V4L/DVB (9611): em28xx: experimental support for HVR-950 IR
[linux-2.6/mini2440.git] / mm / memory.c
blobf01b7eed6e16c4e3f32e039b7f2223ca598f40aa
1 /*
2 * linux/mm/memory.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/rmap.h>
49 #include <linux/module.h>
50 #include <linux/delayacct.h>
51 #include <linux/init.h>
52 #include <linux/writeback.h>
53 #include <linux/memcontrol.h>
54 #include <linux/mmu_notifier.h>
56 #include <asm/pgalloc.h>
57 #include <asm/uaccess.h>
58 #include <asm/tlb.h>
59 #include <asm/tlbflush.h>
60 #include <asm/pgtable.h>
62 #include <linux/swapops.h>
63 #include <linux/elf.h>
65 #include "internal.h"
67 #ifndef CONFIG_NEED_MULTIPLE_NODES
68 /* use the per-pgdat data instead for discontigmem - mbligh */
69 unsigned long max_mapnr;
70 struct page *mem_map;
72 EXPORT_SYMBOL(max_mapnr);
73 EXPORT_SYMBOL(mem_map);
74 #endif
76 unsigned long num_physpages;
78 * A number of key systems in x86 including ioremap() rely on the assumption
79 * that high_memory defines the upper bound on direct map memory, then end
80 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
81 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
82 * and ZONE_HIGHMEM.
84 void * high_memory;
86 EXPORT_SYMBOL(num_physpages);
87 EXPORT_SYMBOL(high_memory);
90 * Randomize the address space (stacks, mmaps, brk, etc.).
92 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
93 * as ancient (libc5 based) binaries can segfault. )
95 int randomize_va_space __read_mostly =
96 #ifdef CONFIG_COMPAT_BRK
98 #else
100 #endif
102 static int __init disable_randmaps(char *s)
104 randomize_va_space = 0;
105 return 1;
107 __setup("norandmaps", disable_randmaps);
111 * If a p?d_bad entry is found while walking page tables, report
112 * the error, before resetting entry to p?d_none. Usually (but
113 * very seldom) called out from the p?d_none_or_clear_bad macros.
116 void pgd_clear_bad(pgd_t *pgd)
118 pgd_ERROR(*pgd);
119 pgd_clear(pgd);
122 void pud_clear_bad(pud_t *pud)
124 pud_ERROR(*pud);
125 pud_clear(pud);
128 void pmd_clear_bad(pmd_t *pmd)
130 pmd_ERROR(*pmd);
131 pmd_clear(pmd);
135 * Note: this doesn't free the actual pages themselves. That
136 * has been handled earlier when unmapping all the memory regions.
138 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
140 pgtable_t token = pmd_pgtable(*pmd);
141 pmd_clear(pmd);
142 pte_free_tlb(tlb, token);
143 tlb->mm->nr_ptes--;
146 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
147 unsigned long addr, unsigned long end,
148 unsigned long floor, unsigned long ceiling)
150 pmd_t *pmd;
151 unsigned long next;
152 unsigned long start;
154 start = addr;
155 pmd = pmd_offset(pud, addr);
156 do {
157 next = pmd_addr_end(addr, end);
158 if (pmd_none_or_clear_bad(pmd))
159 continue;
160 free_pte_range(tlb, pmd);
161 } while (pmd++, addr = next, addr != end);
163 start &= PUD_MASK;
164 if (start < floor)
165 return;
166 if (ceiling) {
167 ceiling &= PUD_MASK;
168 if (!ceiling)
169 return;
171 if (end - 1 > ceiling - 1)
172 return;
174 pmd = pmd_offset(pud, start);
175 pud_clear(pud);
176 pmd_free_tlb(tlb, pmd);
179 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
180 unsigned long addr, unsigned long end,
181 unsigned long floor, unsigned long ceiling)
183 pud_t *pud;
184 unsigned long next;
185 unsigned long start;
187 start = addr;
188 pud = pud_offset(pgd, addr);
189 do {
190 next = pud_addr_end(addr, end);
191 if (pud_none_or_clear_bad(pud))
192 continue;
193 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
194 } while (pud++, addr = next, addr != end);
196 start &= PGDIR_MASK;
197 if (start < floor)
198 return;
199 if (ceiling) {
200 ceiling &= PGDIR_MASK;
201 if (!ceiling)
202 return;
204 if (end - 1 > ceiling - 1)
205 return;
207 pud = pud_offset(pgd, start);
208 pgd_clear(pgd);
209 pud_free_tlb(tlb, pud);
213 * This function frees user-level page tables of a process.
215 * Must be called with pagetable lock held.
217 void free_pgd_range(struct mmu_gather *tlb,
218 unsigned long addr, unsigned long end,
219 unsigned long floor, unsigned long ceiling)
221 pgd_t *pgd;
222 unsigned long next;
223 unsigned long start;
226 * The next few lines have given us lots of grief...
228 * Why are we testing PMD* at this top level? Because often
229 * there will be no work to do at all, and we'd prefer not to
230 * go all the way down to the bottom just to discover that.
232 * Why all these "- 1"s? Because 0 represents both the bottom
233 * of the address space and the top of it (using -1 for the
234 * top wouldn't help much: the masks would do the wrong thing).
235 * The rule is that addr 0 and floor 0 refer to the bottom of
236 * the address space, but end 0 and ceiling 0 refer to the top
237 * Comparisons need to use "end - 1" and "ceiling - 1" (though
238 * that end 0 case should be mythical).
240 * Wherever addr is brought up or ceiling brought down, we must
241 * be careful to reject "the opposite 0" before it confuses the
242 * subsequent tests. But what about where end is brought down
243 * by PMD_SIZE below? no, end can't go down to 0 there.
245 * Whereas we round start (addr) and ceiling down, by different
246 * masks at different levels, in order to test whether a table
247 * now has no other vmas using it, so can be freed, we don't
248 * bother to round floor or end up - the tests don't need that.
251 addr &= PMD_MASK;
252 if (addr < floor) {
253 addr += PMD_SIZE;
254 if (!addr)
255 return;
257 if (ceiling) {
258 ceiling &= PMD_MASK;
259 if (!ceiling)
260 return;
262 if (end - 1 > ceiling - 1)
263 end -= PMD_SIZE;
264 if (addr > end - 1)
265 return;
267 start = addr;
268 pgd = pgd_offset(tlb->mm, addr);
269 do {
270 next = pgd_addr_end(addr, end);
271 if (pgd_none_or_clear_bad(pgd))
272 continue;
273 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
274 } while (pgd++, addr = next, addr != end);
277 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
278 unsigned long floor, unsigned long ceiling)
280 while (vma) {
281 struct vm_area_struct *next = vma->vm_next;
282 unsigned long addr = vma->vm_start;
285 * Hide vma from rmap and vmtruncate before freeing pgtables
287 anon_vma_unlink(vma);
288 unlink_file_vma(vma);
290 if (is_vm_hugetlb_page(vma)) {
291 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
292 floor, next? next->vm_start: ceiling);
293 } else {
295 * Optimization: gather nearby vmas into one call down
297 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
298 && !is_vm_hugetlb_page(next)) {
299 vma = next;
300 next = vma->vm_next;
301 anon_vma_unlink(vma);
302 unlink_file_vma(vma);
304 free_pgd_range(tlb, addr, vma->vm_end,
305 floor, next? next->vm_start: ceiling);
307 vma = next;
311 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
313 pgtable_t new = pte_alloc_one(mm, address);
314 if (!new)
315 return -ENOMEM;
318 * Ensure all pte setup (eg. pte page lock and page clearing) are
319 * visible before the pte is made visible to other CPUs by being
320 * put into page tables.
322 * The other side of the story is the pointer chasing in the page
323 * table walking code (when walking the page table without locking;
324 * ie. most of the time). Fortunately, these data accesses consist
325 * of a chain of data-dependent loads, meaning most CPUs (alpha
326 * being the notable exception) will already guarantee loads are
327 * seen in-order. See the alpha page table accessors for the
328 * smp_read_barrier_depends() barriers in page table walking code.
330 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
332 spin_lock(&mm->page_table_lock);
333 if (!pmd_present(*pmd)) { /* Has another populated it ? */
334 mm->nr_ptes++;
335 pmd_populate(mm, pmd, new);
336 new = NULL;
338 spin_unlock(&mm->page_table_lock);
339 if (new)
340 pte_free(mm, new);
341 return 0;
344 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
346 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
347 if (!new)
348 return -ENOMEM;
350 smp_wmb(); /* See comment in __pte_alloc */
352 spin_lock(&init_mm.page_table_lock);
353 if (!pmd_present(*pmd)) { /* Has another populated it ? */
354 pmd_populate_kernel(&init_mm, pmd, new);
355 new = NULL;
357 spin_unlock(&init_mm.page_table_lock);
358 if (new)
359 pte_free_kernel(&init_mm, new);
360 return 0;
363 static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
365 if (file_rss)
366 add_mm_counter(mm, file_rss, file_rss);
367 if (anon_rss)
368 add_mm_counter(mm, anon_rss, anon_rss);
372 * This function is called to print an error when a bad pte
373 * is found. For example, we might have a PFN-mapped pte in
374 * a region that doesn't allow it.
376 * The calling function must still handle the error.
378 static void print_bad_pte(struct vm_area_struct *vma, pte_t pte,
379 unsigned long vaddr)
381 printk(KERN_ERR "Bad pte = %08llx, process = %s, "
382 "vm_flags = %lx, vaddr = %lx\n",
383 (long long)pte_val(pte),
384 (vma->vm_mm == current->mm ? current->comm : "???"),
385 vma->vm_flags, vaddr);
386 dump_stack();
389 static inline int is_cow_mapping(unsigned int flags)
391 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
395 * vm_normal_page -- This function gets the "struct page" associated with a pte.
397 * "Special" mappings do not wish to be associated with a "struct page" (either
398 * it doesn't exist, or it exists but they don't want to touch it). In this
399 * case, NULL is returned here. "Normal" mappings do have a struct page.
401 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
402 * pte bit, in which case this function is trivial. Secondly, an architecture
403 * may not have a spare pte bit, which requires a more complicated scheme,
404 * described below.
406 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
407 * special mapping (even if there are underlying and valid "struct pages").
408 * COWed pages of a VM_PFNMAP are always normal.
410 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
411 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
412 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
413 * mapping will always honor the rule
415 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
417 * And for normal mappings this is false.
419 * This restricts such mappings to be a linear translation from virtual address
420 * to pfn. To get around this restriction, we allow arbitrary mappings so long
421 * as the vma is not a COW mapping; in that case, we know that all ptes are
422 * special (because none can have been COWed).
425 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
427 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
428 * page" backing, however the difference is that _all_ pages with a struct
429 * page (that is, those where pfn_valid is true) are refcounted and considered
430 * normal pages by the VM. The disadvantage is that pages are refcounted
431 * (which can be slower and simply not an option for some PFNMAP users). The
432 * advantage is that we don't have to follow the strict linearity rule of
433 * PFNMAP mappings in order to support COWable mappings.
436 #ifdef __HAVE_ARCH_PTE_SPECIAL
437 # define HAVE_PTE_SPECIAL 1
438 #else
439 # define HAVE_PTE_SPECIAL 0
440 #endif
441 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
442 pte_t pte)
444 unsigned long pfn;
446 if (HAVE_PTE_SPECIAL) {
447 if (likely(!pte_special(pte))) {
448 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
449 return pte_page(pte);
451 VM_BUG_ON(!(vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
452 return NULL;
455 /* !HAVE_PTE_SPECIAL case follows: */
457 pfn = pte_pfn(pte);
459 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
460 if (vma->vm_flags & VM_MIXEDMAP) {
461 if (!pfn_valid(pfn))
462 return NULL;
463 goto out;
464 } else {
465 unsigned long off;
466 off = (addr - vma->vm_start) >> PAGE_SHIFT;
467 if (pfn == vma->vm_pgoff + off)
468 return NULL;
469 if (!is_cow_mapping(vma->vm_flags))
470 return NULL;
474 VM_BUG_ON(!pfn_valid(pfn));
477 * NOTE! We still have PageReserved() pages in the page tables.
479 * eg. VDSO mappings can cause them to exist.
481 out:
482 return pfn_to_page(pfn);
486 * copy one vm_area from one task to the other. Assumes the page tables
487 * already present in the new task to be cleared in the whole range
488 * covered by this vma.
491 static inline void
492 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
493 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
494 unsigned long addr, int *rss)
496 unsigned long vm_flags = vma->vm_flags;
497 pte_t pte = *src_pte;
498 struct page *page;
500 /* pte contains position in swap or file, so copy. */
501 if (unlikely(!pte_present(pte))) {
502 if (!pte_file(pte)) {
503 swp_entry_t entry = pte_to_swp_entry(pte);
505 swap_duplicate(entry);
506 /* make sure dst_mm is on swapoff's mmlist. */
507 if (unlikely(list_empty(&dst_mm->mmlist))) {
508 spin_lock(&mmlist_lock);
509 if (list_empty(&dst_mm->mmlist))
510 list_add(&dst_mm->mmlist,
511 &src_mm->mmlist);
512 spin_unlock(&mmlist_lock);
514 if (is_write_migration_entry(entry) &&
515 is_cow_mapping(vm_flags)) {
517 * COW mappings require pages in both parent
518 * and child to be set to read.
520 make_migration_entry_read(&entry);
521 pte = swp_entry_to_pte(entry);
522 set_pte_at(src_mm, addr, src_pte, pte);
525 goto out_set_pte;
529 * If it's a COW mapping, write protect it both
530 * in the parent and the child
532 if (is_cow_mapping(vm_flags)) {
533 ptep_set_wrprotect(src_mm, addr, src_pte);
534 pte = pte_wrprotect(pte);
538 * If it's a shared mapping, mark it clean in
539 * the child
541 if (vm_flags & VM_SHARED)
542 pte = pte_mkclean(pte);
543 pte = pte_mkold(pte);
545 page = vm_normal_page(vma, addr, pte);
546 if (page) {
547 get_page(page);
548 page_dup_rmap(page, vma, addr);
549 rss[!!PageAnon(page)]++;
552 out_set_pte:
553 set_pte_at(dst_mm, addr, dst_pte, pte);
556 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
557 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
558 unsigned long addr, unsigned long end)
560 pte_t *src_pte, *dst_pte;
561 spinlock_t *src_ptl, *dst_ptl;
562 int progress = 0;
563 int rss[2];
565 again:
566 rss[1] = rss[0] = 0;
567 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
568 if (!dst_pte)
569 return -ENOMEM;
570 src_pte = pte_offset_map_nested(src_pmd, addr);
571 src_ptl = pte_lockptr(src_mm, src_pmd);
572 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
573 arch_enter_lazy_mmu_mode();
575 do {
577 * We are holding two locks at this point - either of them
578 * could generate latencies in another task on another CPU.
580 if (progress >= 32) {
581 progress = 0;
582 if (need_resched() ||
583 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
584 break;
586 if (pte_none(*src_pte)) {
587 progress++;
588 continue;
590 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
591 progress += 8;
592 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
594 arch_leave_lazy_mmu_mode();
595 spin_unlock(src_ptl);
596 pte_unmap_nested(src_pte - 1);
597 add_mm_rss(dst_mm, rss[0], rss[1]);
598 pte_unmap_unlock(dst_pte - 1, dst_ptl);
599 cond_resched();
600 if (addr != end)
601 goto again;
602 return 0;
605 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
606 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
607 unsigned long addr, unsigned long end)
609 pmd_t *src_pmd, *dst_pmd;
610 unsigned long next;
612 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
613 if (!dst_pmd)
614 return -ENOMEM;
615 src_pmd = pmd_offset(src_pud, addr);
616 do {
617 next = pmd_addr_end(addr, end);
618 if (pmd_none_or_clear_bad(src_pmd))
619 continue;
620 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
621 vma, addr, next))
622 return -ENOMEM;
623 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
624 return 0;
627 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
628 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
629 unsigned long addr, unsigned long end)
631 pud_t *src_pud, *dst_pud;
632 unsigned long next;
634 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
635 if (!dst_pud)
636 return -ENOMEM;
637 src_pud = pud_offset(src_pgd, addr);
638 do {
639 next = pud_addr_end(addr, end);
640 if (pud_none_or_clear_bad(src_pud))
641 continue;
642 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
643 vma, addr, next))
644 return -ENOMEM;
645 } while (dst_pud++, src_pud++, addr = next, addr != end);
646 return 0;
649 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
650 struct vm_area_struct *vma)
652 pgd_t *src_pgd, *dst_pgd;
653 unsigned long next;
654 unsigned long addr = vma->vm_start;
655 unsigned long end = vma->vm_end;
656 int ret;
659 * Don't copy ptes where a page fault will fill them correctly.
660 * Fork becomes much lighter when there are big shared or private
661 * readonly mappings. The tradeoff is that copy_page_range is more
662 * efficient than faulting.
664 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
665 if (!vma->anon_vma)
666 return 0;
669 if (is_vm_hugetlb_page(vma))
670 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
672 if (unlikely(is_pfn_mapping(vma))) {
674 * We do not free on error cases below as remove_vma
675 * gets called on error from higher level routine
677 ret = track_pfn_vma_copy(vma);
678 if (ret)
679 return ret;
683 * We need to invalidate the secondary MMU mappings only when
684 * there could be a permission downgrade on the ptes of the
685 * parent mm. And a permission downgrade will only happen if
686 * is_cow_mapping() returns true.
688 if (is_cow_mapping(vma->vm_flags))
689 mmu_notifier_invalidate_range_start(src_mm, addr, end);
691 ret = 0;
692 dst_pgd = pgd_offset(dst_mm, addr);
693 src_pgd = pgd_offset(src_mm, addr);
694 do {
695 next = pgd_addr_end(addr, end);
696 if (pgd_none_or_clear_bad(src_pgd))
697 continue;
698 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
699 vma, addr, next))) {
700 ret = -ENOMEM;
701 break;
703 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
705 if (is_cow_mapping(vma->vm_flags))
706 mmu_notifier_invalidate_range_end(src_mm,
707 vma->vm_start, end);
708 return ret;
711 static unsigned long zap_pte_range(struct mmu_gather *tlb,
712 struct vm_area_struct *vma, pmd_t *pmd,
713 unsigned long addr, unsigned long end,
714 long *zap_work, struct zap_details *details)
716 struct mm_struct *mm = tlb->mm;
717 pte_t *pte;
718 spinlock_t *ptl;
719 int file_rss = 0;
720 int anon_rss = 0;
722 pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
723 arch_enter_lazy_mmu_mode();
724 do {
725 pte_t ptent = *pte;
726 if (pte_none(ptent)) {
727 (*zap_work)--;
728 continue;
731 (*zap_work) -= PAGE_SIZE;
733 if (pte_present(ptent)) {
734 struct page *page;
736 page = vm_normal_page(vma, addr, ptent);
737 if (unlikely(details) && page) {
739 * unmap_shared_mapping_pages() wants to
740 * invalidate cache without truncating:
741 * unmap shared but keep private pages.
743 if (details->check_mapping &&
744 details->check_mapping != page->mapping)
745 continue;
747 * Each page->index must be checked when
748 * invalidating or truncating nonlinear.
750 if (details->nonlinear_vma &&
751 (page->index < details->first_index ||
752 page->index > details->last_index))
753 continue;
755 ptent = ptep_get_and_clear_full(mm, addr, pte,
756 tlb->fullmm);
757 tlb_remove_tlb_entry(tlb, pte, addr);
758 if (unlikely(!page))
759 continue;
760 if (unlikely(details) && details->nonlinear_vma
761 && linear_page_index(details->nonlinear_vma,
762 addr) != page->index)
763 set_pte_at(mm, addr, pte,
764 pgoff_to_pte(page->index));
765 if (PageAnon(page))
766 anon_rss--;
767 else {
768 if (pte_dirty(ptent))
769 set_page_dirty(page);
770 if (pte_young(ptent))
771 SetPageReferenced(page);
772 file_rss--;
774 page_remove_rmap(page, vma);
775 tlb_remove_page(tlb, page);
776 continue;
779 * If details->check_mapping, we leave swap entries;
780 * if details->nonlinear_vma, we leave file entries.
782 if (unlikely(details))
783 continue;
784 if (!pte_file(ptent))
785 free_swap_and_cache(pte_to_swp_entry(ptent));
786 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
787 } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
789 add_mm_rss(mm, file_rss, anon_rss);
790 arch_leave_lazy_mmu_mode();
791 pte_unmap_unlock(pte - 1, ptl);
793 return addr;
796 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
797 struct vm_area_struct *vma, pud_t *pud,
798 unsigned long addr, unsigned long end,
799 long *zap_work, struct zap_details *details)
801 pmd_t *pmd;
802 unsigned long next;
804 pmd = pmd_offset(pud, addr);
805 do {
806 next = pmd_addr_end(addr, end);
807 if (pmd_none_or_clear_bad(pmd)) {
808 (*zap_work)--;
809 continue;
811 next = zap_pte_range(tlb, vma, pmd, addr, next,
812 zap_work, details);
813 } while (pmd++, addr = next, (addr != end && *zap_work > 0));
815 return addr;
818 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
819 struct vm_area_struct *vma, pgd_t *pgd,
820 unsigned long addr, unsigned long end,
821 long *zap_work, struct zap_details *details)
823 pud_t *pud;
824 unsigned long next;
826 pud = pud_offset(pgd, addr);
827 do {
828 next = pud_addr_end(addr, end);
829 if (pud_none_or_clear_bad(pud)) {
830 (*zap_work)--;
831 continue;
833 next = zap_pmd_range(tlb, vma, pud, addr, next,
834 zap_work, details);
835 } while (pud++, addr = next, (addr != end && *zap_work > 0));
837 return addr;
840 static unsigned long unmap_page_range(struct mmu_gather *tlb,
841 struct vm_area_struct *vma,
842 unsigned long addr, unsigned long end,
843 long *zap_work, struct zap_details *details)
845 pgd_t *pgd;
846 unsigned long next;
848 if (details && !details->check_mapping && !details->nonlinear_vma)
849 details = NULL;
851 BUG_ON(addr >= end);
852 tlb_start_vma(tlb, vma);
853 pgd = pgd_offset(vma->vm_mm, addr);
854 do {
855 next = pgd_addr_end(addr, end);
856 if (pgd_none_or_clear_bad(pgd)) {
857 (*zap_work)--;
858 continue;
860 next = zap_pud_range(tlb, vma, pgd, addr, next,
861 zap_work, details);
862 } while (pgd++, addr = next, (addr != end && *zap_work > 0));
863 tlb_end_vma(tlb, vma);
865 return addr;
868 #ifdef CONFIG_PREEMPT
869 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
870 #else
871 /* No preempt: go for improved straight-line efficiency */
872 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
873 #endif
876 * unmap_vmas - unmap a range of memory covered by a list of vma's
877 * @tlbp: address of the caller's struct mmu_gather
878 * @vma: the starting vma
879 * @start_addr: virtual address at which to start unmapping
880 * @end_addr: virtual address at which to end unmapping
881 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
882 * @details: details of nonlinear truncation or shared cache invalidation
884 * Returns the end address of the unmapping (restart addr if interrupted).
886 * Unmap all pages in the vma list.
888 * We aim to not hold locks for too long (for scheduling latency reasons).
889 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
890 * return the ending mmu_gather to the caller.
892 * Only addresses between `start' and `end' will be unmapped.
894 * The VMA list must be sorted in ascending virtual address order.
896 * unmap_vmas() assumes that the caller will flush the whole unmapped address
897 * range after unmap_vmas() returns. So the only responsibility here is to
898 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
899 * drops the lock and schedules.
901 unsigned long unmap_vmas(struct mmu_gather **tlbp,
902 struct vm_area_struct *vma, unsigned long start_addr,
903 unsigned long end_addr, unsigned long *nr_accounted,
904 struct zap_details *details)
906 long zap_work = ZAP_BLOCK_SIZE;
907 unsigned long tlb_start = 0; /* For tlb_finish_mmu */
908 int tlb_start_valid = 0;
909 unsigned long start = start_addr;
910 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
911 int fullmm = (*tlbp)->fullmm;
912 struct mm_struct *mm = vma->vm_mm;
914 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
915 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
916 unsigned long end;
918 start = max(vma->vm_start, start_addr);
919 if (start >= vma->vm_end)
920 continue;
921 end = min(vma->vm_end, end_addr);
922 if (end <= vma->vm_start)
923 continue;
925 if (vma->vm_flags & VM_ACCOUNT)
926 *nr_accounted += (end - start) >> PAGE_SHIFT;
928 if (unlikely(is_pfn_mapping(vma)))
929 untrack_pfn_vma(vma, 0, 0);
931 while (start != end) {
932 if (!tlb_start_valid) {
933 tlb_start = start;
934 tlb_start_valid = 1;
937 if (unlikely(is_vm_hugetlb_page(vma))) {
939 * It is undesirable to test vma->vm_file as it
940 * should be non-null for valid hugetlb area.
941 * However, vm_file will be NULL in the error
942 * cleanup path of do_mmap_pgoff. When
943 * hugetlbfs ->mmap method fails,
944 * do_mmap_pgoff() nullifies vma->vm_file
945 * before calling this function to clean up.
946 * Since no pte has actually been setup, it is
947 * safe to do nothing in this case.
949 if (vma->vm_file) {
950 unmap_hugepage_range(vma, start, end, NULL);
951 zap_work -= (end - start) /
952 pages_per_huge_page(hstate_vma(vma));
955 start = end;
956 } else
957 start = unmap_page_range(*tlbp, vma,
958 start, end, &zap_work, details);
960 if (zap_work > 0) {
961 BUG_ON(start != end);
962 break;
965 tlb_finish_mmu(*tlbp, tlb_start, start);
967 if (need_resched() ||
968 (i_mmap_lock && spin_needbreak(i_mmap_lock))) {
969 if (i_mmap_lock) {
970 *tlbp = NULL;
971 goto out;
973 cond_resched();
976 *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
977 tlb_start_valid = 0;
978 zap_work = ZAP_BLOCK_SIZE;
981 out:
982 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
983 return start; /* which is now the end (or restart) address */
987 * zap_page_range - remove user pages in a given range
988 * @vma: vm_area_struct holding the applicable pages
989 * @address: starting address of pages to zap
990 * @size: number of bytes to zap
991 * @details: details of nonlinear truncation or shared cache invalidation
993 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
994 unsigned long size, struct zap_details *details)
996 struct mm_struct *mm = vma->vm_mm;
997 struct mmu_gather *tlb;
998 unsigned long end = address + size;
999 unsigned long nr_accounted = 0;
1001 lru_add_drain();
1002 tlb = tlb_gather_mmu(mm, 0);
1003 update_hiwater_rss(mm);
1004 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
1005 if (tlb)
1006 tlb_finish_mmu(tlb, address, end);
1007 return end;
1011 * zap_vma_ptes - remove ptes mapping the vma
1012 * @vma: vm_area_struct holding ptes to be zapped
1013 * @address: starting address of pages to zap
1014 * @size: number of bytes to zap
1016 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1018 * The entire address range must be fully contained within the vma.
1020 * Returns 0 if successful.
1022 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1023 unsigned long size)
1025 if (address < vma->vm_start || address + size > vma->vm_end ||
1026 !(vma->vm_flags & VM_PFNMAP))
1027 return -1;
1028 zap_page_range(vma, address, size, NULL);
1029 return 0;
1031 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1034 * Do a quick page-table lookup for a single page.
1036 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1037 unsigned int flags)
1039 pgd_t *pgd;
1040 pud_t *pud;
1041 pmd_t *pmd;
1042 pte_t *ptep, pte;
1043 spinlock_t *ptl;
1044 struct page *page;
1045 struct mm_struct *mm = vma->vm_mm;
1047 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1048 if (!IS_ERR(page)) {
1049 BUG_ON(flags & FOLL_GET);
1050 goto out;
1053 page = NULL;
1054 pgd = pgd_offset(mm, address);
1055 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1056 goto no_page_table;
1058 pud = pud_offset(pgd, address);
1059 if (pud_none(*pud))
1060 goto no_page_table;
1061 if (pud_huge(*pud)) {
1062 BUG_ON(flags & FOLL_GET);
1063 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1064 goto out;
1066 if (unlikely(pud_bad(*pud)))
1067 goto no_page_table;
1069 pmd = pmd_offset(pud, address);
1070 if (pmd_none(*pmd))
1071 goto no_page_table;
1072 if (pmd_huge(*pmd)) {
1073 BUG_ON(flags & FOLL_GET);
1074 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1075 goto out;
1077 if (unlikely(pmd_bad(*pmd)))
1078 goto no_page_table;
1080 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1082 pte = *ptep;
1083 if (!pte_present(pte))
1084 goto no_page;
1085 if ((flags & FOLL_WRITE) && !pte_write(pte))
1086 goto unlock;
1087 page = vm_normal_page(vma, address, pte);
1088 if (unlikely(!page))
1089 goto bad_page;
1091 if (flags & FOLL_GET)
1092 get_page(page);
1093 if (flags & FOLL_TOUCH) {
1094 if ((flags & FOLL_WRITE) &&
1095 !pte_dirty(pte) && !PageDirty(page))
1096 set_page_dirty(page);
1097 mark_page_accessed(page);
1099 unlock:
1100 pte_unmap_unlock(ptep, ptl);
1101 out:
1102 return page;
1104 bad_page:
1105 pte_unmap_unlock(ptep, ptl);
1106 return ERR_PTR(-EFAULT);
1108 no_page:
1109 pte_unmap_unlock(ptep, ptl);
1110 if (!pte_none(pte))
1111 return page;
1112 /* Fall through to ZERO_PAGE handling */
1113 no_page_table:
1115 * When core dumping an enormous anonymous area that nobody
1116 * has touched so far, we don't want to allocate page tables.
1118 if (flags & FOLL_ANON) {
1119 page = ZERO_PAGE(0);
1120 if (flags & FOLL_GET)
1121 get_page(page);
1122 BUG_ON(flags & FOLL_WRITE);
1124 return page;
1127 /* Can we do the FOLL_ANON optimization? */
1128 static inline int use_zero_page(struct vm_area_struct *vma)
1131 * We don't want to optimize FOLL_ANON for make_pages_present()
1132 * when it tries to page in a VM_LOCKED region. As to VM_SHARED,
1133 * we want to get the page from the page tables to make sure
1134 * that we serialize and update with any other user of that
1135 * mapping.
1137 if (vma->vm_flags & (VM_LOCKED | VM_SHARED))
1138 return 0;
1140 * And if we have a fault routine, it's not an anonymous region.
1142 return !vma->vm_ops || !vma->vm_ops->fault;
1147 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1148 unsigned long start, int len, int flags,
1149 struct page **pages, struct vm_area_struct **vmas)
1151 int i;
1152 unsigned int vm_flags = 0;
1153 int write = !!(flags & GUP_FLAGS_WRITE);
1154 int force = !!(flags & GUP_FLAGS_FORCE);
1155 int ignore = !!(flags & GUP_FLAGS_IGNORE_VMA_PERMISSIONS);
1157 if (len <= 0)
1158 return 0;
1160 * Require read or write permissions.
1161 * If 'force' is set, we only require the "MAY" flags.
1163 vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1164 vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1165 i = 0;
1167 do {
1168 struct vm_area_struct *vma;
1169 unsigned int foll_flags;
1171 vma = find_extend_vma(mm, start);
1172 if (!vma && in_gate_area(tsk, start)) {
1173 unsigned long pg = start & PAGE_MASK;
1174 struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1175 pgd_t *pgd;
1176 pud_t *pud;
1177 pmd_t *pmd;
1178 pte_t *pte;
1180 /* user gate pages are read-only */
1181 if (!ignore && write)
1182 return i ? : -EFAULT;
1183 if (pg > TASK_SIZE)
1184 pgd = pgd_offset_k(pg);
1185 else
1186 pgd = pgd_offset_gate(mm, pg);
1187 BUG_ON(pgd_none(*pgd));
1188 pud = pud_offset(pgd, pg);
1189 BUG_ON(pud_none(*pud));
1190 pmd = pmd_offset(pud, pg);
1191 if (pmd_none(*pmd))
1192 return i ? : -EFAULT;
1193 pte = pte_offset_map(pmd, pg);
1194 if (pte_none(*pte)) {
1195 pte_unmap(pte);
1196 return i ? : -EFAULT;
1198 if (pages) {
1199 struct page *page = vm_normal_page(gate_vma, start, *pte);
1200 pages[i] = page;
1201 if (page)
1202 get_page(page);
1204 pte_unmap(pte);
1205 if (vmas)
1206 vmas[i] = gate_vma;
1207 i++;
1208 start += PAGE_SIZE;
1209 len--;
1210 continue;
1213 if (!vma ||
1214 (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1215 (!ignore && !(vm_flags & vma->vm_flags)))
1216 return i ? : -EFAULT;
1218 if (is_vm_hugetlb_page(vma)) {
1219 i = follow_hugetlb_page(mm, vma, pages, vmas,
1220 &start, &len, i, write);
1221 continue;
1224 foll_flags = FOLL_TOUCH;
1225 if (pages)
1226 foll_flags |= FOLL_GET;
1227 if (!write && use_zero_page(vma))
1228 foll_flags |= FOLL_ANON;
1230 do {
1231 struct page *page;
1234 * If tsk is ooming, cut off its access to large memory
1235 * allocations. It has a pending SIGKILL, but it can't
1236 * be processed until returning to user space.
1238 if (unlikely(test_tsk_thread_flag(tsk, TIF_MEMDIE)))
1239 return i ? i : -ENOMEM;
1241 if (write)
1242 foll_flags |= FOLL_WRITE;
1244 cond_resched();
1245 while (!(page = follow_page(vma, start, foll_flags))) {
1246 int ret;
1247 ret = handle_mm_fault(mm, vma, start,
1248 foll_flags & FOLL_WRITE);
1249 if (ret & VM_FAULT_ERROR) {
1250 if (ret & VM_FAULT_OOM)
1251 return i ? i : -ENOMEM;
1252 else if (ret & VM_FAULT_SIGBUS)
1253 return i ? i : -EFAULT;
1254 BUG();
1256 if (ret & VM_FAULT_MAJOR)
1257 tsk->maj_flt++;
1258 else
1259 tsk->min_flt++;
1262 * The VM_FAULT_WRITE bit tells us that
1263 * do_wp_page has broken COW when necessary,
1264 * even if maybe_mkwrite decided not to set
1265 * pte_write. We can thus safely do subsequent
1266 * page lookups as if they were reads.
1268 if (ret & VM_FAULT_WRITE)
1269 foll_flags &= ~FOLL_WRITE;
1271 cond_resched();
1273 if (IS_ERR(page))
1274 return i ? i : PTR_ERR(page);
1275 if (pages) {
1276 pages[i] = page;
1278 flush_anon_page(vma, page, start);
1279 flush_dcache_page(page);
1281 if (vmas)
1282 vmas[i] = vma;
1283 i++;
1284 start += PAGE_SIZE;
1285 len--;
1286 } while (len && start < vma->vm_end);
1287 } while (len);
1288 return i;
1291 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1292 unsigned long start, int len, int write, int force,
1293 struct page **pages, struct vm_area_struct **vmas)
1295 int flags = 0;
1297 if (write)
1298 flags |= GUP_FLAGS_WRITE;
1299 if (force)
1300 flags |= GUP_FLAGS_FORCE;
1302 return __get_user_pages(tsk, mm,
1303 start, len, flags,
1304 pages, vmas);
1307 EXPORT_SYMBOL(get_user_pages);
1309 pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1310 spinlock_t **ptl)
1312 pgd_t * pgd = pgd_offset(mm, addr);
1313 pud_t * pud = pud_alloc(mm, pgd, addr);
1314 if (pud) {
1315 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1316 if (pmd)
1317 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1319 return NULL;
1323 * This is the old fallback for page remapping.
1325 * For historical reasons, it only allows reserved pages. Only
1326 * old drivers should use this, and they needed to mark their
1327 * pages reserved for the old functions anyway.
1329 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1330 struct page *page, pgprot_t prot)
1332 struct mm_struct *mm = vma->vm_mm;
1333 int retval;
1334 pte_t *pte;
1335 spinlock_t *ptl;
1337 retval = -EINVAL;
1338 if (PageAnon(page))
1339 goto out;
1340 retval = -ENOMEM;
1341 flush_dcache_page(page);
1342 pte = get_locked_pte(mm, addr, &ptl);
1343 if (!pte)
1344 goto out;
1345 retval = -EBUSY;
1346 if (!pte_none(*pte))
1347 goto out_unlock;
1349 /* Ok, finally just insert the thing.. */
1350 get_page(page);
1351 inc_mm_counter(mm, file_rss);
1352 page_add_file_rmap(page);
1353 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1355 retval = 0;
1356 pte_unmap_unlock(pte, ptl);
1357 return retval;
1358 out_unlock:
1359 pte_unmap_unlock(pte, ptl);
1360 out:
1361 return retval;
1365 * vm_insert_page - insert single page into user vma
1366 * @vma: user vma to map to
1367 * @addr: target user address of this page
1368 * @page: source kernel page
1370 * This allows drivers to insert individual pages they've allocated
1371 * into a user vma.
1373 * The page has to be a nice clean _individual_ kernel allocation.
1374 * If you allocate a compound page, you need to have marked it as
1375 * such (__GFP_COMP), or manually just split the page up yourself
1376 * (see split_page()).
1378 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1379 * took an arbitrary page protection parameter. This doesn't allow
1380 * that. Your vma protection will have to be set up correctly, which
1381 * means that if you want a shared writable mapping, you'd better
1382 * ask for a shared writable mapping!
1384 * The page does not need to be reserved.
1386 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1387 struct page *page)
1389 if (addr < vma->vm_start || addr >= vma->vm_end)
1390 return -EFAULT;
1391 if (!page_count(page))
1392 return -EINVAL;
1393 vma->vm_flags |= VM_INSERTPAGE;
1394 return insert_page(vma, addr, page, vma->vm_page_prot);
1396 EXPORT_SYMBOL(vm_insert_page);
1398 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1399 unsigned long pfn, pgprot_t prot)
1401 struct mm_struct *mm = vma->vm_mm;
1402 int retval;
1403 pte_t *pte, entry;
1404 spinlock_t *ptl;
1406 retval = -ENOMEM;
1407 pte = get_locked_pte(mm, addr, &ptl);
1408 if (!pte)
1409 goto out;
1410 retval = -EBUSY;
1411 if (!pte_none(*pte))
1412 goto out_unlock;
1414 /* Ok, finally just insert the thing.. */
1415 entry = pte_mkspecial(pfn_pte(pfn, prot));
1416 set_pte_at(mm, addr, pte, entry);
1417 update_mmu_cache(vma, addr, entry); /* XXX: why not for insert_page? */
1419 retval = 0;
1420 out_unlock:
1421 pte_unmap_unlock(pte, ptl);
1422 out:
1423 return retval;
1427 * vm_insert_pfn - insert single pfn into user vma
1428 * @vma: user vma to map to
1429 * @addr: target user address of this page
1430 * @pfn: source kernel pfn
1432 * Similar to vm_inert_page, this allows drivers to insert individual pages
1433 * they've allocated into a user vma. Same comments apply.
1435 * This function should only be called from a vm_ops->fault handler, and
1436 * in that case the handler should return NULL.
1438 * vma cannot be a COW mapping.
1440 * As this is called only for pages that do not currently exist, we
1441 * do not need to flush old virtual caches or the TLB.
1443 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1444 unsigned long pfn)
1446 int ret;
1448 * Technically, architectures with pte_special can avoid all these
1449 * restrictions (same for remap_pfn_range). However we would like
1450 * consistency in testing and feature parity among all, so we should
1451 * try to keep these invariants in place for everybody.
1453 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1454 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1455 (VM_PFNMAP|VM_MIXEDMAP));
1456 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1457 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1459 if (addr < vma->vm_start || addr >= vma->vm_end)
1460 return -EFAULT;
1461 if (track_pfn_vma_new(vma, vma->vm_page_prot, pfn, PAGE_SIZE))
1462 return -EINVAL;
1464 ret = insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1466 if (ret)
1467 untrack_pfn_vma(vma, pfn, PAGE_SIZE);
1469 return ret;
1471 EXPORT_SYMBOL(vm_insert_pfn);
1473 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1474 unsigned long pfn)
1476 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1478 if (addr < vma->vm_start || addr >= vma->vm_end)
1479 return -EFAULT;
1482 * If we don't have pte special, then we have to use the pfn_valid()
1483 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1484 * refcount the page if pfn_valid is true (hence insert_page rather
1485 * than insert_pfn).
1487 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1488 struct page *page;
1490 page = pfn_to_page(pfn);
1491 return insert_page(vma, addr, page, vma->vm_page_prot);
1493 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1495 EXPORT_SYMBOL(vm_insert_mixed);
1498 * maps a range of physical memory into the requested pages. the old
1499 * mappings are removed. any references to nonexistent pages results
1500 * in null mappings (currently treated as "copy-on-access")
1502 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1503 unsigned long addr, unsigned long end,
1504 unsigned long pfn, pgprot_t prot)
1506 pte_t *pte;
1507 spinlock_t *ptl;
1509 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1510 if (!pte)
1511 return -ENOMEM;
1512 arch_enter_lazy_mmu_mode();
1513 do {
1514 BUG_ON(!pte_none(*pte));
1515 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1516 pfn++;
1517 } while (pte++, addr += PAGE_SIZE, addr != end);
1518 arch_leave_lazy_mmu_mode();
1519 pte_unmap_unlock(pte - 1, ptl);
1520 return 0;
1523 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1524 unsigned long addr, unsigned long end,
1525 unsigned long pfn, pgprot_t prot)
1527 pmd_t *pmd;
1528 unsigned long next;
1530 pfn -= addr >> PAGE_SHIFT;
1531 pmd = pmd_alloc(mm, pud, addr);
1532 if (!pmd)
1533 return -ENOMEM;
1534 do {
1535 next = pmd_addr_end(addr, end);
1536 if (remap_pte_range(mm, pmd, addr, next,
1537 pfn + (addr >> PAGE_SHIFT), prot))
1538 return -ENOMEM;
1539 } while (pmd++, addr = next, addr != end);
1540 return 0;
1543 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1544 unsigned long addr, unsigned long end,
1545 unsigned long pfn, pgprot_t prot)
1547 pud_t *pud;
1548 unsigned long next;
1550 pfn -= addr >> PAGE_SHIFT;
1551 pud = pud_alloc(mm, pgd, addr);
1552 if (!pud)
1553 return -ENOMEM;
1554 do {
1555 next = pud_addr_end(addr, end);
1556 if (remap_pmd_range(mm, pud, addr, next,
1557 pfn + (addr >> PAGE_SHIFT), prot))
1558 return -ENOMEM;
1559 } while (pud++, addr = next, addr != end);
1560 return 0;
1564 * remap_pfn_range - remap kernel memory to userspace
1565 * @vma: user vma to map to
1566 * @addr: target user address to start at
1567 * @pfn: physical address of kernel memory
1568 * @size: size of map area
1569 * @prot: page protection flags for this mapping
1571 * Note: this is only safe if the mm semaphore is held when called.
1573 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1574 unsigned long pfn, unsigned long size, pgprot_t prot)
1576 pgd_t *pgd;
1577 unsigned long next;
1578 unsigned long end = addr + PAGE_ALIGN(size);
1579 struct mm_struct *mm = vma->vm_mm;
1580 int err;
1583 * Physically remapped pages are special. Tell the
1584 * rest of the world about it:
1585 * VM_IO tells people not to look at these pages
1586 * (accesses can have side effects).
1587 * VM_RESERVED is specified all over the place, because
1588 * in 2.4 it kept swapout's vma scan off this vma; but
1589 * in 2.6 the LRU scan won't even find its pages, so this
1590 * flag means no more than count its pages in reserved_vm,
1591 * and omit it from core dump, even when VM_IO turned off.
1592 * VM_PFNMAP tells the core MM that the base pages are just
1593 * raw PFN mappings, and do not have a "struct page" associated
1594 * with them.
1596 * There's a horrible special case to handle copy-on-write
1597 * behaviour that some programs depend on. We mark the "original"
1598 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1600 if (addr == vma->vm_start && end == vma->vm_end)
1601 vma->vm_pgoff = pfn;
1602 else if (is_cow_mapping(vma->vm_flags))
1603 return -EINVAL;
1605 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1607 err = track_pfn_vma_new(vma, prot, pfn, PAGE_ALIGN(size));
1608 if (err)
1609 return -EINVAL;
1611 BUG_ON(addr >= end);
1612 pfn -= addr >> PAGE_SHIFT;
1613 pgd = pgd_offset(mm, addr);
1614 flush_cache_range(vma, addr, end);
1615 do {
1616 next = pgd_addr_end(addr, end);
1617 err = remap_pud_range(mm, pgd, addr, next,
1618 pfn + (addr >> PAGE_SHIFT), prot);
1619 if (err)
1620 break;
1621 } while (pgd++, addr = next, addr != end);
1623 if (err)
1624 untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
1626 return err;
1628 EXPORT_SYMBOL(remap_pfn_range);
1630 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1631 unsigned long addr, unsigned long end,
1632 pte_fn_t fn, void *data)
1634 pte_t *pte;
1635 int err;
1636 pgtable_t token;
1637 spinlock_t *uninitialized_var(ptl);
1639 pte = (mm == &init_mm) ?
1640 pte_alloc_kernel(pmd, addr) :
1641 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1642 if (!pte)
1643 return -ENOMEM;
1645 BUG_ON(pmd_huge(*pmd));
1647 token = pmd_pgtable(*pmd);
1649 do {
1650 err = fn(pte, token, addr, data);
1651 if (err)
1652 break;
1653 } while (pte++, addr += PAGE_SIZE, addr != end);
1655 if (mm != &init_mm)
1656 pte_unmap_unlock(pte-1, ptl);
1657 return err;
1660 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1661 unsigned long addr, unsigned long end,
1662 pte_fn_t fn, void *data)
1664 pmd_t *pmd;
1665 unsigned long next;
1666 int err;
1668 BUG_ON(pud_huge(*pud));
1670 pmd = pmd_alloc(mm, pud, addr);
1671 if (!pmd)
1672 return -ENOMEM;
1673 do {
1674 next = pmd_addr_end(addr, end);
1675 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1676 if (err)
1677 break;
1678 } while (pmd++, addr = next, addr != end);
1679 return err;
1682 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1683 unsigned long addr, unsigned long end,
1684 pte_fn_t fn, void *data)
1686 pud_t *pud;
1687 unsigned long next;
1688 int err;
1690 pud = pud_alloc(mm, pgd, addr);
1691 if (!pud)
1692 return -ENOMEM;
1693 do {
1694 next = pud_addr_end(addr, end);
1695 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1696 if (err)
1697 break;
1698 } while (pud++, addr = next, addr != end);
1699 return err;
1703 * Scan a region of virtual memory, filling in page tables as necessary
1704 * and calling a provided function on each leaf page table.
1706 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1707 unsigned long size, pte_fn_t fn, void *data)
1709 pgd_t *pgd;
1710 unsigned long next;
1711 unsigned long start = addr, end = addr + size;
1712 int err;
1714 BUG_ON(addr >= end);
1715 mmu_notifier_invalidate_range_start(mm, start, end);
1716 pgd = pgd_offset(mm, addr);
1717 do {
1718 next = pgd_addr_end(addr, end);
1719 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1720 if (err)
1721 break;
1722 } while (pgd++, addr = next, addr != end);
1723 mmu_notifier_invalidate_range_end(mm, start, end);
1724 return err;
1726 EXPORT_SYMBOL_GPL(apply_to_page_range);
1729 * handle_pte_fault chooses page fault handler according to an entry
1730 * which was read non-atomically. Before making any commitment, on
1731 * those architectures or configurations (e.g. i386 with PAE) which
1732 * might give a mix of unmatched parts, do_swap_page and do_file_page
1733 * must check under lock before unmapping the pte and proceeding
1734 * (but do_wp_page is only called after already making such a check;
1735 * and do_anonymous_page and do_no_page can safely check later on).
1737 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1738 pte_t *page_table, pte_t orig_pte)
1740 int same = 1;
1741 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1742 if (sizeof(pte_t) > sizeof(unsigned long)) {
1743 spinlock_t *ptl = pte_lockptr(mm, pmd);
1744 spin_lock(ptl);
1745 same = pte_same(*page_table, orig_pte);
1746 spin_unlock(ptl);
1748 #endif
1749 pte_unmap(page_table);
1750 return same;
1754 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1755 * servicing faults for write access. In the normal case, do always want
1756 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1757 * that do not have writing enabled, when used by access_process_vm.
1759 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1761 if (likely(vma->vm_flags & VM_WRITE))
1762 pte = pte_mkwrite(pte);
1763 return pte;
1766 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1769 * If the source page was a PFN mapping, we don't have
1770 * a "struct page" for it. We do a best-effort copy by
1771 * just copying from the original user address. If that
1772 * fails, we just zero-fill it. Live with it.
1774 if (unlikely(!src)) {
1775 void *kaddr = kmap_atomic(dst, KM_USER0);
1776 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1779 * This really shouldn't fail, because the page is there
1780 * in the page tables. But it might just be unreadable,
1781 * in which case we just give up and fill the result with
1782 * zeroes.
1784 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1785 memset(kaddr, 0, PAGE_SIZE);
1786 kunmap_atomic(kaddr, KM_USER0);
1787 flush_dcache_page(dst);
1788 } else
1789 copy_user_highpage(dst, src, va, vma);
1793 * This routine handles present pages, when users try to write
1794 * to a shared page. It is done by copying the page to a new address
1795 * and decrementing the shared-page counter for the old page.
1797 * Note that this routine assumes that the protection checks have been
1798 * done by the caller (the low-level page fault routine in most cases).
1799 * Thus we can safely just mark it writable once we've done any necessary
1800 * COW.
1802 * We also mark the page dirty at this point even though the page will
1803 * change only once the write actually happens. This avoids a few races,
1804 * and potentially makes it more efficient.
1806 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1807 * but allow concurrent faults), with pte both mapped and locked.
1808 * We return with mmap_sem still held, but pte unmapped and unlocked.
1810 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1811 unsigned long address, pte_t *page_table, pmd_t *pmd,
1812 spinlock_t *ptl, pte_t orig_pte)
1814 struct page *old_page, *new_page;
1815 pte_t entry;
1816 int reuse = 0, ret = 0;
1817 int page_mkwrite = 0;
1818 struct page *dirty_page = NULL;
1820 old_page = vm_normal_page(vma, address, orig_pte);
1821 if (!old_page) {
1823 * VM_MIXEDMAP !pfn_valid() case
1825 * We should not cow pages in a shared writeable mapping.
1826 * Just mark the pages writable as we can't do any dirty
1827 * accounting on raw pfn maps.
1829 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1830 (VM_WRITE|VM_SHARED))
1831 goto reuse;
1832 goto gotten;
1836 * Take out anonymous pages first, anonymous shared vmas are
1837 * not dirty accountable.
1839 if (PageAnon(old_page)) {
1840 if (trylock_page(old_page)) {
1841 reuse = can_share_swap_page(old_page);
1842 unlock_page(old_page);
1844 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1845 (VM_WRITE|VM_SHARED))) {
1847 * Only catch write-faults on shared writable pages,
1848 * read-only shared pages can get COWed by
1849 * get_user_pages(.write=1, .force=1).
1851 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
1853 * Notify the address space that the page is about to
1854 * become writable so that it can prohibit this or wait
1855 * for the page to get into an appropriate state.
1857 * We do this without the lock held, so that it can
1858 * sleep if it needs to.
1860 page_cache_get(old_page);
1861 pte_unmap_unlock(page_table, ptl);
1863 if (vma->vm_ops->page_mkwrite(vma, old_page) < 0)
1864 goto unwritable_page;
1867 * Since we dropped the lock we need to revalidate
1868 * the PTE as someone else may have changed it. If
1869 * they did, we just return, as we can count on the
1870 * MMU to tell us if they didn't also make it writable.
1872 page_table = pte_offset_map_lock(mm, pmd, address,
1873 &ptl);
1874 page_cache_release(old_page);
1875 if (!pte_same(*page_table, orig_pte))
1876 goto unlock;
1878 page_mkwrite = 1;
1880 dirty_page = old_page;
1881 get_page(dirty_page);
1882 reuse = 1;
1885 if (reuse) {
1886 reuse:
1887 flush_cache_page(vma, address, pte_pfn(orig_pte));
1888 entry = pte_mkyoung(orig_pte);
1889 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1890 if (ptep_set_access_flags(vma, address, page_table, entry,1))
1891 update_mmu_cache(vma, address, entry);
1892 ret |= VM_FAULT_WRITE;
1893 goto unlock;
1897 * Ok, we need to copy. Oh, well..
1899 page_cache_get(old_page);
1900 gotten:
1901 pte_unmap_unlock(page_table, ptl);
1903 if (unlikely(anon_vma_prepare(vma)))
1904 goto oom;
1905 VM_BUG_ON(old_page == ZERO_PAGE(0));
1906 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1907 if (!new_page)
1908 goto oom;
1910 * Don't let another task, with possibly unlocked vma,
1911 * keep the mlocked page.
1913 if (vma->vm_flags & VM_LOCKED) {
1914 lock_page(old_page); /* for LRU manipulation */
1915 clear_page_mlock(old_page);
1916 unlock_page(old_page);
1918 cow_user_page(new_page, old_page, address, vma);
1919 __SetPageUptodate(new_page);
1921 if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
1922 goto oom_free_new;
1925 * Re-check the pte - we dropped the lock
1927 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1928 if (likely(pte_same(*page_table, orig_pte))) {
1929 if (old_page) {
1930 if (!PageAnon(old_page)) {
1931 dec_mm_counter(mm, file_rss);
1932 inc_mm_counter(mm, anon_rss);
1934 } else
1935 inc_mm_counter(mm, anon_rss);
1936 flush_cache_page(vma, address, pte_pfn(orig_pte));
1937 entry = mk_pte(new_page, vma->vm_page_prot);
1938 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1940 * Clear the pte entry and flush it first, before updating the
1941 * pte with the new entry. This will avoid a race condition
1942 * seen in the presence of one thread doing SMC and another
1943 * thread doing COW.
1945 ptep_clear_flush_notify(vma, address, page_table);
1946 SetPageSwapBacked(new_page);
1947 lru_cache_add_active_or_unevictable(new_page, vma);
1948 page_add_new_anon_rmap(new_page, vma, address);
1950 //TODO: is this safe? do_anonymous_page() does it this way.
1951 set_pte_at(mm, address, page_table, entry);
1952 update_mmu_cache(vma, address, entry);
1953 if (old_page) {
1955 * Only after switching the pte to the new page may
1956 * we remove the mapcount here. Otherwise another
1957 * process may come and find the rmap count decremented
1958 * before the pte is switched to the new page, and
1959 * "reuse" the old page writing into it while our pte
1960 * here still points into it and can be read by other
1961 * threads.
1963 * The critical issue is to order this
1964 * page_remove_rmap with the ptp_clear_flush above.
1965 * Those stores are ordered by (if nothing else,)
1966 * the barrier present in the atomic_add_negative
1967 * in page_remove_rmap.
1969 * Then the TLB flush in ptep_clear_flush ensures that
1970 * no process can access the old page before the
1971 * decremented mapcount is visible. And the old page
1972 * cannot be reused until after the decremented
1973 * mapcount is visible. So transitively, TLBs to
1974 * old page will be flushed before it can be reused.
1976 page_remove_rmap(old_page, vma);
1979 /* Free the old page.. */
1980 new_page = old_page;
1981 ret |= VM_FAULT_WRITE;
1982 } else
1983 mem_cgroup_uncharge_page(new_page);
1985 if (new_page)
1986 page_cache_release(new_page);
1987 if (old_page)
1988 page_cache_release(old_page);
1989 unlock:
1990 pte_unmap_unlock(page_table, ptl);
1991 if (dirty_page) {
1992 if (vma->vm_file)
1993 file_update_time(vma->vm_file);
1996 * Yes, Virginia, this is actually required to prevent a race
1997 * with clear_page_dirty_for_io() from clearing the page dirty
1998 * bit after it clear all dirty ptes, but before a racing
1999 * do_wp_page installs a dirty pte.
2001 * do_no_page is protected similarly.
2003 wait_on_page_locked(dirty_page);
2004 set_page_dirty_balance(dirty_page, page_mkwrite);
2005 put_page(dirty_page);
2007 return ret;
2008 oom_free_new:
2009 page_cache_release(new_page);
2010 oom:
2011 if (old_page)
2012 page_cache_release(old_page);
2013 return VM_FAULT_OOM;
2015 unwritable_page:
2016 page_cache_release(old_page);
2017 return VM_FAULT_SIGBUS;
2021 * Helper functions for unmap_mapping_range().
2023 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
2025 * We have to restart searching the prio_tree whenever we drop the lock,
2026 * since the iterator is only valid while the lock is held, and anyway
2027 * a later vma might be split and reinserted earlier while lock dropped.
2029 * The list of nonlinear vmas could be handled more efficiently, using
2030 * a placeholder, but handle it in the same way until a need is shown.
2031 * It is important to search the prio_tree before nonlinear list: a vma
2032 * may become nonlinear and be shifted from prio_tree to nonlinear list
2033 * while the lock is dropped; but never shifted from list to prio_tree.
2035 * In order to make forward progress despite restarting the search,
2036 * vm_truncate_count is used to mark a vma as now dealt with, so we can
2037 * quickly skip it next time around. Since the prio_tree search only
2038 * shows us those vmas affected by unmapping the range in question, we
2039 * can't efficiently keep all vmas in step with mapping->truncate_count:
2040 * so instead reset them all whenever it wraps back to 0 (then go to 1).
2041 * mapping->truncate_count and vma->vm_truncate_count are protected by
2042 * i_mmap_lock.
2044 * In order to make forward progress despite repeatedly restarting some
2045 * large vma, note the restart_addr from unmap_vmas when it breaks out:
2046 * and restart from that address when we reach that vma again. It might
2047 * have been split or merged, shrunk or extended, but never shifted: so
2048 * restart_addr remains valid so long as it remains in the vma's range.
2049 * unmap_mapping_range forces truncate_count to leap over page-aligned
2050 * values so we can save vma's restart_addr in its truncate_count field.
2052 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
2054 static void reset_vma_truncate_counts(struct address_space *mapping)
2056 struct vm_area_struct *vma;
2057 struct prio_tree_iter iter;
2059 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
2060 vma->vm_truncate_count = 0;
2061 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
2062 vma->vm_truncate_count = 0;
2065 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
2066 unsigned long start_addr, unsigned long end_addr,
2067 struct zap_details *details)
2069 unsigned long restart_addr;
2070 int need_break;
2073 * files that support invalidating or truncating portions of the
2074 * file from under mmaped areas must have their ->fault function
2075 * return a locked page (and set VM_FAULT_LOCKED in the return).
2076 * This provides synchronisation against concurrent unmapping here.
2079 again:
2080 restart_addr = vma->vm_truncate_count;
2081 if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
2082 start_addr = restart_addr;
2083 if (start_addr >= end_addr) {
2084 /* Top of vma has been split off since last time */
2085 vma->vm_truncate_count = details->truncate_count;
2086 return 0;
2090 restart_addr = zap_page_range(vma, start_addr,
2091 end_addr - start_addr, details);
2092 need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
2094 if (restart_addr >= end_addr) {
2095 /* We have now completed this vma: mark it so */
2096 vma->vm_truncate_count = details->truncate_count;
2097 if (!need_break)
2098 return 0;
2099 } else {
2100 /* Note restart_addr in vma's truncate_count field */
2101 vma->vm_truncate_count = restart_addr;
2102 if (!need_break)
2103 goto again;
2106 spin_unlock(details->i_mmap_lock);
2107 cond_resched();
2108 spin_lock(details->i_mmap_lock);
2109 return -EINTR;
2112 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2113 struct zap_details *details)
2115 struct vm_area_struct *vma;
2116 struct prio_tree_iter iter;
2117 pgoff_t vba, vea, zba, zea;
2119 restart:
2120 vma_prio_tree_foreach(vma, &iter, root,
2121 details->first_index, details->last_index) {
2122 /* Skip quickly over those we have already dealt with */
2123 if (vma->vm_truncate_count == details->truncate_count)
2124 continue;
2126 vba = vma->vm_pgoff;
2127 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2128 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2129 zba = details->first_index;
2130 if (zba < vba)
2131 zba = vba;
2132 zea = details->last_index;
2133 if (zea > vea)
2134 zea = vea;
2136 if (unmap_mapping_range_vma(vma,
2137 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2138 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2139 details) < 0)
2140 goto restart;
2144 static inline void unmap_mapping_range_list(struct list_head *head,
2145 struct zap_details *details)
2147 struct vm_area_struct *vma;
2150 * In nonlinear VMAs there is no correspondence between virtual address
2151 * offset and file offset. So we must perform an exhaustive search
2152 * across *all* the pages in each nonlinear VMA, not just the pages
2153 * whose virtual address lies outside the file truncation point.
2155 restart:
2156 list_for_each_entry(vma, head, shared.vm_set.list) {
2157 /* Skip quickly over those we have already dealt with */
2158 if (vma->vm_truncate_count == details->truncate_count)
2159 continue;
2160 details->nonlinear_vma = vma;
2161 if (unmap_mapping_range_vma(vma, vma->vm_start,
2162 vma->vm_end, details) < 0)
2163 goto restart;
2168 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2169 * @mapping: the address space containing mmaps to be unmapped.
2170 * @holebegin: byte in first page to unmap, relative to the start of
2171 * the underlying file. This will be rounded down to a PAGE_SIZE
2172 * boundary. Note that this is different from vmtruncate(), which
2173 * must keep the partial page. In contrast, we must get rid of
2174 * partial pages.
2175 * @holelen: size of prospective hole in bytes. This will be rounded
2176 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2177 * end of the file.
2178 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2179 * but 0 when invalidating pagecache, don't throw away private data.
2181 void unmap_mapping_range(struct address_space *mapping,
2182 loff_t const holebegin, loff_t const holelen, int even_cows)
2184 struct zap_details details;
2185 pgoff_t hba = holebegin >> PAGE_SHIFT;
2186 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2188 /* Check for overflow. */
2189 if (sizeof(holelen) > sizeof(hlen)) {
2190 long long holeend =
2191 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2192 if (holeend & ~(long long)ULONG_MAX)
2193 hlen = ULONG_MAX - hba + 1;
2196 details.check_mapping = even_cows? NULL: mapping;
2197 details.nonlinear_vma = NULL;
2198 details.first_index = hba;
2199 details.last_index = hba + hlen - 1;
2200 if (details.last_index < details.first_index)
2201 details.last_index = ULONG_MAX;
2202 details.i_mmap_lock = &mapping->i_mmap_lock;
2204 spin_lock(&mapping->i_mmap_lock);
2206 /* Protect against endless unmapping loops */
2207 mapping->truncate_count++;
2208 if (unlikely(is_restart_addr(mapping->truncate_count))) {
2209 if (mapping->truncate_count == 0)
2210 reset_vma_truncate_counts(mapping);
2211 mapping->truncate_count++;
2213 details.truncate_count = mapping->truncate_count;
2215 if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2216 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2217 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2218 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2219 spin_unlock(&mapping->i_mmap_lock);
2221 EXPORT_SYMBOL(unmap_mapping_range);
2224 * vmtruncate - unmap mappings "freed" by truncate() syscall
2225 * @inode: inode of the file used
2226 * @offset: file offset to start truncating
2228 * NOTE! We have to be ready to update the memory sharing
2229 * between the file and the memory map for a potential last
2230 * incomplete page. Ugly, but necessary.
2232 int vmtruncate(struct inode * inode, loff_t offset)
2234 if (inode->i_size < offset) {
2235 unsigned long limit;
2237 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2238 if (limit != RLIM_INFINITY && offset > limit)
2239 goto out_sig;
2240 if (offset > inode->i_sb->s_maxbytes)
2241 goto out_big;
2242 i_size_write(inode, offset);
2243 } else {
2244 struct address_space *mapping = inode->i_mapping;
2247 * truncation of in-use swapfiles is disallowed - it would
2248 * cause subsequent swapout to scribble on the now-freed
2249 * blocks.
2251 if (IS_SWAPFILE(inode))
2252 return -ETXTBSY;
2253 i_size_write(inode, offset);
2256 * unmap_mapping_range is called twice, first simply for
2257 * efficiency so that truncate_inode_pages does fewer
2258 * single-page unmaps. However after this first call, and
2259 * before truncate_inode_pages finishes, it is possible for
2260 * private pages to be COWed, which remain after
2261 * truncate_inode_pages finishes, hence the second
2262 * unmap_mapping_range call must be made for correctness.
2264 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2265 truncate_inode_pages(mapping, offset);
2266 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2269 if (inode->i_op && inode->i_op->truncate)
2270 inode->i_op->truncate(inode);
2271 return 0;
2273 out_sig:
2274 send_sig(SIGXFSZ, current, 0);
2275 out_big:
2276 return -EFBIG;
2278 EXPORT_SYMBOL(vmtruncate);
2280 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2282 struct address_space *mapping = inode->i_mapping;
2285 * If the underlying filesystem is not going to provide
2286 * a way to truncate a range of blocks (punch a hole) -
2287 * we should return failure right now.
2289 if (!inode->i_op || !inode->i_op->truncate_range)
2290 return -ENOSYS;
2292 mutex_lock(&inode->i_mutex);
2293 down_write(&inode->i_alloc_sem);
2294 unmap_mapping_range(mapping, offset, (end - offset), 1);
2295 truncate_inode_pages_range(mapping, offset, end);
2296 unmap_mapping_range(mapping, offset, (end - offset), 1);
2297 inode->i_op->truncate_range(inode, offset, end);
2298 up_write(&inode->i_alloc_sem);
2299 mutex_unlock(&inode->i_mutex);
2301 return 0;
2305 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2306 * but allow concurrent faults), and pte mapped but not yet locked.
2307 * We return with mmap_sem still held, but pte unmapped and unlocked.
2309 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2310 unsigned long address, pte_t *page_table, pmd_t *pmd,
2311 int write_access, pte_t orig_pte)
2313 spinlock_t *ptl;
2314 struct page *page;
2315 swp_entry_t entry;
2316 pte_t pte;
2317 int ret = 0;
2319 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2320 goto out;
2322 entry = pte_to_swp_entry(orig_pte);
2323 if (is_migration_entry(entry)) {
2324 migration_entry_wait(mm, pmd, address);
2325 goto out;
2327 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2328 page = lookup_swap_cache(entry);
2329 if (!page) {
2330 grab_swap_token(); /* Contend for token _before_ read-in */
2331 page = swapin_readahead(entry,
2332 GFP_HIGHUSER_MOVABLE, vma, address);
2333 if (!page) {
2335 * Back out if somebody else faulted in this pte
2336 * while we released the pte lock.
2338 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2339 if (likely(pte_same(*page_table, orig_pte)))
2340 ret = VM_FAULT_OOM;
2341 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2342 goto unlock;
2345 /* Had to read the page from swap area: Major fault */
2346 ret = VM_FAULT_MAJOR;
2347 count_vm_event(PGMAJFAULT);
2350 mark_page_accessed(page);
2352 lock_page(page);
2353 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2355 if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
2356 ret = VM_FAULT_OOM;
2357 unlock_page(page);
2358 goto out;
2362 * Back out if somebody else already faulted in this pte.
2364 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2365 if (unlikely(!pte_same(*page_table, orig_pte)))
2366 goto out_nomap;
2368 if (unlikely(!PageUptodate(page))) {
2369 ret = VM_FAULT_SIGBUS;
2370 goto out_nomap;
2373 /* The page isn't present yet, go ahead with the fault. */
2375 inc_mm_counter(mm, anon_rss);
2376 pte = mk_pte(page, vma->vm_page_prot);
2377 if (write_access && can_share_swap_page(page)) {
2378 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2379 write_access = 0;
2382 flush_icache_page(vma, page);
2383 set_pte_at(mm, address, page_table, pte);
2384 page_add_anon_rmap(page, vma, address);
2386 swap_free(entry);
2387 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2388 remove_exclusive_swap_page(page);
2389 unlock_page(page);
2391 if (write_access) {
2392 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2393 if (ret & VM_FAULT_ERROR)
2394 ret &= VM_FAULT_ERROR;
2395 goto out;
2398 /* No need to invalidate - it was non-present before */
2399 update_mmu_cache(vma, address, pte);
2400 unlock:
2401 pte_unmap_unlock(page_table, ptl);
2402 out:
2403 return ret;
2404 out_nomap:
2405 mem_cgroup_uncharge_page(page);
2406 pte_unmap_unlock(page_table, ptl);
2407 unlock_page(page);
2408 page_cache_release(page);
2409 return ret;
2413 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2414 * but allow concurrent faults), and pte mapped but not yet locked.
2415 * We return with mmap_sem still held, but pte unmapped and unlocked.
2417 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2418 unsigned long address, pte_t *page_table, pmd_t *pmd,
2419 int write_access)
2421 struct page *page;
2422 spinlock_t *ptl;
2423 pte_t entry;
2425 /* Allocate our own private page. */
2426 pte_unmap(page_table);
2428 if (unlikely(anon_vma_prepare(vma)))
2429 goto oom;
2430 page = alloc_zeroed_user_highpage_movable(vma, address);
2431 if (!page)
2432 goto oom;
2433 __SetPageUptodate(page);
2435 if (mem_cgroup_charge(page, mm, GFP_KERNEL))
2436 goto oom_free_page;
2438 entry = mk_pte(page, vma->vm_page_prot);
2439 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2441 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2442 if (!pte_none(*page_table))
2443 goto release;
2444 inc_mm_counter(mm, anon_rss);
2445 SetPageSwapBacked(page);
2446 lru_cache_add_active_or_unevictable(page, vma);
2447 page_add_new_anon_rmap(page, vma, address);
2448 set_pte_at(mm, address, page_table, entry);
2450 /* No need to invalidate - it was non-present before */
2451 update_mmu_cache(vma, address, entry);
2452 unlock:
2453 pte_unmap_unlock(page_table, ptl);
2454 return 0;
2455 release:
2456 mem_cgroup_uncharge_page(page);
2457 page_cache_release(page);
2458 goto unlock;
2459 oom_free_page:
2460 page_cache_release(page);
2461 oom:
2462 return VM_FAULT_OOM;
2466 * __do_fault() tries to create a new page mapping. It aggressively
2467 * tries to share with existing pages, but makes a separate copy if
2468 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2469 * the next page fault.
2471 * As this is called only for pages that do not currently exist, we
2472 * do not need to flush old virtual caches or the TLB.
2474 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2475 * but allow concurrent faults), and pte neither mapped nor locked.
2476 * We return with mmap_sem still held, but pte unmapped and unlocked.
2478 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2479 unsigned long address, pmd_t *pmd,
2480 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2482 pte_t *page_table;
2483 spinlock_t *ptl;
2484 struct page *page;
2485 pte_t entry;
2486 int anon = 0;
2487 int charged = 0;
2488 struct page *dirty_page = NULL;
2489 struct vm_fault vmf;
2490 int ret;
2491 int page_mkwrite = 0;
2493 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2494 vmf.pgoff = pgoff;
2495 vmf.flags = flags;
2496 vmf.page = NULL;
2498 ret = vma->vm_ops->fault(vma, &vmf);
2499 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2500 return ret;
2503 * For consistency in subsequent calls, make the faulted page always
2504 * locked.
2506 if (unlikely(!(ret & VM_FAULT_LOCKED)))
2507 lock_page(vmf.page);
2508 else
2509 VM_BUG_ON(!PageLocked(vmf.page));
2512 * Should we do an early C-O-W break?
2514 page = vmf.page;
2515 if (flags & FAULT_FLAG_WRITE) {
2516 if (!(vma->vm_flags & VM_SHARED)) {
2517 anon = 1;
2518 if (unlikely(anon_vma_prepare(vma))) {
2519 ret = VM_FAULT_OOM;
2520 goto out;
2522 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
2523 vma, address);
2524 if (!page) {
2525 ret = VM_FAULT_OOM;
2526 goto out;
2528 if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
2529 ret = VM_FAULT_OOM;
2530 page_cache_release(page);
2531 goto out;
2533 charged = 1;
2535 * Don't let another task, with possibly unlocked vma,
2536 * keep the mlocked page.
2538 if (vma->vm_flags & VM_LOCKED)
2539 clear_page_mlock(vmf.page);
2540 copy_user_highpage(page, vmf.page, address, vma);
2541 __SetPageUptodate(page);
2542 } else {
2544 * If the page will be shareable, see if the backing
2545 * address space wants to know that the page is about
2546 * to become writable
2548 if (vma->vm_ops->page_mkwrite) {
2549 unlock_page(page);
2550 if (vma->vm_ops->page_mkwrite(vma, page) < 0) {
2551 ret = VM_FAULT_SIGBUS;
2552 anon = 1; /* no anon but release vmf.page */
2553 goto out_unlocked;
2555 lock_page(page);
2557 * XXX: this is not quite right (racy vs
2558 * invalidate) to unlock and relock the page
2559 * like this, however a better fix requires
2560 * reworking page_mkwrite locking API, which
2561 * is better done later.
2563 if (!page->mapping) {
2564 ret = 0;
2565 anon = 1; /* no anon but release vmf.page */
2566 goto out;
2568 page_mkwrite = 1;
2574 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2577 * This silly early PAGE_DIRTY setting removes a race
2578 * due to the bad i386 page protection. But it's valid
2579 * for other architectures too.
2581 * Note that if write_access is true, we either now have
2582 * an exclusive copy of the page, or this is a shared mapping,
2583 * so we can make it writable and dirty to avoid having to
2584 * handle that later.
2586 /* Only go through if we didn't race with anybody else... */
2587 if (likely(pte_same(*page_table, orig_pte))) {
2588 flush_icache_page(vma, page);
2589 entry = mk_pte(page, vma->vm_page_prot);
2590 if (flags & FAULT_FLAG_WRITE)
2591 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2592 if (anon) {
2593 inc_mm_counter(mm, anon_rss);
2594 SetPageSwapBacked(page);
2595 lru_cache_add_active_or_unevictable(page, vma);
2596 page_add_new_anon_rmap(page, vma, address);
2597 } else {
2598 inc_mm_counter(mm, file_rss);
2599 page_add_file_rmap(page);
2600 if (flags & FAULT_FLAG_WRITE) {
2601 dirty_page = page;
2602 get_page(dirty_page);
2605 //TODO: is this safe? do_anonymous_page() does it this way.
2606 set_pte_at(mm, address, page_table, entry);
2608 /* no need to invalidate: a not-present page won't be cached */
2609 update_mmu_cache(vma, address, entry);
2610 } else {
2611 if (charged)
2612 mem_cgroup_uncharge_page(page);
2613 if (anon)
2614 page_cache_release(page);
2615 else
2616 anon = 1; /* no anon but release faulted_page */
2619 pte_unmap_unlock(page_table, ptl);
2621 out:
2622 unlock_page(vmf.page);
2623 out_unlocked:
2624 if (anon)
2625 page_cache_release(vmf.page);
2626 else if (dirty_page) {
2627 if (vma->vm_file)
2628 file_update_time(vma->vm_file);
2630 set_page_dirty_balance(dirty_page, page_mkwrite);
2631 put_page(dirty_page);
2634 return ret;
2637 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2638 unsigned long address, pte_t *page_table, pmd_t *pmd,
2639 int write_access, pte_t orig_pte)
2641 pgoff_t pgoff = (((address & PAGE_MASK)
2642 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2643 unsigned int flags = (write_access ? FAULT_FLAG_WRITE : 0);
2645 pte_unmap(page_table);
2646 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2650 * Fault of a previously existing named mapping. Repopulate the pte
2651 * from the encoded file_pte if possible. This enables swappable
2652 * nonlinear vmas.
2654 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2655 * but allow concurrent faults), and pte mapped but not yet locked.
2656 * We return with mmap_sem still held, but pte unmapped and unlocked.
2658 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2659 unsigned long address, pte_t *page_table, pmd_t *pmd,
2660 int write_access, pte_t orig_pte)
2662 unsigned int flags = FAULT_FLAG_NONLINEAR |
2663 (write_access ? FAULT_FLAG_WRITE : 0);
2664 pgoff_t pgoff;
2666 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2667 return 0;
2669 if (unlikely(!(vma->vm_flags & VM_NONLINEAR) ||
2670 !(vma->vm_flags & VM_CAN_NONLINEAR))) {
2672 * Page table corrupted: show pte and kill process.
2674 print_bad_pte(vma, orig_pte, address);
2675 return VM_FAULT_OOM;
2678 pgoff = pte_to_pgoff(orig_pte);
2679 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2683 * These routines also need to handle stuff like marking pages dirty
2684 * and/or accessed for architectures that don't do it in hardware (most
2685 * RISC architectures). The early dirtying is also good on the i386.
2687 * There is also a hook called "update_mmu_cache()" that architectures
2688 * with external mmu caches can use to update those (ie the Sparc or
2689 * PowerPC hashed page tables that act as extended TLBs).
2691 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2692 * but allow concurrent faults), and pte mapped but not yet locked.
2693 * We return with mmap_sem still held, but pte unmapped and unlocked.
2695 static inline int handle_pte_fault(struct mm_struct *mm,
2696 struct vm_area_struct *vma, unsigned long address,
2697 pte_t *pte, pmd_t *pmd, int write_access)
2699 pte_t entry;
2700 spinlock_t *ptl;
2702 entry = *pte;
2703 if (!pte_present(entry)) {
2704 if (pte_none(entry)) {
2705 if (vma->vm_ops) {
2706 if (likely(vma->vm_ops->fault))
2707 return do_linear_fault(mm, vma, address,
2708 pte, pmd, write_access, entry);
2710 return do_anonymous_page(mm, vma, address,
2711 pte, pmd, write_access);
2713 if (pte_file(entry))
2714 return do_nonlinear_fault(mm, vma, address,
2715 pte, pmd, write_access, entry);
2716 return do_swap_page(mm, vma, address,
2717 pte, pmd, write_access, entry);
2720 ptl = pte_lockptr(mm, pmd);
2721 spin_lock(ptl);
2722 if (unlikely(!pte_same(*pte, entry)))
2723 goto unlock;
2724 if (write_access) {
2725 if (!pte_write(entry))
2726 return do_wp_page(mm, vma, address,
2727 pte, pmd, ptl, entry);
2728 entry = pte_mkdirty(entry);
2730 entry = pte_mkyoung(entry);
2731 if (ptep_set_access_flags(vma, address, pte, entry, write_access)) {
2732 update_mmu_cache(vma, address, entry);
2733 } else {
2735 * This is needed only for protection faults but the arch code
2736 * is not yet telling us if this is a protection fault or not.
2737 * This still avoids useless tlb flushes for .text page faults
2738 * with threads.
2740 if (write_access)
2741 flush_tlb_page(vma, address);
2743 unlock:
2744 pte_unmap_unlock(pte, ptl);
2745 return 0;
2749 * By the time we get here, we already hold the mm semaphore
2751 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2752 unsigned long address, int write_access)
2754 pgd_t *pgd;
2755 pud_t *pud;
2756 pmd_t *pmd;
2757 pte_t *pte;
2759 __set_current_state(TASK_RUNNING);
2761 count_vm_event(PGFAULT);
2763 if (unlikely(is_vm_hugetlb_page(vma)))
2764 return hugetlb_fault(mm, vma, address, write_access);
2766 pgd = pgd_offset(mm, address);
2767 pud = pud_alloc(mm, pgd, address);
2768 if (!pud)
2769 return VM_FAULT_OOM;
2770 pmd = pmd_alloc(mm, pud, address);
2771 if (!pmd)
2772 return VM_FAULT_OOM;
2773 pte = pte_alloc_map(mm, pmd, address);
2774 if (!pte)
2775 return VM_FAULT_OOM;
2777 return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
2780 #ifndef __PAGETABLE_PUD_FOLDED
2782 * Allocate page upper directory.
2783 * We've already handled the fast-path in-line.
2785 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2787 pud_t *new = pud_alloc_one(mm, address);
2788 if (!new)
2789 return -ENOMEM;
2791 smp_wmb(); /* See comment in __pte_alloc */
2793 spin_lock(&mm->page_table_lock);
2794 if (pgd_present(*pgd)) /* Another has populated it */
2795 pud_free(mm, new);
2796 else
2797 pgd_populate(mm, pgd, new);
2798 spin_unlock(&mm->page_table_lock);
2799 return 0;
2801 #endif /* __PAGETABLE_PUD_FOLDED */
2803 #ifndef __PAGETABLE_PMD_FOLDED
2805 * Allocate page middle directory.
2806 * We've already handled the fast-path in-line.
2808 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2810 pmd_t *new = pmd_alloc_one(mm, address);
2811 if (!new)
2812 return -ENOMEM;
2814 smp_wmb(); /* See comment in __pte_alloc */
2816 spin_lock(&mm->page_table_lock);
2817 #ifndef __ARCH_HAS_4LEVEL_HACK
2818 if (pud_present(*pud)) /* Another has populated it */
2819 pmd_free(mm, new);
2820 else
2821 pud_populate(mm, pud, new);
2822 #else
2823 if (pgd_present(*pud)) /* Another has populated it */
2824 pmd_free(mm, new);
2825 else
2826 pgd_populate(mm, pud, new);
2827 #endif /* __ARCH_HAS_4LEVEL_HACK */
2828 spin_unlock(&mm->page_table_lock);
2829 return 0;
2831 #endif /* __PAGETABLE_PMD_FOLDED */
2833 int make_pages_present(unsigned long addr, unsigned long end)
2835 int ret, len, write;
2836 struct vm_area_struct * vma;
2838 vma = find_vma(current->mm, addr);
2839 if (!vma)
2840 return -ENOMEM;
2841 write = (vma->vm_flags & VM_WRITE) != 0;
2842 BUG_ON(addr >= end);
2843 BUG_ON(end > vma->vm_end);
2844 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
2845 ret = get_user_pages(current, current->mm, addr,
2846 len, write, 0, NULL, NULL);
2847 if (ret < 0)
2848 return ret;
2849 return ret == len ? 0 : -EFAULT;
2852 #if !defined(__HAVE_ARCH_GATE_AREA)
2854 #if defined(AT_SYSINFO_EHDR)
2855 static struct vm_area_struct gate_vma;
2857 static int __init gate_vma_init(void)
2859 gate_vma.vm_mm = NULL;
2860 gate_vma.vm_start = FIXADDR_USER_START;
2861 gate_vma.vm_end = FIXADDR_USER_END;
2862 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
2863 gate_vma.vm_page_prot = __P101;
2865 * Make sure the vDSO gets into every core dump.
2866 * Dumping its contents makes post-mortem fully interpretable later
2867 * without matching up the same kernel and hardware config to see
2868 * what PC values meant.
2870 gate_vma.vm_flags |= VM_ALWAYSDUMP;
2871 return 0;
2873 __initcall(gate_vma_init);
2874 #endif
2876 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2878 #ifdef AT_SYSINFO_EHDR
2879 return &gate_vma;
2880 #else
2881 return NULL;
2882 #endif
2885 int in_gate_area_no_task(unsigned long addr)
2887 #ifdef AT_SYSINFO_EHDR
2888 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2889 return 1;
2890 #endif
2891 return 0;
2894 #endif /* __HAVE_ARCH_GATE_AREA */
2896 #ifdef CONFIG_HAVE_IOREMAP_PROT
2897 int follow_phys(struct vm_area_struct *vma,
2898 unsigned long address, unsigned int flags,
2899 unsigned long *prot, resource_size_t *phys)
2901 pgd_t *pgd;
2902 pud_t *pud;
2903 pmd_t *pmd;
2904 pte_t *ptep, pte;
2905 spinlock_t *ptl;
2906 resource_size_t phys_addr = 0;
2907 struct mm_struct *mm = vma->vm_mm;
2908 int ret = -EINVAL;
2910 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
2911 goto out;
2913 pgd = pgd_offset(mm, address);
2914 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
2915 goto out;
2917 pud = pud_offset(pgd, address);
2918 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
2919 goto out;
2921 pmd = pmd_offset(pud, address);
2922 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
2923 goto out;
2925 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
2926 if (pmd_huge(*pmd))
2927 goto out;
2929 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
2930 if (!ptep)
2931 goto out;
2933 pte = *ptep;
2934 if (!pte_present(pte))
2935 goto unlock;
2936 if ((flags & FOLL_WRITE) && !pte_write(pte))
2937 goto unlock;
2938 phys_addr = pte_pfn(pte);
2939 phys_addr <<= PAGE_SHIFT; /* Shift here to avoid overflow on PAE */
2941 *prot = pgprot_val(pte_pgprot(pte));
2942 *phys = phys_addr;
2943 ret = 0;
2945 unlock:
2946 pte_unmap_unlock(ptep, ptl);
2947 out:
2948 return ret;
2951 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2952 void *buf, int len, int write)
2954 resource_size_t phys_addr;
2955 unsigned long prot = 0;
2956 void *maddr;
2957 int offset = addr & (PAGE_SIZE-1);
2959 if (follow_phys(vma, addr, write, &prot, &phys_addr))
2960 return -EINVAL;
2962 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
2963 if (write)
2964 memcpy_toio(maddr + offset, buf, len);
2965 else
2966 memcpy_fromio(buf, maddr + offset, len);
2967 iounmap(maddr);
2969 return len;
2971 #endif
2974 * Access another process' address space.
2975 * Source/target buffer must be kernel space,
2976 * Do not walk the page table directly, use get_user_pages
2978 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
2980 struct mm_struct *mm;
2981 struct vm_area_struct *vma;
2982 void *old_buf = buf;
2984 mm = get_task_mm(tsk);
2985 if (!mm)
2986 return 0;
2988 down_read(&mm->mmap_sem);
2989 /* ignore errors, just check how much was successfully transferred */
2990 while (len) {
2991 int bytes, ret, offset;
2992 void *maddr;
2993 struct page *page = NULL;
2995 ret = get_user_pages(tsk, mm, addr, 1,
2996 write, 1, &page, &vma);
2997 if (ret <= 0) {
2999 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3000 * we can access using slightly different code.
3002 #ifdef CONFIG_HAVE_IOREMAP_PROT
3003 vma = find_vma(mm, addr);
3004 if (!vma)
3005 break;
3006 if (vma->vm_ops && vma->vm_ops->access)
3007 ret = vma->vm_ops->access(vma, addr, buf,
3008 len, write);
3009 if (ret <= 0)
3010 #endif
3011 break;
3012 bytes = ret;
3013 } else {
3014 bytes = len;
3015 offset = addr & (PAGE_SIZE-1);
3016 if (bytes > PAGE_SIZE-offset)
3017 bytes = PAGE_SIZE-offset;
3019 maddr = kmap(page);
3020 if (write) {
3021 copy_to_user_page(vma, page, addr,
3022 maddr + offset, buf, bytes);
3023 set_page_dirty_lock(page);
3024 } else {
3025 copy_from_user_page(vma, page, addr,
3026 buf, maddr + offset, bytes);
3028 kunmap(page);
3029 page_cache_release(page);
3031 len -= bytes;
3032 buf += bytes;
3033 addr += bytes;
3035 up_read(&mm->mmap_sem);
3036 mmput(mm);
3038 return buf - old_buf;
3042 * Print the name of a VMA.
3044 void print_vma_addr(char *prefix, unsigned long ip)
3046 struct mm_struct *mm = current->mm;
3047 struct vm_area_struct *vma;
3050 * Do not print if we are in atomic
3051 * contexts (in exception stacks, etc.):
3053 if (preempt_count())
3054 return;
3056 down_read(&mm->mmap_sem);
3057 vma = find_vma(mm, ip);
3058 if (vma && vma->vm_file) {
3059 struct file *f = vma->vm_file;
3060 char *buf = (char *)__get_free_page(GFP_KERNEL);
3061 if (buf) {
3062 char *p, *s;
3064 p = d_path(&f->f_path, buf, PAGE_SIZE);
3065 if (IS_ERR(p))
3066 p = "?";
3067 s = strrchr(p, '/');
3068 if (s)
3069 p = s+1;
3070 printk("%s%s[%lx+%lx]", prefix, p,
3071 vma->vm_start,
3072 vma->vm_end - vma->vm_start);
3073 free_page((unsigned long)buf);
3076 up_read(&current->mm->mmap_sem);