,
1862 UDC_EPIN_BUFF_SIZE);
1863 writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->bufin_framenum);
1865 /* set max packet size of EP0_IN */
1866 tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->bufout_maxpkt);
1867 if (dev->gadget.speed == USB_SPEED_FULL)
1868 tmp = AMD_ADDBITS(tmp, UDC_FS_EP0IN_MAX_PKT_SIZE,
1869 UDC_EP_MAX_PKT_SIZE);
1870 else if (dev->gadget.speed == USB_SPEED_HIGH)
1871 tmp = AMD_ADDBITS(tmp, UDC_EP0IN_MAX_PKT_SIZE,
1872 UDC_EP_MAX_PKT_SIZE);
1873 writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->bufout_maxpkt);
1875 /* set max packet size of EP0_OUT */
1876 tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->bufout_maxpkt);
1877 if (dev->gadget.speed == USB_SPEED_FULL)
1878 tmp = AMD_ADDBITS(tmp, UDC_FS_EP0OUT_MAX_PKT_SIZE,
1879 UDC_EP_MAX_PKT_SIZE);
1880 else if (dev->gadget.speed == USB_SPEED_HIGH)
1881 tmp = AMD_ADDBITS(tmp, UDC_EP0OUT_MAX_PKT_SIZE,
1882 UDC_EP_MAX_PKT_SIZE);
1883 writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->bufout_maxpkt);
1885 /* set max packet size of EP0 in UDC CSR */
1886 tmp = readl(&dev->csr->ne[0]);
1887 if (dev->gadget.speed == USB_SPEED_FULL)
1888 tmp = AMD_ADDBITS(tmp, UDC_FS_EP0OUT_MAX_PKT_SIZE,
1889 UDC_CSR_NE_MAX_PKT);
1890 else if (dev->gadget.speed == USB_SPEED_HIGH)
1891 tmp = AMD_ADDBITS(tmp, UDC_EP0OUT_MAX_PKT_SIZE,
1892 UDC_CSR_NE_MAX_PKT);
1893 writel(tmp, &dev->csr->ne[0]);
1895 if (use_dma) {
1896 dev->ep[UDC_EP0OUT_IX].td->status |=
1897 AMD_BIT(UDC_DMA_OUT_STS_L);
1898 /* write dma desc address */
1899 writel(dev->ep[UDC_EP0OUT_IX].td_stp_dma,
1900 &dev->ep[UDC_EP0OUT_IX].regs->subptr);
1901 writel(dev->ep[UDC_EP0OUT_IX].td_phys,
1902 &dev->ep[UDC_EP0OUT_IX].regs->desptr);
1903 /* stop RDE timer */
1904 if (timer_pending(&udc_timer)) {
1905 set_rde = 0;
1906 mod_timer(&udc_timer, jiffies - 1);
1908 /* stop pollstall timer */
1909 if (timer_pending(&udc_pollstall_timer)) {
1910 mod_timer(&udc_pollstall_timer, jiffies - 1);
1912 /* enable DMA */
1913 tmp = readl(&dev->regs->ctl);
1914 tmp |= AMD_BIT(UDC_DEVCTL_MODE)
1915 | AMD_BIT(UDC_DEVCTL_RDE)
1916 | AMD_BIT(UDC_DEVCTL_TDE);
1917 if (use_dma_bufferfill_mode) {
1918 tmp |= AMD_BIT(UDC_DEVCTL_BF);
1919 } else if (use_dma_ppb_du) {
1920 tmp |= AMD_BIT(UDC_DEVCTL_DU);
1922 writel(tmp, &dev->regs->ctl);
1925 /* clear NAK by writing CNAK for EP0IN */
1926 tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
1927 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1928 writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
1929 dev->ep[UDC_EP0IN_IX].naking = 0;
1930 UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX], UDC_EP0IN_IX);
1932 /* clear NAK by writing CNAK for EP0OUT */
1933 tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl);
1934 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1935 writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->ctl);
1936 dev->ep[UDC_EP0OUT_IX].naking = 0;
1937 UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX], UDC_EP0OUT_IX);
1940 /* Make endpoint 0 ready for control traffic */
1941 static int setup_ep0(struct udc *dev)
1943 activate_control_endpoints(dev);
1944 /* enable ep0 interrupts */
1945 udc_enable_ep0_interrupts(dev);
1946 /* enable device setup interrupts */
1947 udc_enable_dev_setup_interrupts(dev);
1949 return 0;
1952 /* Called by gadget driver to register itself */
1953 int usb_gadget_register_driver(struct usb_gadget_driver *driver)
1955 struct udc *dev = udc;
1956 int retval;
1957 u32 tmp;
1959 if (!driver || !driver->bind || !driver->setup
1960 || driver->speed != USB_SPEED_HIGH)
1961 return -EINVAL;
1962 if (!dev)
1963 return -ENODEV;
1964 if (dev->driver)
1965 return -EBUSY;
1967 driver->driver.bus = NULL;
1968 dev->driver = driver;
1969 dev->gadget.dev.driver = &driver->driver;
1971 retval = driver->bind(&dev->gadget);
1973 /* Some gadget drivers use both ep0 directions.
1974 * NOTE: to gadget driver, ep0 is just one endpoint...
1976 dev->ep[UDC_EP0OUT_IX].ep.driver_data =
1977 dev->ep[UDC_EP0IN_IX].ep.driver_data;
1979 if (retval) {
1980 DBG(dev, "binding to %s returning %d\n",
1981 driver->driver.name, retval);
1982 dev->driver = NULL;
1983 dev->gadget.dev.driver = NULL;
1984 return retval;
1987 /* get ready for ep0 traffic */
1988 setup_ep0(dev);
1990 /* clear SD */
1991 tmp = readl(&dev->regs->ctl);
1992 tmp = tmp & AMD_CLEAR_BIT(UDC_DEVCTL_SD);
1993 writel(tmp, &dev->regs->ctl);
1995 usb_connect(dev);
1997 return 0;
1999 EXPORT_SYMBOL(usb_gadget_register_driver);
2001 /* shutdown requests and disconnect from gadget */
2002 static void
2003 shutdown(struct udc *dev, struct usb_gadget_driver *driver)
2004 __releases(dev->lock)
2005 __acquires(dev->lock)
2007 int tmp;
2009 /* empty queues and init hardware */
2010 udc_basic_init(dev);
2011 for (tmp = 0; tmp < UDC_EP_NUM; tmp++) {
2012 empty_req_queue(&dev->ep[tmp]);
2015 if (dev->gadget.speed != USB_SPEED_UNKNOWN) {
2016 spin_unlock(&dev->lock);
2017 driver->disconnect(&dev->gadget);
2018 spin_lock(&dev->lock);
2020 /* init */
2021 udc_setup_endpoints(dev);
2024 /* Called by gadget driver to unregister itself */
2025 int usb_gadget_unregister_driver(struct usb_gadget_driver *driver)
2027 struct udc *dev = udc;
2028 unsigned long flags;
2029 u32 tmp;
2031 if (!dev)
2032 return -ENODEV;
2033 if (!driver || driver != dev->driver || !driver->unbind)
2034 return -EINVAL;
2036 spin_lock_irqsave(&dev->lock, flags);
2037 udc_mask_unused_interrupts(dev);
2038 shutdown(dev, driver);
2039 spin_unlock_irqrestore(&dev->lock, flags);
2041 driver->unbind(&dev->gadget);
2042 dev->gadget.dev.driver = NULL;
2043 dev->driver = NULL;
2045 /* set SD */
2046 tmp = readl(&dev->regs->ctl);
2047 tmp |= AMD_BIT(UDC_DEVCTL_SD);
2048 writel(tmp, &dev->regs->ctl);
2051 DBG(dev, "%s: unregistered\n", driver->driver.name);
2053 return 0;
2055 EXPORT_SYMBOL(usb_gadget_unregister_driver);
2058 /* Clear pending NAK bits */
2059 static void udc_process_cnak_queue(struct udc *dev)
2061 u32 tmp;
2062 u32 reg;
2064 /* check epin's */
2065 DBG(dev, "CNAK pending queue processing\n");
2066 for (tmp = 0; tmp < UDC_EPIN_NUM_USED; tmp++) {
2067 if (cnak_pending & (1 << tmp)) {
2068 DBG(dev, "CNAK pending for ep%d\n", tmp);
2069 /* clear NAK by writing CNAK */
2070 reg = readl(&dev->ep[tmp].regs->ctl);
2071 reg |= AMD_BIT(UDC_EPCTL_CNAK);
2072 writel(reg, &dev->ep[tmp].regs->ctl);
2073 dev->ep[tmp].naking = 0;
2074 UDC_QUEUE_CNAK(&dev->ep[tmp], dev->ep[tmp].num);
2077 /* ... and ep0out */
2078 if (cnak_pending & (1 << UDC_EP0OUT_IX)) {
2079 DBG(dev, "CNAK pending for ep%d\n", UDC_EP0OUT_IX);
2080 /* clear NAK by writing CNAK */
2081 reg = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl);
2082 reg |= AMD_BIT(UDC_EPCTL_CNAK);
2083 writel(reg, &dev->ep[UDC_EP0OUT_IX].regs->ctl);
2084 dev->ep[UDC_EP0OUT_IX].naking = 0;
2085 UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX],
2086 dev->ep[UDC_EP0OUT_IX].num);
2090 /* Enabling RX DMA after setup packet */
2091 static void udc_ep0_set_rde(struct udc *dev)
2093 if (use_dma) {
2095 * only enable RXDMA when no data endpoint enabled
2096 * or data is queued
2098 if (!dev->data_ep_enabled || dev->data_ep_queued) {
2099 udc_set_rde(dev);
2100 } else {
2102 * setup timer for enabling RDE (to not enable
2103 * RXFIFO DMA for data endpoints to early)
2105 if (set_rde != 0 && !timer_pending(&udc_timer)) {
2106 udc_timer.expires =
2107 jiffies + HZ/UDC_RDE_TIMER_DIV;
2108 set_rde = 1;
2109 if (!stop_timer) {
2110 add_timer(&udc_timer);
2118 /* Interrupt handler for data OUT traffic */
2119 static irqreturn_t udc_data_out_isr(struct udc *dev, int ep_ix)
2121 irqreturn_t ret_val = IRQ_NONE;
2122 u32 tmp;
2123 struct udc_ep *ep;
2124 struct udc_request *req;
2125 unsigned int count;
2126 struct udc_data_dma *td = NULL;
2127 unsigned dma_done;
2129 VDBG(dev, "ep%d irq\n", ep_ix);
2130 ep = &dev->ep[ep_ix];
2132 tmp = readl(&ep->regs->sts);
2133 if (use_dma) {
2134 /* BNA event ? */
2135 if (tmp & AMD_BIT(UDC_EPSTS_BNA)) {
2136 DBG(dev, "BNA ep%dout occured - DESPTR = %x \n",
2137 ep->num, readl(&ep->regs->desptr));
2138 /* clear BNA */
2139 writel(tmp | AMD_BIT(UDC_EPSTS_BNA), &ep->regs->sts);
2140 if (!ep->cancel_transfer)
2141 ep->bna_occurred = 1;
2142 else
2143 ep->cancel_transfer = 0;
2144 ret_val = IRQ_HANDLED;
2145 goto finished;
2148 /* HE event ? */
2149 if (tmp & AMD_BIT(UDC_EPSTS_HE)) {
2150 dev_err(&dev->pdev->dev, "HE ep%dout occured\n", ep->num);
2152 /* clear HE */
2153 writel(tmp | AMD_BIT(UDC_EPSTS_HE), &ep->regs->sts);
2154 ret_val = IRQ_HANDLED;
2155 goto finished;
2158 if (!list_empty(&ep->queue)) {
2160 /* next request */
2161 req = list_entry(ep->queue.next,
2162 struct udc_request, queue);
2163 } else {
2164 req = NULL;
2165 udc_rxfifo_pending = 1;
2167 VDBG(dev, "req = %p\n", req);
2168 /* fifo mode */
2169 if (!use_dma) {
2171 /* read fifo */
2172 if (req && udc_rxfifo_read(ep, req)) {
2173 ret_val = IRQ_HANDLED;
2175 /* finish */
2176 complete_req(ep, req, 0);
2177 /* next request */
2178 if (!list_empty(&ep->queue) && !ep->halted) {
2179 req = list_entry(ep->queue.next,
2180 struct udc_request, queue);
2181 } else
2182 req = NULL;
2185 /* DMA */
2186 } else if (!ep->cancel_transfer && req != NULL) {
2187 ret_val = IRQ_HANDLED;
2189 /* check for DMA done */
2190 if (!use_dma_ppb) {
2191 dma_done = AMD_GETBITS(req->td_data->status,
2192 UDC_DMA_OUT_STS_BS);
2193 /* packet per buffer mode - rx bytes */
2194 } else {
2196 * if BNA occurred then recover desc. from
2197 * BNA dummy desc.
2199 if (ep->bna_occurred) {
2200 VDBG(dev, "Recover desc. from BNA dummy\n");
2201 memcpy(req->td_data, ep->bna_dummy_req->td_data,
2202 sizeof(struct udc_data_dma));
2203 ep->bna_occurred = 0;
2204 udc_init_bna_dummy(ep->req);
2206 td = udc_get_last_dma_desc(req);
2207 dma_done = AMD_GETBITS(td->status, UDC_DMA_OUT_STS_BS);
2209 if (dma_done == UDC_DMA_OUT_STS_BS_DMA_DONE) {
2210 /* buffer fill mode - rx bytes */
2211 if (!use_dma_ppb) {
2212 /* received number bytes */
2213 count = AMD_GETBITS(req->td_data->status,
2214 UDC_DMA_OUT_STS_RXBYTES);
2215 VDBG(dev, "rx bytes=%u\n", count);
2216 /* packet per buffer mode - rx bytes */
2217 } else {
2218 VDBG(dev, "req->td_data=%p\n", req->td_data);
2219 VDBG(dev, "last desc = %p\n", td);
2220 /* received number bytes */
2221 if (use_dma_ppb_du) {
2222 /* every desc. counts bytes */
2223 count = udc_get_ppbdu_rxbytes(req);
2224 } else {
2225 /* last desc. counts bytes */
2226 count = AMD_GETBITS(td->status,
2227 UDC_DMA_OUT_STS_RXBYTES);
2228 if (!count && req->req.length
2229 == UDC_DMA_MAXPACKET) {
2231 * on 64k packets the RXBYTES
2232 * field is zero
2234 count = UDC_DMA_MAXPACKET;
2237 VDBG(dev, "last desc rx bytes=%u\n", count);
2240 tmp = req->req.length - req->req.actual;
2241 if (count > tmp) {
2242 if ((tmp % ep->ep.maxpacket) != 0) {
2243 DBG(dev, "%s: rx %db, space=%db\n",
2244 ep->ep.name, count, tmp);
2245 req->req.status = -EOVERFLOW;
2247 count = tmp;
2249 req->req.actual += count;
2250 req->dma_going = 0;
2251 /* complete request */
2252 complete_req(ep, req, 0);
2254 /* next request */
2255 if (!list_empty(&ep->queue) && !ep->halted) {
2256 req = list_entry(ep->queue.next,
2257 struct udc_request,
2258 queue);
2260 * DMA may be already started by udc_queue()
2261 * called by gadget drivers completion
2262 * routine. This happens when queue
2263 * holds one request only.
2265 if (req->dma_going == 0) {
2266 /* next dma */
2267 if (prep_dma(ep, req, GFP_ATOMIC) != 0)
2268 goto finished;
2269 /* write desc pointer */
2270 writel(req->td_phys,
2271 &ep->regs->desptr);
2272 req->dma_going = 1;
2273 /* enable DMA */
2274 udc_set_rde(dev);
2276 } else {
2278 * implant BNA dummy descriptor to allow
2279 * RXFIFO opening by RDE
2281 if (ep->bna_dummy_req) {
2282 /* write desc pointer */
2283 writel(ep->bna_dummy_req->td_phys,
2284 &ep->regs->desptr);
2285 ep->bna_occurred = 0;
2289 * schedule timer for setting RDE if queue
2290 * remains empty to allow ep0 packets pass
2291 * through
2293 if (set_rde != 0
2294 && !timer_pending(&udc_timer)) {
2295 udc_timer.expires =
2296 jiffies
2297 + HZ*UDC_RDE_TIMER_SECONDS;
2298 set_rde = 1;
2299 if (!stop_timer) {
2300 add_timer(&udc_timer);
2303 if (ep->num != UDC_EP0OUT_IX)
2304 dev->data_ep_queued = 0;
2307 } else {
2309 * RX DMA must be reenabled for each desc in PPBDU mode
2310 * and must be enabled for PPBNDU mode in case of BNA
2312 udc_set_rde(dev);
2315 } else if (ep->cancel_transfer) {
2316 ret_val = IRQ_HANDLED;
2317 ep->cancel_transfer = 0;
2320 /* check pending CNAKS */
2321 if (cnak_pending) {
2322 /* CNAk processing when rxfifo empty only */
2323 if (readl(&dev->regs->sts) & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY)) {
2324 udc_process_cnak_queue(dev);
2328 /* clear OUT bits in ep status */
2329 writel(UDC_EPSTS_OUT_CLEAR, &ep->regs->sts);
2330 finished:
2331 return ret_val;
2334 /* Interrupt handler for data IN traffic */
2335 static irqreturn_t udc_data_in_isr(struct udc *dev, int ep_ix)
2337 irqreturn_t ret_val = IRQ_NONE;
2338 u32 tmp;
2339 u32 epsts;
2340 struct udc_ep *ep;
2341 struct udc_request *req;
2342 struct udc_data_dma *td;
2343 unsigned dma_done;
2344 unsigned len;
2346 ep = &dev->ep[ep_ix];
2348 epsts = readl(&ep->regs->sts);
2349 if (use_dma) {
2350 /* BNA ? */
2351 if (epsts & AMD_BIT(UDC_EPSTS_BNA)) {
2352 dev_err(&dev->pdev->dev,
2353 "BNA ep%din occured - DESPTR = %08lx \n",
2354 ep->num,
2355 (unsigned long) readl(&ep->regs->desptr));
2357 /* clear BNA */
2358 writel(epsts, &ep->regs->sts);
2359 ret_val = IRQ_HANDLED;
2360 goto finished;
2363 /* HE event ? */
2364 if (epsts & AMD_BIT(UDC_EPSTS_HE)) {
2365 dev_err(&dev->pdev->dev,
2366 "HE ep%dn occured - DESPTR = %08lx \n",
2367 ep->num, (unsigned long) readl(&ep->regs->desptr));
2369 /* clear HE */
2370 writel(epsts | AMD_BIT(UDC_EPSTS_HE), &ep->regs->sts);
2371 ret_val = IRQ_HANDLED;
2372 goto finished;
2375 /* DMA completion */
2376 if (epsts & AMD_BIT(UDC_EPSTS_TDC)) {
2377 VDBG(dev, "TDC set- completion\n");
2378 ret_val = IRQ_HANDLED;
2379 if (!ep->cancel_transfer && !list_empty(&ep->queue)) {
2380 req = list_entry(ep->queue.next,
2381 struct udc_request, queue);
2382 if (req) {
2384 * length bytes transfered
2385 * check dma done of last desc. in PPBDU mode
2387 if (use_dma_ppb_du) {
2388 td = udc_get_last_dma_desc(req);
2389 if (td) {
2390 dma_done =
2391 AMD_GETBITS(td->status,
2392 UDC_DMA_IN_STS_BS);
2393 /* don't care DMA done */
2394 req->req.actual =
2395 req->req.length;
2397 } else {
2398 /* assume all bytes transferred */
2399 req->req.actual = req->req.length;
2402 if (req->req.actual == req->req.length) {
2403 /* complete req */
2404 complete_req(ep, req, 0);
2405 req->dma_going = 0;
2406 /* further request available ? */
2407 if (list_empty(&ep->queue)) {
2408 /* disable interrupt */
2409 tmp = readl(
2410 &dev->regs->ep_irqmsk);
2411 tmp |= AMD_BIT(ep->num);
2412 writel(tmp,
2413 &dev->regs->ep_irqmsk);
2419 ep->cancel_transfer = 0;
2423 * status reg has IN bit set and TDC not set (if TDC was handled,
2424 * IN must not be handled (UDC defect) ?
2426 if ((epsts & AMD_BIT(UDC_EPSTS_IN))
2427 && !(epsts & AMD_BIT(UDC_EPSTS_TDC))) {
2428 ret_val = IRQ_HANDLED;
2429 if (!list_empty(&ep->queue)) {
2430 /* next request */
2431 req = list_entry(ep->queue.next,
2432 struct udc_request, queue);
2433 /* FIFO mode */
2434 if (!use_dma) {
2435 /* write fifo */
2436 udc_txfifo_write(ep, &req->req);
2437 len = req->req.length - req->req.actual;
2438 if (len > ep->ep.maxpacket)
2439 len = ep->ep.maxpacket;
2440 req->req.actual += len;
2441 if (req->req.actual == req->req.length
2442 || (len != ep->ep.maxpacket)) {
2443 /* complete req */
2444 complete_req(ep, req, 0);
2446 /* DMA */
2447 } else if (req && !req->dma_going) {
2448 VDBG(dev, "IN DMA : req=%p req->td_data=%p\n",
2449 req, req->td_data);
2450 if (req->td_data) {
2452 req->dma_going = 1;
2455 * unset L bit of first desc.
2456 * for chain
2458 if (use_dma_ppb && req->req.length >
2459 ep->ep.maxpacket) {
2460 req->td_data->status &=
2461 AMD_CLEAR_BIT(
2462 UDC_DMA_IN_STS_L);
2465 /* write desc pointer */
2466 writel(req->td_phys, &ep->regs->desptr);
2468 /* set HOST READY */
2469 req->td_data->status =
2470 AMD_ADDBITS(
2471 req->td_data->status,
2472 UDC_DMA_IN_STS_BS_HOST_READY,
2473 UDC_DMA_IN_STS_BS);
2475 /* set poll demand bit */
2476 tmp = readl(&ep->regs->ctl);
2477 tmp |= AMD_BIT(UDC_EPCTL_P);
2478 writel(tmp, &ep->regs->ctl);
2484 /* clear status bits */
2485 writel(epsts, &ep->regs->sts);
2487 finished:
2488 return ret_val;
2492 /* Interrupt handler for Control OUT traffic */
2493 static irqreturn_t udc_control_out_isr(struct udc *dev)
2494 __releases(dev->lock)
2495 __acquires(dev->lock)
2497 irqreturn_t ret_val = IRQ_NONE;
2498 u32 tmp;
2499 int setup_supported;
2500 u32 count;
2501 int set = 0;
2502 struct udc_ep *ep;
2503 struct udc_ep *ep_tmp;
2505 ep = &dev->ep[UDC_EP0OUT_IX];
2507 /* clear irq */
2508 writel(AMD_BIT(UDC_EPINT_OUT_EP0), &dev->regs->ep_irqsts);
2510 tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->sts);
2511 /* check BNA and clear if set */
2512 if (tmp & AMD_BIT(UDC_EPSTS_BNA)) {
2513 VDBG(dev, "ep0: BNA set\n");
2514 writel(AMD_BIT(UDC_EPSTS_BNA),
2515 &dev->ep[UDC_EP0OUT_IX].regs->sts);
2516 ep->bna_occurred = 1;
2517 ret_val = IRQ_HANDLED;
2518 goto finished;
2521 /* type of data: SETUP or DATA 0 bytes */
2522 tmp = AMD_GETBITS(tmp, UDC_EPSTS_OUT);
2523 VDBG(dev, "data_typ = %x\n", tmp);
2525 /* setup data */
2526 if (tmp == UDC_EPSTS_OUT_SETUP) {
2527 ret_val = IRQ_HANDLED;
2529 ep->dev->stall_ep0in = 0;
2530 dev->waiting_zlp_ack_ep0in = 0;
2532 /* set NAK for EP0_IN */
2533 tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
2534 tmp |= AMD_BIT(UDC_EPCTL_SNAK);
2535 writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
2536 dev->ep[UDC_EP0IN_IX].naking = 1;
2537 /* get setup data */
2538 if (use_dma) {
2540 /* clear OUT bits in ep status */
2541 writel(UDC_EPSTS_OUT_CLEAR,
2542 &dev->ep[UDC_EP0OUT_IX].regs->sts);
2544 setup_data.data[0] =
2545 dev->ep[UDC_EP0OUT_IX].td_stp->data12;
2546 setup_data.data[1] =
2547 dev->ep[UDC_EP0OUT_IX].td_stp->data34;
2548 /* set HOST READY */
2549 dev->ep[UDC_EP0OUT_IX].td_stp->status =
2550 UDC_DMA_STP_STS_BS_HOST_READY;
2551 } else {
2552 /* read fifo */
2553 udc_rxfifo_read_dwords(dev, setup_data.data, 2);
2556 /* determine direction of control data */
2557 if ((setup_data.request.bRequestType & USB_DIR_IN) != 0) {
2558 dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IX].ep;
2559 /* enable RDE */
2560 udc_ep0_set_rde(dev);
2561 set = 0;
2562 } else {
2563 dev->gadget.ep0 = &dev->ep[UDC_EP0OUT_IX].ep;
2565 * implant BNA dummy descriptor to allow RXFIFO opening
2566 * by RDE
2568 if (ep->bna_dummy_req) {
2569 /* write desc pointer */
2570 writel(ep->bna_dummy_req->td_phys,
2571 &dev->ep[UDC_EP0OUT_IX].regs->desptr);
2572 ep->bna_occurred = 0;
2575 set = 1;
2576 dev->ep[UDC_EP0OUT_IX].naking = 1;
2578 * setup timer for enabling RDE (to not enable
2579 * RXFIFO DMA for data to early)
2581 set_rde = 1;
2582 if (!timer_pending(&udc_timer)) {
2583 udc_timer.expires = jiffies +
2584 HZ/UDC_RDE_TIMER_DIV;
2585 if (!stop_timer) {
2586 add_timer(&udc_timer);
2592 * mass storage reset must be processed here because
2593 * next packet may be a CLEAR_FEATURE HALT which would not
2594 * clear the stall bit when no STALL handshake was received
2595 * before (autostall can cause this)
2597 if (setup_data.data[0] == UDC_MSCRES_DWORD0
2598 && setup_data.data[1] == UDC_MSCRES_DWORD1) {
2599 DBG(dev, "MSC Reset\n");
2601 * clear stall bits
2602 * only one IN and OUT endpoints are handled
2604 ep_tmp = &udc->ep[UDC_EPIN_IX];
2605 udc_set_halt(&ep_tmp->ep, 0);
2606 ep_tmp = &udc->ep[UDC_EPOUT_IX];
2607 udc_set_halt(&ep_tmp->ep, 0);
2610 /* call gadget with setup data received */
2611 spin_unlock(&dev->lock);
2612 setup_supported = dev->driver->setup(&dev->gadget,
2613 &setup_data.request);
2614 spin_lock(&dev->lock);
2616 tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
2617 /* ep0 in returns data (not zlp) on IN phase */
2618 if (setup_supported >= 0 && setup_supported <
2619 UDC_EP0IN_MAXPACKET) {
2620 /* clear NAK by writing CNAK in EP0_IN */
2621 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
2622 writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
2623 dev->ep[UDC_EP0IN_IX].naking = 0;
2624 UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX], UDC_EP0IN_IX);
2626 /* if unsupported request then stall */
2627 } else if (setup_supported < 0) {
2628 tmp |= AMD_BIT(UDC_EPCTL_S);
2629 writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
2630 } else
2631 dev->waiting_zlp_ack_ep0in = 1;
2634 /* clear NAK by writing CNAK in EP0_OUT */
2635 if (!set) {
2636 tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl);
2637 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
2638 writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->ctl);
2639 dev->ep[UDC_EP0OUT_IX].naking = 0;
2640 UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX], UDC_EP0OUT_IX);
2643 if (!use_dma) {
2644 /* clear OUT bits in ep status */
2645 writel(UDC_EPSTS_OUT_CLEAR,
2646 &dev->ep[UDC_EP0OUT_IX].regs->sts);
2649 /* data packet 0 bytes */
2650 } else if (tmp == UDC_EPSTS_OUT_DATA) {
2651 /* clear OUT bits in ep status */
2652 writel(UDC_EPSTS_OUT_CLEAR, &dev->ep[UDC_EP0OUT_IX].regs->sts);
2654 /* get setup data: only 0 packet */
2655 if (use_dma) {
2656 /* no req if 0 packet, just reactivate */
2657 if (list_empty(&dev->ep[UDC_EP0OUT_IX].queue)) {
2658 VDBG(dev, "ZLP\n");
2660 /* set HOST READY */
2661 dev->ep[UDC_EP0OUT_IX].td->status =
2662 AMD_ADDBITS(
2663 dev->ep[UDC_EP0OUT_IX].td->status,
2664 UDC_DMA_OUT_STS_BS_HOST_READY,
2665 UDC_DMA_OUT_STS_BS);
2666 /* enable RDE */
2667 udc_ep0_set_rde(dev);
2668 ret_val = IRQ_HANDLED;
2670 } else {
2671 /* control write */
2672 ret_val |= udc_data_out_isr(dev, UDC_EP0OUT_IX);
2673 /* re-program desc. pointer for possible ZLPs */
2674 writel(dev->ep[UDC_EP0OUT_IX].td_phys,
2675 &dev->ep[UDC_EP0OUT_IX].regs->desptr);
2676 /* enable RDE */
2677 udc_ep0_set_rde(dev);
2679 } else {
2681 /* received number bytes */
2682 count = readl(&dev->ep[UDC_EP0OUT_IX].regs->sts);
2683 count = AMD_GETBITS(count, UDC_EPSTS_RX_PKT_SIZE);
2684 /* out data for fifo mode not working */
2685 count = 0;
2687 /* 0 packet or real data ? */
2688 if (count != 0) {
2689 ret_val |= udc_data_out_isr(dev, UDC_EP0OUT_IX);
2690 } else {
2691 /* dummy read confirm */
2692 readl(&dev->ep[UDC_EP0OUT_IX].regs->confirm);
2693 ret_val = IRQ_HANDLED;
2698 /* check pending CNAKS */
2699 if (cnak_pending) {
2700 /* CNAk processing when rxfifo empty only */
2701 if (readl(&dev->regs->sts) & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY)) {
2702 udc_process_cnak_queue(dev);
2706 finished:
2707 return ret_val;
2710 /* Interrupt handler for Control IN traffic */
2711 static irqreturn_t udc_control_in_isr(struct udc *dev)
2713 irqreturn_t ret_val = IRQ_NONE;
2714 u32 tmp;
2715 struct udc_ep *ep;
2716 struct udc_request *req;
2717 unsigned len;
2719 ep = &dev->ep[UDC_EP0IN_IX];
2721 /* clear irq */
2722 writel(AMD_BIT(UDC_EPINT_IN_EP0), &dev->regs->ep_irqsts);
2724 tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->sts);
2725 /* DMA completion */
2726 if (tmp & AMD_BIT(UDC_EPSTS_TDC)) {
2727 VDBG(dev, "isr: TDC clear \n");
2728 ret_val = IRQ_HANDLED;
2730 /* clear TDC bit */
2731 writel(AMD_BIT(UDC_EPSTS_TDC),
2732 &dev->ep[UDC_EP0IN_IX].regs->sts);
2734 /* status reg has IN bit set ? */
2735 } else if (tmp & AMD_BIT(UDC_EPSTS_IN)) {
2736 ret_val = IRQ_HANDLED;
2738 if (ep->dma) {
2739 /* clear IN bit */
2740 writel(AMD_BIT(UDC_EPSTS_IN),
2741 &dev->ep[UDC_EP0IN_IX].regs->sts);
2743 if (dev->stall_ep0in) {
2744 DBG(dev, "stall ep0in\n");
2745 /* halt ep0in */
2746 tmp = readl(&ep->regs->ctl);
2747 tmp |= AMD_BIT(UDC_EPCTL_S);
2748 writel(tmp, &ep->regs->ctl);
2749 } else {
2750 if (!list_empty(&ep->queue)) {
2751 /* next request */
2752 req = list_entry(ep->queue.next,
2753 struct udc_request, queue);
2755 if (ep->dma) {
2756 /* write desc pointer */
2757 writel(req->td_phys, &ep->regs->desptr);
2758 /* set HOST READY */
2759 req->td_data->status =
2760 AMD_ADDBITS(
2761 req->td_data->status,
2762 UDC_DMA_STP_STS_BS_HOST_READY,
2763 UDC_DMA_STP_STS_BS);
2765 /* set poll demand bit */
2766 tmp =
2767 readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
2768 tmp |= AMD_BIT(UDC_EPCTL_P);
2769 writel(tmp,
2770 &dev->ep[UDC_EP0IN_IX].regs->ctl);
2772 /* all bytes will be transferred */
2773 req->req.actual = req->req.length;
2775 /* complete req */
2776 complete_req(ep, req, 0);
2778 } else {
2779 /* write fifo */
2780 udc_txfifo_write(ep, &req->req);
2782 /* lengh bytes transfered */
2783 len = req->req.length - req->req.actual;
2784 if (len > ep->ep.maxpacket)
2785 len = ep->ep.maxpacket;
2787 req->req.actual += len;
2788 if (req->req.actual == req->req.length
2789 || (len != ep->ep.maxpacket)) {
2790 /* complete req */
2791 complete_req(ep, req, 0);
2797 ep->halted = 0;
2798 dev->stall_ep0in = 0;
2799 if (!ep->dma) {
2800 /* clear IN bit */
2801 writel(AMD_BIT(UDC_EPSTS_IN),
2802 &dev->ep[UDC_EP0IN_IX].regs->sts);
2806 return ret_val;
2810 /* Interrupt handler for global device events */
2811 static irqreturn_t udc_dev_isr(struct udc *dev, u32 dev_irq)
2812 __releases(dev->lock)
2813 __acquires(dev->lock)
2815 irqreturn_t ret_val = IRQ_NONE;
2816 u32 tmp;
2817 u32 cfg;
2818 struct udc_ep *ep;
2819 u16 i;
2820 u8 udc_csr_epix;
2822 /* SET_CONFIG irq ? */
2823 if (dev_irq & AMD_BIT(UDC_DEVINT_SC)) {
2824 ret_val = IRQ_HANDLED;
2826 /* read config value */
2827 tmp = readl(&dev->regs->sts);
2828 cfg = AMD_GETBITS(tmp, UDC_DEVSTS_CFG);
2829 DBG(dev, "SET_CONFIG interrupt: config=%d\n", cfg);
2830 dev->cur_config = cfg;
2831 dev->set_cfg_not_acked = 1;
2833 /* make usb request for gadget driver */
2834 memset(&setup_data, 0 , sizeof(union udc_setup_data));
2835 setup_data.request.bRequest = USB_REQ_SET_CONFIGURATION;
2836 setup_data.request.wValue = cpu_to_le16(dev->cur_config);
2838 /* programm the NE registers */
2839 for (i = 0; i < UDC_EP_NUM; i++) {
2840 ep = &dev->ep[i];
2841 if (ep->in) {
2843 /* ep ix in UDC CSR register space */
2844 udc_csr_epix = ep->num;
2847 /* OUT ep */
2848 } else {
2849 /* ep ix in UDC CSR register space */
2850 udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS;
2853 tmp = readl(&dev->csr->ne[udc_csr_epix]);
2854 /* ep cfg */
2855 tmp = AMD_ADDBITS(tmp, ep->dev->cur_config,
2856 UDC_CSR_NE_CFG);
2857 /* write reg */
2858 writel(tmp, &dev->csr->ne[udc_csr_epix]);
2860 /* clear stall bits */
2861 ep->halted = 0;
2862 tmp = readl(&ep->regs->ctl);
2863 tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S);
2864 writel(tmp, &ep->regs->ctl);
2866 /* call gadget zero with setup data received */
2867 spin_unlock(&dev->lock);
2868 tmp = dev->driver->setup(&dev->gadget, &setup_data.request);
2869 spin_lock(&dev->lock);
2871 } /* SET_INTERFACE ? */
2872 if (dev_irq & AMD_BIT(UDC_DEVINT_SI)) {
2873 ret_val = IRQ_HANDLED;
2875 dev->set_cfg_not_acked = 1;
2876 /* read interface and alt setting values */
2877 tmp = readl(&dev->regs->sts);
2878 dev->cur_alt = AMD_GETBITS(tmp, UDC_DEVSTS_ALT);
2879 dev->cur_intf = AMD_GETBITS(tmp, UDC_DEVSTS_INTF);
2881 /* make usb request for gadget driver */
2882 memset(&setup_data, 0 , sizeof(union udc_setup_data));
2883 setup_data.request.bRequest = USB_REQ_SET_INTERFACE;
2884 setup_data.request.bRequestType = USB_RECIP_INTERFACE;
2885 setup_data.request.wValue = cpu_to_le16(dev->cur_alt);
2886 setup_data.request.wIndex = cpu_to_le16(dev->cur_intf);
2888 DBG(dev, "SET_INTERFACE interrupt: alt=%d intf=%d\n",
2889 dev->cur_alt, dev->cur_intf);
2891 /* programm the NE registers */
2892 for (i = 0; i < UDC_EP_NUM; i++) {
2893 ep = &dev->ep[i];
2894 if (ep->in) {
2896 /* ep ix in UDC CSR register space */
2897 udc_csr_epix = ep->num;
2900 /* OUT ep */
2901 } else {
2902 /* ep ix in UDC CSR register space */
2903 udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS;
2906 /* UDC CSR reg */
2907 /* set ep values */
2908 tmp = readl(&dev->csr->ne[udc_csr_epix]);
2909 /* ep interface */
2910 tmp = AMD_ADDBITS(tmp, ep->dev->cur_intf,
2911 UDC_CSR_NE_INTF);
2912 /* tmp = AMD_ADDBITS(tmp, 2, UDC_CSR_NE_INTF); */
2913 /* ep alt */
2914 tmp = AMD_ADDBITS(tmp, ep->dev->cur_alt,
2915 UDC_CSR_NE_ALT);
2916 /* write reg */
2917 writel(tmp, &dev->csr->ne[udc_csr_epix]);
2919 /* clear stall bits */
2920 ep->halted = 0;
2921 tmp = readl(&ep->regs->ctl);
2922 tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S);
2923 writel(tmp, &ep->regs->ctl);
2926 /* call gadget zero with setup data received */
2927 spin_unlock(&dev->lock);
2928 tmp = dev->driver->setup(&dev->gadget, &setup_data.request);
2929 spin_lock(&dev->lock);
2931 } /* USB reset */
2932 if (dev_irq & AMD_BIT(UDC_DEVINT_UR)) {
2933 DBG(dev, "USB Reset interrupt\n");
2934 ret_val = IRQ_HANDLED;
2936 /* allow soft reset when suspend occurs */
2937 soft_reset_occured = 0;
2939 dev->waiting_zlp_ack_ep0in = 0;
2940 dev->set_cfg_not_acked = 0;
2942 /* mask not needed interrupts */
2943 udc_mask_unused_interrupts(dev);
2945 /* call gadget to resume and reset configs etc. */
2946 spin_unlock(&dev->lock);
2947 if (dev->sys_suspended && dev->driver->resume) {
2948 dev->driver->resume(&dev->gadget);
2949 dev->sys_suspended = 0;
2951 dev->driver->disconnect(&dev->gadget);
2952 spin_lock(&dev->lock);
2954 /* disable ep0 to empty req queue */
2955 empty_req_queue(&dev->ep[UDC_EP0IN_IX]);
2956 ep_init(dev->regs, &dev->ep[UDC_EP0IN_IX]);
2958 /* soft reset when rxfifo not empty */
2959 tmp = readl(&dev->regs->sts);
2960 if (!(tmp & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY))
2961 && !soft_reset_after_usbreset_occured) {
2962 udc_soft_reset(dev);
2963 soft_reset_after_usbreset_occured++;
2967 * DMA reset to kill potential old DMA hw hang,
2968 * POLL bit is already reset by ep_init() through
2969 * disconnect()
2971 DBG(dev, "DMA machine reset\n");
2972 tmp = readl(&dev->regs->cfg);
2973 writel(tmp | AMD_BIT(UDC_DEVCFG_DMARST), &dev->regs->cfg);
2974 writel(tmp, &dev->regs->cfg);
2976 /* put into initial config */
2977 udc_basic_init(dev);
2979 /* enable device setup interrupts */
2980 udc_enable_dev_setup_interrupts(dev);
2982 /* enable suspend interrupt */
2983 tmp = readl(&dev->regs->irqmsk);
2984 tmp &= AMD_UNMASK_BIT(UDC_DEVINT_US);
2985 writel(tmp, &dev->regs->irqmsk);
2987 } /* USB suspend */
2988 if (dev_irq & AMD_BIT(UDC_DEVINT_US)) {
2989 DBG(dev, "USB Suspend interrupt\n");
2990 ret_val = IRQ_HANDLED;
2991 if (dev->driver->suspend) {
2992 spin_unlock(&dev->lock);
2993 dev->sys_suspended = 1;
2994 dev->driver->suspend(&dev->gadget);
2995 spin_lock(&dev->lock);
2997 } /* new speed ? */
2998 if (dev_irq & AMD_BIT(UDC_DEVINT_ENUM)) {
2999 DBG(dev, "ENUM interrupt\n");
3000 ret_val = IRQ_HANDLED;
3001 soft_reset_after_usbreset_occured = 0;
3003 /* disable ep0 to empty req queue */
3004 empty_req_queue(&dev->ep[UDC_EP0IN_IX]);
3005 ep_init(dev->regs, &dev->ep[UDC_EP0IN_IX]);
3007 /* link up all endpoints */
3008 udc_setup_endpoints(dev);
3009 if (dev->gadget.speed == USB_SPEED_HIGH) {
3010 dev_info(&dev->pdev->dev, "Connect: speed = %s\n",
3011 "high");
3012 } else if (dev->gadget.speed == USB_SPEED_FULL) {
3013 dev_info(&dev->pdev->dev, "Connect: speed = %s\n",
3014 "full");
3017 /* init ep 0 */
3018 activate_control_endpoints(dev);
3020 /* enable ep0 interrupts */
3021 udc_enable_ep0_interrupts(dev);
3023 /* session valid change interrupt */
3024 if (dev_irq & AMD_BIT(UDC_DEVINT_SVC)) {
3025 DBG(dev, "USB SVC interrupt\n");
3026 ret_val = IRQ_HANDLED;
3028 /* check that session is not valid to detect disconnect */
3029 tmp = readl(&dev->regs->sts);
3030 if (!(tmp & AMD_BIT(UDC_DEVSTS_SESSVLD))) {
3031 /* disable suspend interrupt */
3032 tmp = readl(&dev->regs->irqmsk);
3033 tmp |= AMD_BIT(UDC_DEVINT_US);
3034 writel(tmp, &dev->regs->irqmsk);
3035 DBG(dev, "USB Disconnect (session valid low)\n");
3036 /* cleanup on disconnect */
3037 usb_disconnect(udc);
3042 return ret_val;
3045 /* Interrupt Service Routine, see Linux Kernel Doc for parameters */
3046 static irqreturn_t udc_irq(int irq, void *pdev)
3048 struct udc *dev = pdev;
3049 u32 reg;
3050 u16 i;
3051 u32 ep_irq;
3052 irqreturn_t ret_val = IRQ_NONE;
3054 spin_lock(&dev->lock);
3056 /* check for ep irq */
3057 reg = readl(&dev->regs->ep_irqsts);
3058 if (reg) {
3059 if (reg & AMD_BIT(UDC_EPINT_OUT_EP0))
3060 ret_val |= udc_control_out_isr(dev);
3061 if (reg & AMD_BIT(UDC_EPINT_IN_EP0))
3062 ret_val |= udc_control_in_isr(dev);
3065 * data endpoint
3066 * iterate ep's
3068 for (i = 1; i < UDC_EP_NUM; i++) {
3069 ep_irq = 1 << i;
3070 if (!(reg & ep_irq) || i == UDC_EPINT_OUT_EP0)
3071 continue;
3073 /* clear irq status */
3074 writel(ep_irq, &dev->regs->ep_irqsts);
3076 /* irq for out ep ? */
3077 if (i > UDC_EPIN_NUM)
3078 ret_val |= udc_data_out_isr(dev, i);
3079 else
3080 ret_val |= udc_data_in_isr(dev, i);
3086 /* check for dev irq */
3087 reg = readl(&dev->regs->irqsts);
3088 if (reg) {
3089 /* clear irq */
3090 writel(reg, &dev->regs->irqsts);
3091 ret_val |= udc_dev_isr(dev, reg);
3095 spin_unlock(&dev->lock);
3096 return ret_val;
3099 /* Tears down device */
3100 static void gadget_release(struct device *pdev)
3102 struct amd5536udc *dev = dev_get_drvdata(pdev);
3103 kfree(dev);
3106 /* Cleanup on device remove */
3107 static void udc_remove(struct udc *dev)
3109 /* remove timer */
3110 stop_timer++;
3111 if (timer_pending(&udc_timer))
3112 wait_for_completion(&on_exit);
3113 if (udc_timer.data)
3114 del_timer_sync(&udc_timer);
3115 /* remove pollstall timer */
3116 stop_pollstall_timer++;
3117 if (timer_pending(&udc_pollstall_timer))
3118 wait_for_completion(&on_pollstall_exit);
3119 if (udc_pollstall_timer.data)
3120 del_timer_sync(&udc_pollstall_timer);
3121 udc = NULL;
3124 /* Reset all pci context */
3125 static void udc_pci_remove(struct pci_dev *pdev)
3127 struct udc *dev;
3129 dev = pci_get_drvdata(pdev);
3131 /* gadget driver must not be registered */
3132 BUG_ON(dev->driver != NULL);
3134 /* dma pool cleanup */
3135 if (dev->data_requests)
3136 pci_pool_destroy(dev->data_requests);
3138 if (dev->stp_requests) {
3139 /* cleanup DMA desc's for ep0in */
3140 pci_pool_free(dev->stp_requests,
3141 dev->ep[UDC_EP0OUT_IX].td_stp,
3142 dev->ep[UDC_EP0OUT_IX].td_stp_dma);
3143 pci_pool_free(dev->stp_requests,
3144 dev->ep[UDC_EP0OUT_IX].td,
3145 dev->ep[UDC_EP0OUT_IX].td_phys);
3147 pci_pool_destroy(dev->stp_requests);
3150 /* reset controller */
3151 writel(AMD_BIT(UDC_DEVCFG_SOFTRESET), &dev->regs->cfg);
3152 if (dev->irq_registered)
3153 free_irq(pdev->irq, dev);
3154 if (dev->regs)
3155 iounmap(dev->regs);
3156 if (dev->mem_region)
3157 release_mem_region(pci_resource_start(pdev, 0),
3158 pci_resource_len(pdev, 0));
3159 if (dev->active)
3160 pci_disable_device(pdev);
3162 device_unregister(&dev->gadget.dev);
3163 pci_set_drvdata(pdev, NULL);
3165 udc_remove(dev);
3168 /* create dma pools on init */
3169 static int init_dma_pools(struct udc *dev)
3171 struct udc_stp_dma *td_stp;
3172 struct udc_data_dma *td_data;
3173 int retval;
3175 /* consistent DMA mode setting ? */
3176 if (use_dma_ppb) {
3177 use_dma_bufferfill_mode = 0;
3178 } else {
3179 use_dma_ppb_du = 0;
3180 use_dma_bufferfill_mode = 1;
3183 /* DMA setup */
3184 dev->data_requests = dma_pool_create("data_requests", NULL,
3185 sizeof(struct udc_data_dma), 0, 0);
3186 if (!dev->data_requests) {
3187 DBG(dev, "can't get request data pool\n");
3188 retval = -ENOMEM;
3189 goto finished;
3192 /* EP0 in dma regs = dev control regs */
3193 dev->ep[UDC_EP0IN_IX].dma = &dev->regs->ctl;
3195 /* dma desc for setup data */
3196 dev->stp_requests = dma_pool_create("setup requests", NULL,
3197 sizeof(struct udc_stp_dma), 0, 0);
3198 if (!dev->stp_requests) {
3199 DBG(dev, "can't get stp request pool\n");
3200 retval = -ENOMEM;
3201 goto finished;
3203 /* setup */
3204 td_stp = dma_pool_alloc(dev->stp_requests, GFP_KERNEL,
3205 &dev->ep[UDC_EP0OUT_IX].td_stp_dma);
3206 if (td_stp == NULL) {
3207 retval = -ENOMEM;
3208 goto finished;
3210 dev->ep[UDC_EP0OUT_IX].td_stp = td_stp;
3212 /* data: 0 packets !? */
3213 td_data = dma_pool_alloc(dev->stp_requests, GFP_KERNEL,
3214 &dev->ep[UDC_EP0OUT_IX].td_phys);
3215 if (td_data == NULL) {
3216 retval = -ENOMEM;
3217 goto finished;
3219 dev->ep[UDC_EP0OUT_IX].td = td_data;
3220 return 0;
3222 finished:
3223 return retval;
3226 /* Called by pci bus driver to init pci context */
3227 static int udc_pci_probe(
3228 struct pci_dev *pdev,
3229 const struct pci_device_id *id
3232 struct udc *dev;
3233 unsigned long resource;
3234 unsigned long len;
3235 int retval = 0;
3237 /* one udc only */
3238 if (udc) {
3239 dev_dbg(&pdev->dev, "already probed\n");
3240 return -EBUSY;
3243 /* init */
3244 dev = kzalloc(sizeof(struct udc), GFP_KERNEL);
3245 if (!dev) {
3246 retval = -ENOMEM;
3247 goto finished;
3250 /* pci setup */
3251 if (pci_enable_device(pdev) < 0) {
3252 kfree(dev);
3253 dev = NULL;
3254 retval = -ENODEV;
3255 goto finished;
3257 dev->active = 1;
3259 /* PCI resource allocation */
3260 resource = pci_resource_start(pdev, 0);
3261 len = pci_resource_len(pdev, 0);
3263 if (!request_mem_region(resource, len, name)) {
3264 dev_dbg(&pdev->dev, "pci device used already\n");
3265 kfree(dev);
3266 dev = NULL;
3267 retval = -EBUSY;
3268 goto finished;
3270 dev->mem_region = 1;
3272 dev->virt_addr = ioremap_nocache(resource, len);
3273 if (dev->virt_addr == NULL) {
3274 dev_dbg(&pdev->dev, "start address cannot be mapped\n");
3275 kfree(dev);
3276 dev = NULL;
3277 retval = -EFAULT;
3278 goto finished;
3281 if (!pdev->irq) {
3282 dev_err(&dev->pdev->dev, "irq not set\n");
3283 kfree(dev);
3284 dev = NULL;
3285 retval = -ENODEV;
3286 goto finished;
3289 if (request_irq(pdev->irq, udc_irq, IRQF_SHARED, name, dev) != 0) {
3290 dev_dbg(&dev->pdev->dev, "request_irq(%d) fail\n", pdev->irq);
3291 kfree(dev);
3292 dev = NULL;
3293 retval = -EBUSY;
3294 goto finished;
3296 dev->irq_registered = 1;
3298 pci_set_drvdata(pdev, dev);
3300 /* chip revision for Hs AMD5536 */
3301 dev->chiprev = pdev->revision;
3303 pci_set_master(pdev);
3304 pci_try_set_mwi(pdev);
3306 /* init dma pools */
3307 if (use_dma) {
3308 retval = init_dma_pools(dev);
3309 if (retval != 0)
3310 goto finished;
3313 dev->phys_addr = resource;
3314 dev->irq = pdev->irq;
3315 dev->pdev = pdev;
3316 dev->gadget.dev.parent = &pdev->dev;
3317 dev->gadget.dev.dma_mask = pdev->dev.dma_mask;
3319 /* general probing */
3320 if (udc_probe(dev) == 0)
3321 return 0;
3323 finished:
3324 if (dev)
3325 udc_pci_remove(pdev);
3326 return retval;
3329 /* general probe */
3330 static int udc_probe(struct udc *dev)
3332 char tmp[128];
3333 u32 reg;
3334 int retval;
3336 /* mark timer as not initialized */
3337 udc_timer.data = 0;
3338 udc_pollstall_timer.data = 0;
3340 /* device struct setup */
3341 spin_lock_init(&dev->lock);
3342 dev->gadget.ops = &udc_ops;
3344 dev_set_name(&dev->gadget.dev, "gadget");
3345 dev->gadget.dev.release = gadget_release;
3346 dev->gadget.name = name;
3347 dev->gadget.name = name;
3348 dev->gadget.is_dualspeed = 1;
3350 /* udc csr registers base */
3351 dev->csr = dev->virt_addr + UDC_CSR_ADDR;
3352 /* dev registers base */
3353 dev->regs = dev->virt_addr + UDC_DEVCFG_ADDR;
3354 /* ep registers base */
3355 dev->ep_regs = dev->virt_addr + UDC_EPREGS_ADDR;
3356 /* fifo's base */
3357 dev->rxfifo = (u32 __iomem *)(dev->virt_addr + UDC_RXFIFO_ADDR);
3358 dev->txfifo = (u32 __iomem *)(dev->virt_addr + UDC_TXFIFO_ADDR);
3360 /* init registers, interrupts, ... */
3361 startup_registers(dev);
3363 dev_info(&dev->pdev->dev, "%s\n", mod_desc);
3365 snprintf(tmp, sizeof tmp, "%d", dev->irq);
3366 dev_info(&dev->pdev->dev,
3367 "irq %s, pci mem %08lx, chip rev %02x(Geode5536 %s)\n",
3368 tmp, dev->phys_addr, dev->chiprev,
3369 (dev->chiprev == UDC_HSA0_REV) ? "A0" : "B1");
3370 strcpy(tmp, UDC_DRIVER_VERSION_STRING);
3371 if (dev->chiprev == UDC_HSA0_REV) {
3372 dev_err(&dev->pdev->dev, "chip revision is A0; too old\n");
3373 retval = -ENODEV;
3374 goto finished;
3376 dev_info(&dev->pdev->dev,
3377 "driver version: %s(for Geode5536 B1)\n", tmp);
3378 udc = dev;
3380 retval = device_register(&dev->gadget.dev);
3381 if (retval)
3382 goto finished;
3384 /* timer init */
3385 init_timer(&udc_timer);
3386 udc_timer.function = udc_timer_function;
3387 udc_timer.data = 1;
3388 /* timer pollstall init */
3389 init_timer(&udc_pollstall_timer);
3390 udc_pollstall_timer.function = udc_pollstall_timer_function;
3391 udc_pollstall_timer.data = 1;
3393 /* set SD */
3394 reg = readl(&dev->regs->ctl);
3395 reg |= AMD_BIT(UDC_DEVCTL_SD);
3396 writel(reg, &dev->regs->ctl);
3398 /* print dev register info */
3399 print_regs(dev);
3401 return 0;
3403 finished:
3404 return retval;
3407 /* Initiates a remote wakeup */
3408 static int udc_remote_wakeup(struct udc *dev)
3410 unsigned long flags;
3411 u32 tmp;
3413 DBG(dev, "UDC initiates remote wakeup\n");
3415 spin_lock_irqsave(&dev->lock, flags);
3417 tmp = readl(&dev->regs->ctl);
3418 tmp |= AMD_BIT(UDC_DEVCTL_RES);
3419 writel(tmp, &dev->regs->ctl);
3420 tmp &= AMD_CLEAR_BIT(UDC_DEVCTL_RES);
3421 writel(tmp, &dev->regs->ctl);
3423 spin_unlock_irqrestore(&dev->lock, flags);
3424 return 0;
3427 /* PCI device parameters */
3428 static const struct pci_device_id pci_id[] = {
3430 PCI_DEVICE(PCI_VENDOR_ID_AMD, 0x2096),
3431 .class = (PCI_CLASS_SERIAL_USB << 8) | 0xfe,
3432 .class_mask = 0xffffffff,
3436 MODULE_DEVICE_TABLE(pci, pci_id);
3438 /* PCI functions */
3439 static struct pci_driver udc_pci_driver = {
3440 .name = (char *) name,
3441 .id_table = pci_id,
3442 .probe = udc_pci_probe,
3443 .remove = udc_pci_remove,
3446 /* Inits driver */
3447 static int __init init(void)
3449 return pci_register_driver(&udc_pci_driver);
3451 module_init(init);
3453 /* Cleans driver */
3454 static void __exit cleanup(void)
3456 pci_unregister_driver(&udc_pci_driver);
3458 module_exit(cleanup);
3460 MODULE_DESCRIPTION(UDC_MOD_DESCRIPTION);
3461 MODULE_AUTHOR("Thomas Dahlmann");
3462 MODULE_LICENSE("GPL");