cfg80211: remove likely from an 11d hint case
[linux-2.6/mini2440.git] / net / wireless / reg.c
blobbaf50cac6e0acfc9abf1bbc905772b0d19d3ee63
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008 Luis R. Rodriguez <lrodriguz@atheros.com>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 /**
13 * DOC: Wireless regulatory infrastructure
15 * The usual implementation is for a driver to read a device EEPROM to
16 * determine which regulatory domain it should be operating under, then
17 * looking up the allowable channels in a driver-local table and finally
18 * registering those channels in the wiphy structure.
20 * Another set of compliance enforcement is for drivers to use their
21 * own compliance limits which can be stored on the EEPROM. The host
22 * driver or firmware may ensure these are used.
24 * In addition to all this we provide an extra layer of regulatory
25 * conformance. For drivers which do not have any regulatory
26 * information CRDA provides the complete regulatory solution.
27 * For others it provides a community effort on further restrictions
28 * to enhance compliance.
30 * Note: When number of rules --> infinity we will not be able to
31 * index on alpha2 any more, instead we'll probably have to
32 * rely on some SHA1 checksum of the regdomain for example.
35 #include <linux/kernel.h>
36 #include <linux/list.h>
37 #include <linux/random.h>
38 #include <linux/nl80211.h>
39 #include <linux/platform_device.h>
40 #include <net/wireless.h>
41 #include <net/cfg80211.h>
42 #include "core.h"
43 #include "reg.h"
45 /* Receipt of information from last regulatory request */
46 static struct regulatory_request *last_request;
48 /* To trigger userspace events */
49 static struct platform_device *reg_pdev;
51 /* Keep the ordering from large to small */
52 static u32 supported_bandwidths[] = {
53 MHZ_TO_KHZ(40),
54 MHZ_TO_KHZ(20),
57 /* Central wireless core regulatory domains, we only need two,
58 * the current one and a world regulatory domain in case we have no
59 * information to give us an alpha2 */
60 const struct ieee80211_regdomain *cfg80211_regdomain;
62 /* We use this as a place for the rd structure built from the
63 * last parsed country IE to rest until CRDA gets back to us with
64 * what it thinks should apply for the same country */
65 static const struct ieee80211_regdomain *country_ie_regdomain;
67 /* We keep a static world regulatory domain in case of the absence of CRDA */
68 static const struct ieee80211_regdomain world_regdom = {
69 .n_reg_rules = 1,
70 .alpha2 = "00",
71 .reg_rules = {
72 REG_RULE(2412-10, 2462+10, 40, 6, 20,
73 NL80211_RRF_PASSIVE_SCAN |
74 NL80211_RRF_NO_IBSS),
78 static const struct ieee80211_regdomain *cfg80211_world_regdom =
79 &world_regdom;
81 #ifdef CONFIG_WIRELESS_OLD_REGULATORY
82 static char *ieee80211_regdom = "US";
83 module_param(ieee80211_regdom, charp, 0444);
84 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
86 /* We assume 40 MHz bandwidth for the old regulatory work.
87 * We make emphasis we are using the exact same frequencies
88 * as before */
90 static const struct ieee80211_regdomain us_regdom = {
91 .n_reg_rules = 6,
92 .alpha2 = "US",
93 .reg_rules = {
94 /* IEEE 802.11b/g, channels 1..11 */
95 REG_RULE(2412-10, 2462+10, 40, 6, 27, 0),
96 /* IEEE 802.11a, channel 36 */
97 REG_RULE(5180-10, 5180+10, 40, 6, 23, 0),
98 /* IEEE 802.11a, channel 40 */
99 REG_RULE(5200-10, 5200+10, 40, 6, 23, 0),
100 /* IEEE 802.11a, channel 44 */
101 REG_RULE(5220-10, 5220+10, 40, 6, 23, 0),
102 /* IEEE 802.11a, channels 48..64 */
103 REG_RULE(5240-10, 5320+10, 40, 6, 23, 0),
104 /* IEEE 802.11a, channels 149..165, outdoor */
105 REG_RULE(5745-10, 5825+10, 40, 6, 30, 0),
109 static const struct ieee80211_regdomain jp_regdom = {
110 .n_reg_rules = 3,
111 .alpha2 = "JP",
112 .reg_rules = {
113 /* IEEE 802.11b/g, channels 1..14 */
114 REG_RULE(2412-10, 2484+10, 40, 6, 20, 0),
115 /* IEEE 802.11a, channels 34..48 */
116 REG_RULE(5170-10, 5240+10, 40, 6, 20,
117 NL80211_RRF_PASSIVE_SCAN),
118 /* IEEE 802.11a, channels 52..64 */
119 REG_RULE(5260-10, 5320+10, 40, 6, 20,
120 NL80211_RRF_NO_IBSS |
121 NL80211_RRF_DFS),
125 static const struct ieee80211_regdomain eu_regdom = {
126 .n_reg_rules = 6,
127 /* This alpha2 is bogus, we leave it here just for stupid
128 * backward compatibility */
129 .alpha2 = "EU",
130 .reg_rules = {
131 /* IEEE 802.11b/g, channels 1..13 */
132 REG_RULE(2412-10, 2472+10, 40, 6, 20, 0),
133 /* IEEE 802.11a, channel 36 */
134 REG_RULE(5180-10, 5180+10, 40, 6, 23,
135 NL80211_RRF_PASSIVE_SCAN),
136 /* IEEE 802.11a, channel 40 */
137 REG_RULE(5200-10, 5200+10, 40, 6, 23,
138 NL80211_RRF_PASSIVE_SCAN),
139 /* IEEE 802.11a, channel 44 */
140 REG_RULE(5220-10, 5220+10, 40, 6, 23,
141 NL80211_RRF_PASSIVE_SCAN),
142 /* IEEE 802.11a, channels 48..64 */
143 REG_RULE(5240-10, 5320+10, 40, 6, 20,
144 NL80211_RRF_NO_IBSS |
145 NL80211_RRF_DFS),
146 /* IEEE 802.11a, channels 100..140 */
147 REG_RULE(5500-10, 5700+10, 40, 6, 30,
148 NL80211_RRF_NO_IBSS |
149 NL80211_RRF_DFS),
153 static const struct ieee80211_regdomain *static_regdom(char *alpha2)
155 if (alpha2[0] == 'U' && alpha2[1] == 'S')
156 return &us_regdom;
157 if (alpha2[0] == 'J' && alpha2[1] == 'P')
158 return &jp_regdom;
159 if (alpha2[0] == 'E' && alpha2[1] == 'U')
160 return &eu_regdom;
161 /* Default, as per the old rules */
162 return &us_regdom;
165 static bool is_old_static_regdom(const struct ieee80211_regdomain *rd)
167 if (rd == &us_regdom || rd == &jp_regdom || rd == &eu_regdom)
168 return true;
169 return false;
171 #else
172 static inline bool is_old_static_regdom(const struct ieee80211_regdomain *rd)
174 return false;
176 #endif
178 static void reset_regdomains(void)
180 /* avoid freeing static information or freeing something twice */
181 if (cfg80211_regdomain == cfg80211_world_regdom)
182 cfg80211_regdomain = NULL;
183 if (cfg80211_world_regdom == &world_regdom)
184 cfg80211_world_regdom = NULL;
185 if (cfg80211_regdomain == &world_regdom)
186 cfg80211_regdomain = NULL;
187 if (is_old_static_regdom(cfg80211_regdomain))
188 cfg80211_regdomain = NULL;
190 kfree(cfg80211_regdomain);
191 kfree(cfg80211_world_regdom);
193 cfg80211_world_regdom = &world_regdom;
194 cfg80211_regdomain = NULL;
197 /* Dynamic world regulatory domain requested by the wireless
198 * core upon initialization */
199 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
201 BUG_ON(!last_request);
203 reset_regdomains();
205 cfg80211_world_regdom = rd;
206 cfg80211_regdomain = rd;
209 bool is_world_regdom(const char *alpha2)
211 if (!alpha2)
212 return false;
213 if (alpha2[0] == '0' && alpha2[1] == '0')
214 return true;
215 return false;
218 static bool is_alpha2_set(const char *alpha2)
220 if (!alpha2)
221 return false;
222 if (alpha2[0] != 0 && alpha2[1] != 0)
223 return true;
224 return false;
227 static bool is_alpha_upper(char letter)
229 /* ASCII A - Z */
230 if (letter >= 65 && letter <= 90)
231 return true;
232 return false;
235 static bool is_unknown_alpha2(const char *alpha2)
237 if (!alpha2)
238 return false;
239 /* Special case where regulatory domain was built by driver
240 * but a specific alpha2 cannot be determined */
241 if (alpha2[0] == '9' && alpha2[1] == '9')
242 return true;
243 return false;
246 static bool is_intersected_alpha2(const char *alpha2)
248 if (!alpha2)
249 return false;
250 /* Special case where regulatory domain is the
251 * result of an intersection between two regulatory domain
252 * structures */
253 if (alpha2[0] == '9' && alpha2[1] == '8')
254 return true;
255 return false;
258 static bool is_an_alpha2(const char *alpha2)
260 if (!alpha2)
261 return false;
262 if (is_alpha_upper(alpha2[0]) && is_alpha_upper(alpha2[1]))
263 return true;
264 return false;
267 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
269 if (!alpha2_x || !alpha2_y)
270 return false;
271 if (alpha2_x[0] == alpha2_y[0] &&
272 alpha2_x[1] == alpha2_y[1])
273 return true;
274 return false;
277 static bool regdom_changed(const char *alpha2)
279 assert_cfg80211_lock();
281 if (!cfg80211_regdomain)
282 return true;
283 if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
284 return false;
285 return true;
289 * country_ie_integrity_changes - tells us if the country IE has changed
290 * @checksum: checksum of country IE of fields we are interested in
292 * If the country IE has not changed you can ignore it safely. This is
293 * useful to determine if two devices are seeing two different country IEs
294 * even on the same alpha2. Note that this will return false if no IE has
295 * been set on the wireless core yet.
297 static bool country_ie_integrity_changes(u32 checksum)
299 /* If no IE has been set then the checksum doesn't change */
300 if (unlikely(!last_request->country_ie_checksum))
301 return false;
302 if (unlikely(last_request->country_ie_checksum != checksum))
303 return true;
304 return false;
307 /* This lets us keep regulatory code which is updated on a regulatory
308 * basis in userspace. */
309 static int call_crda(const char *alpha2)
311 char country_env[9 + 2] = "COUNTRY=";
312 char *envp[] = {
313 country_env,
314 NULL
317 if (!is_world_regdom((char *) alpha2))
318 printk(KERN_INFO "cfg80211: Calling CRDA for country: %c%c\n",
319 alpha2[0], alpha2[1]);
320 else
321 printk(KERN_INFO "cfg80211: Calling CRDA to update world "
322 "regulatory domain\n");
324 country_env[8] = alpha2[0];
325 country_env[9] = alpha2[1];
327 return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, envp);
330 /* Used by nl80211 before kmalloc'ing our regulatory domain */
331 bool reg_is_valid_request(const char *alpha2)
333 if (!last_request)
334 return false;
336 return alpha2_equal(last_request->alpha2, alpha2);
339 /* Sanity check on a regulatory rule */
340 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
342 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
343 u32 freq_diff;
345 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
346 return false;
348 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
349 return false;
351 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
353 if (freq_diff <= 0 || freq_range->max_bandwidth_khz > freq_diff)
354 return false;
356 return true;
359 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
361 const struct ieee80211_reg_rule *reg_rule = NULL;
362 unsigned int i;
364 if (!rd->n_reg_rules)
365 return false;
367 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
368 return false;
370 for (i = 0; i < rd->n_reg_rules; i++) {
371 reg_rule = &rd->reg_rules[i];
372 if (!is_valid_reg_rule(reg_rule))
373 return false;
376 return true;
379 /* Returns value in KHz */
380 static u32 freq_max_bandwidth(const struct ieee80211_freq_range *freq_range,
381 u32 freq)
383 unsigned int i;
384 for (i = 0; i < ARRAY_SIZE(supported_bandwidths); i++) {
385 u32 start_freq_khz = freq - supported_bandwidths[i]/2;
386 u32 end_freq_khz = freq + supported_bandwidths[i]/2;
387 if (start_freq_khz >= freq_range->start_freq_khz &&
388 end_freq_khz <= freq_range->end_freq_khz)
389 return supported_bandwidths[i];
391 return 0;
395 * freq_in_rule_band - tells us if a frequency is in a frequency band
396 * @freq_range: frequency rule we want to query
397 * @freq_khz: frequency we are inquiring about
399 * This lets us know if a specific frequency rule is or is not relevant to
400 * a specific frequency's band. Bands are device specific and artificial
401 * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
402 * safe for now to assume that a frequency rule should not be part of a
403 * frequency's band if the start freq or end freq are off by more than 2 GHz.
404 * This resolution can be lowered and should be considered as we add
405 * regulatory rule support for other "bands".
407 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
408 u32 freq_khz)
410 #define ONE_GHZ_IN_KHZ 1000000
411 if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
412 return true;
413 if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
414 return true;
415 return false;
416 #undef ONE_GHZ_IN_KHZ
419 /* Converts a country IE to a regulatory domain. A regulatory domain
420 * structure has a lot of information which the IE doesn't yet have,
421 * so for the other values we use upper max values as we will intersect
422 * with our userspace regulatory agent to get lower bounds. */
423 static struct ieee80211_regdomain *country_ie_2_rd(
424 u8 *country_ie,
425 u8 country_ie_len,
426 u32 *checksum)
428 struct ieee80211_regdomain *rd = NULL;
429 unsigned int i = 0;
430 char alpha2[2];
431 u32 flags = 0;
432 u32 num_rules = 0, size_of_regd = 0;
433 u8 *triplets_start = NULL;
434 u8 len_at_triplet = 0;
435 /* the last channel we have registered in a subband (triplet) */
436 int last_sub_max_channel = 0;
438 *checksum = 0xDEADBEEF;
440 /* Country IE requirements */
441 BUG_ON(country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN ||
442 country_ie_len & 0x01);
444 alpha2[0] = country_ie[0];
445 alpha2[1] = country_ie[1];
448 * Third octet can be:
449 * 'I' - Indoor
450 * 'O' - Outdoor
452 * anything else we assume is no restrictions
454 if (country_ie[2] == 'I')
455 flags = NL80211_RRF_NO_OUTDOOR;
456 else if (country_ie[2] == 'O')
457 flags = NL80211_RRF_NO_INDOOR;
459 country_ie += 3;
460 country_ie_len -= 3;
462 triplets_start = country_ie;
463 len_at_triplet = country_ie_len;
465 *checksum ^= ((flags ^ alpha2[0] ^ alpha2[1]) << 8);
467 /* We need to build a reg rule for each triplet, but first we must
468 * calculate the number of reg rules we will need. We will need one
469 * for each channel subband */
470 while (country_ie_len >= 3) {
471 int end_channel = 0;
472 struct ieee80211_country_ie_triplet *triplet =
473 (struct ieee80211_country_ie_triplet *) country_ie;
474 int cur_sub_max_channel = 0, cur_channel = 0;
476 if (triplet->ext.reg_extension_id >=
477 IEEE80211_COUNTRY_EXTENSION_ID) {
478 country_ie += 3;
479 country_ie_len -= 3;
480 continue;
483 /* 2 GHz */
484 if (triplet->chans.first_channel <= 14)
485 end_channel = triplet->chans.first_channel +
486 triplet->chans.num_channels;
487 else
489 * 5 GHz -- For example in country IEs if the first
490 * channel given is 36 and the number of channels is 4
491 * then the individual channel numbers defined for the
492 * 5 GHz PHY by these parameters are: 36, 40, 44, and 48
493 * and not 36, 37, 38, 39.
495 * See: http://tinyurl.com/11d-clarification
497 end_channel = triplet->chans.first_channel +
498 (4 * (triplet->chans.num_channels - 1));
500 cur_channel = triplet->chans.first_channel;
501 cur_sub_max_channel = end_channel;
503 /* Basic sanity check */
504 if (cur_sub_max_channel < cur_channel)
505 return NULL;
507 /* Do not allow overlapping channels. Also channels
508 * passed in each subband must be monotonically
509 * increasing */
510 if (last_sub_max_channel) {
511 if (cur_channel <= last_sub_max_channel)
512 return NULL;
513 if (cur_sub_max_channel <= last_sub_max_channel)
514 return NULL;
517 /* When dot11RegulatoryClassesRequired is supported
518 * we can throw ext triplets as part of this soup,
519 * for now we don't care when those change as we
520 * don't support them */
521 *checksum ^= ((cur_channel ^ cur_sub_max_channel) << 8) |
522 ((cur_sub_max_channel ^ cur_sub_max_channel) << 16) |
523 ((triplet->chans.max_power ^ cur_sub_max_channel) << 24);
525 last_sub_max_channel = cur_sub_max_channel;
527 country_ie += 3;
528 country_ie_len -= 3;
529 num_rules++;
531 /* Note: this is not a IEEE requirement but
532 * simply a memory requirement */
533 if (num_rules > NL80211_MAX_SUPP_REG_RULES)
534 return NULL;
537 country_ie = triplets_start;
538 country_ie_len = len_at_triplet;
540 size_of_regd = sizeof(struct ieee80211_regdomain) +
541 (num_rules * sizeof(struct ieee80211_reg_rule));
543 rd = kzalloc(size_of_regd, GFP_KERNEL);
544 if (!rd)
545 return NULL;
547 rd->n_reg_rules = num_rules;
548 rd->alpha2[0] = alpha2[0];
549 rd->alpha2[1] = alpha2[1];
551 /* This time around we fill in the rd */
552 while (country_ie_len >= 3) {
553 int end_channel = 0;
554 struct ieee80211_country_ie_triplet *triplet =
555 (struct ieee80211_country_ie_triplet *) country_ie;
556 struct ieee80211_reg_rule *reg_rule = NULL;
557 struct ieee80211_freq_range *freq_range = NULL;
558 struct ieee80211_power_rule *power_rule = NULL;
560 /* Must parse if dot11RegulatoryClassesRequired is true,
561 * we don't support this yet */
562 if (triplet->ext.reg_extension_id >=
563 IEEE80211_COUNTRY_EXTENSION_ID) {
564 country_ie += 3;
565 country_ie_len -= 3;
566 continue;
569 reg_rule = &rd->reg_rules[i];
570 freq_range = &reg_rule->freq_range;
571 power_rule = &reg_rule->power_rule;
573 reg_rule->flags = flags;
575 /* 2 GHz */
576 if (triplet->chans.first_channel <= 14)
577 end_channel = triplet->chans.first_channel +
578 triplet->chans.num_channels;
579 else
580 end_channel = triplet->chans.first_channel +
581 (4 * (triplet->chans.num_channels - 1));
583 /* The +10 is since the regulatory domain expects
584 * the actual band edge, not the center of freq for
585 * its start and end freqs, assuming 20 MHz bandwidth on
586 * the channels passed */
587 freq_range->start_freq_khz =
588 MHZ_TO_KHZ(ieee80211_channel_to_frequency(
589 triplet->chans.first_channel) - 10);
590 freq_range->end_freq_khz =
591 MHZ_TO_KHZ(ieee80211_channel_to_frequency(
592 end_channel) + 10);
594 /* Large arbitrary values, we intersect later */
595 /* Increment this if we ever support >= 40 MHz channels
596 * in IEEE 802.11 */
597 freq_range->max_bandwidth_khz = MHZ_TO_KHZ(40);
598 power_rule->max_antenna_gain = DBI_TO_MBI(100);
599 power_rule->max_eirp = DBM_TO_MBM(100);
601 country_ie += 3;
602 country_ie_len -= 3;
603 i++;
605 BUG_ON(i > NL80211_MAX_SUPP_REG_RULES);
608 return rd;
612 /* Helper for regdom_intersect(), this does the real
613 * mathematical intersection fun */
614 static int reg_rules_intersect(
615 const struct ieee80211_reg_rule *rule1,
616 const struct ieee80211_reg_rule *rule2,
617 struct ieee80211_reg_rule *intersected_rule)
619 const struct ieee80211_freq_range *freq_range1, *freq_range2;
620 struct ieee80211_freq_range *freq_range;
621 const struct ieee80211_power_rule *power_rule1, *power_rule2;
622 struct ieee80211_power_rule *power_rule;
623 u32 freq_diff;
625 freq_range1 = &rule1->freq_range;
626 freq_range2 = &rule2->freq_range;
627 freq_range = &intersected_rule->freq_range;
629 power_rule1 = &rule1->power_rule;
630 power_rule2 = &rule2->power_rule;
631 power_rule = &intersected_rule->power_rule;
633 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
634 freq_range2->start_freq_khz);
635 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
636 freq_range2->end_freq_khz);
637 freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
638 freq_range2->max_bandwidth_khz);
640 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
641 if (freq_range->max_bandwidth_khz > freq_diff)
642 freq_range->max_bandwidth_khz = freq_diff;
644 power_rule->max_eirp = min(power_rule1->max_eirp,
645 power_rule2->max_eirp);
646 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
647 power_rule2->max_antenna_gain);
649 intersected_rule->flags = (rule1->flags | rule2->flags);
651 if (!is_valid_reg_rule(intersected_rule))
652 return -EINVAL;
654 return 0;
658 * regdom_intersect - do the intersection between two regulatory domains
659 * @rd1: first regulatory domain
660 * @rd2: second regulatory domain
662 * Use this function to get the intersection between two regulatory domains.
663 * Once completed we will mark the alpha2 for the rd as intersected, "98",
664 * as no one single alpha2 can represent this regulatory domain.
666 * Returns a pointer to the regulatory domain structure which will hold the
667 * resulting intersection of rules between rd1 and rd2. We will
668 * kzalloc() this structure for you.
670 static struct ieee80211_regdomain *regdom_intersect(
671 const struct ieee80211_regdomain *rd1,
672 const struct ieee80211_regdomain *rd2)
674 int r, size_of_regd;
675 unsigned int x, y;
676 unsigned int num_rules = 0, rule_idx = 0;
677 const struct ieee80211_reg_rule *rule1, *rule2;
678 struct ieee80211_reg_rule *intersected_rule;
679 struct ieee80211_regdomain *rd;
680 /* This is just a dummy holder to help us count */
681 struct ieee80211_reg_rule irule;
683 /* Uses the stack temporarily for counter arithmetic */
684 intersected_rule = &irule;
686 memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));
688 if (!rd1 || !rd2)
689 return NULL;
691 /* First we get a count of the rules we'll need, then we actually
692 * build them. This is to so we can malloc() and free() a
693 * regdomain once. The reason we use reg_rules_intersect() here
694 * is it will return -EINVAL if the rule computed makes no sense.
695 * All rules that do check out OK are valid. */
697 for (x = 0; x < rd1->n_reg_rules; x++) {
698 rule1 = &rd1->reg_rules[x];
699 for (y = 0; y < rd2->n_reg_rules; y++) {
700 rule2 = &rd2->reg_rules[y];
701 if (!reg_rules_intersect(rule1, rule2,
702 intersected_rule))
703 num_rules++;
704 memset(intersected_rule, 0,
705 sizeof(struct ieee80211_reg_rule));
709 if (!num_rules)
710 return NULL;
712 size_of_regd = sizeof(struct ieee80211_regdomain) +
713 ((num_rules + 1) * sizeof(struct ieee80211_reg_rule));
715 rd = kzalloc(size_of_regd, GFP_KERNEL);
716 if (!rd)
717 return NULL;
719 for (x = 0; x < rd1->n_reg_rules; x++) {
720 rule1 = &rd1->reg_rules[x];
721 for (y = 0; y < rd2->n_reg_rules; y++) {
722 rule2 = &rd2->reg_rules[y];
723 /* This time around instead of using the stack lets
724 * write to the target rule directly saving ourselves
725 * a memcpy() */
726 intersected_rule = &rd->reg_rules[rule_idx];
727 r = reg_rules_intersect(rule1, rule2,
728 intersected_rule);
729 /* No need to memset here the intersected rule here as
730 * we're not using the stack anymore */
731 if (r)
732 continue;
733 rule_idx++;
737 if (rule_idx != num_rules) {
738 kfree(rd);
739 return NULL;
742 rd->n_reg_rules = num_rules;
743 rd->alpha2[0] = '9';
744 rd->alpha2[1] = '8';
746 return rd;
749 /* XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
750 * want to just have the channel structure use these */
751 static u32 map_regdom_flags(u32 rd_flags)
753 u32 channel_flags = 0;
754 if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
755 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
756 if (rd_flags & NL80211_RRF_NO_IBSS)
757 channel_flags |= IEEE80211_CHAN_NO_IBSS;
758 if (rd_flags & NL80211_RRF_DFS)
759 channel_flags |= IEEE80211_CHAN_RADAR;
760 return channel_flags;
763 static int freq_reg_info_regd(struct wiphy *wiphy,
764 u32 center_freq,
765 u32 *bandwidth,
766 const struct ieee80211_reg_rule **reg_rule,
767 const struct ieee80211_regdomain *custom_regd)
769 int i;
770 bool band_rule_found = false;
771 const struct ieee80211_regdomain *regd;
772 u32 max_bandwidth = 0;
774 regd = custom_regd ? custom_regd : cfg80211_regdomain;
776 /* Follow the driver's regulatory domain, if present, unless a country
777 * IE has been processed or a user wants to help complaince further */
778 if (last_request->initiator != REGDOM_SET_BY_COUNTRY_IE &&
779 last_request->initiator != REGDOM_SET_BY_USER &&
780 wiphy->regd)
781 regd = wiphy->regd;
783 if (!regd)
784 return -EINVAL;
786 for (i = 0; i < regd->n_reg_rules; i++) {
787 const struct ieee80211_reg_rule *rr;
788 const struct ieee80211_freq_range *fr = NULL;
789 const struct ieee80211_power_rule *pr = NULL;
791 rr = &regd->reg_rules[i];
792 fr = &rr->freq_range;
793 pr = &rr->power_rule;
795 /* We only need to know if one frequency rule was
796 * was in center_freq's band, that's enough, so lets
797 * not overwrite it once found */
798 if (!band_rule_found)
799 band_rule_found = freq_in_rule_band(fr, center_freq);
801 max_bandwidth = freq_max_bandwidth(fr, center_freq);
803 if (max_bandwidth && *bandwidth <= max_bandwidth) {
804 *reg_rule = rr;
805 *bandwidth = max_bandwidth;
806 break;
810 if (!band_rule_found)
811 return -ERANGE;
813 return !max_bandwidth;
815 EXPORT_SYMBOL(freq_reg_info);
817 int freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 *bandwidth,
818 const struct ieee80211_reg_rule **reg_rule)
820 return freq_reg_info_regd(wiphy, center_freq,
821 bandwidth, reg_rule, NULL);
824 static void handle_channel(struct wiphy *wiphy, enum ieee80211_band band,
825 unsigned int chan_idx)
827 int r;
828 u32 flags;
829 u32 max_bandwidth = 0;
830 const struct ieee80211_reg_rule *reg_rule = NULL;
831 const struct ieee80211_power_rule *power_rule = NULL;
832 struct ieee80211_supported_band *sband;
833 struct ieee80211_channel *chan;
834 struct wiphy *request_wiphy;
836 assert_cfg80211_lock();
838 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
840 sband = wiphy->bands[band];
841 BUG_ON(chan_idx >= sband->n_channels);
842 chan = &sband->channels[chan_idx];
844 flags = chan->orig_flags;
846 r = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq),
847 &max_bandwidth, &reg_rule);
849 if (r) {
850 /* This means no regulatory rule was found in the country IE
851 * with a frequency range on the center_freq's band, since
852 * IEEE-802.11 allows for a country IE to have a subset of the
853 * regulatory information provided in a country we ignore
854 * disabling the channel unless at least one reg rule was
855 * found on the center_freq's band. For details see this
856 * clarification:
858 * http://tinyurl.com/11d-clarification
860 if (r == -ERANGE &&
861 last_request->initiator == REGDOM_SET_BY_COUNTRY_IE) {
862 #ifdef CONFIG_CFG80211_REG_DEBUG
863 printk(KERN_DEBUG "cfg80211: Leaving channel %d MHz "
864 "intact on %s - no rule found in band on "
865 "Country IE\n",
866 chan->center_freq, wiphy_name(wiphy));
867 #endif
868 } else {
869 /* In this case we know the country IE has at least one reg rule
870 * for the band so we respect its band definitions */
871 #ifdef CONFIG_CFG80211_REG_DEBUG
872 if (last_request->initiator == REGDOM_SET_BY_COUNTRY_IE)
873 printk(KERN_DEBUG "cfg80211: Disabling "
874 "channel %d MHz on %s due to "
875 "Country IE\n",
876 chan->center_freq, wiphy_name(wiphy));
877 #endif
878 flags |= IEEE80211_CHAN_DISABLED;
879 chan->flags = flags;
881 return;
884 power_rule = &reg_rule->power_rule;
886 if (last_request->initiator == REGDOM_SET_BY_DRIVER &&
887 request_wiphy && request_wiphy == wiphy &&
888 request_wiphy->strict_regulatory) {
889 /* This gaurantees the driver's requested regulatory domain
890 * will always be used as a base for further regulatory
891 * settings */
892 chan->flags = chan->orig_flags =
893 map_regdom_flags(reg_rule->flags);
894 chan->max_antenna_gain = chan->orig_mag =
895 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
896 chan->max_bandwidth = KHZ_TO_MHZ(max_bandwidth);
897 chan->max_power = chan->orig_mpwr =
898 (int) MBM_TO_DBM(power_rule->max_eirp);
899 return;
902 chan->flags = flags | map_regdom_flags(reg_rule->flags);
903 chan->max_antenna_gain = min(chan->orig_mag,
904 (int) MBI_TO_DBI(power_rule->max_antenna_gain));
905 chan->max_bandwidth = KHZ_TO_MHZ(max_bandwidth);
906 if (chan->orig_mpwr)
907 chan->max_power = min(chan->orig_mpwr,
908 (int) MBM_TO_DBM(power_rule->max_eirp));
909 else
910 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
913 static void handle_band(struct wiphy *wiphy, enum ieee80211_band band)
915 unsigned int i;
916 struct ieee80211_supported_band *sband;
918 BUG_ON(!wiphy->bands[band]);
919 sband = wiphy->bands[band];
921 for (i = 0; i < sband->n_channels; i++)
922 handle_channel(wiphy, band, i);
925 static bool ignore_reg_update(struct wiphy *wiphy, enum reg_set_by setby)
927 if (!last_request)
928 return true;
929 if (setby == REGDOM_SET_BY_CORE &&
930 wiphy->custom_regulatory)
931 return true;
932 /* wiphy->regd will be set once the device has its own
933 * desired regulatory domain set */
934 if (wiphy->strict_regulatory && !wiphy->regd &&
935 !is_world_regdom(last_request->alpha2))
936 return true;
937 return false;
940 static void update_all_wiphy_regulatory(enum reg_set_by setby)
942 struct cfg80211_registered_device *drv;
944 list_for_each_entry(drv, &cfg80211_drv_list, list)
945 wiphy_update_regulatory(&drv->wiphy, setby);
948 void wiphy_update_regulatory(struct wiphy *wiphy, enum reg_set_by setby)
950 enum ieee80211_band band;
952 if (ignore_reg_update(wiphy, setby))
953 return;
954 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
955 if (wiphy->bands[band])
956 handle_band(wiphy, band);
958 if (wiphy->reg_notifier)
959 wiphy->reg_notifier(wiphy, last_request);
962 static void handle_channel_custom(struct wiphy *wiphy,
963 enum ieee80211_band band,
964 unsigned int chan_idx,
965 const struct ieee80211_regdomain *regd)
967 int r;
968 u32 max_bandwidth = 0;
969 const struct ieee80211_reg_rule *reg_rule = NULL;
970 const struct ieee80211_power_rule *power_rule = NULL;
971 struct ieee80211_supported_band *sband;
972 struct ieee80211_channel *chan;
974 sband = wiphy->bands[band];
975 BUG_ON(chan_idx >= sband->n_channels);
976 chan = &sband->channels[chan_idx];
978 r = freq_reg_info_regd(wiphy, MHZ_TO_KHZ(chan->center_freq),
979 &max_bandwidth, &reg_rule, regd);
981 if (r) {
982 chan->flags = IEEE80211_CHAN_DISABLED;
983 return;
986 power_rule = &reg_rule->power_rule;
988 chan->flags |= map_regdom_flags(reg_rule->flags);
989 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
990 chan->max_bandwidth = KHZ_TO_MHZ(max_bandwidth);
991 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
994 static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
995 const struct ieee80211_regdomain *regd)
997 unsigned int i;
998 struct ieee80211_supported_band *sband;
1000 BUG_ON(!wiphy->bands[band]);
1001 sband = wiphy->bands[band];
1003 for (i = 0; i < sband->n_channels; i++)
1004 handle_channel_custom(wiphy, band, i, regd);
1007 /* Used by drivers prior to wiphy registration */
1008 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1009 const struct ieee80211_regdomain *regd)
1011 enum ieee80211_band band;
1012 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1013 if (wiphy->bands[band])
1014 handle_band_custom(wiphy, band, regd);
1017 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1019 static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
1020 const struct ieee80211_regdomain *src_regd)
1022 struct ieee80211_regdomain *regd;
1023 int size_of_regd = 0;
1024 unsigned int i;
1026 size_of_regd = sizeof(struct ieee80211_regdomain) +
1027 ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));
1029 regd = kzalloc(size_of_regd, GFP_KERNEL);
1030 if (!regd)
1031 return -ENOMEM;
1033 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
1035 for (i = 0; i < src_regd->n_reg_rules; i++)
1036 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
1037 sizeof(struct ieee80211_reg_rule));
1039 *dst_regd = regd;
1040 return 0;
1043 /* Return value which can be used by ignore_request() to indicate
1044 * it has been determined we should intersect two regulatory domains */
1045 #define REG_INTERSECT 1
1047 /* This has the logic which determines when a new request
1048 * should be ignored. */
1049 static int ignore_request(struct wiphy *wiphy, enum reg_set_by set_by,
1050 const char *alpha2)
1052 struct wiphy *last_wiphy = NULL;
1054 assert_cfg80211_lock();
1056 /* All initial requests are respected */
1057 if (!last_request)
1058 return 0;
1060 switch (set_by) {
1061 case REGDOM_SET_BY_INIT:
1062 return -EINVAL;
1063 case REGDOM_SET_BY_CORE:
1064 return -EINVAL;
1065 case REGDOM_SET_BY_COUNTRY_IE:
1067 last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1069 if (unlikely(!is_an_alpha2(alpha2)))
1070 return -EINVAL;
1071 if (last_request->initiator == REGDOM_SET_BY_COUNTRY_IE) {
1072 if (last_wiphy != wiphy) {
1074 * Two cards with two APs claiming different
1075 * different Country IE alpha2s. We could
1076 * intersect them, but that seems unlikely
1077 * to be correct. Reject second one for now.
1079 if (!alpha2_equal(alpha2,
1080 cfg80211_regdomain->alpha2))
1081 return -EOPNOTSUPP;
1082 return -EALREADY;
1084 /* Two consecutive Country IE hints on the same wiphy.
1085 * This should be picked up early by the driver/stack */
1086 if (WARN_ON(!alpha2_equal(cfg80211_regdomain->alpha2,
1087 alpha2)))
1088 return 0;
1089 return -EALREADY;
1091 return REG_INTERSECT;
1092 case REGDOM_SET_BY_DRIVER:
1093 if (last_request->initiator == REGDOM_SET_BY_CORE) {
1094 if (is_old_static_regdom(cfg80211_regdomain))
1095 return 0;
1096 if (!alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
1097 return 0;
1098 return -EALREADY;
1100 return REG_INTERSECT;
1101 case REGDOM_SET_BY_USER:
1102 if (last_request->initiator == REGDOM_SET_BY_COUNTRY_IE)
1103 return REG_INTERSECT;
1104 /* If the user knows better the user should set the regdom
1105 * to their country before the IE is picked up */
1106 if (last_request->initiator == REGDOM_SET_BY_USER &&
1107 last_request->intersect)
1108 return -EOPNOTSUPP;
1109 /* Process user requests only after previous user/driver/core
1110 * requests have been processed */
1111 if (last_request->initiator == REGDOM_SET_BY_CORE ||
1112 last_request->initiator == REGDOM_SET_BY_DRIVER ||
1113 last_request->initiator == REGDOM_SET_BY_USER) {
1114 if (!alpha2_equal(last_request->alpha2,
1115 cfg80211_regdomain->alpha2))
1116 return -EAGAIN;
1119 if (!is_old_static_regdom(cfg80211_regdomain) &&
1120 alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
1121 return -EALREADY;
1123 return 0;
1126 return -EINVAL;
1129 /* Caller must hold &cfg80211_mutex */
1130 int __regulatory_hint(struct wiphy *wiphy, enum reg_set_by set_by,
1131 const char *alpha2,
1132 u32 country_ie_checksum,
1133 enum environment_cap env)
1135 struct regulatory_request *request;
1136 bool intersect = false;
1137 int r = 0;
1139 assert_cfg80211_lock();
1141 r = ignore_request(wiphy, set_by, alpha2);
1143 if (r == REG_INTERSECT) {
1144 if (set_by == REGDOM_SET_BY_DRIVER) {
1145 r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1146 if (r)
1147 return r;
1149 intersect = true;
1150 } else if (r) {
1151 /* If the regulatory domain being requested by the
1152 * driver has already been set just copy it to the
1153 * wiphy */
1154 if (r == -EALREADY && set_by == REGDOM_SET_BY_DRIVER) {
1155 r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1156 if (r)
1157 return r;
1158 r = -EALREADY;
1159 goto new_request;
1161 return r;
1164 new_request:
1165 request = kzalloc(sizeof(struct regulatory_request),
1166 GFP_KERNEL);
1167 if (!request)
1168 return -ENOMEM;
1170 request->alpha2[0] = alpha2[0];
1171 request->alpha2[1] = alpha2[1];
1172 request->initiator = set_by;
1173 request->wiphy_idx = get_wiphy_idx(wiphy);
1174 request->intersect = intersect;
1175 request->country_ie_checksum = country_ie_checksum;
1176 request->country_ie_env = env;
1178 kfree(last_request);
1179 last_request = request;
1181 /* When r == REG_INTERSECT we do need to call CRDA */
1182 if (r < 0)
1183 return r;
1186 * Note: When CONFIG_WIRELESS_OLD_REGULATORY is enabled
1187 * AND if CRDA is NOT present nothing will happen, if someone
1188 * wants to bother with 11d with OLD_REG you can add a timer.
1189 * If after x amount of time nothing happens you can call:
1191 * return set_regdom(country_ie_regdomain);
1193 * to intersect with the static rd
1195 return call_crda(alpha2);
1198 static int regulatory_hint_core(const char *alpha2)
1200 struct regulatory_request *request;
1202 BUG_ON(last_request);
1204 request = kzalloc(sizeof(struct regulatory_request),
1205 GFP_KERNEL);
1206 if (!request)
1207 return -ENOMEM;
1209 request->alpha2[0] = alpha2[0];
1210 request->alpha2[1] = alpha2[1];
1211 request->initiator = REGDOM_SET_BY_CORE;
1213 last_request = request;
1215 return call_crda(alpha2);
1218 void regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1220 int r;
1221 BUG_ON(!alpha2);
1223 mutex_lock(&cfg80211_mutex);
1224 r = __regulatory_hint(wiphy, REGDOM_SET_BY_DRIVER,
1225 alpha2, 0, ENVIRON_ANY);
1226 /* This is required so that the orig_* parameters are saved */
1227 if (r == -EALREADY && wiphy->strict_regulatory)
1228 wiphy_update_regulatory(wiphy, REGDOM_SET_BY_DRIVER);
1229 mutex_unlock(&cfg80211_mutex);
1231 EXPORT_SYMBOL(regulatory_hint);
1233 static bool reg_same_country_ie_hint(struct wiphy *wiphy,
1234 u32 country_ie_checksum)
1236 struct wiphy *request_wiphy;
1238 assert_cfg80211_lock();
1240 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1242 if (!request_wiphy)
1243 return false;
1245 if (likely(request_wiphy != wiphy))
1246 return !country_ie_integrity_changes(country_ie_checksum);
1247 /* We should not have let these through at this point, they
1248 * should have been picked up earlier by the first alpha2 check
1249 * on the device */
1250 if (WARN_ON(!country_ie_integrity_changes(country_ie_checksum)))
1251 return true;
1252 return false;
1255 void regulatory_hint_11d(struct wiphy *wiphy,
1256 u8 *country_ie,
1257 u8 country_ie_len)
1259 struct ieee80211_regdomain *rd = NULL;
1260 char alpha2[2];
1261 u32 checksum = 0;
1262 enum environment_cap env = ENVIRON_ANY;
1264 mutex_lock(&cfg80211_mutex);
1266 if (unlikely(!last_request)) {
1267 mutex_unlock(&cfg80211_mutex);
1268 return;
1271 /* IE len must be evenly divisible by 2 */
1272 if (country_ie_len & 0x01)
1273 goto out;
1275 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1276 goto out;
1278 /* Pending country IE processing, this can happen after we
1279 * call CRDA and wait for a response if a beacon was received before
1280 * we were able to process the last regulatory_hint_11d() call */
1281 if (country_ie_regdomain)
1282 goto out;
1284 alpha2[0] = country_ie[0];
1285 alpha2[1] = country_ie[1];
1287 if (country_ie[2] == 'I')
1288 env = ENVIRON_INDOOR;
1289 else if (country_ie[2] == 'O')
1290 env = ENVIRON_OUTDOOR;
1292 /* We will run this for *every* beacon processed for the BSSID, so
1293 * we optimize an early check to exit out early if we don't have to
1294 * do anything */
1295 if (likely(wiphy_idx_valid(last_request->wiphy_idx))) {
1296 struct cfg80211_registered_device *drv_last_ie;
1298 drv_last_ie =
1299 cfg80211_drv_by_wiphy_idx(last_request->wiphy_idx);
1301 /* Lets keep this simple -- we trust the first AP
1302 * after we intersect with CRDA */
1303 if (likely(&drv_last_ie->wiphy == wiphy)) {
1304 /* Ignore IEs coming in on this wiphy with
1305 * the same alpha2 and environment cap */
1306 if (likely(alpha2_equal(drv_last_ie->country_ie_alpha2,
1307 alpha2) &&
1308 env == drv_last_ie->env)) {
1309 goto out;
1311 /* the wiphy moved on to another BSSID or the AP
1312 * was reconfigured. XXX: We need to deal with the
1313 * case where the user suspends and goes to goes
1314 * to another country, and then gets IEs from an
1315 * AP with different settings */
1316 goto out;
1317 } else {
1318 /* Ignore IEs coming in on two separate wiphys with
1319 * the same alpha2 and environment cap */
1320 if (likely(alpha2_equal(drv_last_ie->country_ie_alpha2,
1321 alpha2) &&
1322 env == drv_last_ie->env)) {
1323 goto out;
1325 /* We could potentially intersect though */
1326 goto out;
1330 rd = country_ie_2_rd(country_ie, country_ie_len, &checksum);
1331 if (!rd)
1332 goto out;
1335 * This will not happen right now but we leave it here for the
1336 * the future when we want to add suspend/resume support and having
1337 * the user move to another country after doing so, or having the user
1338 * move to another AP. Right now we just trust the first AP.
1340 * If we hit this before we add this support we want to be informed of
1341 * it as it would indicate a mistake in the current design
1343 if (WARN_ON(reg_same_country_ie_hint(wiphy, checksum)))
1344 goto out;
1346 /* We keep this around for when CRDA comes back with a response so
1347 * we can intersect with that */
1348 country_ie_regdomain = rd;
1350 __regulatory_hint(wiphy, REGDOM_SET_BY_COUNTRY_IE,
1351 country_ie_regdomain->alpha2, checksum, env);
1353 out:
1354 mutex_unlock(&cfg80211_mutex);
1356 EXPORT_SYMBOL(regulatory_hint_11d);
1358 static void print_rd_rules(const struct ieee80211_regdomain *rd)
1360 unsigned int i;
1361 const struct ieee80211_reg_rule *reg_rule = NULL;
1362 const struct ieee80211_freq_range *freq_range = NULL;
1363 const struct ieee80211_power_rule *power_rule = NULL;
1365 printk(KERN_INFO "\t(start_freq - end_freq @ bandwidth), "
1366 "(max_antenna_gain, max_eirp)\n");
1368 for (i = 0; i < rd->n_reg_rules; i++) {
1369 reg_rule = &rd->reg_rules[i];
1370 freq_range = &reg_rule->freq_range;
1371 power_rule = &reg_rule->power_rule;
1373 /* There may not be documentation for max antenna gain
1374 * in certain regions */
1375 if (power_rule->max_antenna_gain)
1376 printk(KERN_INFO "\t(%d KHz - %d KHz @ %d KHz), "
1377 "(%d mBi, %d mBm)\n",
1378 freq_range->start_freq_khz,
1379 freq_range->end_freq_khz,
1380 freq_range->max_bandwidth_khz,
1381 power_rule->max_antenna_gain,
1382 power_rule->max_eirp);
1383 else
1384 printk(KERN_INFO "\t(%d KHz - %d KHz @ %d KHz), "
1385 "(N/A, %d mBm)\n",
1386 freq_range->start_freq_khz,
1387 freq_range->end_freq_khz,
1388 freq_range->max_bandwidth_khz,
1389 power_rule->max_eirp);
1393 static void print_regdomain(const struct ieee80211_regdomain *rd)
1396 if (is_intersected_alpha2(rd->alpha2)) {
1398 if (last_request->initiator == REGDOM_SET_BY_COUNTRY_IE) {
1399 struct cfg80211_registered_device *drv;
1400 drv = cfg80211_drv_by_wiphy_idx(
1401 last_request->wiphy_idx);
1402 if (drv) {
1403 printk(KERN_INFO "cfg80211: Current regulatory "
1404 "domain updated by AP to: %c%c\n",
1405 drv->country_ie_alpha2[0],
1406 drv->country_ie_alpha2[1]);
1407 } else
1408 printk(KERN_INFO "cfg80211: Current regulatory "
1409 "domain intersected: \n");
1410 } else
1411 printk(KERN_INFO "cfg80211: Current regulatory "
1412 "domain intersected: \n");
1413 } else if (is_world_regdom(rd->alpha2))
1414 printk(KERN_INFO "cfg80211: World regulatory "
1415 "domain updated:\n");
1416 else {
1417 if (is_unknown_alpha2(rd->alpha2))
1418 printk(KERN_INFO "cfg80211: Regulatory domain "
1419 "changed to driver built-in settings "
1420 "(unknown country)\n");
1421 else
1422 printk(KERN_INFO "cfg80211: Regulatory domain "
1423 "changed to country: %c%c\n",
1424 rd->alpha2[0], rd->alpha2[1]);
1426 print_rd_rules(rd);
1429 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
1431 printk(KERN_INFO "cfg80211: Regulatory domain: %c%c\n",
1432 rd->alpha2[0], rd->alpha2[1]);
1433 print_rd_rules(rd);
1436 #ifdef CONFIG_CFG80211_REG_DEBUG
1437 static void reg_country_ie_process_debug(
1438 const struct ieee80211_regdomain *rd,
1439 const struct ieee80211_regdomain *country_ie_regdomain,
1440 const struct ieee80211_regdomain *intersected_rd)
1442 printk(KERN_DEBUG "cfg80211: Received country IE:\n");
1443 print_regdomain_info(country_ie_regdomain);
1444 printk(KERN_DEBUG "cfg80211: CRDA thinks this should applied:\n");
1445 print_regdomain_info(rd);
1446 if (intersected_rd) {
1447 printk(KERN_DEBUG "cfg80211: We intersect both of these "
1448 "and get:\n");
1449 print_regdomain_info(intersected_rd);
1450 return;
1452 printk(KERN_DEBUG "cfg80211: Intersection between both failed\n");
1454 #else
1455 static inline void reg_country_ie_process_debug(
1456 const struct ieee80211_regdomain *rd,
1457 const struct ieee80211_regdomain *country_ie_regdomain,
1458 const struct ieee80211_regdomain *intersected_rd)
1461 #endif
1463 /* Takes ownership of rd only if it doesn't fail */
1464 static int __set_regdom(const struct ieee80211_regdomain *rd)
1466 const struct ieee80211_regdomain *intersected_rd = NULL;
1467 struct cfg80211_registered_device *drv = NULL;
1468 struct wiphy *request_wiphy;
1469 /* Some basic sanity checks first */
1471 if (is_world_regdom(rd->alpha2)) {
1472 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
1473 return -EINVAL;
1474 update_world_regdomain(rd);
1475 return 0;
1478 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
1479 !is_unknown_alpha2(rd->alpha2))
1480 return -EINVAL;
1482 if (!last_request)
1483 return -EINVAL;
1485 /* Lets only bother proceeding on the same alpha2 if the current
1486 * rd is non static (it means CRDA was present and was used last)
1487 * and the pending request came in from a country IE */
1488 if (last_request->initiator != REGDOM_SET_BY_COUNTRY_IE) {
1489 /* If someone else asked us to change the rd lets only bother
1490 * checking if the alpha2 changes if CRDA was already called */
1491 if (!is_old_static_regdom(cfg80211_regdomain) &&
1492 !regdom_changed(rd->alpha2))
1493 return -EINVAL;
1496 /* Now lets set the regulatory domain, update all driver channels
1497 * and finally inform them of what we have done, in case they want
1498 * to review or adjust their own settings based on their own
1499 * internal EEPROM data */
1501 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
1502 return -EINVAL;
1504 if (!is_valid_rd(rd)) {
1505 printk(KERN_ERR "cfg80211: Invalid "
1506 "regulatory domain detected:\n");
1507 print_regdomain_info(rd);
1508 return -EINVAL;
1511 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1513 if (!last_request->intersect) {
1514 int r;
1516 if (last_request->initiator != REGDOM_SET_BY_DRIVER) {
1517 reset_regdomains();
1518 cfg80211_regdomain = rd;
1519 return 0;
1522 /* For a driver hint, lets copy the regulatory domain the
1523 * driver wanted to the wiphy to deal with conflicts */
1525 BUG_ON(request_wiphy->regd);
1527 r = reg_copy_regd(&request_wiphy->regd, rd);
1528 if (r)
1529 return r;
1531 reset_regdomains();
1532 cfg80211_regdomain = rd;
1533 return 0;
1536 /* Intersection requires a bit more work */
1538 if (last_request->initiator != REGDOM_SET_BY_COUNTRY_IE) {
1540 intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
1541 if (!intersected_rd)
1542 return -EINVAL;
1544 /* We can trash what CRDA provided now.
1545 * However if a driver requested this specific regulatory
1546 * domain we keep it for its private use */
1547 if (last_request->initiator == REGDOM_SET_BY_DRIVER)
1548 request_wiphy->regd = rd;
1549 else
1550 kfree(rd);
1552 rd = NULL;
1554 reset_regdomains();
1555 cfg80211_regdomain = intersected_rd;
1557 return 0;
1561 * Country IE requests are handled a bit differently, we intersect
1562 * the country IE rd with what CRDA believes that country should have
1565 BUG_ON(!country_ie_regdomain);
1567 if (rd != country_ie_regdomain) {
1568 /* Intersect what CRDA returned and our what we
1569 * had built from the Country IE received */
1571 intersected_rd = regdom_intersect(rd, country_ie_regdomain);
1573 reg_country_ie_process_debug(rd, country_ie_regdomain,
1574 intersected_rd);
1576 kfree(country_ie_regdomain);
1577 country_ie_regdomain = NULL;
1578 } else {
1579 /* This would happen when CRDA was not present and
1580 * OLD_REGULATORY was enabled. We intersect our Country
1581 * IE rd and what was set on cfg80211 originally */
1582 intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
1585 if (!intersected_rd)
1586 return -EINVAL;
1588 drv = wiphy_to_dev(request_wiphy);
1590 drv->country_ie_alpha2[0] = rd->alpha2[0];
1591 drv->country_ie_alpha2[1] = rd->alpha2[1];
1592 drv->env = last_request->country_ie_env;
1594 BUG_ON(intersected_rd == rd);
1596 kfree(rd);
1597 rd = NULL;
1599 reset_regdomains();
1600 cfg80211_regdomain = intersected_rd;
1602 return 0;
1606 /* Use this call to set the current regulatory domain. Conflicts with
1607 * multiple drivers can be ironed out later. Caller must've already
1608 * kmalloc'd the rd structure. Caller must hold cfg80211_mutex */
1609 int set_regdom(const struct ieee80211_regdomain *rd)
1611 int r;
1613 assert_cfg80211_lock();
1615 /* Note that this doesn't update the wiphys, this is done below */
1616 r = __set_regdom(rd);
1617 if (r) {
1618 kfree(rd);
1619 return r;
1622 /* This would make this whole thing pointless */
1623 if (!last_request->intersect)
1624 BUG_ON(rd != cfg80211_regdomain);
1626 /* update all wiphys now with the new established regulatory domain */
1627 update_all_wiphy_regulatory(last_request->initiator);
1629 print_regdomain(cfg80211_regdomain);
1631 return r;
1634 /* Caller must hold cfg80211_mutex */
1635 void reg_device_remove(struct wiphy *wiphy)
1637 struct wiphy *request_wiphy;
1639 assert_cfg80211_lock();
1641 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1643 kfree(wiphy->regd);
1644 if (!last_request || !request_wiphy)
1645 return;
1646 if (request_wiphy != wiphy)
1647 return;
1648 last_request->wiphy_idx = WIPHY_IDX_STALE;
1649 last_request->country_ie_env = ENVIRON_ANY;
1652 int regulatory_init(void)
1654 int err = 0;
1656 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
1657 if (IS_ERR(reg_pdev))
1658 return PTR_ERR(reg_pdev);
1660 #ifdef CONFIG_WIRELESS_OLD_REGULATORY
1661 cfg80211_regdomain = static_regdom(ieee80211_regdom);
1663 printk(KERN_INFO "cfg80211: Using static regulatory domain info\n");
1664 print_regdomain_info(cfg80211_regdomain);
1665 /* The old code still requests for a new regdomain and if
1666 * you have CRDA you get it updated, otherwise you get
1667 * stuck with the static values. We ignore "EU" code as
1668 * that is not a valid ISO / IEC 3166 alpha2 */
1669 if (ieee80211_regdom[0] != 'E' || ieee80211_regdom[1] != 'U')
1670 err = regulatory_hint_core(ieee80211_regdom);
1671 #else
1672 cfg80211_regdomain = cfg80211_world_regdom;
1674 err = regulatory_hint_core("00");
1675 #endif
1676 if (err) {
1677 if (err == -ENOMEM)
1678 return err;
1680 * N.B. kobject_uevent_env() can fail mainly for when we're out
1681 * memory which is handled and propagated appropriately above
1682 * but it can also fail during a netlink_broadcast() or during
1683 * early boot for call_usermodehelper(). For now treat these
1684 * errors as non-fatal.
1686 printk(KERN_ERR "cfg80211: kobject_uevent_env() was unable "
1687 "to call CRDA during init");
1688 #ifdef CONFIG_CFG80211_REG_DEBUG
1689 /* We want to find out exactly why when debugging */
1690 WARN_ON(err);
1691 #endif
1694 return 0;
1697 void regulatory_exit(void)
1699 mutex_lock(&cfg80211_mutex);
1701 reset_regdomains();
1703 kfree(country_ie_regdomain);
1704 country_ie_regdomain = NULL;
1706 kfree(last_request);
1708 platform_device_unregister(reg_pdev);
1710 mutex_unlock(&cfg80211_mutex);