Merge branch 'upstream' of git://ftp.linux-mips.org/pub/scm/upstream-linus
[linux-2.6/mini2440.git] / include / linux / usb.h
blob85ee9be9361ec9825dfca2d11c4931b465628aa9
1 #ifndef __LINUX_USB_H
2 #define __LINUX_USB_H
4 #include <linux/mod_devicetable.h>
5 #include <linux/usb/ch9.h>
7 #define USB_MAJOR 180
8 #define USB_DEVICE_MAJOR 189
11 #ifdef __KERNEL__
13 #include <linux/errno.h> /* for -ENODEV */
14 #include <linux/delay.h> /* for mdelay() */
15 #include <linux/interrupt.h> /* for in_interrupt() */
16 #include <linux/list.h> /* for struct list_head */
17 #include <linux/kref.h> /* for struct kref */
18 #include <linux/device.h> /* for struct device */
19 #include <linux/fs.h> /* for struct file_operations */
20 #include <linux/completion.h> /* for struct completion */
21 #include <linux/sched.h> /* for current && schedule_timeout */
22 #include <linux/mutex.h> /* for struct mutex */
24 struct usb_device;
25 struct usb_driver;
26 struct wusb_dev;
28 /*-------------------------------------------------------------------------*/
31 * Host-side wrappers for standard USB descriptors ... these are parsed
32 * from the data provided by devices. Parsing turns them from a flat
33 * sequence of descriptors into a hierarchy:
35 * - devices have one (usually) or more configs;
36 * - configs have one (often) or more interfaces;
37 * - interfaces have one (usually) or more settings;
38 * - each interface setting has zero or (usually) more endpoints.
40 * And there might be other descriptors mixed in with those.
42 * Devices may also have class-specific or vendor-specific descriptors.
45 struct ep_device;
47 /**
48 * struct usb_host_endpoint - host-side endpoint descriptor and queue
49 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
50 * @urb_list: urbs queued to this endpoint; maintained by usbcore
51 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
52 * with one or more transfer descriptors (TDs) per urb
53 * @ep_dev: ep_device for sysfs info
54 * @extra: descriptors following this endpoint in the configuration
55 * @extralen: how many bytes of "extra" are valid
56 * @enabled: URBs may be submitted to this endpoint
58 * USB requests are always queued to a given endpoint, identified by a
59 * descriptor within an active interface in a given USB configuration.
61 struct usb_host_endpoint {
62 struct usb_endpoint_descriptor desc;
63 struct list_head urb_list;
64 void *hcpriv;
65 struct ep_device *ep_dev; /* For sysfs info */
67 unsigned char *extra; /* Extra descriptors */
68 int extralen;
69 int enabled;
72 /* host-side wrapper for one interface setting's parsed descriptors */
73 struct usb_host_interface {
74 struct usb_interface_descriptor desc;
76 /* array of desc.bNumEndpoint endpoints associated with this
77 * interface setting. these will be in no particular order.
79 struct usb_host_endpoint *endpoint;
81 char *string; /* iInterface string, if present */
82 unsigned char *extra; /* Extra descriptors */
83 int extralen;
86 enum usb_interface_condition {
87 USB_INTERFACE_UNBOUND = 0,
88 USB_INTERFACE_BINDING,
89 USB_INTERFACE_BOUND,
90 USB_INTERFACE_UNBINDING,
93 /**
94 * struct usb_interface - what usb device drivers talk to
95 * @altsetting: array of interface structures, one for each alternate
96 * setting that may be selected. Each one includes a set of
97 * endpoint configurations. They will be in no particular order.
98 * @cur_altsetting: the current altsetting.
99 * @num_altsetting: number of altsettings defined.
100 * @intf_assoc: interface association descriptor
101 * @minor: the minor number assigned to this interface, if this
102 * interface is bound to a driver that uses the USB major number.
103 * If this interface does not use the USB major, this field should
104 * be unused. The driver should set this value in the probe()
105 * function of the driver, after it has been assigned a minor
106 * number from the USB core by calling usb_register_dev().
107 * @condition: binding state of the interface: not bound, binding
108 * (in probe()), bound to a driver, or unbinding (in disconnect())
109 * @is_active: flag set when the interface is bound and not suspended.
110 * @sysfs_files_created: sysfs attributes exist
111 * @ep_devs_created: endpoint child pseudo-devices exist
112 * @unregistering: flag set when the interface is being unregistered
113 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup
114 * capability during autosuspend.
115 * @needs_altsetting0: flag set when a set-interface request for altsetting 0
116 * has been deferred.
117 * @needs_binding: flag set when the driver should be re-probed or unbound
118 * following a reset or suspend operation it doesn't support.
119 * @dev: driver model's view of this device
120 * @usb_dev: if an interface is bound to the USB major, this will point
121 * to the sysfs representation for that device.
122 * @pm_usage_cnt: PM usage counter for this interface; autosuspend is not
123 * allowed unless the counter is 0.
124 * @reset_ws: Used for scheduling resets from atomic context.
125 * @reset_running: set to 1 if the interface is currently running a
126 * queued reset so that usb_cancel_queued_reset() doesn't try to
127 * remove from the workqueue when running inside the worker
128 * thread. See __usb_queue_reset_device().
130 * USB device drivers attach to interfaces on a physical device. Each
131 * interface encapsulates a single high level function, such as feeding
132 * an audio stream to a speaker or reporting a change in a volume control.
133 * Many USB devices only have one interface. The protocol used to talk to
134 * an interface's endpoints can be defined in a usb "class" specification,
135 * or by a product's vendor. The (default) control endpoint is part of
136 * every interface, but is never listed among the interface's descriptors.
138 * The driver that is bound to the interface can use standard driver model
139 * calls such as dev_get_drvdata() on the dev member of this structure.
141 * Each interface may have alternate settings. The initial configuration
142 * of a device sets altsetting 0, but the device driver can change
143 * that setting using usb_set_interface(). Alternate settings are often
144 * used to control the use of periodic endpoints, such as by having
145 * different endpoints use different amounts of reserved USB bandwidth.
146 * All standards-conformant USB devices that use isochronous endpoints
147 * will use them in non-default settings.
149 * The USB specification says that alternate setting numbers must run from
150 * 0 to one less than the total number of alternate settings. But some
151 * devices manage to mess this up, and the structures aren't necessarily
152 * stored in numerical order anyhow. Use usb_altnum_to_altsetting() to
153 * look up an alternate setting in the altsetting array based on its number.
155 struct usb_interface {
156 /* array of alternate settings for this interface,
157 * stored in no particular order */
158 struct usb_host_interface *altsetting;
160 struct usb_host_interface *cur_altsetting; /* the currently
161 * active alternate setting */
162 unsigned num_altsetting; /* number of alternate settings */
164 /* If there is an interface association descriptor then it will list
165 * the associated interfaces */
166 struct usb_interface_assoc_descriptor *intf_assoc;
168 int minor; /* minor number this interface is
169 * bound to */
170 enum usb_interface_condition condition; /* state of binding */
171 unsigned is_active:1; /* the interface is not suspended */
172 unsigned sysfs_files_created:1; /* the sysfs attributes exist */
173 unsigned ep_devs_created:1; /* endpoint "devices" exist */
174 unsigned unregistering:1; /* unregistration is in progress */
175 unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */
176 unsigned needs_altsetting0:1; /* switch to altsetting 0 is pending */
177 unsigned needs_binding:1; /* needs delayed unbind/rebind */
178 unsigned reset_running:1;
180 struct device dev; /* interface specific device info */
181 struct device *usb_dev;
182 int pm_usage_cnt; /* usage counter for autosuspend */
183 struct work_struct reset_ws; /* for resets in atomic context */
185 #define to_usb_interface(d) container_of(d, struct usb_interface, dev)
186 #define interface_to_usbdev(intf) \
187 container_of(intf->dev.parent, struct usb_device, dev)
189 static inline void *usb_get_intfdata(struct usb_interface *intf)
191 return dev_get_drvdata(&intf->dev);
194 static inline void usb_set_intfdata(struct usb_interface *intf, void *data)
196 dev_set_drvdata(&intf->dev, data);
199 struct usb_interface *usb_get_intf(struct usb_interface *intf);
200 void usb_put_intf(struct usb_interface *intf);
202 /* this maximum is arbitrary */
203 #define USB_MAXINTERFACES 32
204 #define USB_MAXIADS USB_MAXINTERFACES/2
207 * struct usb_interface_cache - long-term representation of a device interface
208 * @num_altsetting: number of altsettings defined.
209 * @ref: reference counter.
210 * @altsetting: variable-length array of interface structures, one for
211 * each alternate setting that may be selected. Each one includes a
212 * set of endpoint configurations. They will be in no particular order.
214 * These structures persist for the lifetime of a usb_device, unlike
215 * struct usb_interface (which persists only as long as its configuration
216 * is installed). The altsetting arrays can be accessed through these
217 * structures at any time, permitting comparison of configurations and
218 * providing support for the /proc/bus/usb/devices pseudo-file.
220 struct usb_interface_cache {
221 unsigned num_altsetting; /* number of alternate settings */
222 struct kref ref; /* reference counter */
224 /* variable-length array of alternate settings for this interface,
225 * stored in no particular order */
226 struct usb_host_interface altsetting[0];
228 #define ref_to_usb_interface_cache(r) \
229 container_of(r, struct usb_interface_cache, ref)
230 #define altsetting_to_usb_interface_cache(a) \
231 container_of(a, struct usb_interface_cache, altsetting[0])
234 * struct usb_host_config - representation of a device's configuration
235 * @desc: the device's configuration descriptor.
236 * @string: pointer to the cached version of the iConfiguration string, if
237 * present for this configuration.
238 * @intf_assoc: list of any interface association descriptors in this config
239 * @interface: array of pointers to usb_interface structures, one for each
240 * interface in the configuration. The number of interfaces is stored
241 * in desc.bNumInterfaces. These pointers are valid only while the
242 * the configuration is active.
243 * @intf_cache: array of pointers to usb_interface_cache structures, one
244 * for each interface in the configuration. These structures exist
245 * for the entire life of the device.
246 * @extra: pointer to buffer containing all extra descriptors associated
247 * with this configuration (those preceding the first interface
248 * descriptor).
249 * @extralen: length of the extra descriptors buffer.
251 * USB devices may have multiple configurations, but only one can be active
252 * at any time. Each encapsulates a different operational environment;
253 * for example, a dual-speed device would have separate configurations for
254 * full-speed and high-speed operation. The number of configurations
255 * available is stored in the device descriptor as bNumConfigurations.
257 * A configuration can contain multiple interfaces. Each corresponds to
258 * a different function of the USB device, and all are available whenever
259 * the configuration is active. The USB standard says that interfaces
260 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
261 * of devices get this wrong. In addition, the interface array is not
262 * guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to
263 * look up an interface entry based on its number.
265 * Device drivers should not attempt to activate configurations. The choice
266 * of which configuration to install is a policy decision based on such
267 * considerations as available power, functionality provided, and the user's
268 * desires (expressed through userspace tools). However, drivers can call
269 * usb_reset_configuration() to reinitialize the current configuration and
270 * all its interfaces.
272 struct usb_host_config {
273 struct usb_config_descriptor desc;
275 char *string; /* iConfiguration string, if present */
277 /* List of any Interface Association Descriptors in this
278 * configuration. */
279 struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS];
281 /* the interfaces associated with this configuration,
282 * stored in no particular order */
283 struct usb_interface *interface[USB_MAXINTERFACES];
285 /* Interface information available even when this is not the
286 * active configuration */
287 struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
289 unsigned char *extra; /* Extra descriptors */
290 int extralen;
293 int __usb_get_extra_descriptor(char *buffer, unsigned size,
294 unsigned char type, void **ptr);
295 #define usb_get_extra_descriptor(ifpoint, type, ptr) \
296 __usb_get_extra_descriptor((ifpoint)->extra, \
297 (ifpoint)->extralen, \
298 type, (void **)ptr)
300 /* ----------------------------------------------------------------------- */
302 /* USB device number allocation bitmap */
303 struct usb_devmap {
304 unsigned long devicemap[128 / (8*sizeof(unsigned long))];
308 * Allocated per bus (tree of devices) we have:
310 struct usb_bus {
311 struct device *controller; /* host/master side hardware */
312 int busnum; /* Bus number (in order of reg) */
313 const char *bus_name; /* stable id (PCI slot_name etc) */
314 u8 uses_dma; /* Does the host controller use DMA? */
315 u8 otg_port; /* 0, or number of OTG/HNP port */
316 unsigned is_b_host:1; /* true during some HNP roleswitches */
317 unsigned b_hnp_enable:1; /* OTG: did A-Host enable HNP? */
319 int devnum_next; /* Next open device number in
320 * round-robin allocation */
322 struct usb_devmap devmap; /* device address allocation map */
323 struct usb_device *root_hub; /* Root hub */
324 struct list_head bus_list; /* list of busses */
326 int bandwidth_allocated; /* on this bus: how much of the time
327 * reserved for periodic (intr/iso)
328 * requests is used, on average?
329 * Units: microseconds/frame.
330 * Limits: Full/low speed reserve 90%,
331 * while high speed reserves 80%.
333 int bandwidth_int_reqs; /* number of Interrupt requests */
334 int bandwidth_isoc_reqs; /* number of Isoc. requests */
336 #ifdef CONFIG_USB_DEVICEFS
337 struct dentry *usbfs_dentry; /* usbfs dentry entry for the bus */
338 #endif
339 struct device *dev; /* device for this bus */
341 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
342 struct mon_bus *mon_bus; /* non-null when associated */
343 int monitored; /* non-zero when monitored */
344 #endif
347 /* ----------------------------------------------------------------------- */
349 /* This is arbitrary.
350 * From USB 2.0 spec Table 11-13, offset 7, a hub can
351 * have up to 255 ports. The most yet reported is 10.
353 * Current Wireless USB host hardware (Intel i1480 for example) allows
354 * up to 22 devices to connect. Upcoming hardware might raise that
355 * limit. Because the arrays need to add a bit for hub status data, we
356 * do 31, so plus one evens out to four bytes.
358 #define USB_MAXCHILDREN (31)
360 struct usb_tt;
363 * struct usb_device - kernel's representation of a USB device
364 * @devnum: device number; address on a USB bus
365 * @devpath: device ID string for use in messages (e.g., /port/...)
366 * @state: device state: configured, not attached, etc.
367 * @speed: device speed: high/full/low (or error)
368 * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub
369 * @ttport: device port on that tt hub
370 * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints
371 * @parent: our hub, unless we're the root
372 * @bus: bus we're part of
373 * @ep0: endpoint 0 data (default control pipe)
374 * @dev: generic device interface
375 * @descriptor: USB device descriptor
376 * @config: all of the device's configs
377 * @actconfig: the active configuration
378 * @ep_in: array of IN endpoints
379 * @ep_out: array of OUT endpoints
380 * @rawdescriptors: raw descriptors for each config
381 * @bus_mA: Current available from the bus
382 * @portnum: parent port number (origin 1)
383 * @level: number of USB hub ancestors
384 * @can_submit: URBs may be submitted
385 * @discon_suspended: disconnected while suspended
386 * @persist_enabled: USB_PERSIST enabled for this device
387 * @have_langid: whether string_langid is valid
388 * @authorized: policy has said we can use it;
389 * (user space) policy determines if we authorize this device to be
390 * used or not. By default, wired USB devices are authorized.
391 * WUSB devices are not, until we authorize them from user space.
392 * FIXME -- complete doc
393 * @authenticated: Crypto authentication passed
394 * @wusb: device is Wireless USB
395 * @string_langid: language ID for strings
396 * @product: iProduct string, if present (static)
397 * @manufacturer: iManufacturer string, if present (static)
398 * @serial: iSerialNumber string, if present (static)
399 * @filelist: usbfs files that are open to this device
400 * @usb_classdev: USB class device that was created for usbfs device
401 * access from userspace
402 * @usbfs_dentry: usbfs dentry entry for the device
403 * @maxchild: number of ports if hub
404 * @children: child devices - USB devices that are attached to this hub
405 * @pm_usage_cnt: usage counter for autosuspend
406 * @quirks: quirks of the whole device
407 * @urbnum: number of URBs submitted for the whole device
408 * @active_duration: total time device is not suspended
409 * @autosuspend: for delayed autosuspends
410 * @autoresume: for autoresumes requested while in_interrupt
411 * @pm_mutex: protects PM operations
412 * @last_busy: time of last use
413 * @autosuspend_delay: in jiffies
414 * @connect_time: time device was first connected
415 * @auto_pm: autosuspend/resume in progress
416 * @do_remote_wakeup: remote wakeup should be enabled
417 * @reset_resume: needs reset instead of resume
418 * @autosuspend_disabled: autosuspend disabled by the user
419 * @autoresume_disabled: autoresume disabled by the user
420 * @skip_sys_resume: skip the next system resume
422 * Notes:
423 * Usbcore drivers should not set usbdev->state directly. Instead use
424 * usb_set_device_state().
426 struct usb_device {
427 int devnum;
428 char devpath [16];
429 enum usb_device_state state;
430 enum usb_device_speed speed;
432 struct usb_tt *tt;
433 int ttport;
435 unsigned int toggle[2];
437 struct usb_device *parent;
438 struct usb_bus *bus;
439 struct usb_host_endpoint ep0;
441 struct device dev;
443 struct usb_device_descriptor descriptor;
444 struct usb_host_config *config;
446 struct usb_host_config *actconfig;
447 struct usb_host_endpoint *ep_in[16];
448 struct usb_host_endpoint *ep_out[16];
450 char **rawdescriptors;
452 unsigned short bus_mA;
453 u8 portnum;
454 u8 level;
456 unsigned can_submit:1;
457 unsigned discon_suspended:1;
458 unsigned persist_enabled:1;
459 unsigned have_langid:1;
460 unsigned authorized:1;
461 unsigned authenticated:1;
462 unsigned wusb:1;
463 int string_langid;
465 /* static strings from the device */
466 char *product;
467 char *manufacturer;
468 char *serial;
470 struct list_head filelist;
471 #ifdef CONFIG_USB_DEVICE_CLASS
472 struct device *usb_classdev;
473 #endif
474 #ifdef CONFIG_USB_DEVICEFS
475 struct dentry *usbfs_dentry;
476 #endif
478 int maxchild;
479 struct usb_device *children[USB_MAXCHILDREN];
481 int pm_usage_cnt;
482 u32 quirks;
483 atomic_t urbnum;
485 unsigned long active_duration;
487 #ifdef CONFIG_PM
488 struct delayed_work autosuspend;
489 struct work_struct autoresume;
490 struct mutex pm_mutex;
492 unsigned long last_busy;
493 int autosuspend_delay;
494 unsigned long connect_time;
496 unsigned auto_pm:1;
497 unsigned do_remote_wakeup:1;
498 unsigned reset_resume:1;
499 unsigned autosuspend_disabled:1;
500 unsigned autoresume_disabled:1;
501 unsigned skip_sys_resume:1;
502 #endif
503 struct wusb_dev *wusb_dev;
505 #define to_usb_device(d) container_of(d, struct usb_device, dev)
507 extern struct usb_device *usb_get_dev(struct usb_device *dev);
508 extern void usb_put_dev(struct usb_device *dev);
510 /* USB device locking */
511 #define usb_lock_device(udev) down(&(udev)->dev.sem)
512 #define usb_unlock_device(udev) up(&(udev)->dev.sem)
513 #define usb_trylock_device(udev) down_trylock(&(udev)->dev.sem)
514 extern int usb_lock_device_for_reset(struct usb_device *udev,
515 const struct usb_interface *iface);
517 /* USB port reset for device reinitialization */
518 extern int usb_reset_device(struct usb_device *dev);
519 extern void usb_queue_reset_device(struct usb_interface *dev);
521 extern struct usb_device *usb_find_device(u16 vendor_id, u16 product_id);
523 /* USB autosuspend and autoresume */
524 #ifdef CONFIG_USB_SUSPEND
525 extern int usb_autopm_set_interface(struct usb_interface *intf);
526 extern int usb_autopm_get_interface(struct usb_interface *intf);
527 extern void usb_autopm_put_interface(struct usb_interface *intf);
528 extern int usb_autopm_get_interface_async(struct usb_interface *intf);
529 extern void usb_autopm_put_interface_async(struct usb_interface *intf);
531 static inline void usb_autopm_enable(struct usb_interface *intf)
533 intf->pm_usage_cnt = 0;
534 usb_autopm_set_interface(intf);
537 static inline void usb_autopm_disable(struct usb_interface *intf)
539 intf->pm_usage_cnt = 1;
540 usb_autopm_set_interface(intf);
543 static inline void usb_mark_last_busy(struct usb_device *udev)
545 udev->last_busy = jiffies;
548 #else
550 static inline int usb_autopm_set_interface(struct usb_interface *intf)
551 { return 0; }
553 static inline int usb_autopm_get_interface(struct usb_interface *intf)
554 { return 0; }
556 static inline int usb_autopm_get_interface_async(struct usb_interface *intf)
557 { return 0; }
559 static inline void usb_autopm_put_interface(struct usb_interface *intf)
561 static inline void usb_autopm_put_interface_async(struct usb_interface *intf)
563 static inline void usb_autopm_enable(struct usb_interface *intf)
565 static inline void usb_autopm_disable(struct usb_interface *intf)
567 static inline void usb_mark_last_busy(struct usb_device *udev)
569 #endif
571 /*-------------------------------------------------------------------------*/
573 /* for drivers using iso endpoints */
574 extern int usb_get_current_frame_number(struct usb_device *usb_dev);
576 /* used these for multi-interface device registration */
577 extern int usb_driver_claim_interface(struct usb_driver *driver,
578 struct usb_interface *iface, void *priv);
581 * usb_interface_claimed - returns true iff an interface is claimed
582 * @iface: the interface being checked
584 * Returns true (nonzero) iff the interface is claimed, else false (zero).
585 * Callers must own the driver model's usb bus readlock. So driver
586 * probe() entries don't need extra locking, but other call contexts
587 * may need to explicitly claim that lock.
590 static inline int usb_interface_claimed(struct usb_interface *iface)
592 return (iface->dev.driver != NULL);
595 extern void usb_driver_release_interface(struct usb_driver *driver,
596 struct usb_interface *iface);
597 const struct usb_device_id *usb_match_id(struct usb_interface *interface,
598 const struct usb_device_id *id);
599 extern int usb_match_one_id(struct usb_interface *interface,
600 const struct usb_device_id *id);
602 extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
603 int minor);
604 extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
605 unsigned ifnum);
606 extern struct usb_host_interface *usb_altnum_to_altsetting(
607 const struct usb_interface *intf, unsigned int altnum);
611 * usb_make_path - returns stable device path in the usb tree
612 * @dev: the device whose path is being constructed
613 * @buf: where to put the string
614 * @size: how big is "buf"?
616 * Returns length of the string (> 0) or negative if size was too small.
618 * This identifier is intended to be "stable", reflecting physical paths in
619 * hardware such as physical bus addresses for host controllers or ports on
620 * USB hubs. That makes it stay the same until systems are physically
621 * reconfigured, by re-cabling a tree of USB devices or by moving USB host
622 * controllers. Adding and removing devices, including virtual root hubs
623 * in host controller driver modules, does not change these path identifers;
624 * neither does rebooting or re-enumerating. These are more useful identifiers
625 * than changeable ("unstable") ones like bus numbers or device addresses.
627 * With a partial exception for devices connected to USB 2.0 root hubs, these
628 * identifiers are also predictable. So long as the device tree isn't changed,
629 * plugging any USB device into a given hub port always gives it the same path.
630 * Because of the use of "companion" controllers, devices connected to ports on
631 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
632 * high speed, and a different one if they are full or low speed.
634 static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size)
636 int actual;
637 actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name,
638 dev->devpath);
639 return (actual >= (int)size) ? -1 : actual;
642 /*-------------------------------------------------------------------------*/
645 * usb_endpoint_num - get the endpoint's number
646 * @epd: endpoint to be checked
648 * Returns @epd's number: 0 to 15.
650 static inline int usb_endpoint_num(const struct usb_endpoint_descriptor *epd)
652 return epd->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
656 * usb_endpoint_type - get the endpoint's transfer type
657 * @epd: endpoint to be checked
659 * Returns one of USB_ENDPOINT_XFER_{CONTROL, ISOC, BULK, INT} according
660 * to @epd's transfer type.
662 static inline int usb_endpoint_type(const struct usb_endpoint_descriptor *epd)
664 return epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK;
668 * usb_endpoint_dir_in - check if the endpoint has IN direction
669 * @epd: endpoint to be checked
671 * Returns true if the endpoint is of type IN, otherwise it returns false.
673 static inline int usb_endpoint_dir_in(const struct usb_endpoint_descriptor *epd)
675 return ((epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) == USB_DIR_IN);
679 * usb_endpoint_dir_out - check if the endpoint has OUT direction
680 * @epd: endpoint to be checked
682 * Returns true if the endpoint is of type OUT, otherwise it returns false.
684 static inline int usb_endpoint_dir_out(
685 const struct usb_endpoint_descriptor *epd)
687 return ((epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) == USB_DIR_OUT);
691 * usb_endpoint_xfer_bulk - check if the endpoint has bulk transfer type
692 * @epd: endpoint to be checked
694 * Returns true if the endpoint is of type bulk, otherwise it returns false.
696 static inline int usb_endpoint_xfer_bulk(
697 const struct usb_endpoint_descriptor *epd)
699 return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
700 USB_ENDPOINT_XFER_BULK);
704 * usb_endpoint_xfer_control - check if the endpoint has control transfer type
705 * @epd: endpoint to be checked
707 * Returns true if the endpoint is of type control, otherwise it returns false.
709 static inline int usb_endpoint_xfer_control(
710 const struct usb_endpoint_descriptor *epd)
712 return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
713 USB_ENDPOINT_XFER_CONTROL);
717 * usb_endpoint_xfer_int - check if the endpoint has interrupt transfer type
718 * @epd: endpoint to be checked
720 * Returns true if the endpoint is of type interrupt, otherwise it returns
721 * false.
723 static inline int usb_endpoint_xfer_int(
724 const struct usb_endpoint_descriptor *epd)
726 return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
727 USB_ENDPOINT_XFER_INT);
731 * usb_endpoint_xfer_isoc - check if the endpoint has isochronous transfer type
732 * @epd: endpoint to be checked
734 * Returns true if the endpoint is of type isochronous, otherwise it returns
735 * false.
737 static inline int usb_endpoint_xfer_isoc(
738 const struct usb_endpoint_descriptor *epd)
740 return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
741 USB_ENDPOINT_XFER_ISOC);
745 * usb_endpoint_is_bulk_in - check if the endpoint is bulk IN
746 * @epd: endpoint to be checked
748 * Returns true if the endpoint has bulk transfer type and IN direction,
749 * otherwise it returns false.
751 static inline int usb_endpoint_is_bulk_in(
752 const struct usb_endpoint_descriptor *epd)
754 return (usb_endpoint_xfer_bulk(epd) && usb_endpoint_dir_in(epd));
758 * usb_endpoint_is_bulk_out - check if the endpoint is bulk OUT
759 * @epd: endpoint to be checked
761 * Returns true if the endpoint has bulk transfer type and OUT direction,
762 * otherwise it returns false.
764 static inline int usb_endpoint_is_bulk_out(
765 const struct usb_endpoint_descriptor *epd)
767 return (usb_endpoint_xfer_bulk(epd) && usb_endpoint_dir_out(epd));
771 * usb_endpoint_is_int_in - check if the endpoint is interrupt IN
772 * @epd: endpoint to be checked
774 * Returns true if the endpoint has interrupt transfer type and IN direction,
775 * otherwise it returns false.
777 static inline int usb_endpoint_is_int_in(
778 const struct usb_endpoint_descriptor *epd)
780 return (usb_endpoint_xfer_int(epd) && usb_endpoint_dir_in(epd));
784 * usb_endpoint_is_int_out - check if the endpoint is interrupt OUT
785 * @epd: endpoint to be checked
787 * Returns true if the endpoint has interrupt transfer type and OUT direction,
788 * otherwise it returns false.
790 static inline int usb_endpoint_is_int_out(
791 const struct usb_endpoint_descriptor *epd)
793 return (usb_endpoint_xfer_int(epd) && usb_endpoint_dir_out(epd));
797 * usb_endpoint_is_isoc_in - check if the endpoint is isochronous IN
798 * @epd: endpoint to be checked
800 * Returns true if the endpoint has isochronous transfer type and IN direction,
801 * otherwise it returns false.
803 static inline int usb_endpoint_is_isoc_in(
804 const struct usb_endpoint_descriptor *epd)
806 return (usb_endpoint_xfer_isoc(epd) && usb_endpoint_dir_in(epd));
810 * usb_endpoint_is_isoc_out - check if the endpoint is isochronous OUT
811 * @epd: endpoint to be checked
813 * Returns true if the endpoint has isochronous transfer type and OUT direction,
814 * otherwise it returns false.
816 static inline int usb_endpoint_is_isoc_out(
817 const struct usb_endpoint_descriptor *epd)
819 return (usb_endpoint_xfer_isoc(epd) && usb_endpoint_dir_out(epd));
822 /*-------------------------------------------------------------------------*/
824 #define USB_DEVICE_ID_MATCH_DEVICE \
825 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
826 #define USB_DEVICE_ID_MATCH_DEV_RANGE \
827 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
828 #define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
829 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
830 #define USB_DEVICE_ID_MATCH_DEV_INFO \
831 (USB_DEVICE_ID_MATCH_DEV_CLASS | \
832 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
833 USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
834 #define USB_DEVICE_ID_MATCH_INT_INFO \
835 (USB_DEVICE_ID_MATCH_INT_CLASS | \
836 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
837 USB_DEVICE_ID_MATCH_INT_PROTOCOL)
840 * USB_DEVICE - macro used to describe a specific usb device
841 * @vend: the 16 bit USB Vendor ID
842 * @prod: the 16 bit USB Product ID
844 * This macro is used to create a struct usb_device_id that matches a
845 * specific device.
847 #define USB_DEVICE(vend,prod) \
848 .match_flags = USB_DEVICE_ID_MATCH_DEVICE, \
849 .idVendor = (vend), \
850 .idProduct = (prod)
852 * USB_DEVICE_VER - describe a specific usb device with a version range
853 * @vend: the 16 bit USB Vendor ID
854 * @prod: the 16 bit USB Product ID
855 * @lo: the bcdDevice_lo value
856 * @hi: the bcdDevice_hi value
858 * This macro is used to create a struct usb_device_id that matches a
859 * specific device, with a version range.
861 #define USB_DEVICE_VER(vend, prod, lo, hi) \
862 .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
863 .idVendor = (vend), \
864 .idProduct = (prod), \
865 .bcdDevice_lo = (lo), \
866 .bcdDevice_hi = (hi)
869 * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol
870 * @vend: the 16 bit USB Vendor ID
871 * @prod: the 16 bit USB Product ID
872 * @pr: bInterfaceProtocol value
874 * This macro is used to create a struct usb_device_id that matches a
875 * specific interface protocol of devices.
877 #define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \
878 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
879 USB_DEVICE_ID_MATCH_INT_PROTOCOL, \
880 .idVendor = (vend), \
881 .idProduct = (prod), \
882 .bInterfaceProtocol = (pr)
885 * USB_DEVICE_INFO - macro used to describe a class of usb devices
886 * @cl: bDeviceClass value
887 * @sc: bDeviceSubClass value
888 * @pr: bDeviceProtocol value
890 * This macro is used to create a struct usb_device_id that matches a
891 * specific class of devices.
893 #define USB_DEVICE_INFO(cl, sc, pr) \
894 .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \
895 .bDeviceClass = (cl), \
896 .bDeviceSubClass = (sc), \
897 .bDeviceProtocol = (pr)
900 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
901 * @cl: bInterfaceClass value
902 * @sc: bInterfaceSubClass value
903 * @pr: bInterfaceProtocol value
905 * This macro is used to create a struct usb_device_id that matches a
906 * specific class of interfaces.
908 #define USB_INTERFACE_INFO(cl, sc, pr) \
909 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \
910 .bInterfaceClass = (cl), \
911 .bInterfaceSubClass = (sc), \
912 .bInterfaceProtocol = (pr)
915 * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces
916 * @vend: the 16 bit USB Vendor ID
917 * @prod: the 16 bit USB Product ID
918 * @cl: bInterfaceClass value
919 * @sc: bInterfaceSubClass value
920 * @pr: bInterfaceProtocol value
922 * This macro is used to create a struct usb_device_id that matches a
923 * specific device with a specific class of interfaces.
925 * This is especially useful when explicitly matching devices that have
926 * vendor specific bDeviceClass values, but standards-compliant interfaces.
928 #define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \
929 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
930 | USB_DEVICE_ID_MATCH_DEVICE, \
931 .idVendor = (vend), \
932 .idProduct = (prod), \
933 .bInterfaceClass = (cl), \
934 .bInterfaceSubClass = (sc), \
935 .bInterfaceProtocol = (pr)
937 /* ----------------------------------------------------------------------- */
939 /* Stuff for dynamic usb ids */
940 struct usb_dynids {
941 spinlock_t lock;
942 struct list_head list;
945 struct usb_dynid {
946 struct list_head node;
947 struct usb_device_id id;
950 extern ssize_t usb_store_new_id(struct usb_dynids *dynids,
951 struct device_driver *driver,
952 const char *buf, size_t count);
955 * struct usbdrv_wrap - wrapper for driver-model structure
956 * @driver: The driver-model core driver structure.
957 * @for_devices: Non-zero for device drivers, 0 for interface drivers.
959 struct usbdrv_wrap {
960 struct device_driver driver;
961 int for_devices;
965 * struct usb_driver - identifies USB interface driver to usbcore
966 * @name: The driver name should be unique among USB drivers,
967 * and should normally be the same as the module name.
968 * @probe: Called to see if the driver is willing to manage a particular
969 * interface on a device. If it is, probe returns zero and uses
970 * usb_set_intfdata() to associate driver-specific data with the
971 * interface. It may also use usb_set_interface() to specify the
972 * appropriate altsetting. If unwilling to manage the interface,
973 * return -ENODEV, if genuine IO errors occured, an appropriate
974 * negative errno value.
975 * @disconnect: Called when the interface is no longer accessible, usually
976 * because its device has been (or is being) disconnected or the
977 * driver module is being unloaded.
978 * @ioctl: Used for drivers that want to talk to userspace through
979 * the "usbfs" filesystem. This lets devices provide ways to
980 * expose information to user space regardless of where they
981 * do (or don't) show up otherwise in the filesystem.
982 * @suspend: Called when the device is going to be suspended by the system.
983 * @resume: Called when the device is being resumed by the system.
984 * @reset_resume: Called when the suspended device has been reset instead
985 * of being resumed.
986 * @pre_reset: Called by usb_reset_device() when the device
987 * is about to be reset.
988 * @post_reset: Called by usb_reset_device() after the device
989 * has been reset
990 * @id_table: USB drivers use ID table to support hotplugging.
991 * Export this with MODULE_DEVICE_TABLE(usb,...). This must be set
992 * or your driver's probe function will never get called.
993 * @dynids: used internally to hold the list of dynamically added device
994 * ids for this driver.
995 * @drvwrap: Driver-model core structure wrapper.
996 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
997 * added to this driver by preventing the sysfs file from being created.
998 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
999 * for interfaces bound to this driver.
1000 * @soft_unbind: if set to 1, the USB core will not kill URBs and disable
1001 * endpoints before calling the driver's disconnect method.
1003 * USB interface drivers must provide a name, probe() and disconnect()
1004 * methods, and an id_table. Other driver fields are optional.
1006 * The id_table is used in hotplugging. It holds a set of descriptors,
1007 * and specialized data may be associated with each entry. That table
1008 * is used by both user and kernel mode hotplugging support.
1010 * The probe() and disconnect() methods are called in a context where
1011 * they can sleep, but they should avoid abusing the privilege. Most
1012 * work to connect to a device should be done when the device is opened,
1013 * and undone at the last close. The disconnect code needs to address
1014 * concurrency issues with respect to open() and close() methods, as
1015 * well as forcing all pending I/O requests to complete (by unlinking
1016 * them as necessary, and blocking until the unlinks complete).
1018 struct usb_driver {
1019 const char *name;
1021 int (*probe) (struct usb_interface *intf,
1022 const struct usb_device_id *id);
1024 void (*disconnect) (struct usb_interface *intf);
1026 int (*ioctl) (struct usb_interface *intf, unsigned int code,
1027 void *buf);
1029 int (*suspend) (struct usb_interface *intf, pm_message_t message);
1030 int (*resume) (struct usb_interface *intf);
1031 int (*reset_resume)(struct usb_interface *intf);
1033 int (*pre_reset)(struct usb_interface *intf);
1034 int (*post_reset)(struct usb_interface *intf);
1036 const struct usb_device_id *id_table;
1038 struct usb_dynids dynids;
1039 struct usbdrv_wrap drvwrap;
1040 unsigned int no_dynamic_id:1;
1041 unsigned int supports_autosuspend:1;
1042 unsigned int soft_unbind:1;
1044 #define to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver)
1047 * struct usb_device_driver - identifies USB device driver to usbcore
1048 * @name: The driver name should be unique among USB drivers,
1049 * and should normally be the same as the module name.
1050 * @probe: Called to see if the driver is willing to manage a particular
1051 * device. If it is, probe returns zero and uses dev_set_drvdata()
1052 * to associate driver-specific data with the device. If unwilling
1053 * to manage the device, return a negative errno value.
1054 * @disconnect: Called when the device is no longer accessible, usually
1055 * because it has been (or is being) disconnected or the driver's
1056 * module is being unloaded.
1057 * @suspend: Called when the device is going to be suspended by the system.
1058 * @resume: Called when the device is being resumed by the system.
1059 * @drvwrap: Driver-model core structure wrapper.
1060 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1061 * for devices bound to this driver.
1063 * USB drivers must provide all the fields listed above except drvwrap.
1065 struct usb_device_driver {
1066 const char *name;
1068 int (*probe) (struct usb_device *udev);
1069 void (*disconnect) (struct usb_device *udev);
1071 int (*suspend) (struct usb_device *udev, pm_message_t message);
1072 int (*resume) (struct usb_device *udev, pm_message_t message);
1073 struct usbdrv_wrap drvwrap;
1074 unsigned int supports_autosuspend:1;
1076 #define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \
1077 drvwrap.driver)
1079 extern struct bus_type usb_bus_type;
1082 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
1083 * @name: the usb class device name for this driver. Will show up in sysfs.
1084 * @fops: pointer to the struct file_operations of this driver.
1085 * @minor_base: the start of the minor range for this driver.
1087 * This structure is used for the usb_register_dev() and
1088 * usb_unregister_dev() functions, to consolidate a number of the
1089 * parameters used for them.
1091 struct usb_class_driver {
1092 char *name;
1093 const struct file_operations *fops;
1094 int minor_base;
1098 * use these in module_init()/module_exit()
1099 * and don't forget MODULE_DEVICE_TABLE(usb, ...)
1101 extern int usb_register_driver(struct usb_driver *, struct module *,
1102 const char *);
1103 static inline int usb_register(struct usb_driver *driver)
1105 return usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME);
1107 extern void usb_deregister(struct usb_driver *);
1109 extern int usb_register_device_driver(struct usb_device_driver *,
1110 struct module *);
1111 extern void usb_deregister_device_driver(struct usb_device_driver *);
1113 extern int usb_register_dev(struct usb_interface *intf,
1114 struct usb_class_driver *class_driver);
1115 extern void usb_deregister_dev(struct usb_interface *intf,
1116 struct usb_class_driver *class_driver);
1118 extern int usb_disabled(void);
1120 /* ----------------------------------------------------------------------- */
1123 * URB support, for asynchronous request completions
1127 * urb->transfer_flags:
1129 * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb().
1131 #define URB_SHORT_NOT_OK 0x0001 /* report short reads as errors */
1132 #define URB_ISO_ASAP 0x0002 /* iso-only, urb->start_frame
1133 * ignored */
1134 #define URB_NO_TRANSFER_DMA_MAP 0x0004 /* urb->transfer_dma valid on submit */
1135 #define URB_NO_SETUP_DMA_MAP 0x0008 /* urb->setup_dma valid on submit */
1136 #define URB_NO_FSBR 0x0020 /* UHCI-specific */
1137 #define URB_ZERO_PACKET 0x0040 /* Finish bulk OUT with short packet */
1138 #define URB_NO_INTERRUPT 0x0080 /* HINT: no non-error interrupt
1139 * needed */
1140 #define URB_FREE_BUFFER 0x0100 /* Free transfer buffer with the URB */
1142 #define URB_DIR_IN 0x0200 /* Transfer from device to host */
1143 #define URB_DIR_OUT 0
1144 #define URB_DIR_MASK URB_DIR_IN
1146 struct usb_iso_packet_descriptor {
1147 unsigned int offset;
1148 unsigned int length; /* expected length */
1149 unsigned int actual_length;
1150 int status;
1153 struct urb;
1155 struct usb_anchor {
1156 struct list_head urb_list;
1157 wait_queue_head_t wait;
1158 spinlock_t lock;
1159 unsigned int poisoned:1;
1162 static inline void init_usb_anchor(struct usb_anchor *anchor)
1164 INIT_LIST_HEAD(&anchor->urb_list);
1165 init_waitqueue_head(&anchor->wait);
1166 spin_lock_init(&anchor->lock);
1169 typedef void (*usb_complete_t)(struct urb *);
1172 * struct urb - USB Request Block
1173 * @urb_list: For use by current owner of the URB.
1174 * @anchor_list: membership in the list of an anchor
1175 * @anchor: to anchor URBs to a common mooring
1176 * @ep: Points to the endpoint's data structure. Will eventually
1177 * replace @pipe.
1178 * @pipe: Holds endpoint number, direction, type, and more.
1179 * Create these values with the eight macros available;
1180 * usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
1181 * (control), "bulk", "int" (interrupt), or "iso" (isochronous).
1182 * For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint
1183 * numbers range from zero to fifteen. Note that "in" endpoint two
1184 * is a different endpoint (and pipe) from "out" endpoint two.
1185 * The current configuration controls the existence, type, and
1186 * maximum packet size of any given endpoint.
1187 * @dev: Identifies the USB device to perform the request.
1188 * @status: This is read in non-iso completion functions to get the
1189 * status of the particular request. ISO requests only use it
1190 * to tell whether the URB was unlinked; detailed status for
1191 * each frame is in the fields of the iso_frame-desc.
1192 * @transfer_flags: A variety of flags may be used to affect how URB
1193 * submission, unlinking, or operation are handled. Different
1194 * kinds of URB can use different flags.
1195 * @transfer_buffer: This identifies the buffer to (or from) which
1196 * the I/O request will be performed (unless URB_NO_TRANSFER_DMA_MAP
1197 * is set). This buffer must be suitable for DMA; allocate it with
1198 * kmalloc() or equivalent. For transfers to "in" endpoints, contents
1199 * of this buffer will be modified. This buffer is used for the data
1200 * stage of control transfers.
1201 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
1202 * the device driver is saying that it provided this DMA address,
1203 * which the host controller driver should use in preference to the
1204 * transfer_buffer.
1205 * @transfer_buffer_length: How big is transfer_buffer. The transfer may
1206 * be broken up into chunks according to the current maximum packet
1207 * size for the endpoint, which is a function of the configuration
1208 * and is encoded in the pipe. When the length is zero, neither
1209 * transfer_buffer nor transfer_dma is used.
1210 * @actual_length: This is read in non-iso completion functions, and
1211 * it tells how many bytes (out of transfer_buffer_length) were
1212 * transferred. It will normally be the same as requested, unless
1213 * either an error was reported or a short read was performed.
1214 * The URB_SHORT_NOT_OK transfer flag may be used to make such
1215 * short reads be reported as errors.
1216 * @setup_packet: Only used for control transfers, this points to eight bytes
1217 * of setup data. Control transfers always start by sending this data
1218 * to the device. Then transfer_buffer is read or written, if needed.
1219 * @setup_dma: For control transfers with URB_NO_SETUP_DMA_MAP set, the
1220 * device driver has provided this DMA address for the setup packet.
1221 * The host controller driver should use this in preference to
1222 * setup_packet.
1223 * @start_frame: Returns the initial frame for isochronous transfers.
1224 * @number_of_packets: Lists the number of ISO transfer buffers.
1225 * @interval: Specifies the polling interval for interrupt or isochronous
1226 * transfers. The units are frames (milliseconds) for for full and low
1227 * speed devices, and microframes (1/8 millisecond) for highspeed ones.
1228 * @error_count: Returns the number of ISO transfers that reported errors.
1229 * @context: For use in completion functions. This normally points to
1230 * request-specific driver context.
1231 * @complete: Completion handler. This URB is passed as the parameter to the
1232 * completion function. The completion function may then do what
1233 * it likes with the URB, including resubmitting or freeing it.
1234 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
1235 * collect the transfer status for each buffer.
1237 * This structure identifies USB transfer requests. URBs must be allocated by
1238 * calling usb_alloc_urb() and freed with a call to usb_free_urb().
1239 * Initialization may be done using various usb_fill_*_urb() functions. URBs
1240 * are submitted using usb_submit_urb(), and pending requests may be canceled
1241 * using usb_unlink_urb() or usb_kill_urb().
1243 * Data Transfer Buffers:
1245 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
1246 * taken from the general page pool. That is provided by transfer_buffer
1247 * (control requests also use setup_packet), and host controller drivers
1248 * perform a dma mapping (and unmapping) for each buffer transferred. Those
1249 * mapping operations can be expensive on some platforms (perhaps using a dma
1250 * bounce buffer or talking to an IOMMU),
1251 * although they're cheap on commodity x86 and ppc hardware.
1253 * Alternatively, drivers may pass the URB_NO_xxx_DMA_MAP transfer flags,
1254 * which tell the host controller driver that no such mapping is needed since
1255 * the device driver is DMA-aware. For example, a device driver might
1256 * allocate a DMA buffer with usb_buffer_alloc() or call usb_buffer_map().
1257 * When these transfer flags are provided, host controller drivers will
1258 * attempt to use the dma addresses found in the transfer_dma and/or
1259 * setup_dma fields rather than determining a dma address themselves. (Note
1260 * that transfer_buffer and setup_packet must still be set because not all
1261 * host controllers use DMA, nor do virtual root hubs).
1263 * Initialization:
1265 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
1266 * zero), and complete fields. All URBs must also initialize
1267 * transfer_buffer and transfer_buffer_length. They may provide the
1268 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
1269 * to be treated as errors; that flag is invalid for write requests.
1271 * Bulk URBs may
1272 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
1273 * should always terminate with a short packet, even if it means adding an
1274 * extra zero length packet.
1276 * Control URBs must provide a setup_packet. The setup_packet and
1277 * transfer_buffer may each be mapped for DMA or not, independently of
1278 * the other. The transfer_flags bits URB_NO_TRANSFER_DMA_MAP and
1279 * URB_NO_SETUP_DMA_MAP indicate which buffers have already been mapped.
1280 * URB_NO_SETUP_DMA_MAP is ignored for non-control URBs.
1282 * Interrupt URBs must provide an interval, saying how often (in milliseconds
1283 * or, for highspeed devices, 125 microsecond units)
1284 * to poll for transfers. After the URB has been submitted, the interval
1285 * field reflects how the transfer was actually scheduled.
1286 * The polling interval may be more frequent than requested.
1287 * For example, some controllers have a maximum interval of 32 milliseconds,
1288 * while others support intervals of up to 1024 milliseconds.
1289 * Isochronous URBs also have transfer intervals. (Note that for isochronous
1290 * endpoints, as well as high speed interrupt endpoints, the encoding of
1291 * the transfer interval in the endpoint descriptor is logarithmic.
1292 * Device drivers must convert that value to linear units themselves.)
1294 * Isochronous URBs normally use the URB_ISO_ASAP transfer flag, telling
1295 * the host controller to schedule the transfer as soon as bandwidth
1296 * utilization allows, and then set start_frame to reflect the actual frame
1297 * selected during submission. Otherwise drivers must specify the start_frame
1298 * and handle the case where the transfer can't begin then. However, drivers
1299 * won't know how bandwidth is currently allocated, and while they can
1300 * find the current frame using usb_get_current_frame_number () they can't
1301 * know the range for that frame number. (Ranges for frame counter values
1302 * are HC-specific, and can go from 256 to 65536 frames from "now".)
1304 * Isochronous URBs have a different data transfer model, in part because
1305 * the quality of service is only "best effort". Callers provide specially
1306 * allocated URBs, with number_of_packets worth of iso_frame_desc structures
1307 * at the end. Each such packet is an individual ISO transfer. Isochronous
1308 * URBs are normally queued, submitted by drivers to arrange that
1309 * transfers are at least double buffered, and then explicitly resubmitted
1310 * in completion handlers, so
1311 * that data (such as audio or video) streams at as constant a rate as the
1312 * host controller scheduler can support.
1314 * Completion Callbacks:
1316 * The completion callback is made in_interrupt(), and one of the first
1317 * things that a completion handler should do is check the status field.
1318 * The status field is provided for all URBs. It is used to report
1319 * unlinked URBs, and status for all non-ISO transfers. It should not
1320 * be examined before the URB is returned to the completion handler.
1322 * The context field is normally used to link URBs back to the relevant
1323 * driver or request state.
1325 * When the completion callback is invoked for non-isochronous URBs, the
1326 * actual_length field tells how many bytes were transferred. This field
1327 * is updated even when the URB terminated with an error or was unlinked.
1329 * ISO transfer status is reported in the status and actual_length fields
1330 * of the iso_frame_desc array, and the number of errors is reported in
1331 * error_count. Completion callbacks for ISO transfers will normally
1332 * (re)submit URBs to ensure a constant transfer rate.
1334 * Note that even fields marked "public" should not be touched by the driver
1335 * when the urb is owned by the hcd, that is, since the call to
1336 * usb_submit_urb() till the entry into the completion routine.
1338 struct urb {
1339 /* private: usb core and host controller only fields in the urb */
1340 struct kref kref; /* reference count of the URB */
1341 void *hcpriv; /* private data for host controller */
1342 atomic_t use_count; /* concurrent submissions counter */
1343 atomic_t reject; /* submissions will fail */
1344 int unlinked; /* unlink error code */
1346 /* public: documented fields in the urb that can be used by drivers */
1347 struct list_head urb_list; /* list head for use by the urb's
1348 * current owner */
1349 struct list_head anchor_list; /* the URB may be anchored */
1350 struct usb_anchor *anchor;
1351 struct usb_device *dev; /* (in) pointer to associated device */
1352 struct usb_host_endpoint *ep; /* (internal) pointer to endpoint */
1353 unsigned int pipe; /* (in) pipe information */
1354 int status; /* (return) non-ISO status */
1355 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/
1356 void *transfer_buffer; /* (in) associated data buffer */
1357 dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */
1358 int transfer_buffer_length; /* (in) data buffer length */
1359 int actual_length; /* (return) actual transfer length */
1360 unsigned char *setup_packet; /* (in) setup packet (control only) */
1361 dma_addr_t setup_dma; /* (in) dma addr for setup_packet */
1362 int start_frame; /* (modify) start frame (ISO) */
1363 int number_of_packets; /* (in) number of ISO packets */
1364 int interval; /* (modify) transfer interval
1365 * (INT/ISO) */
1366 int error_count; /* (return) number of ISO errors */
1367 void *context; /* (in) context for completion */
1368 usb_complete_t complete; /* (in) completion routine */
1369 struct usb_iso_packet_descriptor iso_frame_desc[0];
1370 /* (in) ISO ONLY */
1373 /* ----------------------------------------------------------------------- */
1376 * usb_fill_control_urb - initializes a control urb
1377 * @urb: pointer to the urb to initialize.
1378 * @dev: pointer to the struct usb_device for this urb.
1379 * @pipe: the endpoint pipe
1380 * @setup_packet: pointer to the setup_packet buffer
1381 * @transfer_buffer: pointer to the transfer buffer
1382 * @buffer_length: length of the transfer buffer
1383 * @complete_fn: pointer to the usb_complete_t function
1384 * @context: what to set the urb context to.
1386 * Initializes a control urb with the proper information needed to submit
1387 * it to a device.
1389 static inline void usb_fill_control_urb(struct urb *urb,
1390 struct usb_device *dev,
1391 unsigned int pipe,
1392 unsigned char *setup_packet,
1393 void *transfer_buffer,
1394 int buffer_length,
1395 usb_complete_t complete_fn,
1396 void *context)
1398 urb->dev = dev;
1399 urb->pipe = pipe;
1400 urb->setup_packet = setup_packet;
1401 urb->transfer_buffer = transfer_buffer;
1402 urb->transfer_buffer_length = buffer_length;
1403 urb->complete = complete_fn;
1404 urb->context = context;
1408 * usb_fill_bulk_urb - macro to help initialize a bulk urb
1409 * @urb: pointer to the urb to initialize.
1410 * @dev: pointer to the struct usb_device for this urb.
1411 * @pipe: the endpoint pipe
1412 * @transfer_buffer: pointer to the transfer buffer
1413 * @buffer_length: length of the transfer buffer
1414 * @complete_fn: pointer to the usb_complete_t function
1415 * @context: what to set the urb context to.
1417 * Initializes a bulk urb with the proper information needed to submit it
1418 * to a device.
1420 static inline void usb_fill_bulk_urb(struct urb *urb,
1421 struct usb_device *dev,
1422 unsigned int pipe,
1423 void *transfer_buffer,
1424 int buffer_length,
1425 usb_complete_t complete_fn,
1426 void *context)
1428 urb->dev = dev;
1429 urb->pipe = pipe;
1430 urb->transfer_buffer = transfer_buffer;
1431 urb->transfer_buffer_length = buffer_length;
1432 urb->complete = complete_fn;
1433 urb->context = context;
1437 * usb_fill_int_urb - macro to help initialize a interrupt urb
1438 * @urb: pointer to the urb to initialize.
1439 * @dev: pointer to the struct usb_device for this urb.
1440 * @pipe: the endpoint pipe
1441 * @transfer_buffer: pointer to the transfer buffer
1442 * @buffer_length: length of the transfer buffer
1443 * @complete_fn: pointer to the usb_complete_t function
1444 * @context: what to set the urb context to.
1445 * @interval: what to set the urb interval to, encoded like
1446 * the endpoint descriptor's bInterval value.
1448 * Initializes a interrupt urb with the proper information needed to submit
1449 * it to a device.
1450 * Note that high speed interrupt endpoints use a logarithmic encoding of
1451 * the endpoint interval, and express polling intervals in microframes
1452 * (eight per millisecond) rather than in frames (one per millisecond).
1454 static inline void usb_fill_int_urb(struct urb *urb,
1455 struct usb_device *dev,
1456 unsigned int pipe,
1457 void *transfer_buffer,
1458 int buffer_length,
1459 usb_complete_t complete_fn,
1460 void *context,
1461 int interval)
1463 urb->dev = dev;
1464 urb->pipe = pipe;
1465 urb->transfer_buffer = transfer_buffer;
1466 urb->transfer_buffer_length = buffer_length;
1467 urb->complete = complete_fn;
1468 urb->context = context;
1469 if (dev->speed == USB_SPEED_HIGH)
1470 urb->interval = 1 << (interval - 1);
1471 else
1472 urb->interval = interval;
1473 urb->start_frame = -1;
1476 extern void usb_init_urb(struct urb *urb);
1477 extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
1478 extern void usb_free_urb(struct urb *urb);
1479 #define usb_put_urb usb_free_urb
1480 extern struct urb *usb_get_urb(struct urb *urb);
1481 extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
1482 extern int usb_unlink_urb(struct urb *urb);
1483 extern void usb_kill_urb(struct urb *urb);
1484 extern void usb_poison_urb(struct urb *urb);
1485 extern void usb_unpoison_urb(struct urb *urb);
1486 extern void usb_kill_anchored_urbs(struct usb_anchor *anchor);
1487 extern void usb_poison_anchored_urbs(struct usb_anchor *anchor);
1488 extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor);
1489 extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor);
1490 extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor);
1491 extern void usb_unanchor_urb(struct urb *urb);
1492 extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
1493 unsigned int timeout);
1494 extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor);
1495 extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor);
1496 extern int usb_anchor_empty(struct usb_anchor *anchor);
1499 * usb_urb_dir_in - check if an URB describes an IN transfer
1500 * @urb: URB to be checked
1502 * Returns 1 if @urb describes an IN transfer (device-to-host),
1503 * otherwise 0.
1505 static inline int usb_urb_dir_in(struct urb *urb)
1507 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN;
1511 * usb_urb_dir_out - check if an URB describes an OUT transfer
1512 * @urb: URB to be checked
1514 * Returns 1 if @urb describes an OUT transfer (host-to-device),
1515 * otherwise 0.
1517 static inline int usb_urb_dir_out(struct urb *urb)
1519 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT;
1522 void *usb_buffer_alloc(struct usb_device *dev, size_t size,
1523 gfp_t mem_flags, dma_addr_t *dma);
1524 void usb_buffer_free(struct usb_device *dev, size_t size,
1525 void *addr, dma_addr_t dma);
1527 #if 0
1528 struct urb *usb_buffer_map(struct urb *urb);
1529 void usb_buffer_dmasync(struct urb *urb);
1530 void usb_buffer_unmap(struct urb *urb);
1531 #endif
1533 struct scatterlist;
1534 int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
1535 struct scatterlist *sg, int nents);
1536 #if 0
1537 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
1538 struct scatterlist *sg, int n_hw_ents);
1539 #endif
1540 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
1541 struct scatterlist *sg, int n_hw_ents);
1543 /*-------------------------------------------------------------------*
1544 * SYNCHRONOUS CALL SUPPORT *
1545 *-------------------------------------------------------------------*/
1547 extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
1548 __u8 request, __u8 requesttype, __u16 value, __u16 index,
1549 void *data, __u16 size, int timeout);
1550 extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
1551 void *data, int len, int *actual_length, int timeout);
1552 extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
1553 void *data, int len, int *actual_length,
1554 int timeout);
1556 /* wrappers around usb_control_msg() for the most common standard requests */
1557 extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
1558 unsigned char descindex, void *buf, int size);
1559 extern int usb_get_status(struct usb_device *dev,
1560 int type, int target, void *data);
1561 extern int usb_string(struct usb_device *dev, int index,
1562 char *buf, size_t size);
1564 /* wrappers that also update important state inside usbcore */
1565 extern int usb_clear_halt(struct usb_device *dev, int pipe);
1566 extern int usb_reset_configuration(struct usb_device *dev);
1567 extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
1569 /* this request isn't really synchronous, but it belongs with the others */
1570 extern int usb_driver_set_configuration(struct usb_device *udev, int config);
1573 * timeouts, in milliseconds, used for sending/receiving control messages
1574 * they typically complete within a few frames (msec) after they're issued
1575 * USB identifies 5 second timeouts, maybe more in a few cases, and a few
1576 * slow devices (like some MGE Ellipse UPSes) actually push that limit.
1578 #define USB_CTRL_GET_TIMEOUT 5000
1579 #define USB_CTRL_SET_TIMEOUT 5000
1583 * struct usb_sg_request - support for scatter/gather I/O
1584 * @status: zero indicates success, else negative errno
1585 * @bytes: counts bytes transferred.
1587 * These requests are initialized using usb_sg_init(), and then are used
1588 * as request handles passed to usb_sg_wait() or usb_sg_cancel(). Most
1589 * members of the request object aren't for driver access.
1591 * The status and bytecount values are valid only after usb_sg_wait()
1592 * returns. If the status is zero, then the bytecount matches the total
1593 * from the request.
1595 * After an error completion, drivers may need to clear a halt condition
1596 * on the endpoint.
1598 struct usb_sg_request {
1599 int status;
1600 size_t bytes;
1603 * members below are private: to usbcore,
1604 * and are not provided for driver access!
1606 spinlock_t lock;
1608 struct usb_device *dev;
1609 int pipe;
1610 struct scatterlist *sg;
1611 int nents;
1613 int entries;
1614 struct urb **urbs;
1616 int count;
1617 struct completion complete;
1620 int usb_sg_init(
1621 struct usb_sg_request *io,
1622 struct usb_device *dev,
1623 unsigned pipe,
1624 unsigned period,
1625 struct scatterlist *sg,
1626 int nents,
1627 size_t length,
1628 gfp_t mem_flags
1630 void usb_sg_cancel(struct usb_sg_request *io);
1631 void usb_sg_wait(struct usb_sg_request *io);
1634 /* ----------------------------------------------------------------------- */
1637 * For various legacy reasons, Linux has a small cookie that's paired with
1638 * a struct usb_device to identify an endpoint queue. Queue characteristics
1639 * are defined by the endpoint's descriptor. This cookie is called a "pipe",
1640 * an unsigned int encoded as:
1642 * - direction: bit 7 (0 = Host-to-Device [Out],
1643 * 1 = Device-to-Host [In] ...
1644 * like endpoint bEndpointAddress)
1645 * - device address: bits 8-14 ... bit positions known to uhci-hcd
1646 * - endpoint: bits 15-18 ... bit positions known to uhci-hcd
1647 * - pipe type: bits 30-31 (00 = isochronous, 01 = interrupt,
1648 * 10 = control, 11 = bulk)
1650 * Given the device address and endpoint descriptor, pipes are redundant.
1653 /* NOTE: these are not the standard USB_ENDPOINT_XFER_* values!! */
1654 /* (yet ... they're the values used by usbfs) */
1655 #define PIPE_ISOCHRONOUS 0
1656 #define PIPE_INTERRUPT 1
1657 #define PIPE_CONTROL 2
1658 #define PIPE_BULK 3
1660 #define usb_pipein(pipe) ((pipe) & USB_DIR_IN)
1661 #define usb_pipeout(pipe) (!usb_pipein(pipe))
1663 #define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f)
1664 #define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf)
1666 #define usb_pipetype(pipe) (((pipe) >> 30) & 3)
1667 #define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
1668 #define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT)
1669 #define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL)
1670 #define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK)
1672 /* The D0/D1 toggle bits ... USE WITH CAUTION (they're almost hcd-internal) */
1673 #define usb_gettoggle(dev, ep, out) (((dev)->toggle[out] >> (ep)) & 1)
1674 #define usb_dotoggle(dev, ep, out) ((dev)->toggle[out] ^= (1 << (ep)))
1675 #define usb_settoggle(dev, ep, out, bit) \
1676 ((dev)->toggle[out] = ((dev)->toggle[out] & ~(1 << (ep))) | \
1677 ((bit) << (ep)))
1680 static inline unsigned int __create_pipe(struct usb_device *dev,
1681 unsigned int endpoint)
1683 return (dev->devnum << 8) | (endpoint << 15);
1686 /* Create various pipes... */
1687 #define usb_sndctrlpipe(dev,endpoint) \
1688 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint))
1689 #define usb_rcvctrlpipe(dev,endpoint) \
1690 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1691 #define usb_sndisocpipe(dev,endpoint) \
1692 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint))
1693 #define usb_rcvisocpipe(dev,endpoint) \
1694 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1695 #define usb_sndbulkpipe(dev,endpoint) \
1696 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint))
1697 #define usb_rcvbulkpipe(dev,endpoint) \
1698 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1699 #define usb_sndintpipe(dev,endpoint) \
1700 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint))
1701 #define usb_rcvintpipe(dev,endpoint) \
1702 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1704 /*-------------------------------------------------------------------------*/
1706 static inline __u16
1707 usb_maxpacket(struct usb_device *udev, int pipe, int is_out)
1709 struct usb_host_endpoint *ep;
1710 unsigned epnum = usb_pipeendpoint(pipe);
1712 if (is_out) {
1713 WARN_ON(usb_pipein(pipe));
1714 ep = udev->ep_out[epnum];
1715 } else {
1716 WARN_ON(usb_pipeout(pipe));
1717 ep = udev->ep_in[epnum];
1719 if (!ep)
1720 return 0;
1722 /* NOTE: only 0x07ff bits are for packet size... */
1723 return le16_to_cpu(ep->desc.wMaxPacketSize);
1726 /* ----------------------------------------------------------------------- */
1728 /* Events from the usb core */
1729 #define USB_DEVICE_ADD 0x0001
1730 #define USB_DEVICE_REMOVE 0x0002
1731 #define USB_BUS_ADD 0x0003
1732 #define USB_BUS_REMOVE 0x0004
1733 extern void usb_register_notify(struct notifier_block *nb);
1734 extern void usb_unregister_notify(struct notifier_block *nb);
1736 #ifdef DEBUG
1737 #define dbg(format, arg...) printk(KERN_DEBUG "%s: " format "\n" , \
1738 __FILE__ , ## arg)
1739 #else
1740 #define dbg(format, arg...) do {} while (0)
1741 #endif
1743 #define err(format, arg...) printk(KERN_ERR KBUILD_MODNAME ": " \
1744 format "\n" , ## arg)
1746 #endif /* __KERNEL__ */
1748 #endif