Blackfin arch: Request the gpio resource when making it as an irq pin, avoiding overr...
[linux-2.6/mini2440.git] / arch / ia64 / kernel / unaligned.c
blobff0e7c10faa7222d48964d355bf3322b45506800
1 /*
2 * Architecture-specific unaligned trap handling.
4 * Copyright (C) 1999-2002, 2004 Hewlett-Packard Co
5 * Stephane Eranian <eranian@hpl.hp.com>
6 * David Mosberger-Tang <davidm@hpl.hp.com>
8 * 2002/12/09 Fix rotating register handling (off-by-1 error, missing fr-rotation). Fix
9 * get_rse_reg() to not leak kernel bits to user-level (reading an out-of-frame
10 * stacked register returns an undefined value; it does NOT trigger a
11 * "rsvd register fault").
12 * 2001/10/11 Fix unaligned access to rotating registers in s/w pipelined loops.
13 * 2001/08/13 Correct size of extended floats (float_fsz) from 16 to 10 bytes.
14 * 2001/01/17 Add support emulation of unaligned kernel accesses.
16 #include <linux/jiffies.h>
17 #include <linux/kernel.h>
18 #include <linux/sched.h>
19 #include <linux/tty.h>
21 #include <asm/intrinsics.h>
22 #include <asm/processor.h>
23 #include <asm/rse.h>
24 #include <asm/uaccess.h>
25 #include <asm/unaligned.h>
27 extern int die_if_kernel(char *str, struct pt_regs *regs, long err);
29 #undef DEBUG_UNALIGNED_TRAP
31 #ifdef DEBUG_UNALIGNED_TRAP
32 # define DPRINT(a...) do { printk("%s %u: ", __func__, __LINE__); printk (a); } while (0)
33 # define DDUMP(str,vp,len) dump(str, vp, len)
35 static void
36 dump (const char *str, void *vp, size_t len)
38 unsigned char *cp = vp;
39 int i;
41 printk("%s", str);
42 for (i = 0; i < len; ++i)
43 printk (" %02x", *cp++);
44 printk("\n");
46 #else
47 # define DPRINT(a...)
48 # define DDUMP(str,vp,len)
49 #endif
51 #define IA64_FIRST_STACKED_GR 32
52 #define IA64_FIRST_ROTATING_FR 32
53 #define SIGN_EXT9 0xffffffffffffff00ul
56 * sysctl settable hook which tells the kernel whether to honor the
57 * IA64_THREAD_UAC_NOPRINT prctl. Because this is user settable, we want
58 * to allow the super user to enable/disable this for security reasons
59 * (i.e. don't allow attacker to fill up logs with unaligned accesses).
61 int no_unaligned_warning;
62 static int noprint_warning;
65 * For M-unit:
67 * opcode | m | x6 |
68 * --------|------|---------|
69 * [40-37] | [36] | [35:30] |
70 * --------|------|---------|
71 * 4 | 1 | 6 | = 11 bits
72 * --------------------------
73 * However bits [31:30] are not directly useful to distinguish between
74 * load/store so we can use [35:32] instead, which gives the following
75 * mask ([40:32]) using 9 bits. The 'e' comes from the fact that we defer
76 * checking the m-bit until later in the load/store emulation.
78 #define IA64_OPCODE_MASK 0x1ef
79 #define IA64_OPCODE_SHIFT 32
82 * Table C-28 Integer Load/Store
84 * We ignore [35:32]= 0x6, 0x7, 0xE, 0xF
86 * ld8.fill, st8.fill MUST be aligned because the RNATs are based on
87 * the address (bits [8:3]), so we must failed.
89 #define LD_OP 0x080
90 #define LDS_OP 0x081
91 #define LDA_OP 0x082
92 #define LDSA_OP 0x083
93 #define LDBIAS_OP 0x084
94 #define LDACQ_OP 0x085
95 /* 0x086, 0x087 are not relevant */
96 #define LDCCLR_OP 0x088
97 #define LDCNC_OP 0x089
98 #define LDCCLRACQ_OP 0x08a
99 #define ST_OP 0x08c
100 #define STREL_OP 0x08d
101 /* 0x08e,0x8f are not relevant */
104 * Table C-29 Integer Load +Reg
106 * we use the ld->m (bit [36:36]) field to determine whether or not we have
107 * a load/store of this form.
111 * Table C-30 Integer Load/Store +Imm
113 * We ignore [35:32]= 0x6, 0x7, 0xE, 0xF
115 * ld8.fill, st8.fill must be aligned because the Nat register are based on
116 * the address, so we must fail and the program must be fixed.
118 #define LD_IMM_OP 0x0a0
119 #define LDS_IMM_OP 0x0a1
120 #define LDA_IMM_OP 0x0a2
121 #define LDSA_IMM_OP 0x0a3
122 #define LDBIAS_IMM_OP 0x0a4
123 #define LDACQ_IMM_OP 0x0a5
124 /* 0x0a6, 0xa7 are not relevant */
125 #define LDCCLR_IMM_OP 0x0a8
126 #define LDCNC_IMM_OP 0x0a9
127 #define LDCCLRACQ_IMM_OP 0x0aa
128 #define ST_IMM_OP 0x0ac
129 #define STREL_IMM_OP 0x0ad
130 /* 0x0ae,0xaf are not relevant */
133 * Table C-32 Floating-point Load/Store
135 #define LDF_OP 0x0c0
136 #define LDFS_OP 0x0c1
137 #define LDFA_OP 0x0c2
138 #define LDFSA_OP 0x0c3
139 /* 0x0c6 is irrelevant */
140 #define LDFCCLR_OP 0x0c8
141 #define LDFCNC_OP 0x0c9
142 /* 0x0cb is irrelevant */
143 #define STF_OP 0x0cc
146 * Table C-33 Floating-point Load +Reg
148 * we use the ld->m (bit [36:36]) field to determine whether or not we have
149 * a load/store of this form.
153 * Table C-34 Floating-point Load/Store +Imm
155 #define LDF_IMM_OP 0x0e0
156 #define LDFS_IMM_OP 0x0e1
157 #define LDFA_IMM_OP 0x0e2
158 #define LDFSA_IMM_OP 0x0e3
159 /* 0x0e6 is irrelevant */
160 #define LDFCCLR_IMM_OP 0x0e8
161 #define LDFCNC_IMM_OP 0x0e9
162 #define STF_IMM_OP 0x0ec
164 typedef struct {
165 unsigned long qp:6; /* [0:5] */
166 unsigned long r1:7; /* [6:12] */
167 unsigned long imm:7; /* [13:19] */
168 unsigned long r3:7; /* [20:26] */
169 unsigned long x:1; /* [27:27] */
170 unsigned long hint:2; /* [28:29] */
171 unsigned long x6_sz:2; /* [30:31] */
172 unsigned long x6_op:4; /* [32:35], x6 = x6_sz|x6_op */
173 unsigned long m:1; /* [36:36] */
174 unsigned long op:4; /* [37:40] */
175 unsigned long pad:23; /* [41:63] */
176 } load_store_t;
179 typedef enum {
180 UPD_IMMEDIATE, /* ldXZ r1=[r3],imm(9) */
181 UPD_REG /* ldXZ r1=[r3],r2 */
182 } update_t;
185 * We use tables to keep track of the offsets of registers in the saved state.
186 * This way we save having big switch/case statements.
188 * We use bit 0 to indicate switch_stack or pt_regs.
189 * The offset is simply shifted by 1 bit.
190 * A 2-byte value should be enough to hold any kind of offset
192 * In case the calling convention changes (and thus pt_regs/switch_stack)
193 * simply use RSW instead of RPT or vice-versa.
196 #define RPO(x) ((size_t) &((struct pt_regs *)0)->x)
197 #define RSO(x) ((size_t) &((struct switch_stack *)0)->x)
199 #define RPT(x) (RPO(x) << 1)
200 #define RSW(x) (1| RSO(x)<<1)
202 #define GR_OFFS(x) (gr_info[x]>>1)
203 #define GR_IN_SW(x) (gr_info[x] & 0x1)
205 #define FR_OFFS(x) (fr_info[x]>>1)
206 #define FR_IN_SW(x) (fr_info[x] & 0x1)
208 static u16 gr_info[32]={
209 0, /* r0 is read-only : WE SHOULD NEVER GET THIS */
211 RPT(r1), RPT(r2), RPT(r3),
213 RSW(r4), RSW(r5), RSW(r6), RSW(r7),
215 RPT(r8), RPT(r9), RPT(r10), RPT(r11),
216 RPT(r12), RPT(r13), RPT(r14), RPT(r15),
218 RPT(r16), RPT(r17), RPT(r18), RPT(r19),
219 RPT(r20), RPT(r21), RPT(r22), RPT(r23),
220 RPT(r24), RPT(r25), RPT(r26), RPT(r27),
221 RPT(r28), RPT(r29), RPT(r30), RPT(r31)
224 static u16 fr_info[32]={
225 0, /* constant : WE SHOULD NEVER GET THIS */
226 0, /* constant : WE SHOULD NEVER GET THIS */
228 RSW(f2), RSW(f3), RSW(f4), RSW(f5),
230 RPT(f6), RPT(f7), RPT(f8), RPT(f9),
231 RPT(f10), RPT(f11),
233 RSW(f12), RSW(f13), RSW(f14),
234 RSW(f15), RSW(f16), RSW(f17), RSW(f18), RSW(f19),
235 RSW(f20), RSW(f21), RSW(f22), RSW(f23), RSW(f24),
236 RSW(f25), RSW(f26), RSW(f27), RSW(f28), RSW(f29),
237 RSW(f30), RSW(f31)
240 /* Invalidate ALAT entry for integer register REGNO. */
241 static void
242 invala_gr (int regno)
244 # define F(reg) case reg: ia64_invala_gr(reg); break
246 switch (regno) {
247 F( 0); F( 1); F( 2); F( 3); F( 4); F( 5); F( 6); F( 7);
248 F( 8); F( 9); F( 10); F( 11); F( 12); F( 13); F( 14); F( 15);
249 F( 16); F( 17); F( 18); F( 19); F( 20); F( 21); F( 22); F( 23);
250 F( 24); F( 25); F( 26); F( 27); F( 28); F( 29); F( 30); F( 31);
251 F( 32); F( 33); F( 34); F( 35); F( 36); F( 37); F( 38); F( 39);
252 F( 40); F( 41); F( 42); F( 43); F( 44); F( 45); F( 46); F( 47);
253 F( 48); F( 49); F( 50); F( 51); F( 52); F( 53); F( 54); F( 55);
254 F( 56); F( 57); F( 58); F( 59); F( 60); F( 61); F( 62); F( 63);
255 F( 64); F( 65); F( 66); F( 67); F( 68); F( 69); F( 70); F( 71);
256 F( 72); F( 73); F( 74); F( 75); F( 76); F( 77); F( 78); F( 79);
257 F( 80); F( 81); F( 82); F( 83); F( 84); F( 85); F( 86); F( 87);
258 F( 88); F( 89); F( 90); F( 91); F( 92); F( 93); F( 94); F( 95);
259 F( 96); F( 97); F( 98); F( 99); F(100); F(101); F(102); F(103);
260 F(104); F(105); F(106); F(107); F(108); F(109); F(110); F(111);
261 F(112); F(113); F(114); F(115); F(116); F(117); F(118); F(119);
262 F(120); F(121); F(122); F(123); F(124); F(125); F(126); F(127);
264 # undef F
267 /* Invalidate ALAT entry for floating-point register REGNO. */
268 static void
269 invala_fr (int regno)
271 # define F(reg) case reg: ia64_invala_fr(reg); break
273 switch (regno) {
274 F( 0); F( 1); F( 2); F( 3); F( 4); F( 5); F( 6); F( 7);
275 F( 8); F( 9); F( 10); F( 11); F( 12); F( 13); F( 14); F( 15);
276 F( 16); F( 17); F( 18); F( 19); F( 20); F( 21); F( 22); F( 23);
277 F( 24); F( 25); F( 26); F( 27); F( 28); F( 29); F( 30); F( 31);
278 F( 32); F( 33); F( 34); F( 35); F( 36); F( 37); F( 38); F( 39);
279 F( 40); F( 41); F( 42); F( 43); F( 44); F( 45); F( 46); F( 47);
280 F( 48); F( 49); F( 50); F( 51); F( 52); F( 53); F( 54); F( 55);
281 F( 56); F( 57); F( 58); F( 59); F( 60); F( 61); F( 62); F( 63);
282 F( 64); F( 65); F( 66); F( 67); F( 68); F( 69); F( 70); F( 71);
283 F( 72); F( 73); F( 74); F( 75); F( 76); F( 77); F( 78); F( 79);
284 F( 80); F( 81); F( 82); F( 83); F( 84); F( 85); F( 86); F( 87);
285 F( 88); F( 89); F( 90); F( 91); F( 92); F( 93); F( 94); F( 95);
286 F( 96); F( 97); F( 98); F( 99); F(100); F(101); F(102); F(103);
287 F(104); F(105); F(106); F(107); F(108); F(109); F(110); F(111);
288 F(112); F(113); F(114); F(115); F(116); F(117); F(118); F(119);
289 F(120); F(121); F(122); F(123); F(124); F(125); F(126); F(127);
291 # undef F
294 static inline unsigned long
295 rotate_reg (unsigned long sor, unsigned long rrb, unsigned long reg)
297 reg += rrb;
298 if (reg >= sor)
299 reg -= sor;
300 return reg;
303 static void
304 set_rse_reg (struct pt_regs *regs, unsigned long r1, unsigned long val, int nat)
306 struct switch_stack *sw = (struct switch_stack *) regs - 1;
307 unsigned long *bsp, *bspstore, *addr, *rnat_addr, *ubs_end;
308 unsigned long *kbs = (void *) current + IA64_RBS_OFFSET;
309 unsigned long rnats, nat_mask;
310 unsigned long on_kbs;
311 long sof = (regs->cr_ifs) & 0x7f;
312 long sor = 8 * ((regs->cr_ifs >> 14) & 0xf);
313 long rrb_gr = (regs->cr_ifs >> 18) & 0x7f;
314 long ridx = r1 - 32;
316 if (ridx >= sof) {
317 /* this should never happen, as the "rsvd register fault" has higher priority */
318 DPRINT("ignoring write to r%lu; only %lu registers are allocated!\n", r1, sof);
319 return;
322 if (ridx < sor)
323 ridx = rotate_reg(sor, rrb_gr, ridx);
325 DPRINT("r%lu, sw.bspstore=%lx pt.bspstore=%lx sof=%ld sol=%ld ridx=%ld\n",
326 r1, sw->ar_bspstore, regs->ar_bspstore, sof, (regs->cr_ifs >> 7) & 0x7f, ridx);
328 on_kbs = ia64_rse_num_regs(kbs, (unsigned long *) sw->ar_bspstore);
329 addr = ia64_rse_skip_regs((unsigned long *) sw->ar_bspstore, -sof + ridx);
330 if (addr >= kbs) {
331 /* the register is on the kernel backing store: easy... */
332 rnat_addr = ia64_rse_rnat_addr(addr);
333 if ((unsigned long) rnat_addr >= sw->ar_bspstore)
334 rnat_addr = &sw->ar_rnat;
335 nat_mask = 1UL << ia64_rse_slot_num(addr);
337 *addr = val;
338 if (nat)
339 *rnat_addr |= nat_mask;
340 else
341 *rnat_addr &= ~nat_mask;
342 return;
345 if (!user_stack(current, regs)) {
346 DPRINT("ignoring kernel write to r%lu; register isn't on the kernel RBS!", r1);
347 return;
350 bspstore = (unsigned long *)regs->ar_bspstore;
351 ubs_end = ia64_rse_skip_regs(bspstore, on_kbs);
352 bsp = ia64_rse_skip_regs(ubs_end, -sof);
353 addr = ia64_rse_skip_regs(bsp, ridx);
355 DPRINT("ubs_end=%p bsp=%p addr=%p\n", (void *) ubs_end, (void *) bsp, (void *) addr);
357 ia64_poke(current, sw, (unsigned long) ubs_end, (unsigned long) addr, val);
359 rnat_addr = ia64_rse_rnat_addr(addr);
361 ia64_peek(current, sw, (unsigned long) ubs_end, (unsigned long) rnat_addr, &rnats);
362 DPRINT("rnat @%p = 0x%lx nat=%d old nat=%ld\n",
363 (void *) rnat_addr, rnats, nat, (rnats >> ia64_rse_slot_num(addr)) & 1);
365 nat_mask = 1UL << ia64_rse_slot_num(addr);
366 if (nat)
367 rnats |= nat_mask;
368 else
369 rnats &= ~nat_mask;
370 ia64_poke(current, sw, (unsigned long) ubs_end, (unsigned long) rnat_addr, rnats);
372 DPRINT("rnat changed to @%p = 0x%lx\n", (void *) rnat_addr, rnats);
376 static void
377 get_rse_reg (struct pt_regs *regs, unsigned long r1, unsigned long *val, int *nat)
379 struct switch_stack *sw = (struct switch_stack *) regs - 1;
380 unsigned long *bsp, *addr, *rnat_addr, *ubs_end, *bspstore;
381 unsigned long *kbs = (void *) current + IA64_RBS_OFFSET;
382 unsigned long rnats, nat_mask;
383 unsigned long on_kbs;
384 long sof = (regs->cr_ifs) & 0x7f;
385 long sor = 8 * ((regs->cr_ifs >> 14) & 0xf);
386 long rrb_gr = (regs->cr_ifs >> 18) & 0x7f;
387 long ridx = r1 - 32;
389 if (ridx >= sof) {
390 /* read of out-of-frame register returns an undefined value; 0 in our case. */
391 DPRINT("ignoring read from r%lu; only %lu registers are allocated!\n", r1, sof);
392 goto fail;
395 if (ridx < sor)
396 ridx = rotate_reg(sor, rrb_gr, ridx);
398 DPRINT("r%lu, sw.bspstore=%lx pt.bspstore=%lx sof=%ld sol=%ld ridx=%ld\n",
399 r1, sw->ar_bspstore, regs->ar_bspstore, sof, (regs->cr_ifs >> 7) & 0x7f, ridx);
401 on_kbs = ia64_rse_num_regs(kbs, (unsigned long *) sw->ar_bspstore);
402 addr = ia64_rse_skip_regs((unsigned long *) sw->ar_bspstore, -sof + ridx);
403 if (addr >= kbs) {
404 /* the register is on the kernel backing store: easy... */
405 *val = *addr;
406 if (nat) {
407 rnat_addr = ia64_rse_rnat_addr(addr);
408 if ((unsigned long) rnat_addr >= sw->ar_bspstore)
409 rnat_addr = &sw->ar_rnat;
410 nat_mask = 1UL << ia64_rse_slot_num(addr);
411 *nat = (*rnat_addr & nat_mask) != 0;
413 return;
416 if (!user_stack(current, regs)) {
417 DPRINT("ignoring kernel read of r%lu; register isn't on the RBS!", r1);
418 goto fail;
421 bspstore = (unsigned long *)regs->ar_bspstore;
422 ubs_end = ia64_rse_skip_regs(bspstore, on_kbs);
423 bsp = ia64_rse_skip_regs(ubs_end, -sof);
424 addr = ia64_rse_skip_regs(bsp, ridx);
426 DPRINT("ubs_end=%p bsp=%p addr=%p\n", (void *) ubs_end, (void *) bsp, (void *) addr);
428 ia64_peek(current, sw, (unsigned long) ubs_end, (unsigned long) addr, val);
430 if (nat) {
431 rnat_addr = ia64_rse_rnat_addr(addr);
432 nat_mask = 1UL << ia64_rse_slot_num(addr);
434 DPRINT("rnat @%p = 0x%lx\n", (void *) rnat_addr, rnats);
436 ia64_peek(current, sw, (unsigned long) ubs_end, (unsigned long) rnat_addr, &rnats);
437 *nat = (rnats & nat_mask) != 0;
439 return;
441 fail:
442 *val = 0;
443 if (nat)
444 *nat = 0;
445 return;
449 static void
450 setreg (unsigned long regnum, unsigned long val, int nat, struct pt_regs *regs)
452 struct switch_stack *sw = (struct switch_stack *) regs - 1;
453 unsigned long addr;
454 unsigned long bitmask;
455 unsigned long *unat;
458 * First takes care of stacked registers
460 if (regnum >= IA64_FIRST_STACKED_GR) {
461 set_rse_reg(regs, regnum, val, nat);
462 return;
466 * Using r0 as a target raises a General Exception fault which has higher priority
467 * than the Unaligned Reference fault.
471 * Now look at registers in [0-31] range and init correct UNAT
473 if (GR_IN_SW(regnum)) {
474 addr = (unsigned long)sw;
475 unat = &sw->ar_unat;
476 } else {
477 addr = (unsigned long)regs;
478 unat = &sw->caller_unat;
480 DPRINT("tmp_base=%lx switch_stack=%s offset=%d\n",
481 addr, unat==&sw->ar_unat ? "yes":"no", GR_OFFS(regnum));
483 * add offset from base of struct
484 * and do it !
486 addr += GR_OFFS(regnum);
488 *(unsigned long *)addr = val;
491 * We need to clear the corresponding UNAT bit to fully emulate the load
492 * UNAT bit_pos = GR[r3]{8:3} form EAS-2.4
494 bitmask = 1UL << (addr >> 3 & 0x3f);
495 DPRINT("*0x%lx=0x%lx NaT=%d prev_unat @%p=%lx\n", addr, val, nat, (void *) unat, *unat);
496 if (nat) {
497 *unat |= bitmask;
498 } else {
499 *unat &= ~bitmask;
501 DPRINT("*0x%lx=0x%lx NaT=%d new unat: %p=%lx\n", addr, val, nat, (void *) unat,*unat);
505 * Return the (rotated) index for floating point register REGNUM (REGNUM must be in the
506 * range from 32-127, result is in the range from 0-95.
508 static inline unsigned long
509 fph_index (struct pt_regs *regs, long regnum)
511 unsigned long rrb_fr = (regs->cr_ifs >> 25) & 0x7f;
512 return rotate_reg(96, rrb_fr, (regnum - IA64_FIRST_ROTATING_FR));
515 static void
516 setfpreg (unsigned long regnum, struct ia64_fpreg *fpval, struct pt_regs *regs)
518 struct switch_stack *sw = (struct switch_stack *)regs - 1;
519 unsigned long addr;
522 * From EAS-2.5: FPDisableFault has higher priority than Unaligned
523 * Fault. Thus, when we get here, we know the partition is enabled.
524 * To update f32-f127, there are three choices:
526 * (1) save f32-f127 to thread.fph and update the values there
527 * (2) use a gigantic switch statement to directly access the registers
528 * (3) generate code on the fly to update the desired register
530 * For now, we are using approach (1).
532 if (regnum >= IA64_FIRST_ROTATING_FR) {
533 ia64_sync_fph(current);
534 current->thread.fph[fph_index(regs, regnum)] = *fpval;
535 } else {
537 * pt_regs or switch_stack ?
539 if (FR_IN_SW(regnum)) {
540 addr = (unsigned long)sw;
541 } else {
542 addr = (unsigned long)regs;
545 DPRINT("tmp_base=%lx offset=%d\n", addr, FR_OFFS(regnum));
547 addr += FR_OFFS(regnum);
548 *(struct ia64_fpreg *)addr = *fpval;
551 * mark the low partition as being used now
553 * It is highly unlikely that this bit is not already set, but
554 * let's do it for safety.
556 regs->cr_ipsr |= IA64_PSR_MFL;
561 * Those 2 inline functions generate the spilled versions of the constant floating point
562 * registers which can be used with stfX
564 static inline void
565 float_spill_f0 (struct ia64_fpreg *final)
567 ia64_stf_spill(final, 0);
570 static inline void
571 float_spill_f1 (struct ia64_fpreg *final)
573 ia64_stf_spill(final, 1);
576 static void
577 getfpreg (unsigned long regnum, struct ia64_fpreg *fpval, struct pt_regs *regs)
579 struct switch_stack *sw = (struct switch_stack *) regs - 1;
580 unsigned long addr;
583 * From EAS-2.5: FPDisableFault has higher priority than
584 * Unaligned Fault. Thus, when we get here, we know the partition is
585 * enabled.
587 * When regnum > 31, the register is still live and we need to force a save
588 * to current->thread.fph to get access to it. See discussion in setfpreg()
589 * for reasons and other ways of doing this.
591 if (regnum >= IA64_FIRST_ROTATING_FR) {
592 ia64_flush_fph(current);
593 *fpval = current->thread.fph[fph_index(regs, regnum)];
594 } else {
596 * f0 = 0.0, f1= 1.0. Those registers are constant and are thus
597 * not saved, we must generate their spilled form on the fly
599 switch(regnum) {
600 case 0:
601 float_spill_f0(fpval);
602 break;
603 case 1:
604 float_spill_f1(fpval);
605 break;
606 default:
608 * pt_regs or switch_stack ?
610 addr = FR_IN_SW(regnum) ? (unsigned long)sw
611 : (unsigned long)regs;
613 DPRINT("is_sw=%d tmp_base=%lx offset=0x%x\n",
614 FR_IN_SW(regnum), addr, FR_OFFS(regnum));
616 addr += FR_OFFS(regnum);
617 *fpval = *(struct ia64_fpreg *)addr;
623 static void
624 getreg (unsigned long regnum, unsigned long *val, int *nat, struct pt_regs *regs)
626 struct switch_stack *sw = (struct switch_stack *) regs - 1;
627 unsigned long addr, *unat;
629 if (regnum >= IA64_FIRST_STACKED_GR) {
630 get_rse_reg(regs, regnum, val, nat);
631 return;
635 * take care of r0 (read-only always evaluate to 0)
637 if (regnum == 0) {
638 *val = 0;
639 if (nat)
640 *nat = 0;
641 return;
645 * Now look at registers in [0-31] range and init correct UNAT
647 if (GR_IN_SW(regnum)) {
648 addr = (unsigned long)sw;
649 unat = &sw->ar_unat;
650 } else {
651 addr = (unsigned long)regs;
652 unat = &sw->caller_unat;
655 DPRINT("addr_base=%lx offset=0x%x\n", addr, GR_OFFS(regnum));
657 addr += GR_OFFS(regnum);
659 *val = *(unsigned long *)addr;
662 * do it only when requested
664 if (nat)
665 *nat = (*unat >> (addr >> 3 & 0x3f)) & 0x1UL;
668 static void
669 emulate_load_updates (update_t type, load_store_t ld, struct pt_regs *regs, unsigned long ifa)
672 * IMPORTANT:
673 * Given the way we handle unaligned speculative loads, we should
674 * not get to this point in the code but we keep this sanity check,
675 * just in case.
677 if (ld.x6_op == 1 || ld.x6_op == 3) {
678 printk(KERN_ERR "%s: register update on speculative load, error\n", __func__);
679 if (die_if_kernel("unaligned reference on speculative load with register update\n",
680 regs, 30))
681 return;
686 * at this point, we know that the base register to update is valid i.e.,
687 * it's not r0
689 if (type == UPD_IMMEDIATE) {
690 unsigned long imm;
693 * Load +Imm: ldXZ r1=[r3],imm(9)
696 * form imm9: [13:19] contain the first 7 bits
698 imm = ld.x << 7 | ld.imm;
701 * sign extend (1+8bits) if m set
703 if (ld.m) imm |= SIGN_EXT9;
706 * ifa == r3 and we know that the NaT bit on r3 was clear so
707 * we can directly use ifa.
709 ifa += imm;
711 setreg(ld.r3, ifa, 0, regs);
713 DPRINT("ld.x=%d ld.m=%d imm=%ld r3=0x%lx\n", ld.x, ld.m, imm, ifa);
715 } else if (ld.m) {
716 unsigned long r2;
717 int nat_r2;
720 * Load +Reg Opcode: ldXZ r1=[r3],r2
722 * Note: that we update r3 even in the case of ldfX.a
723 * (where the load does not happen)
725 * The way the load algorithm works, we know that r3 does not
726 * have its NaT bit set (would have gotten NaT consumption
727 * before getting the unaligned fault). So we can use ifa
728 * which equals r3 at this point.
730 * IMPORTANT:
731 * The above statement holds ONLY because we know that we
732 * never reach this code when trying to do a ldX.s.
733 * If we ever make it to here on an ldfX.s then
735 getreg(ld.imm, &r2, &nat_r2, regs);
737 ifa += r2;
740 * propagate Nat r2 -> r3
742 setreg(ld.r3, ifa, nat_r2, regs);
744 DPRINT("imm=%d r2=%ld r3=0x%lx nat_r2=%d\n",ld.imm, r2, ifa, nat_r2);
749 static int
750 emulate_load_int (unsigned long ifa, load_store_t ld, struct pt_regs *regs)
752 unsigned int len = 1 << ld.x6_sz;
753 unsigned long val = 0;
756 * r0, as target, doesn't need to be checked because Illegal Instruction
757 * faults have higher priority than unaligned faults.
759 * r0 cannot be found as the base as it would never generate an
760 * unaligned reference.
764 * ldX.a we will emulate load and also invalidate the ALAT entry.
765 * See comment below for explanation on how we handle ldX.a
768 if (len != 2 && len != 4 && len != 8) {
769 DPRINT("unknown size: x6=%d\n", ld.x6_sz);
770 return -1;
772 /* this assumes little-endian byte-order: */
773 if (copy_from_user(&val, (void __user *) ifa, len))
774 return -1;
775 setreg(ld.r1, val, 0, regs);
778 * check for updates on any kind of loads
780 if (ld.op == 0x5 || ld.m)
781 emulate_load_updates(ld.op == 0x5 ? UPD_IMMEDIATE: UPD_REG, ld, regs, ifa);
784 * handling of various loads (based on EAS2.4):
786 * ldX.acq (ordered load):
787 * - acquire semantics would have been used, so force fence instead.
789 * ldX.c.clr (check load and clear):
790 * - if we get to this handler, it's because the entry was not in the ALAT.
791 * Therefore the operation reverts to a normal load
793 * ldX.c.nc (check load no clear):
794 * - same as previous one
796 * ldX.c.clr.acq (ordered check load and clear):
797 * - same as above for c.clr part. The load needs to have acquire semantics. So
798 * we use the fence semantics which is stronger and thus ensures correctness.
800 * ldX.a (advanced load):
801 * - suppose ldX.a r1=[r3]. If we get to the unaligned trap it's because the
802 * address doesn't match requested size alignment. This means that we would
803 * possibly need more than one load to get the result.
805 * The load part can be handled just like a normal load, however the difficult
806 * part is to get the right thing into the ALAT. The critical piece of information
807 * in the base address of the load & size. To do that, a ld.a must be executed,
808 * clearly any address can be pushed into the table by using ld1.a r1=[r3]. Now
809 * if we use the same target register, we will be okay for the check.a instruction.
810 * If we look at the store, basically a stX [r3]=r1 checks the ALAT for any entry
811 * which would overlap within [r3,r3+X] (the size of the load was store in the
812 * ALAT). If such an entry is found the entry is invalidated. But this is not good
813 * enough, take the following example:
814 * r3=3
815 * ld4.a r1=[r3]
817 * Could be emulated by doing:
818 * ld1.a r1=[r3],1
819 * store to temporary;
820 * ld1.a r1=[r3],1
821 * store & shift to temporary;
822 * ld1.a r1=[r3],1
823 * store & shift to temporary;
824 * ld1.a r1=[r3]
825 * store & shift to temporary;
826 * r1=temporary
828 * So in this case, you would get the right value is r1 but the wrong info in
829 * the ALAT. Notice that you could do it in reverse to finish with address 3
830 * but you would still get the size wrong. To get the size right, one needs to
831 * execute exactly the same kind of load. You could do it from a aligned
832 * temporary location, but you would get the address wrong.
834 * So no matter what, it is not possible to emulate an advanced load
835 * correctly. But is that really critical ?
837 * We will always convert ld.a into a normal load with ALAT invalidated. This
838 * will enable compiler to do optimization where certain code path after ld.a
839 * is not required to have ld.c/chk.a, e.g., code path with no intervening stores.
841 * If there is a store after the advanced load, one must either do a ld.c.* or
842 * chk.a.* to reuse the value stored in the ALAT. Both can "fail" (meaning no
843 * entry found in ALAT), and that's perfectly ok because:
845 * - ld.c.*, if the entry is not present a normal load is executed
846 * - chk.a.*, if the entry is not present, execution jumps to recovery code
848 * In either case, the load can be potentially retried in another form.
850 * ALAT must be invalidated for the register (so that chk.a or ld.c don't pick
851 * up a stale entry later). The register base update MUST also be performed.
855 * when the load has the .acq completer then
856 * use ordering fence.
858 if (ld.x6_op == 0x5 || ld.x6_op == 0xa)
859 mb();
862 * invalidate ALAT entry in case of advanced load
864 if (ld.x6_op == 0x2)
865 invala_gr(ld.r1);
867 return 0;
870 static int
871 emulate_store_int (unsigned long ifa, load_store_t ld, struct pt_regs *regs)
873 unsigned long r2;
874 unsigned int len = 1 << ld.x6_sz;
877 * if we get to this handler, Nat bits on both r3 and r2 have already
878 * been checked. so we don't need to do it
880 * extract the value to be stored
882 getreg(ld.imm, &r2, NULL, regs);
885 * we rely on the macros in unaligned.h for now i.e.,
886 * we let the compiler figure out how to read memory gracefully.
888 * We need this switch/case because the way the inline function
889 * works. The code is optimized by the compiler and looks like
890 * a single switch/case.
892 DPRINT("st%d [%lx]=%lx\n", len, ifa, r2);
894 if (len != 2 && len != 4 && len != 8) {
895 DPRINT("unknown size: x6=%d\n", ld.x6_sz);
896 return -1;
899 /* this assumes little-endian byte-order: */
900 if (copy_to_user((void __user *) ifa, &r2, len))
901 return -1;
904 * stX [r3]=r2,imm(9)
906 * NOTE:
907 * ld.r3 can never be r0, because r0 would not generate an
908 * unaligned access.
910 if (ld.op == 0x5) {
911 unsigned long imm;
914 * form imm9: [12:6] contain first 7bits
916 imm = ld.x << 7 | ld.r1;
918 * sign extend (8bits) if m set
920 if (ld.m) imm |= SIGN_EXT9;
922 * ifa == r3 (NaT is necessarily cleared)
924 ifa += imm;
926 DPRINT("imm=%lx r3=%lx\n", imm, ifa);
928 setreg(ld.r3, ifa, 0, regs);
931 * we don't have alat_invalidate_multiple() so we need
932 * to do the complete flush :-<<
934 ia64_invala();
937 * stX.rel: use fence instead of release
939 if (ld.x6_op == 0xd)
940 mb();
942 return 0;
946 * floating point operations sizes in bytes
948 static const unsigned char float_fsz[4]={
949 10, /* extended precision (e) */
950 8, /* integer (8) */
951 4, /* single precision (s) */
952 8 /* double precision (d) */
955 static inline void
956 mem2float_extended (struct ia64_fpreg *init, struct ia64_fpreg *final)
958 ia64_ldfe(6, init);
959 ia64_stop();
960 ia64_stf_spill(final, 6);
963 static inline void
964 mem2float_integer (struct ia64_fpreg *init, struct ia64_fpreg *final)
966 ia64_ldf8(6, init);
967 ia64_stop();
968 ia64_stf_spill(final, 6);
971 static inline void
972 mem2float_single (struct ia64_fpreg *init, struct ia64_fpreg *final)
974 ia64_ldfs(6, init);
975 ia64_stop();
976 ia64_stf_spill(final, 6);
979 static inline void
980 mem2float_double (struct ia64_fpreg *init, struct ia64_fpreg *final)
982 ia64_ldfd(6, init);
983 ia64_stop();
984 ia64_stf_spill(final, 6);
987 static inline void
988 float2mem_extended (struct ia64_fpreg *init, struct ia64_fpreg *final)
990 ia64_ldf_fill(6, init);
991 ia64_stop();
992 ia64_stfe(final, 6);
995 static inline void
996 float2mem_integer (struct ia64_fpreg *init, struct ia64_fpreg *final)
998 ia64_ldf_fill(6, init);
999 ia64_stop();
1000 ia64_stf8(final, 6);
1003 static inline void
1004 float2mem_single (struct ia64_fpreg *init, struct ia64_fpreg *final)
1006 ia64_ldf_fill(6, init);
1007 ia64_stop();
1008 ia64_stfs(final, 6);
1011 static inline void
1012 float2mem_double (struct ia64_fpreg *init, struct ia64_fpreg *final)
1014 ia64_ldf_fill(6, init);
1015 ia64_stop();
1016 ia64_stfd(final, 6);
1019 static int
1020 emulate_load_floatpair (unsigned long ifa, load_store_t ld, struct pt_regs *regs)
1022 struct ia64_fpreg fpr_init[2];
1023 struct ia64_fpreg fpr_final[2];
1024 unsigned long len = float_fsz[ld.x6_sz];
1027 * fr0 & fr1 don't need to be checked because Illegal Instruction faults have
1028 * higher priority than unaligned faults.
1030 * r0 cannot be found as the base as it would never generate an unaligned
1031 * reference.
1035 * make sure we get clean buffers
1037 memset(&fpr_init, 0, sizeof(fpr_init));
1038 memset(&fpr_final, 0, sizeof(fpr_final));
1041 * ldfpX.a: we don't try to emulate anything but we must
1042 * invalidate the ALAT entry and execute updates, if any.
1044 if (ld.x6_op != 0x2) {
1046 * This assumes little-endian byte-order. Note that there is no "ldfpe"
1047 * instruction:
1049 if (copy_from_user(&fpr_init[0], (void __user *) ifa, len)
1050 || copy_from_user(&fpr_init[1], (void __user *) (ifa + len), len))
1051 return -1;
1053 DPRINT("ld.r1=%d ld.imm=%d x6_sz=%d\n", ld.r1, ld.imm, ld.x6_sz);
1054 DDUMP("frp_init =", &fpr_init, 2*len);
1056 * XXX fixme
1057 * Could optimize inlines by using ldfpX & 2 spills
1059 switch( ld.x6_sz ) {
1060 case 0:
1061 mem2float_extended(&fpr_init[0], &fpr_final[0]);
1062 mem2float_extended(&fpr_init[1], &fpr_final[1]);
1063 break;
1064 case 1:
1065 mem2float_integer(&fpr_init[0], &fpr_final[0]);
1066 mem2float_integer(&fpr_init[1], &fpr_final[1]);
1067 break;
1068 case 2:
1069 mem2float_single(&fpr_init[0], &fpr_final[0]);
1070 mem2float_single(&fpr_init[1], &fpr_final[1]);
1071 break;
1072 case 3:
1073 mem2float_double(&fpr_init[0], &fpr_final[0]);
1074 mem2float_double(&fpr_init[1], &fpr_final[1]);
1075 break;
1077 DDUMP("fpr_final =", &fpr_final, 2*len);
1079 * XXX fixme
1081 * A possible optimization would be to drop fpr_final and directly
1082 * use the storage from the saved context i.e., the actual final
1083 * destination (pt_regs, switch_stack or thread structure).
1085 setfpreg(ld.r1, &fpr_final[0], regs);
1086 setfpreg(ld.imm, &fpr_final[1], regs);
1090 * Check for updates: only immediate updates are available for this
1091 * instruction.
1093 if (ld.m) {
1095 * the immediate is implicit given the ldsz of the operation:
1096 * single: 8 (2x4) and for all others it's 16 (2x8)
1098 ifa += len<<1;
1101 * IMPORTANT:
1102 * the fact that we force the NaT of r3 to zero is ONLY valid
1103 * as long as we don't come here with a ldfpX.s.
1104 * For this reason we keep this sanity check
1106 if (ld.x6_op == 1 || ld.x6_op == 3)
1107 printk(KERN_ERR "%s: register update on speculative load pair, error\n",
1108 __func__);
1110 setreg(ld.r3, ifa, 0, regs);
1114 * Invalidate ALAT entries, if any, for both registers.
1116 if (ld.x6_op == 0x2) {
1117 invala_fr(ld.r1);
1118 invala_fr(ld.imm);
1120 return 0;
1124 static int
1125 emulate_load_float (unsigned long ifa, load_store_t ld, struct pt_regs *regs)
1127 struct ia64_fpreg fpr_init;
1128 struct ia64_fpreg fpr_final;
1129 unsigned long len = float_fsz[ld.x6_sz];
1132 * fr0 & fr1 don't need to be checked because Illegal Instruction
1133 * faults have higher priority than unaligned faults.
1135 * r0 cannot be found as the base as it would never generate an
1136 * unaligned reference.
1140 * make sure we get clean buffers
1142 memset(&fpr_init,0, sizeof(fpr_init));
1143 memset(&fpr_final,0, sizeof(fpr_final));
1146 * ldfX.a we don't try to emulate anything but we must
1147 * invalidate the ALAT entry.
1148 * See comments in ldX for descriptions on how the various loads are handled.
1150 if (ld.x6_op != 0x2) {
1151 if (copy_from_user(&fpr_init, (void __user *) ifa, len))
1152 return -1;
1154 DPRINT("ld.r1=%d x6_sz=%d\n", ld.r1, ld.x6_sz);
1155 DDUMP("fpr_init =", &fpr_init, len);
1157 * we only do something for x6_op={0,8,9}
1159 switch( ld.x6_sz ) {
1160 case 0:
1161 mem2float_extended(&fpr_init, &fpr_final);
1162 break;
1163 case 1:
1164 mem2float_integer(&fpr_init, &fpr_final);
1165 break;
1166 case 2:
1167 mem2float_single(&fpr_init, &fpr_final);
1168 break;
1169 case 3:
1170 mem2float_double(&fpr_init, &fpr_final);
1171 break;
1173 DDUMP("fpr_final =", &fpr_final, len);
1175 * XXX fixme
1177 * A possible optimization would be to drop fpr_final and directly
1178 * use the storage from the saved context i.e., the actual final
1179 * destination (pt_regs, switch_stack or thread structure).
1181 setfpreg(ld.r1, &fpr_final, regs);
1185 * check for updates on any loads
1187 if (ld.op == 0x7 || ld.m)
1188 emulate_load_updates(ld.op == 0x7 ? UPD_IMMEDIATE: UPD_REG, ld, regs, ifa);
1191 * invalidate ALAT entry in case of advanced floating point loads
1193 if (ld.x6_op == 0x2)
1194 invala_fr(ld.r1);
1196 return 0;
1200 static int
1201 emulate_store_float (unsigned long ifa, load_store_t ld, struct pt_regs *regs)
1203 struct ia64_fpreg fpr_init;
1204 struct ia64_fpreg fpr_final;
1205 unsigned long len = float_fsz[ld.x6_sz];
1208 * make sure we get clean buffers
1210 memset(&fpr_init,0, sizeof(fpr_init));
1211 memset(&fpr_final,0, sizeof(fpr_final));
1214 * if we get to this handler, Nat bits on both r3 and r2 have already
1215 * been checked. so we don't need to do it
1217 * extract the value to be stored
1219 getfpreg(ld.imm, &fpr_init, regs);
1221 * during this step, we extract the spilled registers from the saved
1222 * context i.e., we refill. Then we store (no spill) to temporary
1223 * aligned location
1225 switch( ld.x6_sz ) {
1226 case 0:
1227 float2mem_extended(&fpr_init, &fpr_final);
1228 break;
1229 case 1:
1230 float2mem_integer(&fpr_init, &fpr_final);
1231 break;
1232 case 2:
1233 float2mem_single(&fpr_init, &fpr_final);
1234 break;
1235 case 3:
1236 float2mem_double(&fpr_init, &fpr_final);
1237 break;
1239 DPRINT("ld.r1=%d x6_sz=%d\n", ld.r1, ld.x6_sz);
1240 DDUMP("fpr_init =", &fpr_init, len);
1241 DDUMP("fpr_final =", &fpr_final, len);
1243 if (copy_to_user((void __user *) ifa, &fpr_final, len))
1244 return -1;
1247 * stfX [r3]=r2,imm(9)
1249 * NOTE:
1250 * ld.r3 can never be r0, because r0 would not generate an
1251 * unaligned access.
1253 if (ld.op == 0x7) {
1254 unsigned long imm;
1257 * form imm9: [12:6] contain first 7bits
1259 imm = ld.x << 7 | ld.r1;
1261 * sign extend (8bits) if m set
1263 if (ld.m)
1264 imm |= SIGN_EXT9;
1266 * ifa == r3 (NaT is necessarily cleared)
1268 ifa += imm;
1270 DPRINT("imm=%lx r3=%lx\n", imm, ifa);
1272 setreg(ld.r3, ifa, 0, regs);
1275 * we don't have alat_invalidate_multiple() so we need
1276 * to do the complete flush :-<<
1278 ia64_invala();
1280 return 0;
1284 * Make sure we log the unaligned access, so that user/sysadmin can notice it and
1285 * eventually fix the program. However, we don't want to do that for every access so we
1286 * pace it with jiffies. This isn't really MP-safe, but it doesn't really have to be
1287 * either...
1289 static int
1290 within_logging_rate_limit (void)
1292 static unsigned long count, last_time;
1294 if (time_after(jiffies, last_time + 5 * HZ))
1295 count = 0;
1296 if (count < 5) {
1297 last_time = jiffies;
1298 count++;
1299 return 1;
1301 return 0;
1305 void
1306 ia64_handle_unaligned (unsigned long ifa, struct pt_regs *regs)
1308 struct ia64_psr *ipsr = ia64_psr(regs);
1309 mm_segment_t old_fs = get_fs();
1310 unsigned long bundle[2];
1311 unsigned long opcode;
1312 struct siginfo si;
1313 const struct exception_table_entry *eh = NULL;
1314 union {
1315 unsigned long l;
1316 load_store_t insn;
1317 } u;
1318 int ret = -1;
1320 if (ia64_psr(regs)->be) {
1321 /* we don't support big-endian accesses */
1322 if (die_if_kernel("big-endian unaligned accesses are not supported", regs, 0))
1323 return;
1324 goto force_sigbus;
1328 * Treat kernel accesses for which there is an exception handler entry the same as
1329 * user-level unaligned accesses. Otherwise, a clever program could trick this
1330 * handler into reading an arbitrary kernel addresses...
1332 if (!user_mode(regs))
1333 eh = search_exception_tables(regs->cr_iip + ia64_psr(regs)->ri);
1334 if (user_mode(regs) || eh) {
1335 if ((current->thread.flags & IA64_THREAD_UAC_SIGBUS) != 0)
1336 goto force_sigbus;
1338 if (!no_unaligned_warning &&
1339 !(current->thread.flags & IA64_THREAD_UAC_NOPRINT) &&
1340 within_logging_rate_limit())
1342 char buf[200]; /* comm[] is at most 16 bytes... */
1343 size_t len;
1345 len = sprintf(buf, "%s(%d): unaligned access to 0x%016lx, "
1346 "ip=0x%016lx\n\r", current->comm,
1347 task_pid_nr(current),
1348 ifa, regs->cr_iip + ipsr->ri);
1350 * Don't call tty_write_message() if we're in the kernel; we might
1351 * be holding locks...
1353 if (user_mode(regs))
1354 tty_write_message(current->signal->tty, buf);
1355 buf[len-1] = '\0'; /* drop '\r' */
1356 /* watch for command names containing %s */
1357 printk(KERN_WARNING "%s", buf);
1358 } else {
1359 if (no_unaligned_warning && !noprint_warning) {
1360 noprint_warning = 1;
1361 printk(KERN_WARNING "%s(%d) encountered an "
1362 "unaligned exception which required\n"
1363 "kernel assistance, which degrades "
1364 "the performance of the application.\n"
1365 "Unaligned exception warnings have "
1366 "been disabled by the system "
1367 "administrator\n"
1368 "echo 0 > /proc/sys/kernel/ignore-"
1369 "unaligned-usertrap to re-enable\n",
1370 current->comm, task_pid_nr(current));
1373 } else {
1374 if (within_logging_rate_limit())
1375 printk(KERN_WARNING "kernel unaligned access to 0x%016lx, ip=0x%016lx\n",
1376 ifa, regs->cr_iip + ipsr->ri);
1377 set_fs(KERNEL_DS);
1380 DPRINT("iip=%lx ifa=%lx isr=%lx (ei=%d, sp=%d)\n",
1381 regs->cr_iip, ifa, regs->cr_ipsr, ipsr->ri, ipsr->it);
1383 if (__copy_from_user(bundle, (void __user *) regs->cr_iip, 16))
1384 goto failure;
1387 * extract the instruction from the bundle given the slot number
1389 switch (ipsr->ri) {
1390 case 0: u.l = (bundle[0] >> 5); break;
1391 case 1: u.l = (bundle[0] >> 46) | (bundle[1] << 18); break;
1392 case 2: u.l = (bundle[1] >> 23); break;
1394 opcode = (u.l >> IA64_OPCODE_SHIFT) & IA64_OPCODE_MASK;
1396 DPRINT("opcode=%lx ld.qp=%d ld.r1=%d ld.imm=%d ld.r3=%d ld.x=%d ld.hint=%d "
1397 "ld.x6=0x%x ld.m=%d ld.op=%d\n", opcode, u.insn.qp, u.insn.r1, u.insn.imm,
1398 u.insn.r3, u.insn.x, u.insn.hint, u.insn.x6_sz, u.insn.m, u.insn.op);
1401 * IMPORTANT:
1402 * Notice that the switch statement DOES not cover all possible instructions
1403 * that DO generate unaligned references. This is made on purpose because for some
1404 * instructions it DOES NOT make sense to try and emulate the access. Sometimes it
1405 * is WRONG to try and emulate. Here is a list of instruction we don't emulate i.e.,
1406 * the program will get a signal and die:
1408 * load/store:
1409 * - ldX.spill
1410 * - stX.spill
1411 * Reason: RNATs are based on addresses
1412 * - ld16
1413 * - st16
1414 * Reason: ld16 and st16 are supposed to occur in a single
1415 * memory op
1417 * synchronization:
1418 * - cmpxchg
1419 * - fetchadd
1420 * - xchg
1421 * Reason: ATOMIC operations cannot be emulated properly using multiple
1422 * instructions.
1424 * speculative loads:
1425 * - ldX.sZ
1426 * Reason: side effects, code must be ready to deal with failure so simpler
1427 * to let the load fail.
1428 * ---------------------------------------------------------------------------------
1429 * XXX fixme
1431 * I would like to get rid of this switch case and do something
1432 * more elegant.
1434 switch (opcode) {
1435 case LDS_OP:
1436 case LDSA_OP:
1437 if (u.insn.x)
1438 /* oops, really a semaphore op (cmpxchg, etc) */
1439 goto failure;
1440 /* no break */
1441 case LDS_IMM_OP:
1442 case LDSA_IMM_OP:
1443 case LDFS_OP:
1444 case LDFSA_OP:
1445 case LDFS_IMM_OP:
1447 * The instruction will be retried with deferred exceptions turned on, and
1448 * we should get Nat bit installed
1450 * IMPORTANT: When PSR_ED is set, the register & immediate update forms
1451 * are actually executed even though the operation failed. So we don't
1452 * need to take care of this.
1454 DPRINT("forcing PSR_ED\n");
1455 regs->cr_ipsr |= IA64_PSR_ED;
1456 goto done;
1458 case LD_OP:
1459 case LDA_OP:
1460 case LDBIAS_OP:
1461 case LDACQ_OP:
1462 case LDCCLR_OP:
1463 case LDCNC_OP:
1464 case LDCCLRACQ_OP:
1465 if (u.insn.x)
1466 /* oops, really a semaphore op (cmpxchg, etc) */
1467 goto failure;
1468 /* no break */
1469 case LD_IMM_OP:
1470 case LDA_IMM_OP:
1471 case LDBIAS_IMM_OP:
1472 case LDACQ_IMM_OP:
1473 case LDCCLR_IMM_OP:
1474 case LDCNC_IMM_OP:
1475 case LDCCLRACQ_IMM_OP:
1476 ret = emulate_load_int(ifa, u.insn, regs);
1477 break;
1479 case ST_OP:
1480 case STREL_OP:
1481 if (u.insn.x)
1482 /* oops, really a semaphore op (cmpxchg, etc) */
1483 goto failure;
1484 /* no break */
1485 case ST_IMM_OP:
1486 case STREL_IMM_OP:
1487 ret = emulate_store_int(ifa, u.insn, regs);
1488 break;
1490 case LDF_OP:
1491 case LDFA_OP:
1492 case LDFCCLR_OP:
1493 case LDFCNC_OP:
1494 if (u.insn.x)
1495 ret = emulate_load_floatpair(ifa, u.insn, regs);
1496 else
1497 ret = emulate_load_float(ifa, u.insn, regs);
1498 break;
1500 case LDF_IMM_OP:
1501 case LDFA_IMM_OP:
1502 case LDFCCLR_IMM_OP:
1503 case LDFCNC_IMM_OP:
1504 ret = emulate_load_float(ifa, u.insn, regs);
1505 break;
1507 case STF_OP:
1508 case STF_IMM_OP:
1509 ret = emulate_store_float(ifa, u.insn, regs);
1510 break;
1512 default:
1513 goto failure;
1515 DPRINT("ret=%d\n", ret);
1516 if (ret)
1517 goto failure;
1519 if (ipsr->ri == 2)
1521 * given today's architecture this case is not likely to happen because a
1522 * memory access instruction (M) can never be in the last slot of a
1523 * bundle. But let's keep it for now.
1525 regs->cr_iip += 16;
1526 ipsr->ri = (ipsr->ri + 1) & 0x3;
1528 DPRINT("ipsr->ri=%d iip=%lx\n", ipsr->ri, regs->cr_iip);
1529 done:
1530 set_fs(old_fs); /* restore original address limit */
1531 return;
1533 failure:
1534 /* something went wrong... */
1535 if (!user_mode(regs)) {
1536 if (eh) {
1537 ia64_handle_exception(regs, eh);
1538 goto done;
1540 if (die_if_kernel("error during unaligned kernel access\n", regs, ret))
1541 return;
1542 /* NOT_REACHED */
1544 force_sigbus:
1545 si.si_signo = SIGBUS;
1546 si.si_errno = 0;
1547 si.si_code = BUS_ADRALN;
1548 si.si_addr = (void __user *) ifa;
1549 si.si_flags = 0;
1550 si.si_isr = 0;
1551 si.si_imm = 0;
1552 force_sig_info(SIGBUS, &si, current);
1553 goto done;