sparc64: Make smp_cross_call_masked() take a cpumask_t pointer.
[linux-2.6/mini2440.git] / arch / sparc64 / kernel / smp.c
blob740259d89552546aefe8df82ce0b712f87080d24
1 /* smp.c: Sparc64 SMP support.
3 * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
4 */
6 #include <linux/module.h>
7 #include <linux/kernel.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/pagemap.h>
11 #include <linux/threads.h>
12 #include <linux/smp.h>
13 #include <linux/interrupt.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/delay.h>
16 #include <linux/init.h>
17 #include <linux/spinlock.h>
18 #include <linux/fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/cache.h>
21 #include <linux/jiffies.h>
22 #include <linux/profile.h>
23 #include <linux/lmb.h>
25 #include <asm/head.h>
26 #include <asm/ptrace.h>
27 #include <asm/atomic.h>
28 #include <asm/tlbflush.h>
29 #include <asm/mmu_context.h>
30 #include <asm/cpudata.h>
31 #include <asm/hvtramp.h>
32 #include <asm/io.h>
33 #include <asm/timer.h>
35 #include <asm/irq.h>
36 #include <asm/irq_regs.h>
37 #include <asm/page.h>
38 #include <asm/pgtable.h>
39 #include <asm/oplib.h>
40 #include <asm/uaccess.h>
41 #include <asm/starfire.h>
42 #include <asm/tlb.h>
43 #include <asm/sections.h>
44 #include <asm/prom.h>
45 #include <asm/mdesc.h>
46 #include <asm/ldc.h>
47 #include <asm/hypervisor.h>
49 int sparc64_multi_core __read_mostly;
51 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_NONE;
52 cpumask_t cpu_online_map __read_mostly = CPU_MASK_NONE;
53 DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE;
54 cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
55 { [0 ... NR_CPUS-1] = CPU_MASK_NONE };
57 EXPORT_SYMBOL(cpu_possible_map);
58 EXPORT_SYMBOL(cpu_online_map);
59 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
60 EXPORT_SYMBOL(cpu_core_map);
62 static cpumask_t smp_commenced_mask;
64 void smp_info(struct seq_file *m)
66 int i;
68 seq_printf(m, "State:\n");
69 for_each_online_cpu(i)
70 seq_printf(m, "CPU%d:\t\tonline\n", i);
73 void smp_bogo(struct seq_file *m)
75 int i;
77 for_each_online_cpu(i)
78 seq_printf(m,
79 "Cpu%dClkTck\t: %016lx\n",
80 i, cpu_data(i).clock_tick);
83 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(call_lock);
85 extern void setup_sparc64_timer(void);
87 static volatile unsigned long callin_flag = 0;
89 void __cpuinit smp_callin(void)
91 int cpuid = hard_smp_processor_id();
93 __local_per_cpu_offset = __per_cpu_offset(cpuid);
95 if (tlb_type == hypervisor)
96 sun4v_ktsb_register();
98 __flush_tlb_all();
100 setup_sparc64_timer();
102 if (cheetah_pcache_forced_on)
103 cheetah_enable_pcache();
105 local_irq_enable();
107 callin_flag = 1;
108 __asm__ __volatile__("membar #Sync\n\t"
109 "flush %%g6" : : : "memory");
111 /* Clear this or we will die instantly when we
112 * schedule back to this idler...
114 current_thread_info()->new_child = 0;
116 /* Attach to the address space of init_task. */
117 atomic_inc(&init_mm.mm_count);
118 current->active_mm = &init_mm;
120 while (!cpu_isset(cpuid, smp_commenced_mask))
121 rmb();
123 spin_lock(&call_lock);
124 cpu_set(cpuid, cpu_online_map);
125 spin_unlock(&call_lock);
127 /* idle thread is expected to have preempt disabled */
128 preempt_disable();
131 void cpu_panic(void)
133 printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
134 panic("SMP bolixed\n");
137 /* This tick register synchronization scheme is taken entirely from
138 * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
140 * The only change I've made is to rework it so that the master
141 * initiates the synchonization instead of the slave. -DaveM
144 #define MASTER 0
145 #define SLAVE (SMP_CACHE_BYTES/sizeof(unsigned long))
147 #define NUM_ROUNDS 64 /* magic value */
148 #define NUM_ITERS 5 /* likewise */
150 static DEFINE_SPINLOCK(itc_sync_lock);
151 static unsigned long go[SLAVE + 1];
153 #define DEBUG_TICK_SYNC 0
155 static inline long get_delta (long *rt, long *master)
157 unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
158 unsigned long tcenter, t0, t1, tm;
159 unsigned long i;
161 for (i = 0; i < NUM_ITERS; i++) {
162 t0 = tick_ops->get_tick();
163 go[MASTER] = 1;
164 membar_storeload();
165 while (!(tm = go[SLAVE]))
166 rmb();
167 go[SLAVE] = 0;
168 wmb();
169 t1 = tick_ops->get_tick();
171 if (t1 - t0 < best_t1 - best_t0)
172 best_t0 = t0, best_t1 = t1, best_tm = tm;
175 *rt = best_t1 - best_t0;
176 *master = best_tm - best_t0;
178 /* average best_t0 and best_t1 without overflow: */
179 tcenter = (best_t0/2 + best_t1/2);
180 if (best_t0 % 2 + best_t1 % 2 == 2)
181 tcenter++;
182 return tcenter - best_tm;
185 void smp_synchronize_tick_client(void)
187 long i, delta, adj, adjust_latency = 0, done = 0;
188 unsigned long flags, rt, master_time_stamp, bound;
189 #if DEBUG_TICK_SYNC
190 struct {
191 long rt; /* roundtrip time */
192 long master; /* master's timestamp */
193 long diff; /* difference between midpoint and master's timestamp */
194 long lat; /* estimate of itc adjustment latency */
195 } t[NUM_ROUNDS];
196 #endif
198 go[MASTER] = 1;
200 while (go[MASTER])
201 rmb();
203 local_irq_save(flags);
205 for (i = 0; i < NUM_ROUNDS; i++) {
206 delta = get_delta(&rt, &master_time_stamp);
207 if (delta == 0) {
208 done = 1; /* let's lock on to this... */
209 bound = rt;
212 if (!done) {
213 if (i > 0) {
214 adjust_latency += -delta;
215 adj = -delta + adjust_latency/4;
216 } else
217 adj = -delta;
219 tick_ops->add_tick(adj);
221 #if DEBUG_TICK_SYNC
222 t[i].rt = rt;
223 t[i].master = master_time_stamp;
224 t[i].diff = delta;
225 t[i].lat = adjust_latency/4;
226 #endif
229 local_irq_restore(flags);
231 #if DEBUG_TICK_SYNC
232 for (i = 0; i < NUM_ROUNDS; i++)
233 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
234 t[i].rt, t[i].master, t[i].diff, t[i].lat);
235 #endif
237 printk(KERN_INFO "CPU %d: synchronized TICK with master CPU "
238 "(last diff %ld cycles, maxerr %lu cycles)\n",
239 smp_processor_id(), delta, rt);
242 static void smp_start_sync_tick_client(int cpu);
244 static void smp_synchronize_one_tick(int cpu)
246 unsigned long flags, i;
248 go[MASTER] = 0;
250 smp_start_sync_tick_client(cpu);
252 /* wait for client to be ready */
253 while (!go[MASTER])
254 rmb();
256 /* now let the client proceed into his loop */
257 go[MASTER] = 0;
258 membar_storeload();
260 spin_lock_irqsave(&itc_sync_lock, flags);
262 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
263 while (!go[MASTER])
264 rmb();
265 go[MASTER] = 0;
266 wmb();
267 go[SLAVE] = tick_ops->get_tick();
268 membar_storeload();
271 spin_unlock_irqrestore(&itc_sync_lock, flags);
274 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
275 /* XXX Put this in some common place. XXX */
276 static unsigned long kimage_addr_to_ra(void *p)
278 unsigned long val = (unsigned long) p;
280 return kern_base + (val - KERNBASE);
283 static void ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg)
285 extern unsigned long sparc64_ttable_tl0;
286 extern unsigned long kern_locked_tte_data;
287 struct hvtramp_descr *hdesc;
288 unsigned long trampoline_ra;
289 struct trap_per_cpu *tb;
290 u64 tte_vaddr, tte_data;
291 unsigned long hv_err;
292 int i;
294 hdesc = kzalloc(sizeof(*hdesc) +
295 (sizeof(struct hvtramp_mapping) *
296 num_kernel_image_mappings - 1),
297 GFP_KERNEL);
298 if (!hdesc) {
299 printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate "
300 "hvtramp_descr.\n");
301 return;
304 hdesc->cpu = cpu;
305 hdesc->num_mappings = num_kernel_image_mappings;
307 tb = &trap_block[cpu];
308 tb->hdesc = hdesc;
310 hdesc->fault_info_va = (unsigned long) &tb->fault_info;
311 hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info);
313 hdesc->thread_reg = thread_reg;
315 tte_vaddr = (unsigned long) KERNBASE;
316 tte_data = kern_locked_tte_data;
318 for (i = 0; i < hdesc->num_mappings; i++) {
319 hdesc->maps[i].vaddr = tte_vaddr;
320 hdesc->maps[i].tte = tte_data;
321 tte_vaddr += 0x400000;
322 tte_data += 0x400000;
325 trampoline_ra = kimage_addr_to_ra(hv_cpu_startup);
327 hv_err = sun4v_cpu_start(cpu, trampoline_ra,
328 kimage_addr_to_ra(&sparc64_ttable_tl0),
329 __pa(hdesc));
330 if (hv_err)
331 printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() "
332 "gives error %lu\n", hv_err);
334 #endif
336 extern unsigned long sparc64_cpu_startup;
338 /* The OBP cpu startup callback truncates the 3rd arg cookie to
339 * 32-bits (I think) so to be safe we have it read the pointer
340 * contained here so we work on >4GB machines. -DaveM
342 static struct thread_info *cpu_new_thread = NULL;
344 static int __devinit smp_boot_one_cpu(unsigned int cpu)
346 struct trap_per_cpu *tb = &trap_block[cpu];
347 unsigned long entry =
348 (unsigned long)(&sparc64_cpu_startup);
349 unsigned long cookie =
350 (unsigned long)(&cpu_new_thread);
351 struct task_struct *p;
352 int timeout, ret;
354 p = fork_idle(cpu);
355 if (IS_ERR(p))
356 return PTR_ERR(p);
357 callin_flag = 0;
358 cpu_new_thread = task_thread_info(p);
360 if (tlb_type == hypervisor) {
361 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
362 if (ldom_domaining_enabled)
363 ldom_startcpu_cpuid(cpu,
364 (unsigned long) cpu_new_thread);
365 else
366 #endif
367 prom_startcpu_cpuid(cpu, entry, cookie);
368 } else {
369 struct device_node *dp = of_find_node_by_cpuid(cpu);
371 prom_startcpu(dp->node, entry, cookie);
374 for (timeout = 0; timeout < 50000; timeout++) {
375 if (callin_flag)
376 break;
377 udelay(100);
380 if (callin_flag) {
381 ret = 0;
382 } else {
383 printk("Processor %d is stuck.\n", cpu);
384 ret = -ENODEV;
386 cpu_new_thread = NULL;
388 if (tb->hdesc) {
389 kfree(tb->hdesc);
390 tb->hdesc = NULL;
393 return ret;
396 static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
398 u64 result, target;
399 int stuck, tmp;
401 if (this_is_starfire) {
402 /* map to real upaid */
403 cpu = (((cpu & 0x3c) << 1) |
404 ((cpu & 0x40) >> 4) |
405 (cpu & 0x3));
408 target = (cpu << 14) | 0x70;
409 again:
410 /* Ok, this is the real Spitfire Errata #54.
411 * One must read back from a UDB internal register
412 * after writes to the UDB interrupt dispatch, but
413 * before the membar Sync for that write.
414 * So we use the high UDB control register (ASI 0x7f,
415 * ADDR 0x20) for the dummy read. -DaveM
417 tmp = 0x40;
418 __asm__ __volatile__(
419 "wrpr %1, %2, %%pstate\n\t"
420 "stxa %4, [%0] %3\n\t"
421 "stxa %5, [%0+%8] %3\n\t"
422 "add %0, %8, %0\n\t"
423 "stxa %6, [%0+%8] %3\n\t"
424 "membar #Sync\n\t"
425 "stxa %%g0, [%7] %3\n\t"
426 "membar #Sync\n\t"
427 "mov 0x20, %%g1\n\t"
428 "ldxa [%%g1] 0x7f, %%g0\n\t"
429 "membar #Sync"
430 : "=r" (tmp)
431 : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
432 "r" (data0), "r" (data1), "r" (data2), "r" (target),
433 "r" (0x10), "0" (tmp)
434 : "g1");
436 /* NOTE: PSTATE_IE is still clear. */
437 stuck = 100000;
438 do {
439 __asm__ __volatile__("ldxa [%%g0] %1, %0"
440 : "=r" (result)
441 : "i" (ASI_INTR_DISPATCH_STAT));
442 if (result == 0) {
443 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
444 : : "r" (pstate));
445 return;
447 stuck -= 1;
448 if (stuck == 0)
449 break;
450 } while (result & 0x1);
451 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
452 : : "r" (pstate));
453 if (stuck == 0) {
454 printk("CPU[%d]: mondo stuckage result[%016lx]\n",
455 smp_processor_id(), result);
456 } else {
457 udelay(2);
458 goto again;
462 static inline void spitfire_xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask)
464 u64 pstate;
465 int i;
467 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
468 for_each_cpu_mask_nr(i, *mask)
469 spitfire_xcall_helper(data0, data1, data2, pstate, i);
472 /* Cheetah now allows to send the whole 64-bytes of data in the interrupt
473 * packet, but we have no use for that. However we do take advantage of
474 * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
476 static void cheetah_xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask_p)
478 u64 pstate, ver, busy_mask;
479 int nack_busy_id, is_jbus, need_more;
480 cpumask_t mask;
482 if (cpus_empty(*mask_p))
483 return;
485 mask = *mask_p;
487 /* Unfortunately, someone at Sun had the brilliant idea to make the
488 * busy/nack fields hard-coded by ITID number for this Ultra-III
489 * derivative processor.
491 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
492 is_jbus = ((ver >> 32) == __JALAPENO_ID ||
493 (ver >> 32) == __SERRANO_ID);
495 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
497 retry:
498 need_more = 0;
499 __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
500 : : "r" (pstate), "i" (PSTATE_IE));
502 /* Setup the dispatch data registers. */
503 __asm__ __volatile__("stxa %0, [%3] %6\n\t"
504 "stxa %1, [%4] %6\n\t"
505 "stxa %2, [%5] %6\n\t"
506 "membar #Sync\n\t"
507 : /* no outputs */
508 : "r" (data0), "r" (data1), "r" (data2),
509 "r" (0x40), "r" (0x50), "r" (0x60),
510 "i" (ASI_INTR_W));
512 nack_busy_id = 0;
513 busy_mask = 0;
515 int i;
517 for_each_cpu_mask_nr(i, mask) {
518 u64 target = (i << 14) | 0x70;
520 if (is_jbus) {
521 busy_mask |= (0x1UL << (i * 2));
522 } else {
523 target |= (nack_busy_id << 24);
524 busy_mask |= (0x1UL <<
525 (nack_busy_id * 2));
527 __asm__ __volatile__(
528 "stxa %%g0, [%0] %1\n\t"
529 "membar #Sync\n\t"
530 : /* no outputs */
531 : "r" (target), "i" (ASI_INTR_W));
532 nack_busy_id++;
533 if (nack_busy_id == 32) {
534 need_more = 1;
535 break;
540 /* Now, poll for completion. */
542 u64 dispatch_stat, nack_mask;
543 long stuck;
545 stuck = 100000 * nack_busy_id;
546 nack_mask = busy_mask << 1;
547 do {
548 __asm__ __volatile__("ldxa [%%g0] %1, %0"
549 : "=r" (dispatch_stat)
550 : "i" (ASI_INTR_DISPATCH_STAT));
551 if (!(dispatch_stat & (busy_mask | nack_mask))) {
552 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
553 : : "r" (pstate));
554 if (unlikely(need_more)) {
555 int i, cnt = 0;
556 for_each_cpu_mask_nr(i, mask) {
557 cpu_clear(i, mask);
558 cnt++;
559 if (cnt == 32)
560 break;
562 goto retry;
564 return;
566 if (!--stuck)
567 break;
568 } while (dispatch_stat & busy_mask);
570 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
571 : : "r" (pstate));
573 if (dispatch_stat & busy_mask) {
574 /* Busy bits will not clear, continue instead
575 * of freezing up on this cpu.
577 printk("CPU[%d]: mondo stuckage result[%016lx]\n",
578 smp_processor_id(), dispatch_stat);
579 } else {
580 int i, this_busy_nack = 0;
582 /* Delay some random time with interrupts enabled
583 * to prevent deadlock.
585 udelay(2 * nack_busy_id);
587 /* Clear out the mask bits for cpus which did not
588 * NACK us.
590 for_each_cpu_mask_nr(i, mask) {
591 u64 check_mask;
593 if (is_jbus)
594 check_mask = (0x2UL << (2*i));
595 else
596 check_mask = (0x2UL <<
597 this_busy_nack);
598 if ((dispatch_stat & check_mask) == 0)
599 cpu_clear(i, mask);
600 this_busy_nack += 2;
601 if (this_busy_nack == 64)
602 break;
605 goto retry;
610 /* Multi-cpu list version. */
611 static void hypervisor_xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask)
613 int cnt, retries, this_cpu, prev_sent, i;
614 unsigned long flags, status;
615 cpumask_t error_mask;
616 struct trap_per_cpu *tb;
617 u16 *cpu_list;
618 u64 *mondo;
620 if (cpus_empty(*mask))
621 return;
623 /* We have to do this whole thing with interrupts fully disabled.
624 * Otherwise if we send an xcall from interrupt context it will
625 * corrupt both our mondo block and cpu list state.
627 * One consequence of this is that we cannot use timeout mechanisms
628 * that depend upon interrupts being delivered locally. So, for
629 * example, we cannot sample jiffies and expect it to advance.
631 * Fortunately, udelay() uses %stick/%tick so we can use that.
633 local_irq_save(flags);
635 this_cpu = smp_processor_id();
636 tb = &trap_block[this_cpu];
638 mondo = __va(tb->cpu_mondo_block_pa);
639 mondo[0] = data0;
640 mondo[1] = data1;
641 mondo[2] = data2;
642 wmb();
644 cpu_list = __va(tb->cpu_list_pa);
646 /* Setup the initial cpu list. */
647 cnt = 0;
648 for_each_cpu_mask_nr(i, *mask)
649 cpu_list[cnt++] = i;
651 cpus_clear(error_mask);
652 retries = 0;
653 prev_sent = 0;
654 do {
655 int forward_progress, n_sent;
657 status = sun4v_cpu_mondo_send(cnt,
658 tb->cpu_list_pa,
659 tb->cpu_mondo_block_pa);
661 /* HV_EOK means all cpus received the xcall, we're done. */
662 if (likely(status == HV_EOK))
663 break;
665 /* First, see if we made any forward progress.
667 * The hypervisor indicates successful sends by setting
668 * cpu list entries to the value 0xffff.
670 n_sent = 0;
671 for (i = 0; i < cnt; i++) {
672 if (likely(cpu_list[i] == 0xffff))
673 n_sent++;
676 forward_progress = 0;
677 if (n_sent > prev_sent)
678 forward_progress = 1;
680 prev_sent = n_sent;
682 /* If we get a HV_ECPUERROR, then one or more of the cpus
683 * in the list are in error state. Use the cpu_state()
684 * hypervisor call to find out which cpus are in error state.
686 if (unlikely(status == HV_ECPUERROR)) {
687 for (i = 0; i < cnt; i++) {
688 long err;
689 u16 cpu;
691 cpu = cpu_list[i];
692 if (cpu == 0xffff)
693 continue;
695 err = sun4v_cpu_state(cpu);
696 if (err >= 0 &&
697 err == HV_CPU_STATE_ERROR) {
698 cpu_list[i] = 0xffff;
699 cpu_set(cpu, error_mask);
702 } else if (unlikely(status != HV_EWOULDBLOCK))
703 goto fatal_mondo_error;
705 /* Don't bother rewriting the CPU list, just leave the
706 * 0xffff and non-0xffff entries in there and the
707 * hypervisor will do the right thing.
709 * Only advance timeout state if we didn't make any
710 * forward progress.
712 if (unlikely(!forward_progress)) {
713 if (unlikely(++retries > 10000))
714 goto fatal_mondo_timeout;
716 /* Delay a little bit to let other cpus catch up
717 * on their cpu mondo queue work.
719 udelay(2 * cnt);
721 } while (1);
723 local_irq_restore(flags);
725 if (unlikely(!cpus_empty(error_mask)))
726 goto fatal_mondo_cpu_error;
728 return;
730 fatal_mondo_cpu_error:
731 printk(KERN_CRIT "CPU[%d]: SUN4V mondo cpu error, some target cpus "
732 "were in error state\n",
733 this_cpu);
734 printk(KERN_CRIT "CPU[%d]: Error mask [ ", this_cpu);
735 for_each_cpu_mask_nr(i, error_mask)
736 printk("%d ", i);
737 printk("]\n");
738 return;
740 fatal_mondo_timeout:
741 local_irq_restore(flags);
742 printk(KERN_CRIT "CPU[%d]: SUN4V mondo timeout, no forward "
743 " progress after %d retries.\n",
744 this_cpu, retries);
745 goto dump_cpu_list_and_out;
747 fatal_mondo_error:
748 local_irq_restore(flags);
749 printk(KERN_CRIT "CPU[%d]: Unexpected SUN4V mondo error %lu\n",
750 this_cpu, status);
751 printk(KERN_CRIT "CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) "
752 "mondo_block_pa(%lx)\n",
753 this_cpu, cnt, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
755 dump_cpu_list_and_out:
756 printk(KERN_CRIT "CPU[%d]: CPU list [ ", this_cpu);
757 for (i = 0; i < cnt; i++)
758 printk("%u ", cpu_list[i]);
759 printk("]\n");
762 static void (*xcall_deliver)(u64, u64, u64, const cpumask_t *);
764 /* Send cross call to all processors mentioned in MASK_P
765 * except self. Really, there are only two cases currently,
766 * "&cpu_online_map" and "&mm->cpu_vm_mask".
768 static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, const cpumask_t *mask_p)
770 u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
771 int this_cpu = get_cpu();
772 cpumask_t mask;
774 mask = *mask_p;
775 if (mask_p != &cpu_online_map)
776 cpus_and(mask, mask, cpu_online_map);
777 cpu_clear(this_cpu, mask);
779 xcall_deliver(data0, data1, data2, &mask);
780 /* NOTE: Caller runs local copy on master. */
782 put_cpu();
785 extern unsigned long xcall_sync_tick;
787 static void smp_start_sync_tick_client(int cpu)
789 xcall_deliver((u64) &xcall_sync_tick, 0, 0,
790 &cpumask_of_cpu(cpu));
793 extern unsigned long xcall_call_function;
795 void arch_send_call_function_ipi(cpumask_t mask)
797 xcall_deliver((u64) &xcall_call_function, 0, 0, &mask);
800 extern unsigned long xcall_call_function_single;
802 void arch_send_call_function_single_ipi(int cpu)
804 xcall_deliver((u64) &xcall_call_function_single, 0, 0,
805 &cpumask_of_cpu(cpu));
808 /* Send cross call to all processors except self. */
809 #define smp_cross_call(func, ctx, data1, data2) \
810 smp_cross_call_masked(func, ctx, data1, data2, &cpu_online_map)
812 void smp_call_function_client(int irq, struct pt_regs *regs)
814 clear_softint(1 << irq);
815 generic_smp_call_function_interrupt();
818 void smp_call_function_single_client(int irq, struct pt_regs *regs)
820 clear_softint(1 << irq);
821 generic_smp_call_function_single_interrupt();
824 static void tsb_sync(void *info)
826 struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
827 struct mm_struct *mm = info;
829 /* It is not valid to test "currrent->active_mm == mm" here.
831 * The value of "current" is not changed atomically with
832 * switch_mm(). But that's OK, we just need to check the
833 * current cpu's trap block PGD physical address.
835 if (tp->pgd_paddr == __pa(mm->pgd))
836 tsb_context_switch(mm);
839 void smp_tsb_sync(struct mm_struct *mm)
841 smp_call_function_mask(mm->cpu_vm_mask, tsb_sync, mm, 1);
844 extern unsigned long xcall_flush_tlb_mm;
845 extern unsigned long xcall_flush_tlb_pending;
846 extern unsigned long xcall_flush_tlb_kernel_range;
847 #ifdef CONFIG_MAGIC_SYSRQ
848 extern unsigned long xcall_fetch_glob_regs;
849 #endif
850 extern unsigned long xcall_receive_signal;
851 extern unsigned long xcall_new_mmu_context_version;
852 #ifdef CONFIG_KGDB
853 extern unsigned long xcall_kgdb_capture;
854 #endif
856 #ifdef DCACHE_ALIASING_POSSIBLE
857 extern unsigned long xcall_flush_dcache_page_cheetah;
858 #endif
859 extern unsigned long xcall_flush_dcache_page_spitfire;
861 #ifdef CONFIG_DEBUG_DCFLUSH
862 extern atomic_t dcpage_flushes;
863 extern atomic_t dcpage_flushes_xcall;
864 #endif
866 static inline void __local_flush_dcache_page(struct page *page)
868 #ifdef DCACHE_ALIASING_POSSIBLE
869 __flush_dcache_page(page_address(page),
870 ((tlb_type == spitfire) &&
871 page_mapping(page) != NULL));
872 #else
873 if (page_mapping(page) != NULL &&
874 tlb_type == spitfire)
875 __flush_icache_page(__pa(page_address(page)));
876 #endif
879 void smp_flush_dcache_page_impl(struct page *page, int cpu)
881 cpumask_t mask = cpumask_of_cpu(cpu);
882 int this_cpu;
884 if (tlb_type == hypervisor)
885 return;
887 #ifdef CONFIG_DEBUG_DCFLUSH
888 atomic_inc(&dcpage_flushes);
889 #endif
891 this_cpu = get_cpu();
893 if (cpu == this_cpu) {
894 __local_flush_dcache_page(page);
895 } else if (cpu_online(cpu)) {
896 void *pg_addr = page_address(page);
897 u64 data0 = 0;
899 if (tlb_type == spitfire) {
900 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
901 if (page_mapping(page) != NULL)
902 data0 |= ((u64)1 << 32);
903 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
904 #ifdef DCACHE_ALIASING_POSSIBLE
905 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
906 #endif
908 if (data0) {
909 xcall_deliver(data0, __pa(pg_addr),
910 (u64) pg_addr, &mask);
911 #ifdef CONFIG_DEBUG_DCFLUSH
912 atomic_inc(&dcpage_flushes_xcall);
913 #endif
917 put_cpu();
920 void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
922 cpumask_t mask = cpu_online_map;
923 void *pg_addr;
924 int this_cpu;
925 u64 data0;
927 if (tlb_type == hypervisor)
928 return;
930 this_cpu = get_cpu();
932 cpu_clear(this_cpu, mask);
934 #ifdef CONFIG_DEBUG_DCFLUSH
935 atomic_inc(&dcpage_flushes);
936 #endif
937 if (cpus_empty(mask))
938 goto flush_self;
939 data0 = 0;
940 pg_addr = page_address(page);
941 if (tlb_type == spitfire) {
942 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
943 if (page_mapping(page) != NULL)
944 data0 |= ((u64)1 << 32);
945 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
946 #ifdef DCACHE_ALIASING_POSSIBLE
947 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
948 #endif
950 if (data0) {
951 xcall_deliver(data0, __pa(pg_addr),
952 (u64) pg_addr, &mask);
953 #ifdef CONFIG_DEBUG_DCFLUSH
954 atomic_inc(&dcpage_flushes_xcall);
955 #endif
957 flush_self:
958 __local_flush_dcache_page(page);
960 put_cpu();
963 void smp_new_mmu_context_version_client(int irq, struct pt_regs *regs)
965 struct mm_struct *mm;
966 unsigned long flags;
968 clear_softint(1 << irq);
970 /* See if we need to allocate a new TLB context because
971 * the version of the one we are using is now out of date.
973 mm = current->active_mm;
974 if (unlikely(!mm || (mm == &init_mm)))
975 return;
977 spin_lock_irqsave(&mm->context.lock, flags);
979 if (unlikely(!CTX_VALID(mm->context)))
980 get_new_mmu_context(mm);
982 spin_unlock_irqrestore(&mm->context.lock, flags);
984 load_secondary_context(mm);
985 __flush_tlb_mm(CTX_HWBITS(mm->context),
986 SECONDARY_CONTEXT);
989 void smp_new_mmu_context_version(void)
991 smp_cross_call(&xcall_new_mmu_context_version, 0, 0, 0);
994 #ifdef CONFIG_KGDB
995 void kgdb_roundup_cpus(unsigned long flags)
997 smp_cross_call(&xcall_kgdb_capture, 0, 0, 0);
999 #endif
1001 #ifdef CONFIG_MAGIC_SYSRQ
1002 void smp_fetch_global_regs(void)
1004 smp_cross_call(&xcall_fetch_glob_regs, 0, 0, 0);
1006 #endif
1008 /* We know that the window frames of the user have been flushed
1009 * to the stack before we get here because all callers of us
1010 * are flush_tlb_*() routines, and these run after flush_cache_*()
1011 * which performs the flushw.
1013 * The SMP TLB coherency scheme we use works as follows:
1015 * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
1016 * space has (potentially) executed on, this is the heuristic
1017 * we use to avoid doing cross calls.
1019 * Also, for flushing from kswapd and also for clones, we
1020 * use cpu_vm_mask as the list of cpus to make run the TLB.
1022 * 2) TLB context numbers are shared globally across all processors
1023 * in the system, this allows us to play several games to avoid
1024 * cross calls.
1026 * One invariant is that when a cpu switches to a process, and
1027 * that processes tsk->active_mm->cpu_vm_mask does not have the
1028 * current cpu's bit set, that tlb context is flushed locally.
1030 * If the address space is non-shared (ie. mm->count == 1) we avoid
1031 * cross calls when we want to flush the currently running process's
1032 * tlb state. This is done by clearing all cpu bits except the current
1033 * processor's in current->active_mm->cpu_vm_mask and performing the
1034 * flush locally only. This will force any subsequent cpus which run
1035 * this task to flush the context from the local tlb if the process
1036 * migrates to another cpu (again).
1038 * 3) For shared address spaces (threads) and swapping we bite the
1039 * bullet for most cases and perform the cross call (but only to
1040 * the cpus listed in cpu_vm_mask).
1042 * The performance gain from "optimizing" away the cross call for threads is
1043 * questionable (in theory the big win for threads is the massive sharing of
1044 * address space state across processors).
1047 /* This currently is only used by the hugetlb arch pre-fault
1048 * hook on UltraSPARC-III+ and later when changing the pagesize
1049 * bits of the context register for an address space.
1051 void smp_flush_tlb_mm(struct mm_struct *mm)
1053 u32 ctx = CTX_HWBITS(mm->context);
1054 int cpu = get_cpu();
1056 if (atomic_read(&mm->mm_users) == 1) {
1057 mm->cpu_vm_mask = cpumask_of_cpu(cpu);
1058 goto local_flush_and_out;
1061 smp_cross_call_masked(&xcall_flush_tlb_mm,
1062 ctx, 0, 0,
1063 &mm->cpu_vm_mask);
1065 local_flush_and_out:
1066 __flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1068 put_cpu();
1071 void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1073 u32 ctx = CTX_HWBITS(mm->context);
1074 int cpu = get_cpu();
1076 if (mm == current->active_mm && atomic_read(&mm->mm_users) == 1)
1077 mm->cpu_vm_mask = cpumask_of_cpu(cpu);
1078 else
1079 smp_cross_call_masked(&xcall_flush_tlb_pending,
1080 ctx, nr, (unsigned long) vaddrs,
1081 &mm->cpu_vm_mask);
1083 __flush_tlb_pending(ctx, nr, vaddrs);
1085 put_cpu();
1088 void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1090 start &= PAGE_MASK;
1091 end = PAGE_ALIGN(end);
1092 if (start != end) {
1093 smp_cross_call(&xcall_flush_tlb_kernel_range,
1094 0, start, end);
1096 __flush_tlb_kernel_range(start, end);
1100 /* CPU capture. */
1101 /* #define CAPTURE_DEBUG */
1102 extern unsigned long xcall_capture;
1104 static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1105 static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1106 static unsigned long penguins_are_doing_time;
1108 void smp_capture(void)
1110 int result = atomic_add_ret(1, &smp_capture_depth);
1112 if (result == 1) {
1113 int ncpus = num_online_cpus();
1115 #ifdef CAPTURE_DEBUG
1116 printk("CPU[%d]: Sending penguins to jail...",
1117 smp_processor_id());
1118 #endif
1119 penguins_are_doing_time = 1;
1120 membar_storestore_loadstore();
1121 atomic_inc(&smp_capture_registry);
1122 smp_cross_call(&xcall_capture, 0, 0, 0);
1123 while (atomic_read(&smp_capture_registry) != ncpus)
1124 rmb();
1125 #ifdef CAPTURE_DEBUG
1126 printk("done\n");
1127 #endif
1131 void smp_release(void)
1133 if (atomic_dec_and_test(&smp_capture_depth)) {
1134 #ifdef CAPTURE_DEBUG
1135 printk("CPU[%d]: Giving pardon to "
1136 "imprisoned penguins\n",
1137 smp_processor_id());
1138 #endif
1139 penguins_are_doing_time = 0;
1140 membar_storeload_storestore();
1141 atomic_dec(&smp_capture_registry);
1145 /* Imprisoned penguins run with %pil == 15, but PSTATE_IE set, so they
1146 * can service tlb flush xcalls...
1148 extern void prom_world(int);
1150 void smp_penguin_jailcell(int irq, struct pt_regs *regs)
1152 clear_softint(1 << irq);
1154 preempt_disable();
1156 __asm__ __volatile__("flushw");
1157 prom_world(1);
1158 atomic_inc(&smp_capture_registry);
1159 membar_storeload_storestore();
1160 while (penguins_are_doing_time)
1161 rmb();
1162 atomic_dec(&smp_capture_registry);
1163 prom_world(0);
1165 preempt_enable();
1168 /* /proc/profile writes can call this, don't __init it please. */
1169 int setup_profiling_timer(unsigned int multiplier)
1171 return -EINVAL;
1174 void __init smp_prepare_cpus(unsigned int max_cpus)
1178 void __devinit smp_prepare_boot_cpu(void)
1182 void __init smp_setup_processor_id(void)
1184 if (tlb_type == spitfire)
1185 xcall_deliver = spitfire_xcall_deliver;
1186 else if (tlb_type == cheetah || tlb_type == cheetah_plus)
1187 xcall_deliver = cheetah_xcall_deliver;
1188 else
1189 xcall_deliver = hypervisor_xcall_deliver;
1192 void __devinit smp_fill_in_sib_core_maps(void)
1194 unsigned int i;
1196 for_each_present_cpu(i) {
1197 unsigned int j;
1199 cpus_clear(cpu_core_map[i]);
1200 if (cpu_data(i).core_id == 0) {
1201 cpu_set(i, cpu_core_map[i]);
1202 continue;
1205 for_each_present_cpu(j) {
1206 if (cpu_data(i).core_id ==
1207 cpu_data(j).core_id)
1208 cpu_set(j, cpu_core_map[i]);
1212 for_each_present_cpu(i) {
1213 unsigned int j;
1215 cpus_clear(per_cpu(cpu_sibling_map, i));
1216 if (cpu_data(i).proc_id == -1) {
1217 cpu_set(i, per_cpu(cpu_sibling_map, i));
1218 continue;
1221 for_each_present_cpu(j) {
1222 if (cpu_data(i).proc_id ==
1223 cpu_data(j).proc_id)
1224 cpu_set(j, per_cpu(cpu_sibling_map, i));
1229 int __cpuinit __cpu_up(unsigned int cpu)
1231 int ret = smp_boot_one_cpu(cpu);
1233 if (!ret) {
1234 cpu_set(cpu, smp_commenced_mask);
1235 while (!cpu_isset(cpu, cpu_online_map))
1236 mb();
1237 if (!cpu_isset(cpu, cpu_online_map)) {
1238 ret = -ENODEV;
1239 } else {
1240 /* On SUN4V, writes to %tick and %stick are
1241 * not allowed.
1243 if (tlb_type != hypervisor)
1244 smp_synchronize_one_tick(cpu);
1247 return ret;
1250 #ifdef CONFIG_HOTPLUG_CPU
1251 void cpu_play_dead(void)
1253 int cpu = smp_processor_id();
1254 unsigned long pstate;
1256 idle_task_exit();
1258 if (tlb_type == hypervisor) {
1259 struct trap_per_cpu *tb = &trap_block[cpu];
1261 sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO,
1262 tb->cpu_mondo_pa, 0);
1263 sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO,
1264 tb->dev_mondo_pa, 0);
1265 sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR,
1266 tb->resum_mondo_pa, 0);
1267 sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR,
1268 tb->nonresum_mondo_pa, 0);
1271 cpu_clear(cpu, smp_commenced_mask);
1272 membar_safe("#Sync");
1274 local_irq_disable();
1276 __asm__ __volatile__(
1277 "rdpr %%pstate, %0\n\t"
1278 "wrpr %0, %1, %%pstate"
1279 : "=r" (pstate)
1280 : "i" (PSTATE_IE));
1282 while (1)
1283 barrier();
1286 int __cpu_disable(void)
1288 int cpu = smp_processor_id();
1289 cpuinfo_sparc *c;
1290 int i;
1292 for_each_cpu_mask(i, cpu_core_map[cpu])
1293 cpu_clear(cpu, cpu_core_map[i]);
1294 cpus_clear(cpu_core_map[cpu]);
1296 for_each_cpu_mask(i, per_cpu(cpu_sibling_map, cpu))
1297 cpu_clear(cpu, per_cpu(cpu_sibling_map, i));
1298 cpus_clear(per_cpu(cpu_sibling_map, cpu));
1300 c = &cpu_data(cpu);
1302 c->core_id = 0;
1303 c->proc_id = -1;
1305 spin_lock(&call_lock);
1306 cpu_clear(cpu, cpu_online_map);
1307 spin_unlock(&call_lock);
1309 smp_wmb();
1311 /* Make sure no interrupts point to this cpu. */
1312 fixup_irqs();
1314 local_irq_enable();
1315 mdelay(1);
1316 local_irq_disable();
1318 return 0;
1321 void __cpu_die(unsigned int cpu)
1323 int i;
1325 for (i = 0; i < 100; i++) {
1326 smp_rmb();
1327 if (!cpu_isset(cpu, smp_commenced_mask))
1328 break;
1329 msleep(100);
1331 if (cpu_isset(cpu, smp_commenced_mask)) {
1332 printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1333 } else {
1334 #if defined(CONFIG_SUN_LDOMS)
1335 unsigned long hv_err;
1336 int limit = 100;
1338 do {
1339 hv_err = sun4v_cpu_stop(cpu);
1340 if (hv_err == HV_EOK) {
1341 cpu_clear(cpu, cpu_present_map);
1342 break;
1344 } while (--limit > 0);
1345 if (limit <= 0) {
1346 printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n",
1347 hv_err);
1349 #endif
1352 #endif
1354 void __init smp_cpus_done(unsigned int max_cpus)
1358 void smp_send_reschedule(int cpu)
1360 xcall_deliver((u64) &xcall_receive_signal, 0, 0,
1361 &cpumask_of_cpu(cpu));
1364 void smp_receive_signal_client(int irq, struct pt_regs *regs)
1366 clear_softint(1 << irq);
1369 /* This is a nop because we capture all other cpus
1370 * anyways when making the PROM active.
1372 void smp_send_stop(void)
1376 unsigned long __per_cpu_base __read_mostly;
1377 unsigned long __per_cpu_shift __read_mostly;
1379 EXPORT_SYMBOL(__per_cpu_base);
1380 EXPORT_SYMBOL(__per_cpu_shift);
1382 void __init real_setup_per_cpu_areas(void)
1384 unsigned long paddr, goal, size, i;
1385 char *ptr;
1387 /* Copy section for each CPU (we discard the original) */
1388 goal = PERCPU_ENOUGH_ROOM;
1390 __per_cpu_shift = PAGE_SHIFT;
1391 for (size = PAGE_SIZE; size < goal; size <<= 1UL)
1392 __per_cpu_shift++;
1394 paddr = lmb_alloc(size * NR_CPUS, PAGE_SIZE);
1395 if (!paddr) {
1396 prom_printf("Cannot allocate per-cpu memory.\n");
1397 prom_halt();
1400 ptr = __va(paddr);
1401 __per_cpu_base = ptr - __per_cpu_start;
1403 for (i = 0; i < NR_CPUS; i++, ptr += size)
1404 memcpy(ptr, __per_cpu_start, __per_cpu_end - __per_cpu_start);
1406 /* Setup %g5 for the boot cpu. */
1407 __local_per_cpu_offset = __per_cpu_offset(smp_processor_id());