x86: i915 needs pgprot_writecombine() and is_io_mapping_possible()
[linux-2.6/mini2440.git] / drivers / net / wan / z85230.c
blob3d00971fe5ee6a6dc488d99bf72e262cf06f8a6f
1 /*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
7 * (c) Copyright 1998 Alan Cox <alan@lxorguk.ukuu.org.uk>
8 * (c) Copyright 2000, 2001 Red Hat Inc
10 * Development of this driver was funded by Equiinet Ltd
11 * http://www.equiinet.com
13 * ChangeLog:
15 * Asynchronous mode dropped for 2.2. For 2.5 we will attempt the
16 * unification of all the Z85x30 asynchronous drivers for real.
18 * DMA now uses get_free_page as kmalloc buffers may span a 64K
19 * boundary.
21 * Modified for SMP safety and SMP locking by Alan Cox
22 * <alan@lxorguk.ukuu.org.uk>
24 * Performance
26 * Z85230:
27 * Non DMA you want a 486DX50 or better to do 64Kbits. 9600 baud
28 * X.25 is not unrealistic on all machines. DMA mode can in theory
29 * handle T1/E1 quite nicely. In practice the limit seems to be about
30 * 512Kbit->1Mbit depending on motherboard.
32 * Z85C30:
33 * 64K will take DMA, 9600 baud X.25 should be ok.
35 * Z8530:
36 * Synchronous mode without DMA is unlikely to pass about 2400 baud.
39 #include <linux/module.h>
40 #include <linux/kernel.h>
41 #include <linux/mm.h>
42 #include <linux/net.h>
43 #include <linux/skbuff.h>
44 #include <linux/netdevice.h>
45 #include <linux/if_arp.h>
46 #include <linux/delay.h>
47 #include <linux/hdlc.h>
48 #include <linux/ioport.h>
49 #include <linux/init.h>
50 #include <asm/dma.h>
51 #include <asm/io.h>
52 #define RT_LOCK
53 #define RT_UNLOCK
54 #include <linux/spinlock.h>
56 #include "z85230.h"
59 /**
60 * z8530_read_port - Architecture specific interface function
61 * @p: port to read
63 * Provided port access methods. The Comtrol SV11 requires no delays
64 * between accesses and uses PC I/O. Some drivers may need a 5uS delay
66 * In the longer term this should become an architecture specific
67 * section so that this can become a generic driver interface for all
68 * platforms. For now we only handle PC I/O ports with or without the
69 * dread 5uS sanity delay.
71 * The caller must hold sufficient locks to avoid violating the horrible
72 * 5uS delay rule.
75 static inline int z8530_read_port(unsigned long p)
77 u8 r=inb(Z8530_PORT_OF(p));
78 if(p&Z8530_PORT_SLEEP) /* gcc should figure this out efficiently ! */
79 udelay(5);
80 return r;
83 /**
84 * z8530_write_port - Architecture specific interface function
85 * @p: port to write
86 * @d: value to write
88 * Write a value to a port with delays if need be. Note that the
89 * caller must hold locks to avoid read/writes from other contexts
90 * violating the 5uS rule
92 * In the longer term this should become an architecture specific
93 * section so that this can become a generic driver interface for all
94 * platforms. For now we only handle PC I/O ports with or without the
95 * dread 5uS sanity delay.
99 static inline void z8530_write_port(unsigned long p, u8 d)
101 outb(d,Z8530_PORT_OF(p));
102 if(p&Z8530_PORT_SLEEP)
103 udelay(5);
108 static void z8530_rx_done(struct z8530_channel *c);
109 static void z8530_tx_done(struct z8530_channel *c);
113 * read_zsreg - Read a register from a Z85230
114 * @c: Z8530 channel to read from (2 per chip)
115 * @reg: Register to read
116 * FIXME: Use a spinlock.
118 * Most of the Z8530 registers are indexed off the control registers.
119 * A read is done by writing to the control register and reading the
120 * register back. The caller must hold the lock
123 static inline u8 read_zsreg(struct z8530_channel *c, u8 reg)
125 if(reg)
126 z8530_write_port(c->ctrlio, reg);
127 return z8530_read_port(c->ctrlio);
131 * read_zsdata - Read the data port of a Z8530 channel
132 * @c: The Z8530 channel to read the data port from
134 * The data port provides fast access to some things. We still
135 * have all the 5uS delays to worry about.
138 static inline u8 read_zsdata(struct z8530_channel *c)
140 u8 r;
141 r=z8530_read_port(c->dataio);
142 return r;
146 * write_zsreg - Write to a Z8530 channel register
147 * @c: The Z8530 channel
148 * @reg: Register number
149 * @val: Value to write
151 * Write a value to an indexed register. The caller must hold the lock
152 * to honour the irritating delay rules. We know about register 0
153 * being fast to access.
155 * Assumes c->lock is held.
157 static inline void write_zsreg(struct z8530_channel *c, u8 reg, u8 val)
159 if(reg)
160 z8530_write_port(c->ctrlio, reg);
161 z8530_write_port(c->ctrlio, val);
166 * write_zsctrl - Write to a Z8530 control register
167 * @c: The Z8530 channel
168 * @val: Value to write
170 * Write directly to the control register on the Z8530
173 static inline void write_zsctrl(struct z8530_channel *c, u8 val)
175 z8530_write_port(c->ctrlio, val);
179 * write_zsdata - Write to a Z8530 control register
180 * @c: The Z8530 channel
181 * @val: Value to write
183 * Write directly to the data register on the Z8530
187 static inline void write_zsdata(struct z8530_channel *c, u8 val)
189 z8530_write_port(c->dataio, val);
193 * Register loading parameters for a dead port
196 u8 z8530_dead_port[]=
201 EXPORT_SYMBOL(z8530_dead_port);
204 * Register loading parameters for currently supported circuit types
209 * Data clocked by telco end. This is the correct data for the UK
210 * "kilostream" service, and most other similar services.
213 u8 z8530_hdlc_kilostream[]=
215 4, SYNC_ENAB|SDLC|X1CLK,
216 2, 0, /* No vector */
217 1, 0,
218 3, ENT_HM|RxCRC_ENAB|Rx8,
219 5, TxCRC_ENAB|RTS|TxENAB|Tx8|DTR,
220 9, 0, /* Disable interrupts */
221 6, 0xFF,
222 7, FLAG,
223 10, ABUNDER|NRZ|CRCPS,/*MARKIDLE ??*/
224 11, TCTRxCP,
225 14, DISDPLL,
226 15, DCDIE|SYNCIE|CTSIE|TxUIE|BRKIE,
227 1, EXT_INT_ENAB|TxINT_ENAB|INT_ALL_Rx,
228 9, NV|MIE|NORESET,
232 EXPORT_SYMBOL(z8530_hdlc_kilostream);
235 * As above but for enhanced chips.
238 u8 z8530_hdlc_kilostream_85230[]=
240 4, SYNC_ENAB|SDLC|X1CLK,
241 2, 0, /* No vector */
242 1, 0,
243 3, ENT_HM|RxCRC_ENAB|Rx8,
244 5, TxCRC_ENAB|RTS|TxENAB|Tx8|DTR,
245 9, 0, /* Disable interrupts */
246 6, 0xFF,
247 7, FLAG,
248 10, ABUNDER|NRZ|CRCPS, /* MARKIDLE?? */
249 11, TCTRxCP,
250 14, DISDPLL,
251 15, DCDIE|SYNCIE|CTSIE|TxUIE|BRKIE,
252 1, EXT_INT_ENAB|TxINT_ENAB|INT_ALL_Rx,
253 9, NV|MIE|NORESET,
254 23, 3, /* Extended mode AUTO TX and EOM*/
259 EXPORT_SYMBOL(z8530_hdlc_kilostream_85230);
262 * z8530_flush_fifo - Flush on chip RX FIFO
263 * @c: Channel to flush
265 * Flush the receive FIFO. There is no specific option for this, we
266 * blindly read bytes and discard them. Reading when there is no data
267 * is harmless. The 8530 has a 4 byte FIFO, the 85230 has 8 bytes.
269 * All locking is handled for the caller. On return data may still be
270 * present if it arrived during the flush.
273 static void z8530_flush_fifo(struct z8530_channel *c)
275 read_zsreg(c, R1);
276 read_zsreg(c, R1);
277 read_zsreg(c, R1);
278 read_zsreg(c, R1);
279 if(c->dev->type==Z85230)
281 read_zsreg(c, R1);
282 read_zsreg(c, R1);
283 read_zsreg(c, R1);
284 read_zsreg(c, R1);
289 * z8530_rtsdtr - Control the outgoing DTS/RTS line
290 * @c: The Z8530 channel to control;
291 * @set: 1 to set, 0 to clear
293 * Sets or clears DTR/RTS on the requested line. All locking is handled
294 * by the caller. For now we assume all boards use the actual RTS/DTR
295 * on the chip. Apparently one or two don't. We'll scream about them
296 * later.
299 static void z8530_rtsdtr(struct z8530_channel *c, int set)
301 if (set)
302 c->regs[5] |= (RTS | DTR);
303 else
304 c->regs[5] &= ~(RTS | DTR);
305 write_zsreg(c, R5, c->regs[5]);
309 * z8530_rx - Handle a PIO receive event
310 * @c: Z8530 channel to process
312 * Receive handler for receiving in PIO mode. This is much like the
313 * async one but not quite the same or as complex
315 * Note: Its intended that this handler can easily be separated from
316 * the main code to run realtime. That'll be needed for some machines
317 * (eg to ever clock 64kbits on a sparc ;)).
319 * The RT_LOCK macros don't do anything now. Keep the code covered
320 * by them as short as possible in all circumstances - clocks cost
321 * baud. The interrupt handler is assumed to be atomic w.r.t. to
322 * other code - this is true in the RT case too.
324 * We only cover the sync cases for this. If you want 2Mbit async
325 * do it yourself but consider medical assistance first. This non DMA
326 * synchronous mode is portable code. The DMA mode assumes PCI like
327 * ISA DMA
329 * Called with the device lock held
332 static void z8530_rx(struct z8530_channel *c)
334 u8 ch,stat;
336 while(1)
338 /* FIFO empty ? */
339 if(!(read_zsreg(c, R0)&1))
340 break;
341 ch=read_zsdata(c);
342 stat=read_zsreg(c, R1);
345 * Overrun ?
347 if(c->count < c->max)
349 *c->dptr++=ch;
350 c->count++;
353 if(stat&END_FR)
357 * Error ?
359 if(stat&(Rx_OVR|CRC_ERR))
361 /* Rewind the buffer and return */
362 if(c->skb)
363 c->dptr=c->skb->data;
364 c->count=0;
365 if(stat&Rx_OVR)
367 printk(KERN_WARNING "%s: overrun\n", c->dev->name);
368 c->rx_overrun++;
370 if(stat&CRC_ERR)
372 c->rx_crc_err++;
373 /* printk("crc error\n"); */
375 /* Shove the frame upstream */
377 else
380 * Drop the lock for RX processing, or
381 * there are deadlocks
383 z8530_rx_done(c);
384 write_zsctrl(c, RES_Rx_CRC);
389 * Clear irq
391 write_zsctrl(c, ERR_RES);
392 write_zsctrl(c, RES_H_IUS);
397 * z8530_tx - Handle a PIO transmit event
398 * @c: Z8530 channel to process
400 * Z8530 transmit interrupt handler for the PIO mode. The basic
401 * idea is to attempt to keep the FIFO fed. We fill as many bytes
402 * in as possible, its quite possible that we won't keep up with the
403 * data rate otherwise.
406 static void z8530_tx(struct z8530_channel *c)
408 while(c->txcount) {
409 /* FIFO full ? */
410 if(!(read_zsreg(c, R0)&4))
411 return;
412 c->txcount--;
414 * Shovel out the byte
416 write_zsreg(c, R8, *c->tx_ptr++);
417 write_zsctrl(c, RES_H_IUS);
418 /* We are about to underflow */
419 if(c->txcount==0)
421 write_zsctrl(c, RES_EOM_L);
422 write_zsreg(c, R10, c->regs[10]&~ABUNDER);
428 * End of frame TX - fire another one
431 write_zsctrl(c, RES_Tx_P);
433 z8530_tx_done(c);
434 write_zsctrl(c, RES_H_IUS);
438 * z8530_status - Handle a PIO status exception
439 * @chan: Z8530 channel to process
441 * A status event occurred in PIO synchronous mode. There are several
442 * reasons the chip will bother us here. A transmit underrun means we
443 * failed to feed the chip fast enough and just broke a packet. A DCD
444 * change is a line up or down.
447 static void z8530_status(struct z8530_channel *chan)
449 u8 status, altered;
451 status = read_zsreg(chan, R0);
452 altered = chan->status ^ status;
454 chan->status = status;
456 if (status & TxEOM) {
457 /* printk("%s: Tx underrun.\n", chan->dev->name); */
458 chan->netdevice->stats.tx_fifo_errors++;
459 write_zsctrl(chan, ERR_RES);
460 z8530_tx_done(chan);
463 if (altered & chan->dcdcheck)
465 if (status & chan->dcdcheck) {
466 printk(KERN_INFO "%s: DCD raised\n", chan->dev->name);
467 write_zsreg(chan, R3, chan->regs[3] | RxENABLE);
468 if (chan->netdevice)
469 netif_carrier_on(chan->netdevice);
470 } else {
471 printk(KERN_INFO "%s: DCD lost\n", chan->dev->name);
472 write_zsreg(chan, R3, chan->regs[3] & ~RxENABLE);
473 z8530_flush_fifo(chan);
474 if (chan->netdevice)
475 netif_carrier_off(chan->netdevice);
479 write_zsctrl(chan, RES_EXT_INT);
480 write_zsctrl(chan, RES_H_IUS);
483 struct z8530_irqhandler z8530_sync =
485 z8530_rx,
486 z8530_tx,
487 z8530_status
490 EXPORT_SYMBOL(z8530_sync);
493 * z8530_dma_rx - Handle a DMA RX event
494 * @chan: Channel to handle
496 * Non bus mastering DMA interfaces for the Z8x30 devices. This
497 * is really pretty PC specific. The DMA mode means that most receive
498 * events are handled by the DMA hardware. We get a kick here only if
499 * a frame ended.
502 static void z8530_dma_rx(struct z8530_channel *chan)
504 if(chan->rxdma_on)
506 /* Special condition check only */
507 u8 status;
509 read_zsreg(chan, R7);
510 read_zsreg(chan, R6);
512 status=read_zsreg(chan, R1);
514 if(status&END_FR)
516 z8530_rx_done(chan); /* Fire up the next one */
518 write_zsctrl(chan, ERR_RES);
519 write_zsctrl(chan, RES_H_IUS);
521 else
523 /* DMA is off right now, drain the slow way */
524 z8530_rx(chan);
529 * z8530_dma_tx - Handle a DMA TX event
530 * @chan: The Z8530 channel to handle
532 * We have received an interrupt while doing DMA transmissions. It
533 * shouldn't happen. Scream loudly if it does.
536 static void z8530_dma_tx(struct z8530_channel *chan)
538 if(!chan->dma_tx)
540 printk(KERN_WARNING "Hey who turned the DMA off?\n");
541 z8530_tx(chan);
542 return;
544 /* This shouldnt occur in DMA mode */
545 printk(KERN_ERR "DMA tx - bogus event!\n");
546 z8530_tx(chan);
550 * z8530_dma_status - Handle a DMA status exception
551 * @chan: Z8530 channel to process
553 * A status event occurred on the Z8530. We receive these for two reasons
554 * when in DMA mode. Firstly if we finished a packet transfer we get one
555 * and kick the next packet out. Secondly we may see a DCD change.
559 static void z8530_dma_status(struct z8530_channel *chan)
561 u8 status, altered;
563 status=read_zsreg(chan, R0);
564 altered=chan->status^status;
566 chan->status=status;
569 if(chan->dma_tx)
571 if(status&TxEOM)
573 unsigned long flags;
575 flags=claim_dma_lock();
576 disable_dma(chan->txdma);
577 clear_dma_ff(chan->txdma);
578 chan->txdma_on=0;
579 release_dma_lock(flags);
580 z8530_tx_done(chan);
584 if (altered & chan->dcdcheck)
586 if (status & chan->dcdcheck) {
587 printk(KERN_INFO "%s: DCD raised\n", chan->dev->name);
588 write_zsreg(chan, R3, chan->regs[3] | RxENABLE);
589 if (chan->netdevice)
590 netif_carrier_on(chan->netdevice);
591 } else {
592 printk(KERN_INFO "%s:DCD lost\n", chan->dev->name);
593 write_zsreg(chan, R3, chan->regs[3] & ~RxENABLE);
594 z8530_flush_fifo(chan);
595 if (chan->netdevice)
596 netif_carrier_off(chan->netdevice);
600 write_zsctrl(chan, RES_EXT_INT);
601 write_zsctrl(chan, RES_H_IUS);
604 static struct z8530_irqhandler z8530_dma_sync = {
605 z8530_dma_rx,
606 z8530_dma_tx,
607 z8530_dma_status
610 static struct z8530_irqhandler z8530_txdma_sync = {
611 z8530_rx,
612 z8530_dma_tx,
613 z8530_dma_status
617 * z8530_rx_clear - Handle RX events from a stopped chip
618 * @c: Z8530 channel to shut up
620 * Receive interrupt vectors for a Z8530 that is in 'parked' mode.
621 * For machines with PCI Z85x30 cards, or level triggered interrupts
622 * (eg the MacII) we must clear the interrupt cause or die.
626 static void z8530_rx_clear(struct z8530_channel *c)
629 * Data and status bytes
631 u8 stat;
633 read_zsdata(c);
634 stat=read_zsreg(c, R1);
636 if(stat&END_FR)
637 write_zsctrl(c, RES_Rx_CRC);
639 * Clear irq
641 write_zsctrl(c, ERR_RES);
642 write_zsctrl(c, RES_H_IUS);
646 * z8530_tx_clear - Handle TX events from a stopped chip
647 * @c: Z8530 channel to shut up
649 * Transmit interrupt vectors for a Z8530 that is in 'parked' mode.
650 * For machines with PCI Z85x30 cards, or level triggered interrupts
651 * (eg the MacII) we must clear the interrupt cause or die.
654 static void z8530_tx_clear(struct z8530_channel *c)
656 write_zsctrl(c, RES_Tx_P);
657 write_zsctrl(c, RES_H_IUS);
661 * z8530_status_clear - Handle status events from a stopped chip
662 * @chan: Z8530 channel to shut up
664 * Status interrupt vectors for a Z8530 that is in 'parked' mode.
665 * For machines with PCI Z85x30 cards, or level triggered interrupts
666 * (eg the MacII) we must clear the interrupt cause or die.
669 static void z8530_status_clear(struct z8530_channel *chan)
671 u8 status=read_zsreg(chan, R0);
672 if(status&TxEOM)
673 write_zsctrl(chan, ERR_RES);
674 write_zsctrl(chan, RES_EXT_INT);
675 write_zsctrl(chan, RES_H_IUS);
678 struct z8530_irqhandler z8530_nop=
680 z8530_rx_clear,
681 z8530_tx_clear,
682 z8530_status_clear
686 EXPORT_SYMBOL(z8530_nop);
689 * z8530_interrupt - Handle an interrupt from a Z8530
690 * @irq: Interrupt number
691 * @dev_id: The Z8530 device that is interrupting.
693 * A Z85[2]30 device has stuck its hand in the air for attention.
694 * We scan both the channels on the chip for events and then call
695 * the channel specific call backs for each channel that has events.
696 * We have to use callback functions because the two channels can be
697 * in different modes.
699 * Locking is done for the handlers. Note that locking is done
700 * at the chip level (the 5uS delay issue is per chip not per
701 * channel). c->lock for both channels points to dev->lock
704 irqreturn_t z8530_interrupt(int irq, void *dev_id)
706 struct z8530_dev *dev=dev_id;
707 u8 uninitialized_var(intr);
708 static volatile int locker=0;
709 int work=0;
710 struct z8530_irqhandler *irqs;
712 if(locker)
714 printk(KERN_ERR "IRQ re-enter\n");
715 return IRQ_NONE;
717 locker=1;
719 spin_lock(&dev->lock);
721 while(++work<5000)
724 intr = read_zsreg(&dev->chanA, R3);
725 if(!(intr & (CHARxIP|CHATxIP|CHAEXT|CHBRxIP|CHBTxIP|CHBEXT)))
726 break;
728 /* This holds the IRQ status. On the 8530 you must read it from chan
729 A even though it applies to the whole chip */
731 /* Now walk the chip and see what it is wanting - it may be
732 an IRQ for someone else remember */
734 irqs=dev->chanA.irqs;
736 if(intr & (CHARxIP|CHATxIP|CHAEXT))
738 if(intr&CHARxIP)
739 irqs->rx(&dev->chanA);
740 if(intr&CHATxIP)
741 irqs->tx(&dev->chanA);
742 if(intr&CHAEXT)
743 irqs->status(&dev->chanA);
746 irqs=dev->chanB.irqs;
748 if(intr & (CHBRxIP|CHBTxIP|CHBEXT))
750 if(intr&CHBRxIP)
751 irqs->rx(&dev->chanB);
752 if(intr&CHBTxIP)
753 irqs->tx(&dev->chanB);
754 if(intr&CHBEXT)
755 irqs->status(&dev->chanB);
758 spin_unlock(&dev->lock);
759 if(work==5000)
760 printk(KERN_ERR "%s: interrupt jammed - abort(0x%X)!\n", dev->name, intr);
761 /* Ok all done */
762 locker=0;
763 return IRQ_HANDLED;
766 EXPORT_SYMBOL(z8530_interrupt);
768 static char reg_init[16]=
770 0,0,0,0,
771 0,0,0,0,
772 0,0,0,0,
773 0x55,0,0,0
778 * z8530_sync_open - Open a Z8530 channel for PIO
779 * @dev: The network interface we are using
780 * @c: The Z8530 channel to open in synchronous PIO mode
782 * Switch a Z8530 into synchronous mode without DMA assist. We
783 * raise the RTS/DTR and commence network operation.
786 int z8530_sync_open(struct net_device *dev, struct z8530_channel *c)
788 unsigned long flags;
790 spin_lock_irqsave(c->lock, flags);
792 c->sync = 1;
793 c->mtu = dev->mtu+64;
794 c->count = 0;
795 c->skb = NULL;
796 c->skb2 = NULL;
797 c->irqs = &z8530_sync;
799 /* This loads the double buffer up */
800 z8530_rx_done(c); /* Load the frame ring */
801 z8530_rx_done(c); /* Load the backup frame */
802 z8530_rtsdtr(c,1);
803 c->dma_tx = 0;
804 c->regs[R1]|=TxINT_ENAB;
805 write_zsreg(c, R1, c->regs[R1]);
806 write_zsreg(c, R3, c->regs[R3]|RxENABLE);
808 spin_unlock_irqrestore(c->lock, flags);
809 return 0;
813 EXPORT_SYMBOL(z8530_sync_open);
816 * z8530_sync_close - Close a PIO Z8530 channel
817 * @dev: Network device to close
818 * @c: Z8530 channel to disassociate and move to idle
820 * Close down a Z8530 interface and switch its interrupt handlers
821 * to discard future events.
824 int z8530_sync_close(struct net_device *dev, struct z8530_channel *c)
826 u8 chk;
827 unsigned long flags;
829 spin_lock_irqsave(c->lock, flags);
830 c->irqs = &z8530_nop;
831 c->max = 0;
832 c->sync = 0;
834 chk=read_zsreg(c,R0);
835 write_zsreg(c, R3, c->regs[R3]);
836 z8530_rtsdtr(c,0);
838 spin_unlock_irqrestore(c->lock, flags);
839 return 0;
842 EXPORT_SYMBOL(z8530_sync_close);
845 * z8530_sync_dma_open - Open a Z8530 for DMA I/O
846 * @dev: The network device to attach
847 * @c: The Z8530 channel to configure in sync DMA mode.
849 * Set up a Z85x30 device for synchronous DMA in both directions. Two
850 * ISA DMA channels must be available for this to work. We assume ISA
851 * DMA driven I/O and PC limits on access.
854 int z8530_sync_dma_open(struct net_device *dev, struct z8530_channel *c)
856 unsigned long cflags, dflags;
858 c->sync = 1;
859 c->mtu = dev->mtu+64;
860 c->count = 0;
861 c->skb = NULL;
862 c->skb2 = NULL;
864 * Load the DMA interfaces up
866 c->rxdma_on = 0;
867 c->txdma_on = 0;
870 * Allocate the DMA flip buffers. Limit by page size.
871 * Everyone runs 1500 mtu or less on wan links so this
872 * should be fine.
875 if(c->mtu > PAGE_SIZE/2)
876 return -EMSGSIZE;
878 c->rx_buf[0]=(void *)get_zeroed_page(GFP_KERNEL|GFP_DMA);
879 if(c->rx_buf[0]==NULL)
880 return -ENOBUFS;
881 c->rx_buf[1]=c->rx_buf[0]+PAGE_SIZE/2;
883 c->tx_dma_buf[0]=(void *)get_zeroed_page(GFP_KERNEL|GFP_DMA);
884 if(c->tx_dma_buf[0]==NULL)
886 free_page((unsigned long)c->rx_buf[0]);
887 c->rx_buf[0]=NULL;
888 return -ENOBUFS;
890 c->tx_dma_buf[1]=c->tx_dma_buf[0]+PAGE_SIZE/2;
892 c->tx_dma_used=0;
893 c->dma_tx = 1;
894 c->dma_num=0;
895 c->dma_ready=1;
898 * Enable DMA control mode
901 spin_lock_irqsave(c->lock, cflags);
904 * TX DMA via DIR/REQ
907 c->regs[R14]|= DTRREQ;
908 write_zsreg(c, R14, c->regs[R14]);
910 c->regs[R1]&= ~TxINT_ENAB;
911 write_zsreg(c, R1, c->regs[R1]);
914 * RX DMA via W/Req
917 c->regs[R1]|= WT_FN_RDYFN;
918 c->regs[R1]|= WT_RDY_RT;
919 c->regs[R1]|= INT_ERR_Rx;
920 c->regs[R1]&= ~TxINT_ENAB;
921 write_zsreg(c, R1, c->regs[R1]);
922 c->regs[R1]|= WT_RDY_ENAB;
923 write_zsreg(c, R1, c->regs[R1]);
926 * DMA interrupts
930 * Set up the DMA configuration
933 dflags=claim_dma_lock();
935 disable_dma(c->rxdma);
936 clear_dma_ff(c->rxdma);
937 set_dma_mode(c->rxdma, DMA_MODE_READ|0x10);
938 set_dma_addr(c->rxdma, virt_to_bus(c->rx_buf[0]));
939 set_dma_count(c->rxdma, c->mtu);
940 enable_dma(c->rxdma);
942 disable_dma(c->txdma);
943 clear_dma_ff(c->txdma);
944 set_dma_mode(c->txdma, DMA_MODE_WRITE);
945 disable_dma(c->txdma);
947 release_dma_lock(dflags);
950 * Select the DMA interrupt handlers
953 c->rxdma_on = 1;
954 c->txdma_on = 1;
955 c->tx_dma_used = 1;
957 c->irqs = &z8530_dma_sync;
958 z8530_rtsdtr(c,1);
959 write_zsreg(c, R3, c->regs[R3]|RxENABLE);
961 spin_unlock_irqrestore(c->lock, cflags);
963 return 0;
966 EXPORT_SYMBOL(z8530_sync_dma_open);
969 * z8530_sync_dma_close - Close down DMA I/O
970 * @dev: Network device to detach
971 * @c: Z8530 channel to move into discard mode
973 * Shut down a DMA mode synchronous interface. Halt the DMA, and
974 * free the buffers.
977 int z8530_sync_dma_close(struct net_device *dev, struct z8530_channel *c)
979 u8 chk;
980 unsigned long flags;
982 c->irqs = &z8530_nop;
983 c->max = 0;
984 c->sync = 0;
987 * Disable the PC DMA channels
990 flags=claim_dma_lock();
991 disable_dma(c->rxdma);
992 clear_dma_ff(c->rxdma);
994 c->rxdma_on = 0;
996 disable_dma(c->txdma);
997 clear_dma_ff(c->txdma);
998 release_dma_lock(flags);
1000 c->txdma_on = 0;
1001 c->tx_dma_used = 0;
1003 spin_lock_irqsave(c->lock, flags);
1006 * Disable DMA control mode
1009 c->regs[R1]&= ~WT_RDY_ENAB;
1010 write_zsreg(c, R1, c->regs[R1]);
1011 c->regs[R1]&= ~(WT_RDY_RT|WT_FN_RDYFN|INT_ERR_Rx);
1012 c->regs[R1]|= INT_ALL_Rx;
1013 write_zsreg(c, R1, c->regs[R1]);
1014 c->regs[R14]&= ~DTRREQ;
1015 write_zsreg(c, R14, c->regs[R14]);
1017 if(c->rx_buf[0])
1019 free_page((unsigned long)c->rx_buf[0]);
1020 c->rx_buf[0]=NULL;
1022 if(c->tx_dma_buf[0])
1024 free_page((unsigned long)c->tx_dma_buf[0]);
1025 c->tx_dma_buf[0]=NULL;
1027 chk=read_zsreg(c,R0);
1028 write_zsreg(c, R3, c->regs[R3]);
1029 z8530_rtsdtr(c,0);
1031 spin_unlock_irqrestore(c->lock, flags);
1033 return 0;
1036 EXPORT_SYMBOL(z8530_sync_dma_close);
1039 * z8530_sync_txdma_open - Open a Z8530 for TX driven DMA
1040 * @dev: The network device to attach
1041 * @c: The Z8530 channel to configure in sync DMA mode.
1043 * Set up a Z85x30 device for synchronous DMA tranmission. One
1044 * ISA DMA channel must be available for this to work. The receive
1045 * side is run in PIO mode, but then it has the bigger FIFO.
1048 int z8530_sync_txdma_open(struct net_device *dev, struct z8530_channel *c)
1050 unsigned long cflags, dflags;
1052 printk("Opening sync interface for TX-DMA\n");
1053 c->sync = 1;
1054 c->mtu = dev->mtu+64;
1055 c->count = 0;
1056 c->skb = NULL;
1057 c->skb2 = NULL;
1060 * Allocate the DMA flip buffers. Limit by page size.
1061 * Everyone runs 1500 mtu or less on wan links so this
1062 * should be fine.
1065 if(c->mtu > PAGE_SIZE/2)
1066 return -EMSGSIZE;
1068 c->tx_dma_buf[0]=(void *)get_zeroed_page(GFP_KERNEL|GFP_DMA);
1069 if(c->tx_dma_buf[0]==NULL)
1070 return -ENOBUFS;
1072 c->tx_dma_buf[1] = c->tx_dma_buf[0] + PAGE_SIZE/2;
1075 spin_lock_irqsave(c->lock, cflags);
1078 * Load the PIO receive ring
1081 z8530_rx_done(c);
1082 z8530_rx_done(c);
1085 * Load the DMA interfaces up
1088 c->rxdma_on = 0;
1089 c->txdma_on = 0;
1091 c->tx_dma_used=0;
1092 c->dma_num=0;
1093 c->dma_ready=1;
1094 c->dma_tx = 1;
1097 * Enable DMA control mode
1101 * TX DMA via DIR/REQ
1103 c->regs[R14]|= DTRREQ;
1104 write_zsreg(c, R14, c->regs[R14]);
1106 c->regs[R1]&= ~TxINT_ENAB;
1107 write_zsreg(c, R1, c->regs[R1]);
1110 * Set up the DMA configuration
1113 dflags = claim_dma_lock();
1115 disable_dma(c->txdma);
1116 clear_dma_ff(c->txdma);
1117 set_dma_mode(c->txdma, DMA_MODE_WRITE);
1118 disable_dma(c->txdma);
1120 release_dma_lock(dflags);
1123 * Select the DMA interrupt handlers
1126 c->rxdma_on = 0;
1127 c->txdma_on = 1;
1128 c->tx_dma_used = 1;
1130 c->irqs = &z8530_txdma_sync;
1131 z8530_rtsdtr(c,1);
1132 write_zsreg(c, R3, c->regs[R3]|RxENABLE);
1133 spin_unlock_irqrestore(c->lock, cflags);
1135 return 0;
1138 EXPORT_SYMBOL(z8530_sync_txdma_open);
1141 * z8530_sync_txdma_close - Close down a TX driven DMA channel
1142 * @dev: Network device to detach
1143 * @c: Z8530 channel to move into discard mode
1145 * Shut down a DMA/PIO split mode synchronous interface. Halt the DMA,
1146 * and free the buffers.
1149 int z8530_sync_txdma_close(struct net_device *dev, struct z8530_channel *c)
1151 unsigned long dflags, cflags;
1152 u8 chk;
1155 spin_lock_irqsave(c->lock, cflags);
1157 c->irqs = &z8530_nop;
1158 c->max = 0;
1159 c->sync = 0;
1162 * Disable the PC DMA channels
1165 dflags = claim_dma_lock();
1167 disable_dma(c->txdma);
1168 clear_dma_ff(c->txdma);
1169 c->txdma_on = 0;
1170 c->tx_dma_used = 0;
1172 release_dma_lock(dflags);
1175 * Disable DMA control mode
1178 c->regs[R1]&= ~WT_RDY_ENAB;
1179 write_zsreg(c, R1, c->regs[R1]);
1180 c->regs[R1]&= ~(WT_RDY_RT|WT_FN_RDYFN|INT_ERR_Rx);
1181 c->regs[R1]|= INT_ALL_Rx;
1182 write_zsreg(c, R1, c->regs[R1]);
1183 c->regs[R14]&= ~DTRREQ;
1184 write_zsreg(c, R14, c->regs[R14]);
1186 if(c->tx_dma_buf[0])
1188 free_page((unsigned long)c->tx_dma_buf[0]);
1189 c->tx_dma_buf[0]=NULL;
1191 chk=read_zsreg(c,R0);
1192 write_zsreg(c, R3, c->regs[R3]);
1193 z8530_rtsdtr(c,0);
1195 spin_unlock_irqrestore(c->lock, cflags);
1196 return 0;
1200 EXPORT_SYMBOL(z8530_sync_txdma_close);
1204 * Name strings for Z8530 chips. SGI claim to have a 130, Zilog deny
1205 * it exists...
1208 static char *z8530_type_name[]={
1209 "Z8530",
1210 "Z85C30",
1211 "Z85230"
1215 * z8530_describe - Uniformly describe a Z8530 port
1216 * @dev: Z8530 device to describe
1217 * @mapping: string holding mapping type (eg "I/O" or "Mem")
1218 * @io: the port value in question
1220 * Describe a Z8530 in a standard format. We must pass the I/O as
1221 * the port offset isnt predictable. The main reason for this function
1222 * is to try and get a common format of report.
1225 void z8530_describe(struct z8530_dev *dev, char *mapping, unsigned long io)
1227 printk(KERN_INFO "%s: %s found at %s 0x%lX, IRQ %d.\n",
1228 dev->name,
1229 z8530_type_name[dev->type],
1230 mapping,
1231 Z8530_PORT_OF(io),
1232 dev->irq);
1235 EXPORT_SYMBOL(z8530_describe);
1238 * Locked operation part of the z8530 init code
1241 static inline int do_z8530_init(struct z8530_dev *dev)
1243 /* NOP the interrupt handlers first - we might get a
1244 floating IRQ transition when we reset the chip */
1245 dev->chanA.irqs=&z8530_nop;
1246 dev->chanB.irqs=&z8530_nop;
1247 dev->chanA.dcdcheck=DCD;
1248 dev->chanB.dcdcheck=DCD;
1250 /* Reset the chip */
1251 write_zsreg(&dev->chanA, R9, 0xC0);
1252 udelay(200);
1253 /* Now check its valid */
1254 write_zsreg(&dev->chanA, R12, 0xAA);
1255 if(read_zsreg(&dev->chanA, R12)!=0xAA)
1256 return -ENODEV;
1257 write_zsreg(&dev->chanA, R12, 0x55);
1258 if(read_zsreg(&dev->chanA, R12)!=0x55)
1259 return -ENODEV;
1261 dev->type=Z8530;
1264 * See the application note.
1267 write_zsreg(&dev->chanA, R15, 0x01);
1270 * If we can set the low bit of R15 then
1271 * the chip is enhanced.
1274 if(read_zsreg(&dev->chanA, R15)==0x01)
1276 /* This C30 versus 230 detect is from Klaus Kudielka's dmascc */
1277 /* Put a char in the fifo */
1278 write_zsreg(&dev->chanA, R8, 0);
1279 if(read_zsreg(&dev->chanA, R0)&Tx_BUF_EMP)
1280 dev->type = Z85230; /* Has a FIFO */
1281 else
1282 dev->type = Z85C30; /* Z85C30, 1 byte FIFO */
1286 * The code assumes R7' and friends are
1287 * off. Use write_zsext() for these and keep
1288 * this bit clear.
1291 write_zsreg(&dev->chanA, R15, 0);
1294 * At this point it looks like the chip is behaving
1297 memcpy(dev->chanA.regs, reg_init, 16);
1298 memcpy(dev->chanB.regs, reg_init ,16);
1300 return 0;
1304 * z8530_init - Initialise a Z8530 device
1305 * @dev: Z8530 device to initialise.
1307 * Configure up a Z8530/Z85C30 or Z85230 chip. We check the device
1308 * is present, identify the type and then program it to hopefully
1309 * keep quite and behave. This matters a lot, a Z8530 in the wrong
1310 * state will sometimes get into stupid modes generating 10Khz
1311 * interrupt streams and the like.
1313 * We set the interrupt handler up to discard any events, in case
1314 * we get them during reset or setp.
1316 * Return 0 for success, or a negative value indicating the problem
1317 * in errno form.
1320 int z8530_init(struct z8530_dev *dev)
1322 unsigned long flags;
1323 int ret;
1325 /* Set up the chip level lock */
1326 spin_lock_init(&dev->lock);
1327 dev->chanA.lock = &dev->lock;
1328 dev->chanB.lock = &dev->lock;
1330 spin_lock_irqsave(&dev->lock, flags);
1331 ret = do_z8530_init(dev);
1332 spin_unlock_irqrestore(&dev->lock, flags);
1334 return ret;
1338 EXPORT_SYMBOL(z8530_init);
1341 * z8530_shutdown - Shutdown a Z8530 device
1342 * @dev: The Z8530 chip to shutdown
1344 * We set the interrupt handlers to silence any interrupts. We then
1345 * reset the chip and wait 100uS to be sure the reset completed. Just
1346 * in case the caller then tries to do stuff.
1348 * This is called without the lock held
1351 int z8530_shutdown(struct z8530_dev *dev)
1353 unsigned long flags;
1354 /* Reset the chip */
1356 spin_lock_irqsave(&dev->lock, flags);
1357 dev->chanA.irqs=&z8530_nop;
1358 dev->chanB.irqs=&z8530_nop;
1359 write_zsreg(&dev->chanA, R9, 0xC0);
1360 /* We must lock the udelay, the chip is offlimits here */
1361 udelay(100);
1362 spin_unlock_irqrestore(&dev->lock, flags);
1363 return 0;
1366 EXPORT_SYMBOL(z8530_shutdown);
1369 * z8530_channel_load - Load channel data
1370 * @c: Z8530 channel to configure
1371 * @rtable: table of register, value pairs
1372 * FIXME: ioctl to allow user uploaded tables
1374 * Load a Z8530 channel up from the system data. We use +16 to
1375 * indicate the "prime" registers. The value 255 terminates the
1376 * table.
1379 int z8530_channel_load(struct z8530_channel *c, u8 *rtable)
1381 unsigned long flags;
1383 spin_lock_irqsave(c->lock, flags);
1385 while(*rtable!=255)
1387 int reg=*rtable++;
1388 if(reg>0x0F)
1389 write_zsreg(c, R15, c->regs[15]|1);
1390 write_zsreg(c, reg&0x0F, *rtable);
1391 if(reg>0x0F)
1392 write_zsreg(c, R15, c->regs[15]&~1);
1393 c->regs[reg]=*rtable++;
1395 c->rx_function=z8530_null_rx;
1396 c->skb=NULL;
1397 c->tx_skb=NULL;
1398 c->tx_next_skb=NULL;
1399 c->mtu=1500;
1400 c->max=0;
1401 c->count=0;
1402 c->status=read_zsreg(c, R0);
1403 c->sync=1;
1404 write_zsreg(c, R3, c->regs[R3]|RxENABLE);
1406 spin_unlock_irqrestore(c->lock, flags);
1407 return 0;
1410 EXPORT_SYMBOL(z8530_channel_load);
1414 * z8530_tx_begin - Begin packet transmission
1415 * @c: The Z8530 channel to kick
1417 * This is the speed sensitive side of transmission. If we are called
1418 * and no buffer is being transmitted we commence the next buffer. If
1419 * nothing is queued we idle the sync.
1421 * Note: We are handling this code path in the interrupt path, keep it
1422 * fast or bad things will happen.
1424 * Called with the lock held.
1427 static void z8530_tx_begin(struct z8530_channel *c)
1429 unsigned long flags;
1430 if(c->tx_skb)
1431 return;
1433 c->tx_skb=c->tx_next_skb;
1434 c->tx_next_skb=NULL;
1435 c->tx_ptr=c->tx_next_ptr;
1437 if(c->tx_skb==NULL)
1439 /* Idle on */
1440 if(c->dma_tx)
1442 flags=claim_dma_lock();
1443 disable_dma(c->txdma);
1445 * Check if we crapped out.
1447 if (get_dma_residue(c->txdma))
1449 c->netdevice->stats.tx_dropped++;
1450 c->netdevice->stats.tx_fifo_errors++;
1452 release_dma_lock(flags);
1454 c->txcount=0;
1456 else
1458 c->txcount=c->tx_skb->len;
1461 if(c->dma_tx)
1464 * FIXME. DMA is broken for the original 8530,
1465 * on the older parts we need to set a flag and
1466 * wait for a further TX interrupt to fire this
1467 * stage off
1470 flags=claim_dma_lock();
1471 disable_dma(c->txdma);
1474 * These two are needed by the 8530/85C30
1475 * and must be issued when idling.
1478 if(c->dev->type!=Z85230)
1480 write_zsctrl(c, RES_Tx_CRC);
1481 write_zsctrl(c, RES_EOM_L);
1483 write_zsreg(c, R10, c->regs[10]&~ABUNDER);
1484 clear_dma_ff(c->txdma);
1485 set_dma_addr(c->txdma, virt_to_bus(c->tx_ptr));
1486 set_dma_count(c->txdma, c->txcount);
1487 enable_dma(c->txdma);
1488 release_dma_lock(flags);
1489 write_zsctrl(c, RES_EOM_L);
1490 write_zsreg(c, R5, c->regs[R5]|TxENAB);
1492 else
1495 /* ABUNDER off */
1496 write_zsreg(c, R10, c->regs[10]);
1497 write_zsctrl(c, RES_Tx_CRC);
1499 while(c->txcount && (read_zsreg(c,R0)&Tx_BUF_EMP))
1501 write_zsreg(c, R8, *c->tx_ptr++);
1502 c->txcount--;
1508 * Since we emptied tx_skb we can ask for more
1510 netif_wake_queue(c->netdevice);
1514 * z8530_tx_done - TX complete callback
1515 * @c: The channel that completed a transmit.
1517 * This is called when we complete a packet send. We wake the queue,
1518 * start the next packet going and then free the buffer of the existing
1519 * packet. This code is fairly timing sensitive.
1521 * Called with the register lock held.
1524 static void z8530_tx_done(struct z8530_channel *c)
1526 struct sk_buff *skb;
1528 /* Actually this can happen.*/
1529 if (c->tx_skb == NULL)
1530 return;
1532 skb = c->tx_skb;
1533 c->tx_skb = NULL;
1534 z8530_tx_begin(c);
1535 c->netdevice->stats.tx_packets++;
1536 c->netdevice->stats.tx_bytes += skb->len;
1537 dev_kfree_skb_irq(skb);
1541 * z8530_null_rx - Discard a packet
1542 * @c: The channel the packet arrived on
1543 * @skb: The buffer
1545 * We point the receive handler at this function when idle. Instead
1546 * of processing the frames we get to throw them away.
1549 void z8530_null_rx(struct z8530_channel *c, struct sk_buff *skb)
1551 dev_kfree_skb_any(skb);
1554 EXPORT_SYMBOL(z8530_null_rx);
1557 * z8530_rx_done - Receive completion callback
1558 * @c: The channel that completed a receive
1560 * A new packet is complete. Our goal here is to get back into receive
1561 * mode as fast as possible. On the Z85230 we could change to using
1562 * ESCC mode, but on the older chips we have no choice. We flip to the
1563 * new buffer immediately in DMA mode so that the DMA of the next
1564 * frame can occur while we are copying the previous buffer to an sk_buff
1566 * Called with the lock held
1569 static void z8530_rx_done(struct z8530_channel *c)
1571 struct sk_buff *skb;
1572 int ct;
1575 * Is our receive engine in DMA mode
1578 if(c->rxdma_on)
1581 * Save the ready state and the buffer currently
1582 * being used as the DMA target
1585 int ready=c->dma_ready;
1586 unsigned char *rxb=c->rx_buf[c->dma_num];
1587 unsigned long flags;
1590 * Complete this DMA. Neccessary to find the length
1593 flags=claim_dma_lock();
1595 disable_dma(c->rxdma);
1596 clear_dma_ff(c->rxdma);
1597 c->rxdma_on=0;
1598 ct=c->mtu-get_dma_residue(c->rxdma);
1599 if(ct<0)
1600 ct=2; /* Shit happens.. */
1601 c->dma_ready=0;
1604 * Normal case: the other slot is free, start the next DMA
1605 * into it immediately.
1608 if(ready)
1610 c->dma_num^=1;
1611 set_dma_mode(c->rxdma, DMA_MODE_READ|0x10);
1612 set_dma_addr(c->rxdma, virt_to_bus(c->rx_buf[c->dma_num]));
1613 set_dma_count(c->rxdma, c->mtu);
1614 c->rxdma_on = 1;
1615 enable_dma(c->rxdma);
1616 /* Stop any frames that we missed the head of
1617 from passing */
1618 write_zsreg(c, R0, RES_Rx_CRC);
1620 else
1621 /* Can't occur as we dont reenable the DMA irq until
1622 after the flip is done */
1623 printk(KERN_WARNING "%s: DMA flip overrun!\n",
1624 c->netdevice->name);
1626 release_dma_lock(flags);
1629 * Shove the old buffer into an sk_buff. We can't DMA
1630 * directly into one on a PC - it might be above the 16Mb
1631 * boundary. Optimisation - we could check to see if we
1632 * can avoid the copy. Optimisation 2 - make the memcpy
1633 * a copychecksum.
1636 skb = dev_alloc_skb(ct);
1637 if (skb == NULL) {
1638 c->netdevice->stats.rx_dropped++;
1639 printk(KERN_WARNING "%s: Memory squeeze.\n",
1640 c->netdevice->name);
1641 } else {
1642 skb_put(skb, ct);
1643 skb_copy_to_linear_data(skb, rxb, ct);
1644 c->netdevice->stats.rx_packets++;
1645 c->netdevice->stats.rx_bytes += ct;
1647 c->dma_ready = 1;
1648 } else {
1649 RT_LOCK;
1650 skb = c->skb;
1653 * The game we play for non DMA is similar. We want to
1654 * get the controller set up for the next packet as fast
1655 * as possible. We potentially only have one byte + the
1656 * fifo length for this. Thus we want to flip to the new
1657 * buffer and then mess around copying and allocating
1658 * things. For the current case it doesn't matter but
1659 * if you build a system where the sync irq isnt blocked
1660 * by the kernel IRQ disable then you need only block the
1661 * sync IRQ for the RT_LOCK area.
1664 ct=c->count;
1666 c->skb = c->skb2;
1667 c->count = 0;
1668 c->max = c->mtu;
1669 if (c->skb) {
1670 c->dptr = c->skb->data;
1671 c->max = c->mtu;
1672 } else {
1673 c->count = 0;
1674 c->max = 0;
1676 RT_UNLOCK;
1678 c->skb2 = dev_alloc_skb(c->mtu);
1679 if (c->skb2 == NULL)
1680 printk(KERN_WARNING "%s: memory squeeze.\n",
1681 c->netdevice->name);
1682 else
1683 skb_put(c->skb2, c->mtu);
1684 c->netdevice->stats.rx_packets++;
1685 c->netdevice->stats.rx_bytes += ct;
1688 * If we received a frame we must now process it.
1690 if (skb) {
1691 skb_trim(skb, ct);
1692 c->rx_function(c, skb);
1693 } else {
1694 c->netdevice->stats.rx_dropped++;
1695 printk(KERN_ERR "%s: Lost a frame\n", c->netdevice->name);
1700 * spans_boundary - Check a packet can be ISA DMA'd
1701 * @skb: The buffer to check
1703 * Returns true if the buffer cross a DMA boundary on a PC. The poor
1704 * thing can only DMA within a 64K block not across the edges of it.
1707 static inline int spans_boundary(struct sk_buff *skb)
1709 unsigned long a=(unsigned long)skb->data;
1710 a^=(a+skb->len);
1711 if(a&0x00010000) /* If the 64K bit is different.. */
1712 return 1;
1713 return 0;
1717 * z8530_queue_xmit - Queue a packet
1718 * @c: The channel to use
1719 * @skb: The packet to kick down the channel
1721 * Queue a packet for transmission. Because we have rather
1722 * hard to hit interrupt latencies for the Z85230 per packet
1723 * even in DMA mode we do the flip to DMA buffer if needed here
1724 * not in the IRQ.
1726 * Called from the network code. The lock is not held at this
1727 * point.
1730 int z8530_queue_xmit(struct z8530_channel *c, struct sk_buff *skb)
1732 unsigned long flags;
1734 netif_stop_queue(c->netdevice);
1735 if(c->tx_next_skb)
1737 return 1;
1740 /* PC SPECIFIC - DMA limits */
1743 * If we will DMA the transmit and its gone over the ISA bus
1744 * limit, then copy to the flip buffer
1747 if(c->dma_tx && ((unsigned long)(virt_to_bus(skb->data+skb->len))>=16*1024*1024 || spans_boundary(skb)))
1750 * Send the flip buffer, and flip the flippy bit.
1751 * We don't care which is used when just so long as
1752 * we never use the same buffer twice in a row. Since
1753 * only one buffer can be going out at a time the other
1754 * has to be safe.
1756 c->tx_next_ptr=c->tx_dma_buf[c->tx_dma_used];
1757 c->tx_dma_used^=1; /* Flip temp buffer */
1758 skb_copy_from_linear_data(skb, c->tx_next_ptr, skb->len);
1760 else
1761 c->tx_next_ptr=skb->data;
1762 RT_LOCK;
1763 c->tx_next_skb=skb;
1764 RT_UNLOCK;
1766 spin_lock_irqsave(c->lock, flags);
1767 z8530_tx_begin(c);
1768 spin_unlock_irqrestore(c->lock, flags);
1770 return 0;
1773 EXPORT_SYMBOL(z8530_queue_xmit);
1776 * Module support
1778 static char banner[] __initdata = KERN_INFO "Generic Z85C30/Z85230 interface driver v0.02\n";
1780 static int __init z85230_init_driver(void)
1782 printk(banner);
1783 return 0;
1785 module_init(z85230_init_driver);
1787 static void __exit z85230_cleanup_driver(void)
1790 module_exit(z85230_cleanup_driver);
1792 MODULE_AUTHOR("Red Hat Inc.");
1793 MODULE_DESCRIPTION("Z85x30 synchronous driver core");
1794 MODULE_LICENSE("GPL");