signals: dequeue_signal: don't check SIGNAL_GROUP_EXIT when setting SIGNAL_STOP_DEQUEUED
[linux-2.6/mini2440.git] / drivers / firewire / fw-sbp2.c
blob53fc5a641e6d85de37c5c40b3147d4df009b72a6
1 /*
2 * SBP2 driver (SCSI over IEEE1394)
4 * Copyright (C) 2005-2007 Kristian Hoegsberg <krh@bitplanet.net>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
22 * The basic structure of this driver is based on the old storage driver,
23 * drivers/ieee1394/sbp2.c, originally written by
24 * James Goodwin <jamesg@filanet.com>
25 * with later contributions and ongoing maintenance from
26 * Ben Collins <bcollins@debian.org>,
27 * Stefan Richter <stefanr@s5r6.in-berlin.de>
28 * and many others.
31 #include <linux/blkdev.h>
32 #include <linux/delay.h>
33 #include <linux/device.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/kernel.h>
36 #include <linux/mod_devicetable.h>
37 #include <linux/module.h>
38 #include <linux/moduleparam.h>
39 #include <linux/scatterlist.h>
40 #include <linux/string.h>
41 #include <linux/stringify.h>
42 #include <linux/timer.h>
43 #include <linux/workqueue.h>
44 #include <asm/system.h>
46 #include <scsi/scsi.h>
47 #include <scsi/scsi_cmnd.h>
48 #include <scsi/scsi_device.h>
49 #include <scsi/scsi_host.h>
51 #include "fw-device.h"
52 #include "fw-topology.h"
53 #include "fw-transaction.h"
56 * So far only bridges from Oxford Semiconductor are known to support
57 * concurrent logins. Depending on firmware, four or two concurrent logins
58 * are possible on OXFW911 and newer Oxsemi bridges.
60 * Concurrent logins are useful together with cluster filesystems.
62 static int sbp2_param_exclusive_login = 1;
63 module_param_named(exclusive_login, sbp2_param_exclusive_login, bool, 0644);
64 MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device "
65 "(default = Y, use N for concurrent initiators)");
68 * Flags for firmware oddities
70 * - 128kB max transfer
71 * Limit transfer size. Necessary for some old bridges.
73 * - 36 byte inquiry
74 * When scsi_mod probes the device, let the inquiry command look like that
75 * from MS Windows.
77 * - skip mode page 8
78 * Suppress sending of mode_sense for mode page 8 if the device pretends to
79 * support the SCSI Primary Block commands instead of Reduced Block Commands.
81 * - fix capacity
82 * Tell sd_mod to correct the last sector number reported by read_capacity.
83 * Avoids access beyond actual disk limits on devices with an off-by-one bug.
84 * Don't use this with devices which don't have this bug.
86 * - delay inquiry
87 * Wait extra SBP2_INQUIRY_DELAY seconds after login before SCSI inquiry.
89 * - power condition
90 * Set the power condition field in the START STOP UNIT commands sent by
91 * sd_mod on suspend, resume, and shutdown (if manage_start_stop is on).
92 * Some disks need this to spin down or to resume properly.
94 * - override internal blacklist
95 * Instead of adding to the built-in blacklist, use only the workarounds
96 * specified in the module load parameter.
97 * Useful if a blacklist entry interfered with a non-broken device.
99 #define SBP2_WORKAROUND_128K_MAX_TRANS 0x1
100 #define SBP2_WORKAROUND_INQUIRY_36 0x2
101 #define SBP2_WORKAROUND_MODE_SENSE_8 0x4
102 #define SBP2_WORKAROUND_FIX_CAPACITY 0x8
103 #define SBP2_WORKAROUND_DELAY_INQUIRY 0x10
104 #define SBP2_INQUIRY_DELAY 12
105 #define SBP2_WORKAROUND_POWER_CONDITION 0x20
106 #define SBP2_WORKAROUND_OVERRIDE 0x100
108 static int sbp2_param_workarounds;
109 module_param_named(workarounds, sbp2_param_workarounds, int, 0644);
110 MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0"
111 ", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS)
112 ", 36 byte inquiry = " __stringify(SBP2_WORKAROUND_INQUIRY_36)
113 ", skip mode page 8 = " __stringify(SBP2_WORKAROUND_MODE_SENSE_8)
114 ", fix capacity = " __stringify(SBP2_WORKAROUND_FIX_CAPACITY)
115 ", delay inquiry = " __stringify(SBP2_WORKAROUND_DELAY_INQUIRY)
116 ", set power condition in start stop unit = "
117 __stringify(SBP2_WORKAROUND_POWER_CONDITION)
118 ", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE)
119 ", or a combination)");
121 /* I don't know why the SCSI stack doesn't define something like this... */
122 typedef void (*scsi_done_fn_t)(struct scsi_cmnd *);
124 static const char sbp2_driver_name[] = "sbp2";
127 * We create one struct sbp2_logical_unit per SBP-2 Logical Unit Number Entry
128 * and one struct scsi_device per sbp2_logical_unit.
130 struct sbp2_logical_unit {
131 struct sbp2_target *tgt;
132 struct list_head link;
133 struct fw_address_handler address_handler;
134 struct list_head orb_list;
136 u64 command_block_agent_address;
137 u16 lun;
138 int login_id;
141 * The generation is updated once we've logged in or reconnected
142 * to the logical unit. Thus, I/O to the device will automatically
143 * fail and get retried if it happens in a window where the device
144 * is not ready, e.g. after a bus reset but before we reconnect.
146 int generation;
147 int retries;
148 struct delayed_work work;
149 bool has_sdev;
150 bool blocked;
154 * We create one struct sbp2_target per IEEE 1212 Unit Directory
155 * and one struct Scsi_Host per sbp2_target.
157 struct sbp2_target {
158 struct kref kref;
159 struct fw_unit *unit;
160 const char *bus_id;
161 struct list_head lu_list;
163 u64 management_agent_address;
164 u64 guid;
165 int directory_id;
166 int node_id;
167 int address_high;
168 unsigned int workarounds;
169 unsigned int mgt_orb_timeout;
171 int dont_block; /* counter for each logical unit */
172 int blocked; /* ditto */
176 * Per section 7.4.8 of the SBP-2 spec, a mgt_ORB_timeout value can be
177 * provided in the config rom. Most devices do provide a value, which
178 * we'll use for login management orbs, but with some sane limits.
180 #define SBP2_MIN_LOGIN_ORB_TIMEOUT 5000U /* Timeout in ms */
181 #define SBP2_MAX_LOGIN_ORB_TIMEOUT 40000U /* Timeout in ms */
182 #define SBP2_ORB_TIMEOUT 2000U /* Timeout in ms */
183 #define SBP2_ORB_NULL 0x80000000
184 #define SBP2_MAX_SG_ELEMENT_LENGTH 0xf000
185 #define SBP2_RETRY_LIMIT 0xf /* 15 retries */
186 #define SBP2_CYCLE_LIMIT (0xc8 << 12) /* 200 125us cycles */
188 /* Unit directory keys */
189 #define SBP2_CSR_UNIT_CHARACTERISTICS 0x3a
190 #define SBP2_CSR_FIRMWARE_REVISION 0x3c
191 #define SBP2_CSR_LOGICAL_UNIT_NUMBER 0x14
192 #define SBP2_CSR_LOGICAL_UNIT_DIRECTORY 0xd4
194 /* Management orb opcodes */
195 #define SBP2_LOGIN_REQUEST 0x0
196 #define SBP2_QUERY_LOGINS_REQUEST 0x1
197 #define SBP2_RECONNECT_REQUEST 0x3
198 #define SBP2_SET_PASSWORD_REQUEST 0x4
199 #define SBP2_LOGOUT_REQUEST 0x7
200 #define SBP2_ABORT_TASK_REQUEST 0xb
201 #define SBP2_ABORT_TASK_SET 0xc
202 #define SBP2_LOGICAL_UNIT_RESET 0xe
203 #define SBP2_TARGET_RESET_REQUEST 0xf
205 /* Offsets for command block agent registers */
206 #define SBP2_AGENT_STATE 0x00
207 #define SBP2_AGENT_RESET 0x04
208 #define SBP2_ORB_POINTER 0x08
209 #define SBP2_DOORBELL 0x10
210 #define SBP2_UNSOLICITED_STATUS_ENABLE 0x14
212 /* Status write response codes */
213 #define SBP2_STATUS_REQUEST_COMPLETE 0x0
214 #define SBP2_STATUS_TRANSPORT_FAILURE 0x1
215 #define SBP2_STATUS_ILLEGAL_REQUEST 0x2
216 #define SBP2_STATUS_VENDOR_DEPENDENT 0x3
218 #define STATUS_GET_ORB_HIGH(v) ((v).status & 0xffff)
219 #define STATUS_GET_SBP_STATUS(v) (((v).status >> 16) & 0xff)
220 #define STATUS_GET_LEN(v) (((v).status >> 24) & 0x07)
221 #define STATUS_GET_DEAD(v) (((v).status >> 27) & 0x01)
222 #define STATUS_GET_RESPONSE(v) (((v).status >> 28) & 0x03)
223 #define STATUS_GET_SOURCE(v) (((v).status >> 30) & 0x03)
224 #define STATUS_GET_ORB_LOW(v) ((v).orb_low)
225 #define STATUS_GET_DATA(v) ((v).data)
227 struct sbp2_status {
228 u32 status;
229 u32 orb_low;
230 u8 data[24];
233 struct sbp2_pointer {
234 __be32 high;
235 __be32 low;
238 struct sbp2_orb {
239 struct fw_transaction t;
240 struct kref kref;
241 dma_addr_t request_bus;
242 int rcode;
243 struct sbp2_pointer pointer;
244 void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status);
245 struct list_head link;
248 #define MANAGEMENT_ORB_LUN(v) ((v))
249 #define MANAGEMENT_ORB_FUNCTION(v) ((v) << 16)
250 #define MANAGEMENT_ORB_RECONNECT(v) ((v) << 20)
251 #define MANAGEMENT_ORB_EXCLUSIVE(v) ((v) ? 1 << 28 : 0)
252 #define MANAGEMENT_ORB_REQUEST_FORMAT(v) ((v) << 29)
253 #define MANAGEMENT_ORB_NOTIFY ((1) << 31)
255 #define MANAGEMENT_ORB_RESPONSE_LENGTH(v) ((v))
256 #define MANAGEMENT_ORB_PASSWORD_LENGTH(v) ((v) << 16)
258 struct sbp2_management_orb {
259 struct sbp2_orb base;
260 struct {
261 struct sbp2_pointer password;
262 struct sbp2_pointer response;
263 __be32 misc;
264 __be32 length;
265 struct sbp2_pointer status_fifo;
266 } request;
267 __be32 response[4];
268 dma_addr_t response_bus;
269 struct completion done;
270 struct sbp2_status status;
273 struct sbp2_login_response {
274 __be32 misc;
275 struct sbp2_pointer command_block_agent;
276 __be32 reconnect_hold;
278 #define COMMAND_ORB_DATA_SIZE(v) ((v))
279 #define COMMAND_ORB_PAGE_SIZE(v) ((v) << 16)
280 #define COMMAND_ORB_PAGE_TABLE_PRESENT ((1) << 19)
281 #define COMMAND_ORB_MAX_PAYLOAD(v) ((v) << 20)
282 #define COMMAND_ORB_SPEED(v) ((v) << 24)
283 #define COMMAND_ORB_DIRECTION ((1) << 27)
284 #define COMMAND_ORB_REQUEST_FORMAT(v) ((v) << 29)
285 #define COMMAND_ORB_NOTIFY ((1) << 31)
287 struct sbp2_command_orb {
288 struct sbp2_orb base;
289 struct {
290 struct sbp2_pointer next;
291 struct sbp2_pointer data_descriptor;
292 __be32 misc;
293 u8 command_block[12];
294 } request;
295 struct scsi_cmnd *cmd;
296 scsi_done_fn_t done;
297 struct sbp2_logical_unit *lu;
299 struct sbp2_pointer page_table[SG_ALL] __attribute__((aligned(8)));
300 dma_addr_t page_table_bus;
304 * List of devices with known bugs.
306 * The firmware_revision field, masked with 0xffff00, is the best
307 * indicator for the type of bridge chip of a device. It yields a few
308 * false positives but this did not break correctly behaving devices
309 * so far. We use ~0 as a wildcard, since the 24 bit values we get
310 * from the config rom can never match that.
312 static const struct {
313 u32 firmware_revision;
314 u32 model;
315 unsigned int workarounds;
316 } sbp2_workarounds_table[] = {
317 /* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
318 .firmware_revision = 0x002800,
319 .model = 0x001010,
320 .workarounds = SBP2_WORKAROUND_INQUIRY_36 |
321 SBP2_WORKAROUND_MODE_SENSE_8 |
322 SBP2_WORKAROUND_POWER_CONDITION,
324 /* DViCO Momobay FX-3A with TSB42AA9A bridge */ {
325 .firmware_revision = 0x002800,
326 .model = 0x000000,
327 .workarounds = SBP2_WORKAROUND_DELAY_INQUIRY |
328 SBP2_WORKAROUND_POWER_CONDITION,
330 /* Initio bridges, actually only needed for some older ones */ {
331 .firmware_revision = 0x000200,
332 .model = ~0,
333 .workarounds = SBP2_WORKAROUND_INQUIRY_36,
335 /* PL-3507 bridge with Prolific firmware */ {
336 .firmware_revision = 0x012800,
337 .model = ~0,
338 .workarounds = SBP2_WORKAROUND_POWER_CONDITION,
340 /* Symbios bridge */ {
341 .firmware_revision = 0xa0b800,
342 .model = ~0,
343 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS,
345 /* Datafab MD2-FW2 with Symbios/LSILogic SYM13FW500 bridge */ {
346 .firmware_revision = 0x002600,
347 .model = ~0,
348 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS,
352 * There are iPods (2nd gen, 3rd gen) with model_id == 0, but
353 * these iPods do not feature the read_capacity bug according
354 * to one report. Read_capacity behaviour as well as model_id
355 * could change due to Apple-supplied firmware updates though.
358 /* iPod 4th generation. */ {
359 .firmware_revision = 0x0a2700,
360 .model = 0x000021,
361 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
363 /* iPod mini */ {
364 .firmware_revision = 0x0a2700,
365 .model = 0x000023,
366 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
368 /* iPod Photo */ {
369 .firmware_revision = 0x0a2700,
370 .model = 0x00007e,
371 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
375 static void
376 free_orb(struct kref *kref)
378 struct sbp2_orb *orb = container_of(kref, struct sbp2_orb, kref);
380 kfree(orb);
383 static void
384 sbp2_status_write(struct fw_card *card, struct fw_request *request,
385 int tcode, int destination, int source,
386 int generation, int speed,
387 unsigned long long offset,
388 void *payload, size_t length, void *callback_data)
390 struct sbp2_logical_unit *lu = callback_data;
391 struct sbp2_orb *orb;
392 struct sbp2_status status;
393 size_t header_size;
394 unsigned long flags;
396 if (tcode != TCODE_WRITE_BLOCK_REQUEST ||
397 length == 0 || length > sizeof(status)) {
398 fw_send_response(card, request, RCODE_TYPE_ERROR);
399 return;
402 header_size = min(length, 2 * sizeof(u32));
403 fw_memcpy_from_be32(&status, payload, header_size);
404 if (length > header_size)
405 memcpy(status.data, payload + 8, length - header_size);
406 if (STATUS_GET_SOURCE(status) == 2 || STATUS_GET_SOURCE(status) == 3) {
407 fw_notify("non-orb related status write, not handled\n");
408 fw_send_response(card, request, RCODE_COMPLETE);
409 return;
412 /* Lookup the orb corresponding to this status write. */
413 spin_lock_irqsave(&card->lock, flags);
414 list_for_each_entry(orb, &lu->orb_list, link) {
415 if (STATUS_GET_ORB_HIGH(status) == 0 &&
416 STATUS_GET_ORB_LOW(status) == orb->request_bus) {
417 orb->rcode = RCODE_COMPLETE;
418 list_del(&orb->link);
419 break;
422 spin_unlock_irqrestore(&card->lock, flags);
424 if (&orb->link != &lu->orb_list)
425 orb->callback(orb, &status);
426 else
427 fw_error("status write for unknown orb\n");
429 kref_put(&orb->kref, free_orb);
431 fw_send_response(card, request, RCODE_COMPLETE);
434 static void
435 complete_transaction(struct fw_card *card, int rcode,
436 void *payload, size_t length, void *data)
438 struct sbp2_orb *orb = data;
439 unsigned long flags;
442 * This is a little tricky. We can get the status write for
443 * the orb before we get this callback. The status write
444 * handler above will assume the orb pointer transaction was
445 * successful and set the rcode to RCODE_COMPLETE for the orb.
446 * So this callback only sets the rcode if it hasn't already
447 * been set and only does the cleanup if the transaction
448 * failed and we didn't already get a status write.
450 spin_lock_irqsave(&card->lock, flags);
452 if (orb->rcode == -1)
453 orb->rcode = rcode;
454 if (orb->rcode != RCODE_COMPLETE) {
455 list_del(&orb->link);
456 spin_unlock_irqrestore(&card->lock, flags);
457 orb->callback(orb, NULL);
458 } else {
459 spin_unlock_irqrestore(&card->lock, flags);
462 kref_put(&orb->kref, free_orb);
465 static void
466 sbp2_send_orb(struct sbp2_orb *orb, struct sbp2_logical_unit *lu,
467 int node_id, int generation, u64 offset)
469 struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
470 unsigned long flags;
472 orb->pointer.high = 0;
473 orb->pointer.low = cpu_to_be32(orb->request_bus);
475 spin_lock_irqsave(&device->card->lock, flags);
476 list_add_tail(&orb->link, &lu->orb_list);
477 spin_unlock_irqrestore(&device->card->lock, flags);
479 /* Take a ref for the orb list and for the transaction callback. */
480 kref_get(&orb->kref);
481 kref_get(&orb->kref);
483 fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST,
484 node_id, generation, device->max_speed, offset,
485 &orb->pointer, sizeof(orb->pointer),
486 complete_transaction, orb);
489 static int sbp2_cancel_orbs(struct sbp2_logical_unit *lu)
491 struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
492 struct sbp2_orb *orb, *next;
493 struct list_head list;
494 unsigned long flags;
495 int retval = -ENOENT;
497 INIT_LIST_HEAD(&list);
498 spin_lock_irqsave(&device->card->lock, flags);
499 list_splice_init(&lu->orb_list, &list);
500 spin_unlock_irqrestore(&device->card->lock, flags);
502 list_for_each_entry_safe(orb, next, &list, link) {
503 retval = 0;
504 if (fw_cancel_transaction(device->card, &orb->t) == 0)
505 continue;
507 orb->rcode = RCODE_CANCELLED;
508 orb->callback(orb, NULL);
511 return retval;
514 static void
515 complete_management_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
517 struct sbp2_management_orb *orb =
518 container_of(base_orb, struct sbp2_management_orb, base);
520 if (status)
521 memcpy(&orb->status, status, sizeof(*status));
522 complete(&orb->done);
525 static int
526 sbp2_send_management_orb(struct sbp2_logical_unit *lu, int node_id,
527 int generation, int function, int lun_or_login_id,
528 void *response)
530 struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
531 struct sbp2_management_orb *orb;
532 unsigned int timeout;
533 int retval = -ENOMEM;
535 if (function == SBP2_LOGOUT_REQUEST && fw_device_is_shutdown(device))
536 return 0;
538 orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
539 if (orb == NULL)
540 return -ENOMEM;
542 kref_init(&orb->base.kref);
543 orb->response_bus =
544 dma_map_single(device->card->device, &orb->response,
545 sizeof(orb->response), DMA_FROM_DEVICE);
546 if (dma_mapping_error(orb->response_bus))
547 goto fail_mapping_response;
549 orb->request.response.high = 0;
550 orb->request.response.low = cpu_to_be32(orb->response_bus);
552 orb->request.misc = cpu_to_be32(
553 MANAGEMENT_ORB_NOTIFY |
554 MANAGEMENT_ORB_FUNCTION(function) |
555 MANAGEMENT_ORB_LUN(lun_or_login_id));
556 orb->request.length = cpu_to_be32(
557 MANAGEMENT_ORB_RESPONSE_LENGTH(sizeof(orb->response)));
559 orb->request.status_fifo.high =
560 cpu_to_be32(lu->address_handler.offset >> 32);
561 orb->request.status_fifo.low =
562 cpu_to_be32(lu->address_handler.offset);
564 if (function == SBP2_LOGIN_REQUEST) {
565 /* Ask for 2^2 == 4 seconds reconnect grace period */
566 orb->request.misc |= cpu_to_be32(
567 MANAGEMENT_ORB_RECONNECT(2) |
568 MANAGEMENT_ORB_EXCLUSIVE(sbp2_param_exclusive_login));
569 timeout = lu->tgt->mgt_orb_timeout;
570 } else {
571 timeout = SBP2_ORB_TIMEOUT;
574 init_completion(&orb->done);
575 orb->base.callback = complete_management_orb;
577 orb->base.request_bus =
578 dma_map_single(device->card->device, &orb->request,
579 sizeof(orb->request), DMA_TO_DEVICE);
580 if (dma_mapping_error(orb->base.request_bus))
581 goto fail_mapping_request;
583 sbp2_send_orb(&orb->base, lu, node_id, generation,
584 lu->tgt->management_agent_address);
586 wait_for_completion_timeout(&orb->done, msecs_to_jiffies(timeout));
588 retval = -EIO;
589 if (sbp2_cancel_orbs(lu) == 0) {
590 fw_error("%s: orb reply timed out, rcode=0x%02x\n",
591 lu->tgt->bus_id, orb->base.rcode);
592 goto out;
595 if (orb->base.rcode != RCODE_COMPLETE) {
596 fw_error("%s: management write failed, rcode 0x%02x\n",
597 lu->tgt->bus_id, orb->base.rcode);
598 goto out;
601 if (STATUS_GET_RESPONSE(orb->status) != 0 ||
602 STATUS_GET_SBP_STATUS(orb->status) != 0) {
603 fw_error("%s: error status: %d:%d\n", lu->tgt->bus_id,
604 STATUS_GET_RESPONSE(orb->status),
605 STATUS_GET_SBP_STATUS(orb->status));
606 goto out;
609 retval = 0;
610 out:
611 dma_unmap_single(device->card->device, orb->base.request_bus,
612 sizeof(orb->request), DMA_TO_DEVICE);
613 fail_mapping_request:
614 dma_unmap_single(device->card->device, orb->response_bus,
615 sizeof(orb->response), DMA_FROM_DEVICE);
616 fail_mapping_response:
617 if (response)
618 memcpy(response, orb->response, sizeof(orb->response));
619 kref_put(&orb->base.kref, free_orb);
621 return retval;
624 static void
625 complete_agent_reset_write(struct fw_card *card, int rcode,
626 void *payload, size_t length, void *done)
628 complete(done);
631 static void sbp2_agent_reset(struct sbp2_logical_unit *lu)
633 struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
634 DECLARE_COMPLETION_ONSTACK(done);
635 struct fw_transaction t;
636 static u32 z;
638 fw_send_request(device->card, &t, TCODE_WRITE_QUADLET_REQUEST,
639 lu->tgt->node_id, lu->generation, device->max_speed,
640 lu->command_block_agent_address + SBP2_AGENT_RESET,
641 &z, sizeof(z), complete_agent_reset_write, &done);
642 wait_for_completion(&done);
645 static void
646 complete_agent_reset_write_no_wait(struct fw_card *card, int rcode,
647 void *payload, size_t length, void *data)
649 kfree(data);
652 static void sbp2_agent_reset_no_wait(struct sbp2_logical_unit *lu)
654 struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
655 struct fw_transaction *t;
656 static u32 z;
658 t = kmalloc(sizeof(*t), GFP_ATOMIC);
659 if (t == NULL)
660 return;
662 fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST,
663 lu->tgt->node_id, lu->generation, device->max_speed,
664 lu->command_block_agent_address + SBP2_AGENT_RESET,
665 &z, sizeof(z), complete_agent_reset_write_no_wait, t);
668 static void sbp2_set_generation(struct sbp2_logical_unit *lu, int generation)
670 struct fw_card *card = fw_device(lu->tgt->unit->device.parent)->card;
671 unsigned long flags;
673 /* serialize with comparisons of lu->generation and card->generation */
674 spin_lock_irqsave(&card->lock, flags);
675 lu->generation = generation;
676 spin_unlock_irqrestore(&card->lock, flags);
679 static inline void sbp2_allow_block(struct sbp2_logical_unit *lu)
682 * We may access dont_block without taking card->lock here:
683 * All callers of sbp2_allow_block() and all callers of sbp2_unblock()
684 * are currently serialized against each other.
685 * And a wrong result in sbp2_conditionally_block()'s access of
686 * dont_block is rather harmless, it simply misses its first chance.
688 --lu->tgt->dont_block;
692 * Blocks lu->tgt if all of the following conditions are met:
693 * - Login, INQUIRY, and high-level SCSI setup of all of the target's
694 * logical units have been finished (indicated by dont_block == 0).
695 * - lu->generation is stale.
697 * Note, scsi_block_requests() must be called while holding card->lock,
698 * otherwise it might foil sbp2_[conditionally_]unblock()'s attempt to
699 * unblock the target.
701 static void sbp2_conditionally_block(struct sbp2_logical_unit *lu)
703 struct sbp2_target *tgt = lu->tgt;
704 struct fw_card *card = fw_device(tgt->unit->device.parent)->card;
705 struct Scsi_Host *shost =
706 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
707 unsigned long flags;
709 spin_lock_irqsave(&card->lock, flags);
710 if (!tgt->dont_block && !lu->blocked &&
711 lu->generation != card->generation) {
712 lu->blocked = true;
713 if (++tgt->blocked == 1)
714 scsi_block_requests(shost);
716 spin_unlock_irqrestore(&card->lock, flags);
720 * Unblocks lu->tgt as soon as all its logical units can be unblocked.
721 * Note, it is harmless to run scsi_unblock_requests() outside the
722 * card->lock protected section. On the other hand, running it inside
723 * the section might clash with shost->host_lock.
725 static void sbp2_conditionally_unblock(struct sbp2_logical_unit *lu)
727 struct sbp2_target *tgt = lu->tgt;
728 struct fw_card *card = fw_device(tgt->unit->device.parent)->card;
729 struct Scsi_Host *shost =
730 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
731 unsigned long flags;
732 bool unblock = false;
734 spin_lock_irqsave(&card->lock, flags);
735 if (lu->blocked && lu->generation == card->generation) {
736 lu->blocked = false;
737 unblock = --tgt->blocked == 0;
739 spin_unlock_irqrestore(&card->lock, flags);
741 if (unblock)
742 scsi_unblock_requests(shost);
746 * Prevents future blocking of tgt and unblocks it.
747 * Note, it is harmless to run scsi_unblock_requests() outside the
748 * card->lock protected section. On the other hand, running it inside
749 * the section might clash with shost->host_lock.
751 static void sbp2_unblock(struct sbp2_target *tgt)
753 struct fw_card *card = fw_device(tgt->unit->device.parent)->card;
754 struct Scsi_Host *shost =
755 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
756 unsigned long flags;
758 spin_lock_irqsave(&card->lock, flags);
759 ++tgt->dont_block;
760 spin_unlock_irqrestore(&card->lock, flags);
762 scsi_unblock_requests(shost);
765 static int sbp2_lun2int(u16 lun)
767 struct scsi_lun eight_bytes_lun;
769 memset(&eight_bytes_lun, 0, sizeof(eight_bytes_lun));
770 eight_bytes_lun.scsi_lun[0] = (lun >> 8) & 0xff;
771 eight_bytes_lun.scsi_lun[1] = lun & 0xff;
773 return scsilun_to_int(&eight_bytes_lun);
776 static void sbp2_release_target(struct kref *kref)
778 struct sbp2_target *tgt = container_of(kref, struct sbp2_target, kref);
779 struct sbp2_logical_unit *lu, *next;
780 struct Scsi_Host *shost =
781 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
782 struct scsi_device *sdev;
783 struct fw_device *device = fw_device(tgt->unit->device.parent);
785 /* prevent deadlocks */
786 sbp2_unblock(tgt);
788 list_for_each_entry_safe(lu, next, &tgt->lu_list, link) {
789 sdev = scsi_device_lookup(shost, 0, 0, sbp2_lun2int(lu->lun));
790 if (sdev) {
791 scsi_remove_device(sdev);
792 scsi_device_put(sdev);
794 sbp2_send_management_orb(lu, tgt->node_id, lu->generation,
795 SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
797 fw_core_remove_address_handler(&lu->address_handler);
798 list_del(&lu->link);
799 kfree(lu);
801 scsi_remove_host(shost);
802 fw_notify("released %s, target %d:0:0\n", tgt->bus_id, shost->host_no);
804 fw_unit_put(tgt->unit);
805 scsi_host_put(shost);
806 fw_device_put(device);
809 static struct workqueue_struct *sbp2_wq;
812 * Always get the target's kref when scheduling work on one its units.
813 * Each workqueue job is responsible to call sbp2_target_put() upon return.
815 static void sbp2_queue_work(struct sbp2_logical_unit *lu, unsigned long delay)
817 if (queue_delayed_work(sbp2_wq, &lu->work, delay))
818 kref_get(&lu->tgt->kref);
821 static void sbp2_target_put(struct sbp2_target *tgt)
823 kref_put(&tgt->kref, sbp2_release_target);
826 static void
827 complete_set_busy_timeout(struct fw_card *card, int rcode,
828 void *payload, size_t length, void *done)
830 complete(done);
834 * Write retransmit retry values into the BUSY_TIMEOUT register.
835 * - The single-phase retry protocol is supported by all SBP-2 devices, but the
836 * default retry_limit value is 0 (i.e. never retry transmission). We write a
837 * saner value after logging into the device.
838 * - The dual-phase retry protocol is optional to implement, and if not
839 * supported, writes to the dual-phase portion of the register will be
840 * ignored. We try to write the original 1394-1995 default here.
841 * - In the case of devices that are also SBP-3-compliant, all writes are
842 * ignored, as the register is read-only, but contains single-phase retry of
843 * 15, which is what we're trying to set for all SBP-2 device anyway, so this
844 * write attempt is safe and yields more consistent behavior for all devices.
846 * See section 8.3.2.3.5 of the 1394-1995 spec, section 6.2 of the SBP-2 spec,
847 * and section 6.4 of the SBP-3 spec for further details.
849 static void sbp2_set_busy_timeout(struct sbp2_logical_unit *lu)
851 struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
852 DECLARE_COMPLETION_ONSTACK(done);
853 struct fw_transaction t;
854 static __be32 busy_timeout;
856 busy_timeout = cpu_to_be32(SBP2_CYCLE_LIMIT | SBP2_RETRY_LIMIT);
858 fw_send_request(device->card, &t, TCODE_WRITE_QUADLET_REQUEST,
859 lu->tgt->node_id, lu->generation, device->max_speed,
860 CSR_REGISTER_BASE + CSR_BUSY_TIMEOUT, &busy_timeout,
861 sizeof(busy_timeout), complete_set_busy_timeout, &done);
862 wait_for_completion(&done);
865 static void sbp2_reconnect(struct work_struct *work);
867 static void sbp2_login(struct work_struct *work)
869 struct sbp2_logical_unit *lu =
870 container_of(work, struct sbp2_logical_unit, work.work);
871 struct sbp2_target *tgt = lu->tgt;
872 struct fw_device *device = fw_device(tgt->unit->device.parent);
873 struct Scsi_Host *shost;
874 struct scsi_device *sdev;
875 struct sbp2_login_response response;
876 int generation, node_id, local_node_id;
878 if (fw_device_is_shutdown(device))
879 goto out;
881 generation = device->generation;
882 smp_rmb(); /* node_id must not be older than generation */
883 node_id = device->node_id;
884 local_node_id = device->card->node_id;
886 /* If this is a re-login attempt, log out, or we might be rejected. */
887 if (lu->has_sdev)
888 sbp2_send_management_orb(lu, device->node_id, generation,
889 SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
891 if (sbp2_send_management_orb(lu, node_id, generation,
892 SBP2_LOGIN_REQUEST, lu->lun, &response) < 0) {
893 if (lu->retries++ < 5) {
894 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
895 } else {
896 fw_error("%s: failed to login to LUN %04x\n",
897 tgt->bus_id, lu->lun);
898 /* Let any waiting I/O fail from now on. */
899 sbp2_unblock(lu->tgt);
901 goto out;
904 tgt->node_id = node_id;
905 tgt->address_high = local_node_id << 16;
906 sbp2_set_generation(lu, generation);
908 lu->command_block_agent_address =
909 ((u64)(be32_to_cpu(response.command_block_agent.high) & 0xffff)
910 << 32) | be32_to_cpu(response.command_block_agent.low);
911 lu->login_id = be32_to_cpu(response.misc) & 0xffff;
913 fw_notify("%s: logged in to LUN %04x (%d retries)\n",
914 tgt->bus_id, lu->lun, lu->retries);
916 /* set appropriate retry limit(s) in BUSY_TIMEOUT register */
917 sbp2_set_busy_timeout(lu);
919 PREPARE_DELAYED_WORK(&lu->work, sbp2_reconnect);
920 sbp2_agent_reset(lu);
922 /* This was a re-login. */
923 if (lu->has_sdev) {
924 sbp2_cancel_orbs(lu);
925 sbp2_conditionally_unblock(lu);
926 goto out;
929 if (lu->tgt->workarounds & SBP2_WORKAROUND_DELAY_INQUIRY)
930 ssleep(SBP2_INQUIRY_DELAY);
932 shost = container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
933 sdev = __scsi_add_device(shost, 0, 0, sbp2_lun2int(lu->lun), lu);
935 * FIXME: We are unable to perform reconnects while in sbp2_login().
936 * Therefore __scsi_add_device() will get into trouble if a bus reset
937 * happens in parallel. It will either fail or leave us with an
938 * unusable sdev. As a workaround we check for this and retry the
939 * whole login and SCSI probing.
942 /* Reported error during __scsi_add_device() */
943 if (IS_ERR(sdev))
944 goto out_logout_login;
946 /* Unreported error during __scsi_add_device() */
947 smp_rmb(); /* get current card generation */
948 if (generation != device->card->generation) {
949 scsi_remove_device(sdev);
950 scsi_device_put(sdev);
951 goto out_logout_login;
954 /* No error during __scsi_add_device() */
955 lu->has_sdev = true;
956 scsi_device_put(sdev);
957 sbp2_allow_block(lu);
958 goto out;
960 out_logout_login:
961 smp_rmb(); /* generation may have changed */
962 generation = device->generation;
963 smp_rmb(); /* node_id must not be older than generation */
965 sbp2_send_management_orb(lu, device->node_id, generation,
966 SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
968 * If a bus reset happened, sbp2_update will have requeued
969 * lu->work already. Reset the work from reconnect to login.
971 PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
972 out:
973 sbp2_target_put(tgt);
976 static int sbp2_add_logical_unit(struct sbp2_target *tgt, int lun_entry)
978 struct sbp2_logical_unit *lu;
980 lu = kmalloc(sizeof(*lu), GFP_KERNEL);
981 if (!lu)
982 return -ENOMEM;
984 lu->address_handler.length = 0x100;
985 lu->address_handler.address_callback = sbp2_status_write;
986 lu->address_handler.callback_data = lu;
988 if (fw_core_add_address_handler(&lu->address_handler,
989 &fw_high_memory_region) < 0) {
990 kfree(lu);
991 return -ENOMEM;
994 lu->tgt = tgt;
995 lu->lun = lun_entry & 0xffff;
996 lu->retries = 0;
997 lu->has_sdev = false;
998 lu->blocked = false;
999 ++tgt->dont_block;
1000 INIT_LIST_HEAD(&lu->orb_list);
1001 INIT_DELAYED_WORK(&lu->work, sbp2_login);
1003 list_add_tail(&lu->link, &tgt->lu_list);
1004 return 0;
1007 static int sbp2_scan_logical_unit_dir(struct sbp2_target *tgt, u32 *directory)
1009 struct fw_csr_iterator ci;
1010 int key, value;
1012 fw_csr_iterator_init(&ci, directory);
1013 while (fw_csr_iterator_next(&ci, &key, &value))
1014 if (key == SBP2_CSR_LOGICAL_UNIT_NUMBER &&
1015 sbp2_add_logical_unit(tgt, value) < 0)
1016 return -ENOMEM;
1017 return 0;
1020 static int sbp2_scan_unit_dir(struct sbp2_target *tgt, u32 *directory,
1021 u32 *model, u32 *firmware_revision)
1023 struct fw_csr_iterator ci;
1024 int key, value;
1025 unsigned int timeout;
1027 fw_csr_iterator_init(&ci, directory);
1028 while (fw_csr_iterator_next(&ci, &key, &value)) {
1029 switch (key) {
1031 case CSR_DEPENDENT_INFO | CSR_OFFSET:
1032 tgt->management_agent_address =
1033 CSR_REGISTER_BASE + 4 * value;
1034 break;
1036 case CSR_DIRECTORY_ID:
1037 tgt->directory_id = value;
1038 break;
1040 case CSR_MODEL:
1041 *model = value;
1042 break;
1044 case SBP2_CSR_FIRMWARE_REVISION:
1045 *firmware_revision = value;
1046 break;
1048 case SBP2_CSR_UNIT_CHARACTERISTICS:
1049 /* the timeout value is stored in 500ms units */
1050 timeout = ((unsigned int) value >> 8 & 0xff) * 500;
1051 timeout = max(timeout, SBP2_MIN_LOGIN_ORB_TIMEOUT);
1052 tgt->mgt_orb_timeout =
1053 min(timeout, SBP2_MAX_LOGIN_ORB_TIMEOUT);
1055 if (timeout > tgt->mgt_orb_timeout)
1056 fw_notify("%s: config rom contains %ds "
1057 "management ORB timeout, limiting "
1058 "to %ds\n", tgt->bus_id,
1059 timeout / 1000,
1060 tgt->mgt_orb_timeout / 1000);
1061 break;
1063 case SBP2_CSR_LOGICAL_UNIT_NUMBER:
1064 if (sbp2_add_logical_unit(tgt, value) < 0)
1065 return -ENOMEM;
1066 break;
1068 case SBP2_CSR_LOGICAL_UNIT_DIRECTORY:
1069 /* Adjust for the increment in the iterator */
1070 if (sbp2_scan_logical_unit_dir(tgt, ci.p - 1 + value) < 0)
1071 return -ENOMEM;
1072 break;
1075 return 0;
1078 static void sbp2_init_workarounds(struct sbp2_target *tgt, u32 model,
1079 u32 firmware_revision)
1081 int i;
1082 unsigned int w = sbp2_param_workarounds;
1084 if (w)
1085 fw_notify("Please notify linux1394-devel@lists.sourceforge.net "
1086 "if you need the workarounds parameter for %s\n",
1087 tgt->bus_id);
1089 if (w & SBP2_WORKAROUND_OVERRIDE)
1090 goto out;
1092 for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
1094 if (sbp2_workarounds_table[i].firmware_revision !=
1095 (firmware_revision & 0xffffff00))
1096 continue;
1098 if (sbp2_workarounds_table[i].model != model &&
1099 sbp2_workarounds_table[i].model != ~0)
1100 continue;
1102 w |= sbp2_workarounds_table[i].workarounds;
1103 break;
1105 out:
1106 if (w)
1107 fw_notify("Workarounds for %s: 0x%x "
1108 "(firmware_revision 0x%06x, model_id 0x%06x)\n",
1109 tgt->bus_id, w, firmware_revision, model);
1110 tgt->workarounds = w;
1113 static struct scsi_host_template scsi_driver_template;
1115 static int sbp2_probe(struct device *dev)
1117 struct fw_unit *unit = fw_unit(dev);
1118 struct fw_device *device = fw_device(unit->device.parent);
1119 struct sbp2_target *tgt;
1120 struct sbp2_logical_unit *lu;
1121 struct Scsi_Host *shost;
1122 u32 model, firmware_revision;
1124 shost = scsi_host_alloc(&scsi_driver_template, sizeof(*tgt));
1125 if (shost == NULL)
1126 return -ENOMEM;
1128 tgt = (struct sbp2_target *)shost->hostdata;
1129 unit->device.driver_data = tgt;
1130 tgt->unit = unit;
1131 kref_init(&tgt->kref);
1132 INIT_LIST_HEAD(&tgt->lu_list);
1133 tgt->bus_id = unit->device.bus_id;
1134 tgt->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4];
1136 if (fw_device_enable_phys_dma(device) < 0)
1137 goto fail_shost_put;
1139 if (scsi_add_host(shost, &unit->device) < 0)
1140 goto fail_shost_put;
1142 fw_device_get(device);
1143 fw_unit_get(unit);
1145 /* Initialize to values that won't match anything in our table. */
1146 firmware_revision = 0xff000000;
1147 model = 0xff000000;
1149 /* implicit directory ID */
1150 tgt->directory_id = ((unit->directory - device->config_rom) * 4
1151 + CSR_CONFIG_ROM) & 0xffffff;
1153 if (sbp2_scan_unit_dir(tgt, unit->directory, &model,
1154 &firmware_revision) < 0)
1155 goto fail_tgt_put;
1157 sbp2_init_workarounds(tgt, model, firmware_revision);
1159 /* Do the login in a workqueue so we can easily reschedule retries. */
1160 list_for_each_entry(lu, &tgt->lu_list, link)
1161 sbp2_queue_work(lu, 0);
1162 return 0;
1164 fail_tgt_put:
1165 sbp2_target_put(tgt);
1166 return -ENOMEM;
1168 fail_shost_put:
1169 scsi_host_put(shost);
1170 return -ENOMEM;
1173 static int sbp2_remove(struct device *dev)
1175 struct fw_unit *unit = fw_unit(dev);
1176 struct sbp2_target *tgt = unit->device.driver_data;
1178 sbp2_target_put(tgt);
1179 return 0;
1182 static void sbp2_reconnect(struct work_struct *work)
1184 struct sbp2_logical_unit *lu =
1185 container_of(work, struct sbp2_logical_unit, work.work);
1186 struct sbp2_target *tgt = lu->tgt;
1187 struct fw_device *device = fw_device(tgt->unit->device.parent);
1188 int generation, node_id, local_node_id;
1190 if (fw_device_is_shutdown(device))
1191 goto out;
1193 generation = device->generation;
1194 smp_rmb(); /* node_id must not be older than generation */
1195 node_id = device->node_id;
1196 local_node_id = device->card->node_id;
1198 if (sbp2_send_management_orb(lu, node_id, generation,
1199 SBP2_RECONNECT_REQUEST,
1200 lu->login_id, NULL) < 0) {
1202 * If reconnect was impossible even though we are in the
1203 * current generation, fall back and try to log in again.
1205 * We could check for "Function rejected" status, but
1206 * looking at the bus generation as simpler and more general.
1208 smp_rmb(); /* get current card generation */
1209 if (generation == device->card->generation ||
1210 lu->retries++ >= 5) {
1211 fw_error("%s: failed to reconnect\n", tgt->bus_id);
1212 lu->retries = 0;
1213 PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
1215 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
1216 goto out;
1219 tgt->node_id = node_id;
1220 tgt->address_high = local_node_id << 16;
1221 sbp2_set_generation(lu, generation);
1223 fw_notify("%s: reconnected to LUN %04x (%d retries)\n",
1224 tgt->bus_id, lu->lun, lu->retries);
1226 sbp2_agent_reset(lu);
1227 sbp2_cancel_orbs(lu);
1228 sbp2_conditionally_unblock(lu);
1229 out:
1230 sbp2_target_put(tgt);
1233 static void sbp2_update(struct fw_unit *unit)
1235 struct sbp2_target *tgt = unit->device.driver_data;
1236 struct sbp2_logical_unit *lu;
1238 fw_device_enable_phys_dma(fw_device(unit->device.parent));
1241 * Fw-core serializes sbp2_update() against sbp2_remove().
1242 * Iteration over tgt->lu_list is therefore safe here.
1244 list_for_each_entry(lu, &tgt->lu_list, link) {
1245 sbp2_conditionally_block(lu);
1246 lu->retries = 0;
1247 sbp2_queue_work(lu, 0);
1251 #define SBP2_UNIT_SPEC_ID_ENTRY 0x0000609e
1252 #define SBP2_SW_VERSION_ENTRY 0x00010483
1254 static const struct fw_device_id sbp2_id_table[] = {
1256 .match_flags = FW_MATCH_SPECIFIER_ID | FW_MATCH_VERSION,
1257 .specifier_id = SBP2_UNIT_SPEC_ID_ENTRY,
1258 .version = SBP2_SW_VERSION_ENTRY,
1263 static struct fw_driver sbp2_driver = {
1264 .driver = {
1265 .owner = THIS_MODULE,
1266 .name = sbp2_driver_name,
1267 .bus = &fw_bus_type,
1268 .probe = sbp2_probe,
1269 .remove = sbp2_remove,
1271 .update = sbp2_update,
1272 .id_table = sbp2_id_table,
1275 static unsigned int
1276 sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data)
1278 int sam_status;
1280 sense_data[0] = 0x70;
1281 sense_data[1] = 0x0;
1282 sense_data[2] = sbp2_status[1];
1283 sense_data[3] = sbp2_status[4];
1284 sense_data[4] = sbp2_status[5];
1285 sense_data[5] = sbp2_status[6];
1286 sense_data[6] = sbp2_status[7];
1287 sense_data[7] = 10;
1288 sense_data[8] = sbp2_status[8];
1289 sense_data[9] = sbp2_status[9];
1290 sense_data[10] = sbp2_status[10];
1291 sense_data[11] = sbp2_status[11];
1292 sense_data[12] = sbp2_status[2];
1293 sense_data[13] = sbp2_status[3];
1294 sense_data[14] = sbp2_status[12];
1295 sense_data[15] = sbp2_status[13];
1297 sam_status = sbp2_status[0] & 0x3f;
1299 switch (sam_status) {
1300 case SAM_STAT_GOOD:
1301 case SAM_STAT_CHECK_CONDITION:
1302 case SAM_STAT_CONDITION_MET:
1303 case SAM_STAT_BUSY:
1304 case SAM_STAT_RESERVATION_CONFLICT:
1305 case SAM_STAT_COMMAND_TERMINATED:
1306 return DID_OK << 16 | sam_status;
1308 default:
1309 return DID_ERROR << 16;
1313 static void
1314 complete_command_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
1316 struct sbp2_command_orb *orb =
1317 container_of(base_orb, struct sbp2_command_orb, base);
1318 struct fw_device *device = fw_device(orb->lu->tgt->unit->device.parent);
1319 int result;
1321 if (status != NULL) {
1322 if (STATUS_GET_DEAD(*status))
1323 sbp2_agent_reset_no_wait(orb->lu);
1325 switch (STATUS_GET_RESPONSE(*status)) {
1326 case SBP2_STATUS_REQUEST_COMPLETE:
1327 result = DID_OK << 16;
1328 break;
1329 case SBP2_STATUS_TRANSPORT_FAILURE:
1330 result = DID_BUS_BUSY << 16;
1331 break;
1332 case SBP2_STATUS_ILLEGAL_REQUEST:
1333 case SBP2_STATUS_VENDOR_DEPENDENT:
1334 default:
1335 result = DID_ERROR << 16;
1336 break;
1339 if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1)
1340 result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status),
1341 orb->cmd->sense_buffer);
1342 } else {
1344 * If the orb completes with status == NULL, something
1345 * went wrong, typically a bus reset happened mid-orb
1346 * or when sending the write (less likely).
1348 result = DID_BUS_BUSY << 16;
1349 sbp2_conditionally_block(orb->lu);
1352 dma_unmap_single(device->card->device, orb->base.request_bus,
1353 sizeof(orb->request), DMA_TO_DEVICE);
1355 if (scsi_sg_count(orb->cmd) > 0)
1356 dma_unmap_sg(device->card->device, scsi_sglist(orb->cmd),
1357 scsi_sg_count(orb->cmd),
1358 orb->cmd->sc_data_direction);
1360 if (orb->page_table_bus != 0)
1361 dma_unmap_single(device->card->device, orb->page_table_bus,
1362 sizeof(orb->page_table), DMA_TO_DEVICE);
1364 orb->cmd->result = result;
1365 orb->done(orb->cmd);
1368 static int
1369 sbp2_map_scatterlist(struct sbp2_command_orb *orb, struct fw_device *device,
1370 struct sbp2_logical_unit *lu)
1372 struct scatterlist *sg;
1373 int sg_len, l, i, j, count;
1374 dma_addr_t sg_addr;
1376 sg = scsi_sglist(orb->cmd);
1377 count = dma_map_sg(device->card->device, sg, scsi_sg_count(orb->cmd),
1378 orb->cmd->sc_data_direction);
1379 if (count == 0)
1380 goto fail;
1383 * Handle the special case where there is only one element in
1384 * the scatter list by converting it to an immediate block
1385 * request. This is also a workaround for broken devices such
1386 * as the second generation iPod which doesn't support page
1387 * tables.
1389 if (count == 1 && sg_dma_len(sg) < SBP2_MAX_SG_ELEMENT_LENGTH) {
1390 orb->request.data_descriptor.high =
1391 cpu_to_be32(lu->tgt->address_high);
1392 orb->request.data_descriptor.low =
1393 cpu_to_be32(sg_dma_address(sg));
1394 orb->request.misc |=
1395 cpu_to_be32(COMMAND_ORB_DATA_SIZE(sg_dma_len(sg)));
1396 return 0;
1400 * Convert the scatterlist to an sbp2 page table. If any
1401 * scatterlist entries are too big for sbp2, we split them as we
1402 * go. Even if we ask the block I/O layer to not give us sg
1403 * elements larger than 65535 bytes, some IOMMUs may merge sg elements
1404 * during DMA mapping, and Linux currently doesn't prevent this.
1406 for (i = 0, j = 0; i < count; i++, sg = sg_next(sg)) {
1407 sg_len = sg_dma_len(sg);
1408 sg_addr = sg_dma_address(sg);
1409 while (sg_len) {
1410 /* FIXME: This won't get us out of the pinch. */
1411 if (unlikely(j >= ARRAY_SIZE(orb->page_table))) {
1412 fw_error("page table overflow\n");
1413 goto fail_page_table;
1415 l = min(sg_len, SBP2_MAX_SG_ELEMENT_LENGTH);
1416 orb->page_table[j].low = cpu_to_be32(sg_addr);
1417 orb->page_table[j].high = cpu_to_be32(l << 16);
1418 sg_addr += l;
1419 sg_len -= l;
1420 j++;
1424 orb->page_table_bus =
1425 dma_map_single(device->card->device, orb->page_table,
1426 sizeof(orb->page_table), DMA_TO_DEVICE);
1427 if (dma_mapping_error(orb->page_table_bus))
1428 goto fail_page_table;
1431 * The data_descriptor pointer is the one case where we need
1432 * to fill in the node ID part of the address. All other
1433 * pointers assume that the data referenced reside on the
1434 * initiator (i.e. us), but data_descriptor can refer to data
1435 * on other nodes so we need to put our ID in descriptor.high.
1437 orb->request.data_descriptor.high = cpu_to_be32(lu->tgt->address_high);
1438 orb->request.data_descriptor.low = cpu_to_be32(orb->page_table_bus);
1439 orb->request.misc |= cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT |
1440 COMMAND_ORB_DATA_SIZE(j));
1442 return 0;
1444 fail_page_table:
1445 dma_unmap_sg(device->card->device, sg, scsi_sg_count(orb->cmd),
1446 orb->cmd->sc_data_direction);
1447 fail:
1448 return -ENOMEM;
1451 /* SCSI stack integration */
1453 static int sbp2_scsi_queuecommand(struct scsi_cmnd *cmd, scsi_done_fn_t done)
1455 struct sbp2_logical_unit *lu = cmd->device->hostdata;
1456 struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
1457 struct sbp2_command_orb *orb;
1458 unsigned int max_payload;
1459 int retval = SCSI_MLQUEUE_HOST_BUSY;
1462 * Bidirectional commands are not yet implemented, and unknown
1463 * transfer direction not handled.
1465 if (cmd->sc_data_direction == DMA_BIDIRECTIONAL) {
1466 fw_error("Can't handle DMA_BIDIRECTIONAL, rejecting command\n");
1467 cmd->result = DID_ERROR << 16;
1468 done(cmd);
1469 return 0;
1472 orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
1473 if (orb == NULL) {
1474 fw_notify("failed to alloc orb\n");
1475 return SCSI_MLQUEUE_HOST_BUSY;
1478 /* Initialize rcode to something not RCODE_COMPLETE. */
1479 orb->base.rcode = -1;
1480 kref_init(&orb->base.kref);
1482 orb->lu = lu;
1483 orb->done = done;
1484 orb->cmd = cmd;
1486 orb->request.next.high = cpu_to_be32(SBP2_ORB_NULL);
1488 * At speed 100 we can do 512 bytes per packet, at speed 200,
1489 * 1024 bytes per packet etc. The SBP-2 max_payload field
1490 * specifies the max payload size as 2 ^ (max_payload + 2), so
1491 * if we set this to max_speed + 7, we get the right value.
1493 max_payload = min(device->max_speed + 7,
1494 device->card->max_receive - 1);
1495 orb->request.misc = cpu_to_be32(
1496 COMMAND_ORB_MAX_PAYLOAD(max_payload) |
1497 COMMAND_ORB_SPEED(device->max_speed) |
1498 COMMAND_ORB_NOTIFY);
1500 if (cmd->sc_data_direction == DMA_FROM_DEVICE)
1501 orb->request.misc |= cpu_to_be32(COMMAND_ORB_DIRECTION);
1503 if (scsi_sg_count(cmd) && sbp2_map_scatterlist(orb, device, lu) < 0)
1504 goto out;
1506 memcpy(orb->request.command_block, cmd->cmnd, cmd->cmd_len);
1508 orb->base.callback = complete_command_orb;
1509 orb->base.request_bus =
1510 dma_map_single(device->card->device, &orb->request,
1511 sizeof(orb->request), DMA_TO_DEVICE);
1512 if (dma_mapping_error(orb->base.request_bus))
1513 goto out;
1515 sbp2_send_orb(&orb->base, lu, lu->tgt->node_id, lu->generation,
1516 lu->command_block_agent_address + SBP2_ORB_POINTER);
1517 retval = 0;
1518 out:
1519 kref_put(&orb->base.kref, free_orb);
1520 return retval;
1523 static int sbp2_scsi_slave_alloc(struct scsi_device *sdev)
1525 struct sbp2_logical_unit *lu = sdev->hostdata;
1527 /* (Re-)Adding logical units via the SCSI stack is not supported. */
1528 if (!lu)
1529 return -ENOSYS;
1531 sdev->allow_restart = 1;
1533 /* SBP-2 requires quadlet alignment of the data buffers. */
1534 blk_queue_update_dma_alignment(sdev->request_queue, 4 - 1);
1536 if (lu->tgt->workarounds & SBP2_WORKAROUND_INQUIRY_36)
1537 sdev->inquiry_len = 36;
1539 return 0;
1542 static int sbp2_scsi_slave_configure(struct scsi_device *sdev)
1544 struct sbp2_logical_unit *lu = sdev->hostdata;
1546 sdev->use_10_for_rw = 1;
1548 if (sbp2_param_exclusive_login)
1549 sdev->manage_start_stop = 1;
1551 if (sdev->type == TYPE_ROM)
1552 sdev->use_10_for_ms = 1;
1554 if (sdev->type == TYPE_DISK &&
1555 lu->tgt->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
1556 sdev->skip_ms_page_8 = 1;
1558 if (lu->tgt->workarounds & SBP2_WORKAROUND_FIX_CAPACITY)
1559 sdev->fix_capacity = 1;
1561 if (lu->tgt->workarounds & SBP2_WORKAROUND_POWER_CONDITION)
1562 sdev->start_stop_pwr_cond = 1;
1564 if (lu->tgt->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS)
1565 blk_queue_max_sectors(sdev->request_queue, 128 * 1024 / 512);
1567 return 0;
1571 * Called by scsi stack when something has really gone wrong. Usually
1572 * called when a command has timed-out for some reason.
1574 static int sbp2_scsi_abort(struct scsi_cmnd *cmd)
1576 struct sbp2_logical_unit *lu = cmd->device->hostdata;
1578 fw_notify("%s: sbp2_scsi_abort\n", lu->tgt->bus_id);
1579 sbp2_agent_reset(lu);
1580 sbp2_cancel_orbs(lu);
1582 return SUCCESS;
1586 * Format of /sys/bus/scsi/devices/.../ieee1394_id:
1587 * u64 EUI-64 : u24 directory_ID : u16 LUN (all printed in hexadecimal)
1589 * This is the concatenation of target port identifier and logical unit
1590 * identifier as per SAM-2...SAM-4 annex A.
1592 static ssize_t
1593 sbp2_sysfs_ieee1394_id_show(struct device *dev, struct device_attribute *attr,
1594 char *buf)
1596 struct scsi_device *sdev = to_scsi_device(dev);
1597 struct sbp2_logical_unit *lu;
1599 if (!sdev)
1600 return 0;
1602 lu = sdev->hostdata;
1604 return sprintf(buf, "%016llx:%06x:%04x\n",
1605 (unsigned long long)lu->tgt->guid,
1606 lu->tgt->directory_id, lu->lun);
1609 static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);
1611 static struct device_attribute *sbp2_scsi_sysfs_attrs[] = {
1612 &dev_attr_ieee1394_id,
1613 NULL
1616 static struct scsi_host_template scsi_driver_template = {
1617 .module = THIS_MODULE,
1618 .name = "SBP-2 IEEE-1394",
1619 .proc_name = sbp2_driver_name,
1620 .queuecommand = sbp2_scsi_queuecommand,
1621 .slave_alloc = sbp2_scsi_slave_alloc,
1622 .slave_configure = sbp2_scsi_slave_configure,
1623 .eh_abort_handler = sbp2_scsi_abort,
1624 .this_id = -1,
1625 .sg_tablesize = SG_ALL,
1626 .use_clustering = ENABLE_CLUSTERING,
1627 .cmd_per_lun = 1,
1628 .can_queue = 1,
1629 .sdev_attrs = sbp2_scsi_sysfs_attrs,
1632 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1633 MODULE_DESCRIPTION("SCSI over IEEE1394");
1634 MODULE_LICENSE("GPL");
1635 MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);
1637 /* Provide a module alias so root-on-sbp2 initrds don't break. */
1638 #ifndef CONFIG_IEEE1394_SBP2_MODULE
1639 MODULE_ALIAS("sbp2");
1640 #endif
1642 static int __init sbp2_init(void)
1644 sbp2_wq = create_singlethread_workqueue(KBUILD_MODNAME);
1645 if (!sbp2_wq)
1646 return -ENOMEM;
1648 return driver_register(&sbp2_driver.driver);
1651 static void __exit sbp2_cleanup(void)
1653 driver_unregister(&sbp2_driver.driver);
1654 destroy_workqueue(sbp2_wq);
1657 module_init(sbp2_init);
1658 module_exit(sbp2_cleanup);