bugfix for memory controller: add helper function for assigning cgroup to page
[linux-2.6/mini2440.git] / mm / memcontrol.c
blob3270ce7375dbf03d5837c74f5aa74f3a32d9bf67
1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
20 #include <linux/res_counter.h>
21 #include <linux/memcontrol.h>
22 #include <linux/cgroup.h>
23 #include <linux/mm.h>
24 #include <linux/page-flags.h>
25 #include <linux/backing-dev.h>
26 #include <linux/bit_spinlock.h>
27 #include <linux/rcupdate.h>
28 #include <linux/swap.h>
29 #include <linux/spinlock.h>
30 #include <linux/fs.h>
32 #include <asm/uaccess.h>
34 struct cgroup_subsys mem_cgroup_subsys;
35 static const int MEM_CGROUP_RECLAIM_RETRIES = 5;
38 * The memory controller data structure. The memory controller controls both
39 * page cache and RSS per cgroup. We would eventually like to provide
40 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
41 * to help the administrator determine what knobs to tune.
43 * TODO: Add a water mark for the memory controller. Reclaim will begin when
44 * we hit the water mark. May be even add a low water mark, such that
45 * no reclaim occurs from a cgroup at it's low water mark, this is
46 * a feature that will be implemented much later in the future.
48 struct mem_cgroup {
49 struct cgroup_subsys_state css;
51 * the counter to account for memory usage
53 struct res_counter res;
55 * Per cgroup active and inactive list, similar to the
56 * per zone LRU lists.
57 * TODO: Consider making these lists per zone
59 struct list_head active_list;
60 struct list_head inactive_list;
62 * spin_lock to protect the per cgroup LRU
64 spinlock_t lru_lock;
65 unsigned long control_type; /* control RSS or RSS+Pagecache */
69 * We use the lower bit of the page->page_cgroup pointer as a bit spin
70 * lock. We need to ensure that page->page_cgroup is atleast two
71 * byte aligned (based on comments from Nick Piggin)
73 #define PAGE_CGROUP_LOCK_BIT 0x0
74 #define PAGE_CGROUP_LOCK (1 << PAGE_CGROUP_LOCK_BIT)
77 * A page_cgroup page is associated with every page descriptor. The
78 * page_cgroup helps us identify information about the cgroup
80 struct page_cgroup {
81 struct list_head lru; /* per cgroup LRU list */
82 struct page *page;
83 struct mem_cgroup *mem_cgroup;
84 atomic_t ref_cnt; /* Helpful when pages move b/w */
85 /* mapped and cached states */
88 enum {
89 MEM_CGROUP_TYPE_UNSPEC = 0,
90 MEM_CGROUP_TYPE_MAPPED,
91 MEM_CGROUP_TYPE_CACHED,
92 MEM_CGROUP_TYPE_ALL,
93 MEM_CGROUP_TYPE_MAX,
96 static struct mem_cgroup init_mem_cgroup;
98 static inline
99 struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
101 return container_of(cgroup_subsys_state(cont,
102 mem_cgroup_subsys_id), struct mem_cgroup,
103 css);
106 static inline
107 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
109 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
110 struct mem_cgroup, css);
113 void mm_init_cgroup(struct mm_struct *mm, struct task_struct *p)
115 struct mem_cgroup *mem;
117 mem = mem_cgroup_from_task(p);
118 css_get(&mem->css);
119 mm->mem_cgroup = mem;
122 void mm_free_cgroup(struct mm_struct *mm)
124 css_put(&mm->mem_cgroup->css);
127 static inline int page_cgroup_locked(struct page *page)
129 return bit_spin_is_locked(PAGE_CGROUP_LOCK_BIT,
130 &page->page_cgroup);
133 void page_assign_page_cgroup(struct page *page, struct page_cgroup *pc)
135 int locked;
138 * While resetting the page_cgroup we might not hold the
139 * page_cgroup lock. free_hot_cold_page() is an example
140 * of such a scenario
142 if (pc)
143 VM_BUG_ON(!page_cgroup_locked(page));
144 locked = (page->page_cgroup & PAGE_CGROUP_LOCK);
145 page->page_cgroup = ((unsigned long)pc | locked);
148 struct page_cgroup *page_get_page_cgroup(struct page *page)
150 return (struct page_cgroup *)
151 (page->page_cgroup & ~PAGE_CGROUP_LOCK);
154 static void __always_inline lock_page_cgroup(struct page *page)
156 bit_spin_lock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
157 VM_BUG_ON(!page_cgroup_locked(page));
160 static void __always_inline unlock_page_cgroup(struct page *page)
162 bit_spin_unlock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
166 * Tie new page_cgroup to struct page under lock_page_cgroup()
167 * This can fail if the page has been tied to a page_cgroup.
168 * If success, returns 0.
170 static inline int
171 page_cgroup_assign_new_page_cgroup(struct page *page, struct page_cgroup *pc)
173 int ret = 0;
175 lock_page_cgroup(page);
176 if (!page_get_page_cgroup(page))
177 page_assign_page_cgroup(page, pc);
178 else /* A page is tied to other pc. */
179 ret = 1;
180 unlock_page_cgroup(page);
181 return ret;
185 * Clear page->page_cgroup member under lock_page_cgroup().
186 * If given "pc" value is different from one page->page_cgroup,
187 * page->cgroup is not cleared.
188 * Returns a value of page->page_cgroup at lock taken.
189 * A can can detect failure of clearing by following
190 * clear_page_cgroup(page, pc) == pc
193 static inline struct page_cgroup *
194 clear_page_cgroup(struct page *page, struct page_cgroup *pc)
196 struct page_cgroup *ret;
197 /* lock and clear */
198 lock_page_cgroup(page);
199 ret = page_get_page_cgroup(page);
200 if (likely(ret == pc))
201 page_assign_page_cgroup(page, NULL);
202 unlock_page_cgroup(page);
203 return ret;
207 static void __mem_cgroup_move_lists(struct page_cgroup *pc, bool active)
209 if (active)
210 list_move(&pc->lru, &pc->mem_cgroup->active_list);
211 else
212 list_move(&pc->lru, &pc->mem_cgroup->inactive_list);
215 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
217 int ret;
219 task_lock(task);
220 ret = task->mm && mm_cgroup(task->mm) == mem;
221 task_unlock(task);
222 return ret;
226 * This routine assumes that the appropriate zone's lru lock is already held
228 void mem_cgroup_move_lists(struct page_cgroup *pc, bool active)
230 struct mem_cgroup *mem;
231 if (!pc)
232 return;
234 mem = pc->mem_cgroup;
236 spin_lock(&mem->lru_lock);
237 __mem_cgroup_move_lists(pc, active);
238 spin_unlock(&mem->lru_lock);
241 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
242 struct list_head *dst,
243 unsigned long *scanned, int order,
244 int mode, struct zone *z,
245 struct mem_cgroup *mem_cont,
246 int active)
248 unsigned long nr_taken = 0;
249 struct page *page;
250 unsigned long scan;
251 LIST_HEAD(pc_list);
252 struct list_head *src;
253 struct page_cgroup *pc;
255 if (active)
256 src = &mem_cont->active_list;
257 else
258 src = &mem_cont->inactive_list;
260 spin_lock(&mem_cont->lru_lock);
261 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
262 pc = list_entry(src->prev, struct page_cgroup, lru);
263 page = pc->page;
264 VM_BUG_ON(!pc);
266 if (PageActive(page) && !active) {
267 __mem_cgroup_move_lists(pc, true);
268 scan--;
269 continue;
271 if (!PageActive(page) && active) {
272 __mem_cgroup_move_lists(pc, false);
273 scan--;
274 continue;
278 * Reclaim, per zone
279 * TODO: make the active/inactive lists per zone
281 if (page_zone(page) != z)
282 continue;
285 * Check if the meta page went away from under us
287 if (!list_empty(&pc->lru))
288 list_move(&pc->lru, &pc_list);
289 else
290 continue;
292 if (__isolate_lru_page(page, mode) == 0) {
293 list_move(&page->lru, dst);
294 nr_taken++;
298 list_splice(&pc_list, src);
299 spin_unlock(&mem_cont->lru_lock);
301 *scanned = scan;
302 return nr_taken;
306 * Charge the memory controller for page usage.
307 * Return
308 * 0 if the charge was successful
309 * < 0 if the cgroup is over its limit
311 int mem_cgroup_charge(struct page *page, struct mm_struct *mm,
312 gfp_t gfp_mask)
314 struct mem_cgroup *mem;
315 struct page_cgroup *pc;
316 unsigned long flags;
317 unsigned long nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
320 * Should page_cgroup's go to their own slab?
321 * One could optimize the performance of the charging routine
322 * by saving a bit in the page_flags and using it as a lock
323 * to see if the cgroup page already has a page_cgroup associated
324 * with it
326 retry:
327 lock_page_cgroup(page);
328 pc = page_get_page_cgroup(page);
330 * The page_cgroup exists and the page has already been accounted
332 if (pc) {
333 if (unlikely(!atomic_inc_not_zero(&pc->ref_cnt))) {
334 /* this page is under being uncharged ? */
335 unlock_page_cgroup(page);
336 cpu_relax();
337 goto retry;
338 } else {
339 unlock_page_cgroup(page);
340 goto done;
344 unlock_page_cgroup(page);
346 pc = kzalloc(sizeof(struct page_cgroup), gfp_mask);
347 if (pc == NULL)
348 goto err;
350 rcu_read_lock();
352 * We always charge the cgroup the mm_struct belongs to
353 * the mm_struct's mem_cgroup changes on task migration if the
354 * thread group leader migrates. It's possible that mm is not
355 * set, if so charge the init_mm (happens for pagecache usage).
357 if (!mm)
358 mm = &init_mm;
360 mem = rcu_dereference(mm->mem_cgroup);
362 * For every charge from the cgroup, increment reference
363 * count
365 css_get(&mem->css);
366 rcu_read_unlock();
369 * If we created the page_cgroup, we should free it on exceeding
370 * the cgroup limit.
372 while (res_counter_charge(&mem->res, PAGE_SIZE)) {
373 bool is_atomic = gfp_mask & GFP_ATOMIC;
375 * We cannot reclaim under GFP_ATOMIC, fail the charge
377 if (is_atomic)
378 goto noreclaim;
380 if (try_to_free_mem_cgroup_pages(mem, gfp_mask))
381 continue;
384 * try_to_free_mem_cgroup_pages() might not give us a full
385 * picture of reclaim. Some pages are reclaimed and might be
386 * moved to swap cache or just unmapped from the cgroup.
387 * Check the limit again to see if the reclaim reduced the
388 * current usage of the cgroup before giving up
390 if (res_counter_check_under_limit(&mem->res))
391 continue;
393 * Since we control both RSS and cache, we end up with a
394 * very interesting scenario where we end up reclaiming
395 * memory (essentially RSS), since the memory is pushed
396 * to swap cache, we eventually end up adding those
397 * pages back to our list. Hence we give ourselves a
398 * few chances before we fail
400 else if (nr_retries--) {
401 congestion_wait(WRITE, HZ/10);
402 continue;
404 noreclaim:
405 css_put(&mem->css);
406 if (!is_atomic)
407 mem_cgroup_out_of_memory(mem, GFP_KERNEL);
408 goto free_pc;
411 atomic_set(&pc->ref_cnt, 1);
412 pc->mem_cgroup = mem;
413 pc->page = page;
414 if (page_cgroup_assign_new_page_cgroup(page, pc)) {
416 * an another charge is added to this page already.
417 * we do take lock_page_cgroup(page) again and read
418 * page->cgroup, increment refcnt.... just retry is OK.
420 res_counter_uncharge(&mem->res, PAGE_SIZE);
421 css_put(&mem->css);
422 kfree(pc);
423 goto retry;
426 spin_lock_irqsave(&mem->lru_lock, flags);
427 list_add(&pc->lru, &mem->active_list);
428 spin_unlock_irqrestore(&mem->lru_lock, flags);
430 done:
431 return 0;
432 free_pc:
433 kfree(pc);
434 err:
435 return -ENOMEM;
439 * See if the cached pages should be charged at all?
441 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
442 gfp_t gfp_mask)
444 struct mem_cgroup *mem;
445 if (!mm)
446 mm = &init_mm;
448 mem = rcu_dereference(mm->mem_cgroup);
449 if (mem->control_type == MEM_CGROUP_TYPE_ALL)
450 return mem_cgroup_charge(page, mm, gfp_mask);
451 else
452 return 0;
456 * Uncharging is always a welcome operation, we never complain, simply
457 * uncharge.
459 void mem_cgroup_uncharge(struct page_cgroup *pc)
461 struct mem_cgroup *mem;
462 struct page *page;
463 unsigned long flags;
466 * This can handle cases when a page is not charged at all and we
467 * are switching between handling the control_type.
469 if (!pc)
470 return;
472 if (atomic_dec_and_test(&pc->ref_cnt)) {
473 page = pc->page;
475 * get page->cgroup and clear it under lock.
477 if (clear_page_cgroup(page, pc) == pc) {
478 mem = pc->mem_cgroup;
479 css_put(&mem->css);
480 res_counter_uncharge(&mem->res, PAGE_SIZE);
481 spin_lock_irqsave(&mem->lru_lock, flags);
482 list_del_init(&pc->lru);
483 spin_unlock_irqrestore(&mem->lru_lock, flags);
484 kfree(pc);
485 } else {
487 * Note:This will be removed when force-empty patch is
488 * applied. just show warning here.
490 printk(KERN_ERR "Race in mem_cgroup_uncharge() ?");
491 dump_stack();
496 int mem_cgroup_write_strategy(char *buf, unsigned long long *tmp)
498 *tmp = memparse(buf, &buf);
499 if (*buf != '\0')
500 return -EINVAL;
503 * Round up the value to the closest page size
505 *tmp = ((*tmp + PAGE_SIZE - 1) >> PAGE_SHIFT) << PAGE_SHIFT;
506 return 0;
509 static ssize_t mem_cgroup_read(struct cgroup *cont,
510 struct cftype *cft, struct file *file,
511 char __user *userbuf, size_t nbytes, loff_t *ppos)
513 return res_counter_read(&mem_cgroup_from_cont(cont)->res,
514 cft->private, userbuf, nbytes, ppos,
515 NULL);
518 static ssize_t mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
519 struct file *file, const char __user *userbuf,
520 size_t nbytes, loff_t *ppos)
522 return res_counter_write(&mem_cgroup_from_cont(cont)->res,
523 cft->private, userbuf, nbytes, ppos,
524 mem_cgroup_write_strategy);
527 static ssize_t mem_control_type_write(struct cgroup *cont,
528 struct cftype *cft, struct file *file,
529 const char __user *userbuf,
530 size_t nbytes, loff_t *pos)
532 int ret;
533 char *buf, *end;
534 unsigned long tmp;
535 struct mem_cgroup *mem;
537 mem = mem_cgroup_from_cont(cont);
538 buf = kmalloc(nbytes + 1, GFP_KERNEL);
539 ret = -ENOMEM;
540 if (buf == NULL)
541 goto out;
543 buf[nbytes] = 0;
544 ret = -EFAULT;
545 if (copy_from_user(buf, userbuf, nbytes))
546 goto out_free;
548 ret = -EINVAL;
549 tmp = simple_strtoul(buf, &end, 10);
550 if (*end != '\0')
551 goto out_free;
553 if (tmp <= MEM_CGROUP_TYPE_UNSPEC || tmp >= MEM_CGROUP_TYPE_MAX)
554 goto out_free;
556 mem->control_type = tmp;
557 ret = nbytes;
558 out_free:
559 kfree(buf);
560 out:
561 return ret;
564 static ssize_t mem_control_type_read(struct cgroup *cont,
565 struct cftype *cft,
566 struct file *file, char __user *userbuf,
567 size_t nbytes, loff_t *ppos)
569 unsigned long val;
570 char buf[64], *s;
571 struct mem_cgroup *mem;
573 mem = mem_cgroup_from_cont(cont);
574 s = buf;
575 val = mem->control_type;
576 s += sprintf(s, "%lu\n", val);
577 return simple_read_from_buffer((void __user *)userbuf, nbytes,
578 ppos, buf, s - buf);
581 static struct cftype mem_cgroup_files[] = {
583 .name = "usage_in_bytes",
584 .private = RES_USAGE,
585 .read = mem_cgroup_read,
588 .name = "limit_in_bytes",
589 .private = RES_LIMIT,
590 .write = mem_cgroup_write,
591 .read = mem_cgroup_read,
594 .name = "failcnt",
595 .private = RES_FAILCNT,
596 .read = mem_cgroup_read,
599 .name = "control_type",
600 .write = mem_control_type_write,
601 .read = mem_control_type_read,
605 static struct mem_cgroup init_mem_cgroup;
607 static struct cgroup_subsys_state *
608 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
610 struct mem_cgroup *mem;
612 if (unlikely((cont->parent) == NULL)) {
613 mem = &init_mem_cgroup;
614 init_mm.mem_cgroup = mem;
615 } else
616 mem = kzalloc(sizeof(struct mem_cgroup), GFP_KERNEL);
618 if (mem == NULL)
619 return NULL;
621 res_counter_init(&mem->res);
622 INIT_LIST_HEAD(&mem->active_list);
623 INIT_LIST_HEAD(&mem->inactive_list);
624 spin_lock_init(&mem->lru_lock);
625 mem->control_type = MEM_CGROUP_TYPE_ALL;
626 return &mem->css;
629 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
630 struct cgroup *cont)
632 kfree(mem_cgroup_from_cont(cont));
635 static int mem_cgroup_populate(struct cgroup_subsys *ss,
636 struct cgroup *cont)
638 return cgroup_add_files(cont, ss, mem_cgroup_files,
639 ARRAY_SIZE(mem_cgroup_files));
642 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
643 struct cgroup *cont,
644 struct cgroup *old_cont,
645 struct task_struct *p)
647 struct mm_struct *mm;
648 struct mem_cgroup *mem, *old_mem;
650 mm = get_task_mm(p);
651 if (mm == NULL)
652 return;
654 mem = mem_cgroup_from_cont(cont);
655 old_mem = mem_cgroup_from_cont(old_cont);
657 if (mem == old_mem)
658 goto out;
661 * Only thread group leaders are allowed to migrate, the mm_struct is
662 * in effect owned by the leader
664 if (p->tgid != p->pid)
665 goto out;
667 css_get(&mem->css);
668 rcu_assign_pointer(mm->mem_cgroup, mem);
669 css_put(&old_mem->css);
671 out:
672 mmput(mm);
673 return;
676 struct cgroup_subsys mem_cgroup_subsys = {
677 .name = "memory",
678 .subsys_id = mem_cgroup_subsys_id,
679 .create = mem_cgroup_create,
680 .destroy = mem_cgroup_destroy,
681 .populate = mem_cgroup_populate,
682 .attach = mem_cgroup_move_task,
683 .early_init = 1,