ACPI: SBS: Split host controller (ACPI0001) from SBS driver (ACPI0002)
[linux-2.6/mini2440.git] / include / linux / mmzone.h
blob4e5627379b0935b306261d7c9666786fa5357f24
1 #ifndef _LINUX_MMZONE_H
2 #define _LINUX_MMZONE_H
4 #ifdef __KERNEL__
5 #ifndef __ASSEMBLY__
7 #include <linux/spinlock.h>
8 #include <linux/list.h>
9 #include <linux/wait.h>
10 #include <linux/cache.h>
11 #include <linux/threads.h>
12 #include <linux/numa.h>
13 #include <linux/init.h>
14 #include <linux/seqlock.h>
15 #include <linux/nodemask.h>
16 #include <asm/atomic.h>
17 #include <asm/page.h>
19 /* Free memory management - zoned buddy allocator. */
20 #ifndef CONFIG_FORCE_MAX_ZONEORDER
21 #define MAX_ORDER 11
22 #else
23 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
24 #endif
25 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
28 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
29 * costly to service. That is between allocation orders which should
30 * coelesce naturally under reasonable reclaim pressure and those which
31 * will not.
33 #define PAGE_ALLOC_COSTLY_ORDER 3
35 struct free_area {
36 struct list_head free_list;
37 unsigned long nr_free;
40 struct pglist_data;
43 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
44 * So add a wild amount of padding here to ensure that they fall into separate
45 * cachelines. There are very few zone structures in the machine, so space
46 * consumption is not a concern here.
48 #if defined(CONFIG_SMP)
49 struct zone_padding {
50 char x[0];
51 } ____cacheline_internodealigned_in_smp;
52 #define ZONE_PADDING(name) struct zone_padding name;
53 #else
54 #define ZONE_PADDING(name)
55 #endif
57 enum zone_stat_item {
58 /* First 128 byte cacheline (assuming 64 bit words) */
59 NR_FREE_PAGES,
60 NR_INACTIVE,
61 NR_ACTIVE,
62 NR_ANON_PAGES, /* Mapped anonymous pages */
63 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
64 only modified from process context */
65 NR_FILE_PAGES,
66 NR_FILE_DIRTY,
67 NR_WRITEBACK,
68 /* Second 128 byte cacheline */
69 NR_SLAB_RECLAIMABLE,
70 NR_SLAB_UNRECLAIMABLE,
71 NR_PAGETABLE, /* used for pagetables */
72 NR_UNSTABLE_NFS, /* NFS unstable pages */
73 NR_BOUNCE,
74 NR_VMSCAN_WRITE,
75 #ifdef CONFIG_NUMA
76 NUMA_HIT, /* allocated in intended node */
77 NUMA_MISS, /* allocated in non intended node */
78 NUMA_FOREIGN, /* was intended here, hit elsewhere */
79 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
80 NUMA_LOCAL, /* allocation from local node */
81 NUMA_OTHER, /* allocation from other node */
82 #endif
83 NR_VM_ZONE_STAT_ITEMS };
85 struct per_cpu_pages {
86 int count; /* number of pages in the list */
87 int high; /* high watermark, emptying needed */
88 int batch; /* chunk size for buddy add/remove */
89 struct list_head list; /* the list of pages */
92 struct per_cpu_pageset {
93 struct per_cpu_pages pcp[2]; /* 0: hot. 1: cold */
94 #ifdef CONFIG_NUMA
95 s8 expire;
96 #endif
97 #ifdef CONFIG_SMP
98 s8 stat_threshold;
99 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
100 #endif
101 } ____cacheline_aligned_in_smp;
103 #ifdef CONFIG_NUMA
104 #define zone_pcp(__z, __cpu) ((__z)->pageset[(__cpu)])
105 #else
106 #define zone_pcp(__z, __cpu) (&(__z)->pageset[(__cpu)])
107 #endif
109 enum zone_type {
110 #ifdef CONFIG_ZONE_DMA
112 * ZONE_DMA is used when there are devices that are not able
113 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
114 * carve out the portion of memory that is needed for these devices.
115 * The range is arch specific.
117 * Some examples
119 * Architecture Limit
120 * ---------------------------
121 * parisc, ia64, sparc <4G
122 * s390 <2G
123 * arm Various
124 * alpha Unlimited or 0-16MB.
126 * i386, x86_64 and multiple other arches
127 * <16M.
129 ZONE_DMA,
130 #endif
131 #ifdef CONFIG_ZONE_DMA32
133 * x86_64 needs two ZONE_DMAs because it supports devices that are
134 * only able to do DMA to the lower 16M but also 32 bit devices that
135 * can only do DMA areas below 4G.
137 ZONE_DMA32,
138 #endif
140 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
141 * performed on pages in ZONE_NORMAL if the DMA devices support
142 * transfers to all addressable memory.
144 ZONE_NORMAL,
145 #ifdef CONFIG_HIGHMEM
147 * A memory area that is only addressable by the kernel through
148 * mapping portions into its own address space. This is for example
149 * used by i386 to allow the kernel to address the memory beyond
150 * 900MB. The kernel will set up special mappings (page
151 * table entries on i386) for each page that the kernel needs to
152 * access.
154 ZONE_HIGHMEM,
155 #endif
156 ZONE_MOVABLE,
157 MAX_NR_ZONES
161 * When a memory allocation must conform to specific limitations (such
162 * as being suitable for DMA) the caller will pass in hints to the
163 * allocator in the gfp_mask, in the zone modifier bits. These bits
164 * are used to select a priority ordered list of memory zones which
165 * match the requested limits. See gfp_zone() in include/linux/gfp.h
169 * Count the active zones. Note that the use of defined(X) outside
170 * #if and family is not necessarily defined so ensure we cannot use
171 * it later. Use __ZONE_COUNT to work out how many shift bits we need.
173 #define __ZONE_COUNT ( \
174 defined(CONFIG_ZONE_DMA) \
175 + defined(CONFIG_ZONE_DMA32) \
176 + 1 \
177 + defined(CONFIG_HIGHMEM) \
178 + 1 \
180 #if __ZONE_COUNT < 2
181 #define ZONES_SHIFT 0
182 #elif __ZONE_COUNT <= 2
183 #define ZONES_SHIFT 1
184 #elif __ZONE_COUNT <= 4
185 #define ZONES_SHIFT 2
186 #else
187 #error ZONES_SHIFT -- too many zones configured adjust calculation
188 #endif
189 #undef __ZONE_COUNT
191 struct zone {
192 /* Fields commonly accessed by the page allocator */
193 unsigned long pages_min, pages_low, pages_high;
195 * We don't know if the memory that we're going to allocate will be freeable
196 * or/and it will be released eventually, so to avoid totally wasting several
197 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
198 * to run OOM on the lower zones despite there's tons of freeable ram
199 * on the higher zones). This array is recalculated at runtime if the
200 * sysctl_lowmem_reserve_ratio sysctl changes.
202 unsigned long lowmem_reserve[MAX_NR_ZONES];
204 #ifdef CONFIG_NUMA
205 int node;
207 * zone reclaim becomes active if more unmapped pages exist.
209 unsigned long min_unmapped_pages;
210 unsigned long min_slab_pages;
211 struct per_cpu_pageset *pageset[NR_CPUS];
212 #else
213 struct per_cpu_pageset pageset[NR_CPUS];
214 #endif
216 * free areas of different sizes
218 spinlock_t lock;
219 #ifdef CONFIG_MEMORY_HOTPLUG
220 /* see spanned/present_pages for more description */
221 seqlock_t span_seqlock;
222 #endif
223 struct free_area free_area[MAX_ORDER];
226 ZONE_PADDING(_pad1_)
228 /* Fields commonly accessed by the page reclaim scanner */
229 spinlock_t lru_lock;
230 struct list_head active_list;
231 struct list_head inactive_list;
232 unsigned long nr_scan_active;
233 unsigned long nr_scan_inactive;
234 unsigned long pages_scanned; /* since last reclaim */
235 int all_unreclaimable; /* All pages pinned */
237 /* A count of how many reclaimers are scanning this zone */
238 atomic_t reclaim_in_progress;
240 /* Zone statistics */
241 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
244 * prev_priority holds the scanning priority for this zone. It is
245 * defined as the scanning priority at which we achieved our reclaim
246 * target at the previous try_to_free_pages() or balance_pgdat()
247 * invokation.
249 * We use prev_priority as a measure of how much stress page reclaim is
250 * under - it drives the swappiness decision: whether to unmap mapped
251 * pages.
253 * Access to both this field is quite racy even on uniprocessor. But
254 * it is expected to average out OK.
256 int prev_priority;
259 ZONE_PADDING(_pad2_)
260 /* Rarely used or read-mostly fields */
263 * wait_table -- the array holding the hash table
264 * wait_table_hash_nr_entries -- the size of the hash table array
265 * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
267 * The purpose of all these is to keep track of the people
268 * waiting for a page to become available and make them
269 * runnable again when possible. The trouble is that this
270 * consumes a lot of space, especially when so few things
271 * wait on pages at a given time. So instead of using
272 * per-page waitqueues, we use a waitqueue hash table.
274 * The bucket discipline is to sleep on the same queue when
275 * colliding and wake all in that wait queue when removing.
276 * When something wakes, it must check to be sure its page is
277 * truly available, a la thundering herd. The cost of a
278 * collision is great, but given the expected load of the
279 * table, they should be so rare as to be outweighed by the
280 * benefits from the saved space.
282 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
283 * primary users of these fields, and in mm/page_alloc.c
284 * free_area_init_core() performs the initialization of them.
286 wait_queue_head_t * wait_table;
287 unsigned long wait_table_hash_nr_entries;
288 unsigned long wait_table_bits;
291 * Discontig memory support fields.
293 struct pglist_data *zone_pgdat;
294 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
295 unsigned long zone_start_pfn;
298 * zone_start_pfn, spanned_pages and present_pages are all
299 * protected by span_seqlock. It is a seqlock because it has
300 * to be read outside of zone->lock, and it is done in the main
301 * allocator path. But, it is written quite infrequently.
303 * The lock is declared along with zone->lock because it is
304 * frequently read in proximity to zone->lock. It's good to
305 * give them a chance of being in the same cacheline.
307 unsigned long spanned_pages; /* total size, including holes */
308 unsigned long present_pages; /* amount of memory (excluding holes) */
311 * rarely used fields:
313 const char *name;
314 } ____cacheline_internodealigned_in_smp;
317 * The "priority" of VM scanning is how much of the queues we will scan in one
318 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
319 * queues ("queue_length >> 12") during an aging round.
321 #define DEF_PRIORITY 12
323 /* Maximum number of zones on a zonelist */
324 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
326 #ifdef CONFIG_NUMA
328 * We cache key information from each zonelist for smaller cache
329 * footprint when scanning for free pages in get_page_from_freelist().
331 * 1) The BITMAP fullzones tracks which zones in a zonelist have come
332 * up short of free memory since the last time (last_fullzone_zap)
333 * we zero'd fullzones.
334 * 2) The array z_to_n[] maps each zone in the zonelist to its node
335 * id, so that we can efficiently evaluate whether that node is
336 * set in the current tasks mems_allowed.
338 * Both fullzones and z_to_n[] are one-to-one with the zonelist,
339 * indexed by a zones offset in the zonelist zones[] array.
341 * The get_page_from_freelist() routine does two scans. During the
342 * first scan, we skip zones whose corresponding bit in 'fullzones'
343 * is set or whose corresponding node in current->mems_allowed (which
344 * comes from cpusets) is not set. During the second scan, we bypass
345 * this zonelist_cache, to ensure we look methodically at each zone.
347 * Once per second, we zero out (zap) fullzones, forcing us to
348 * reconsider nodes that might have regained more free memory.
349 * The field last_full_zap is the time we last zapped fullzones.
351 * This mechanism reduces the amount of time we waste repeatedly
352 * reexaming zones for free memory when they just came up low on
353 * memory momentarilly ago.
355 * The zonelist_cache struct members logically belong in struct
356 * zonelist. However, the mempolicy zonelists constructed for
357 * MPOL_BIND are intentionally variable length (and usually much
358 * shorter). A general purpose mechanism for handling structs with
359 * multiple variable length members is more mechanism than we want
360 * here. We resort to some special case hackery instead.
362 * The MPOL_BIND zonelists don't need this zonelist_cache (in good
363 * part because they are shorter), so we put the fixed length stuff
364 * at the front of the zonelist struct, ending in a variable length
365 * zones[], as is needed by MPOL_BIND.
367 * Then we put the optional zonelist cache on the end of the zonelist
368 * struct. This optional stuff is found by a 'zlcache_ptr' pointer in
369 * the fixed length portion at the front of the struct. This pointer
370 * both enables us to find the zonelist cache, and in the case of
371 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
372 * to know that the zonelist cache is not there.
374 * The end result is that struct zonelists come in two flavors:
375 * 1) The full, fixed length version, shown below, and
376 * 2) The custom zonelists for MPOL_BIND.
377 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
379 * Even though there may be multiple CPU cores on a node modifying
380 * fullzones or last_full_zap in the same zonelist_cache at the same
381 * time, we don't lock it. This is just hint data - if it is wrong now
382 * and then, the allocator will still function, perhaps a bit slower.
386 struct zonelist_cache {
387 unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */
388 DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */
389 unsigned long last_full_zap; /* when last zap'd (jiffies) */
391 #else
392 struct zonelist_cache;
393 #endif
396 * One allocation request operates on a zonelist. A zonelist
397 * is a list of zones, the first one is the 'goal' of the
398 * allocation, the other zones are fallback zones, in decreasing
399 * priority.
401 * If zlcache_ptr is not NULL, then it is just the address of zlcache,
402 * as explained above. If zlcache_ptr is NULL, there is no zlcache.
405 struct zonelist {
406 struct zonelist_cache *zlcache_ptr; // NULL or &zlcache
407 struct zone *zones[MAX_ZONES_PER_ZONELIST + 1]; // NULL delimited
408 #ifdef CONFIG_NUMA
409 struct zonelist_cache zlcache; // optional ...
410 #endif
413 #ifdef CONFIG_NUMA
415 * Only custom zonelists like MPOL_BIND need to be filtered as part of
416 * policies. As described in the comment for struct zonelist_cache, these
417 * zonelists will not have a zlcache so zlcache_ptr will not be set. Use
418 * that to determine if the zonelists needs to be filtered or not.
420 static inline int alloc_should_filter_zonelist(struct zonelist *zonelist)
422 return !zonelist->zlcache_ptr;
424 #else
425 static inline int alloc_should_filter_zonelist(struct zonelist *zonelist)
427 return 0;
429 #endif /* CONFIG_NUMA */
431 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
432 struct node_active_region {
433 unsigned long start_pfn;
434 unsigned long end_pfn;
435 int nid;
437 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
439 #ifndef CONFIG_DISCONTIGMEM
440 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
441 extern struct page *mem_map;
442 #endif
445 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
446 * (mostly NUMA machines?) to denote a higher-level memory zone than the
447 * zone denotes.
449 * On NUMA machines, each NUMA node would have a pg_data_t to describe
450 * it's memory layout.
452 * Memory statistics and page replacement data structures are maintained on a
453 * per-zone basis.
455 struct bootmem_data;
456 typedef struct pglist_data {
457 struct zone node_zones[MAX_NR_ZONES];
458 struct zonelist node_zonelists[MAX_NR_ZONES];
459 int nr_zones;
460 #ifdef CONFIG_FLAT_NODE_MEM_MAP
461 struct page *node_mem_map;
462 #endif
463 struct bootmem_data *bdata;
464 #ifdef CONFIG_MEMORY_HOTPLUG
466 * Must be held any time you expect node_start_pfn, node_present_pages
467 * or node_spanned_pages stay constant. Holding this will also
468 * guarantee that any pfn_valid() stays that way.
470 * Nests above zone->lock and zone->size_seqlock.
472 spinlock_t node_size_lock;
473 #endif
474 unsigned long node_start_pfn;
475 unsigned long node_present_pages; /* total number of physical pages */
476 unsigned long node_spanned_pages; /* total size of physical page
477 range, including holes */
478 int node_id;
479 wait_queue_head_t kswapd_wait;
480 struct task_struct *kswapd;
481 int kswapd_max_order;
482 } pg_data_t;
484 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
485 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
486 #ifdef CONFIG_FLAT_NODE_MEM_MAP
487 #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
488 #else
489 #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
490 #endif
491 #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
493 #include <linux/memory_hotplug.h>
495 void get_zone_counts(unsigned long *active, unsigned long *inactive,
496 unsigned long *free);
497 void build_all_zonelists(void);
498 void wakeup_kswapd(struct zone *zone, int order);
499 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
500 int classzone_idx, int alloc_flags);
501 enum memmap_context {
502 MEMMAP_EARLY,
503 MEMMAP_HOTPLUG,
505 extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
506 unsigned long size,
507 enum memmap_context context);
509 #ifdef CONFIG_HAVE_MEMORY_PRESENT
510 void memory_present(int nid, unsigned long start, unsigned long end);
511 #else
512 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
513 #endif
515 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
516 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
517 #endif
520 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
522 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
524 static inline int populated_zone(struct zone *zone)
526 return (!!zone->present_pages);
529 extern int movable_zone;
531 static inline int zone_movable_is_highmem(void)
533 #if defined(CONFIG_HIGHMEM) && defined(CONFIG_ARCH_POPULATES_NODE_MAP)
534 return movable_zone == ZONE_HIGHMEM;
535 #else
536 return 0;
537 #endif
540 static inline int is_highmem_idx(enum zone_type idx)
542 #ifdef CONFIG_HIGHMEM
543 return (idx == ZONE_HIGHMEM ||
544 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
545 #else
546 return 0;
547 #endif
550 static inline int is_normal_idx(enum zone_type idx)
552 return (idx == ZONE_NORMAL);
556 * is_highmem - helper function to quickly check if a struct zone is a
557 * highmem zone or not. This is an attempt to keep references
558 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
559 * @zone - pointer to struct zone variable
561 static inline int is_highmem(struct zone *zone)
563 #ifdef CONFIG_HIGHMEM
564 int zone_idx = zone - zone->zone_pgdat->node_zones;
565 return zone_idx == ZONE_HIGHMEM ||
566 (zone_idx == ZONE_MOVABLE && zone_movable_is_highmem());
567 #else
568 return 0;
569 #endif
572 static inline int is_normal(struct zone *zone)
574 return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
577 static inline int is_dma32(struct zone *zone)
579 #ifdef CONFIG_ZONE_DMA32
580 return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
581 #else
582 return 0;
583 #endif
586 static inline int is_dma(struct zone *zone)
588 #ifdef CONFIG_ZONE_DMA
589 return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
590 #else
591 return 0;
592 #endif
595 /* These two functions are used to setup the per zone pages min values */
596 struct ctl_table;
597 struct file;
598 int min_free_kbytes_sysctl_handler(struct ctl_table *, int, struct file *,
599 void __user *, size_t *, loff_t *);
600 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
601 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, struct file *,
602 void __user *, size_t *, loff_t *);
603 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, struct file *,
604 void __user *, size_t *, loff_t *);
605 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
606 struct file *, void __user *, size_t *, loff_t *);
607 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
608 struct file *, void __user *, size_t *, loff_t *);
610 extern int numa_zonelist_order_handler(struct ctl_table *, int,
611 struct file *, void __user *, size_t *, loff_t *);
612 extern char numa_zonelist_order[];
613 #define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */
615 #include <linux/topology.h>
616 /* Returns the number of the current Node. */
617 #ifndef numa_node_id
618 #define numa_node_id() (cpu_to_node(raw_smp_processor_id()))
619 #endif
621 #ifndef CONFIG_NEED_MULTIPLE_NODES
623 extern struct pglist_data contig_page_data;
624 #define NODE_DATA(nid) (&contig_page_data)
625 #define NODE_MEM_MAP(nid) mem_map
626 #define MAX_NODES_SHIFT 1
628 #else /* CONFIG_NEED_MULTIPLE_NODES */
630 #include <asm/mmzone.h>
632 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
634 extern struct pglist_data *first_online_pgdat(void);
635 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
636 extern struct zone *next_zone(struct zone *zone);
639 * for_each_pgdat - helper macro to iterate over all nodes
640 * @pgdat - pointer to a pg_data_t variable
642 #define for_each_online_pgdat(pgdat) \
643 for (pgdat = first_online_pgdat(); \
644 pgdat; \
645 pgdat = next_online_pgdat(pgdat))
647 * for_each_zone - helper macro to iterate over all memory zones
648 * @zone - pointer to struct zone variable
650 * The user only needs to declare the zone variable, for_each_zone
651 * fills it in.
653 #define for_each_zone(zone) \
654 for (zone = (first_online_pgdat())->node_zones; \
655 zone; \
656 zone = next_zone(zone))
658 #ifdef CONFIG_SPARSEMEM
659 #include <asm/sparsemem.h>
660 #endif
662 #if BITS_PER_LONG == 32
664 * with 32 bit page->flags field, we reserve 9 bits for node/zone info.
665 * there are 4 zones (3 bits) and this leaves 9-3=6 bits for nodes.
667 #define FLAGS_RESERVED 9
669 #elif BITS_PER_LONG == 64
671 * with 64 bit flags field, there's plenty of room.
673 #define FLAGS_RESERVED 32
675 #else
677 #error BITS_PER_LONG not defined
679 #endif
681 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
682 !defined(CONFIG_ARCH_POPULATES_NODE_MAP)
683 #define early_pfn_to_nid(nid) (0UL)
684 #endif
686 #ifdef CONFIG_FLATMEM
687 #define pfn_to_nid(pfn) (0)
688 #endif
690 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
691 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
693 #ifdef CONFIG_SPARSEMEM
696 * SECTION_SHIFT #bits space required to store a section #
698 * PA_SECTION_SHIFT physical address to/from section number
699 * PFN_SECTION_SHIFT pfn to/from section number
701 #define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
703 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
704 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
706 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
708 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
709 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
711 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
712 #error Allocator MAX_ORDER exceeds SECTION_SIZE
713 #endif
715 struct page;
716 struct mem_section {
718 * This is, logically, a pointer to an array of struct
719 * pages. However, it is stored with some other magic.
720 * (see sparse.c::sparse_init_one_section())
722 * Additionally during early boot we encode node id of
723 * the location of the section here to guide allocation.
724 * (see sparse.c::memory_present())
726 * Making it a UL at least makes someone do a cast
727 * before using it wrong.
729 unsigned long section_mem_map;
732 #ifdef CONFIG_SPARSEMEM_EXTREME
733 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
734 #else
735 #define SECTIONS_PER_ROOT 1
736 #endif
738 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
739 #define NR_SECTION_ROOTS (NR_MEM_SECTIONS / SECTIONS_PER_ROOT)
740 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
742 #ifdef CONFIG_SPARSEMEM_EXTREME
743 extern struct mem_section *mem_section[NR_SECTION_ROOTS];
744 #else
745 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
746 #endif
748 static inline struct mem_section *__nr_to_section(unsigned long nr)
750 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
751 return NULL;
752 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
754 extern int __section_nr(struct mem_section* ms);
757 * We use the lower bits of the mem_map pointer to store
758 * a little bit of information. There should be at least
759 * 3 bits here due to 32-bit alignment.
761 #define SECTION_MARKED_PRESENT (1UL<<0)
762 #define SECTION_HAS_MEM_MAP (1UL<<1)
763 #define SECTION_MAP_LAST_BIT (1UL<<2)
764 #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
765 #define SECTION_NID_SHIFT 2
767 static inline struct page *__section_mem_map_addr(struct mem_section *section)
769 unsigned long map = section->section_mem_map;
770 map &= SECTION_MAP_MASK;
771 return (struct page *)map;
774 static inline int valid_section(struct mem_section *section)
776 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
779 static inline int section_has_mem_map(struct mem_section *section)
781 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
784 static inline int valid_section_nr(unsigned long nr)
786 return valid_section(__nr_to_section(nr));
789 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
791 return __nr_to_section(pfn_to_section_nr(pfn));
794 static inline int pfn_valid(unsigned long pfn)
796 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
797 return 0;
798 return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
802 * These are _only_ used during initialisation, therefore they
803 * can use __initdata ... They could have names to indicate
804 * this restriction.
806 #ifdef CONFIG_NUMA
807 #define pfn_to_nid(pfn) \
808 ({ \
809 unsigned long __pfn_to_nid_pfn = (pfn); \
810 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
812 #else
813 #define pfn_to_nid(pfn) (0)
814 #endif
816 #define early_pfn_valid(pfn) pfn_valid(pfn)
817 void sparse_init(void);
818 #else
819 #define sparse_init() do {} while (0)
820 #define sparse_index_init(_sec, _nid) do {} while (0)
821 #endif /* CONFIG_SPARSEMEM */
823 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
824 #define early_pfn_in_nid(pfn, nid) (early_pfn_to_nid(pfn) == (nid))
825 #else
826 #define early_pfn_in_nid(pfn, nid) (1)
827 #endif
829 #ifndef early_pfn_valid
830 #define early_pfn_valid(pfn) (1)
831 #endif
833 void memory_present(int nid, unsigned long start, unsigned long end);
834 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
837 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
838 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
839 * pfn_valid_within() should be used in this case; we optimise this away
840 * when we have no holes within a MAX_ORDER_NR_PAGES block.
842 #ifdef CONFIG_HOLES_IN_ZONE
843 #define pfn_valid_within(pfn) pfn_valid(pfn)
844 #else
845 #define pfn_valid_within(pfn) (1)
846 #endif
848 #endif /* !__ASSEMBLY__ */
849 #endif /* __KERNEL__ */
850 #endif /* _LINUX_MMZONE_H */