2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
5 * Implements an efficient asynchronous io interface.
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
9 * See ../COPYING for licensing terms.
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/errno.h>
14 #include <linux/time.h>
15 #include <linux/aio_abi.h>
16 #include <linux/module.h>
17 #include <linux/syscalls.h>
21 #include <linux/sched.h>
23 #include <linux/file.h>
25 #include <linux/mman.h>
26 #include <linux/slab.h>
27 #include <linux/timer.h>
28 #include <linux/aio.h>
29 #include <linux/highmem.h>
30 #include <linux/workqueue.h>
31 #include <linux/security.h>
33 #include <asm/kmap_types.h>
34 #include <asm/uaccess.h>
35 #include <asm/mmu_context.h>
38 #define dprintk printk
40 #define dprintk(x...) do { ; } while (0)
43 /*------ sysctl variables----*/
44 static DEFINE_SPINLOCK(aio_nr_lock
);
45 unsigned long aio_nr
; /* current system wide number of aio requests */
46 unsigned long aio_max_nr
= 0x10000; /* system wide maximum number of aio requests */
47 /*----end sysctl variables---*/
49 static kmem_cache_t
*kiocb_cachep
;
50 static kmem_cache_t
*kioctx_cachep
;
52 static struct workqueue_struct
*aio_wq
;
54 /* Used for rare fput completion. */
55 static void aio_fput_routine(void *);
56 static DECLARE_WORK(fput_work
, aio_fput_routine
, NULL
);
58 static DEFINE_SPINLOCK(fput_lock
);
59 static LIST_HEAD(fput_head
);
61 static void aio_kick_handler(void *);
62 static void aio_queue_work(struct kioctx
*);
65 * Creates the slab caches used by the aio routines, panic on
66 * failure as this is done early during the boot sequence.
68 static int __init
aio_setup(void)
70 kiocb_cachep
= kmem_cache_create("kiocb", sizeof(struct kiocb
),
71 0, SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
, NULL
);
72 kioctx_cachep
= kmem_cache_create("kioctx", sizeof(struct kioctx
),
73 0, SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
, NULL
);
75 aio_wq
= create_workqueue("aio");
77 pr_debug("aio_setup: sizeof(struct page) = %d\n", (int)sizeof(struct page
));
82 static void aio_free_ring(struct kioctx
*ctx
)
84 struct aio_ring_info
*info
= &ctx
->ring_info
;
87 for (i
=0; i
<info
->nr_pages
; i
++)
88 put_page(info
->ring_pages
[i
]);
90 if (info
->mmap_size
) {
91 down_write(&ctx
->mm
->mmap_sem
);
92 do_munmap(ctx
->mm
, info
->mmap_base
, info
->mmap_size
);
93 up_write(&ctx
->mm
->mmap_sem
);
96 if (info
->ring_pages
&& info
->ring_pages
!= info
->internal_pages
)
97 kfree(info
->ring_pages
);
98 info
->ring_pages
= NULL
;
102 static int aio_setup_ring(struct kioctx
*ctx
)
104 struct aio_ring
*ring
;
105 struct aio_ring_info
*info
= &ctx
->ring_info
;
106 unsigned nr_events
= ctx
->max_reqs
;
110 /* Compensate for the ring buffer's head/tail overlap entry */
111 nr_events
+= 2; /* 1 is required, 2 for good luck */
113 size
= sizeof(struct aio_ring
);
114 size
+= sizeof(struct io_event
) * nr_events
;
115 nr_pages
= (size
+ PAGE_SIZE
-1) >> PAGE_SHIFT
;
120 nr_events
= (PAGE_SIZE
* nr_pages
- sizeof(struct aio_ring
)) / sizeof(struct io_event
);
123 info
->ring_pages
= info
->internal_pages
;
124 if (nr_pages
> AIO_RING_PAGES
) {
125 info
->ring_pages
= kmalloc(sizeof(struct page
*) * nr_pages
, GFP_KERNEL
);
126 if (!info
->ring_pages
)
128 memset(info
->ring_pages
, 0, sizeof(struct page
*) * nr_pages
);
131 info
->mmap_size
= nr_pages
* PAGE_SIZE
;
132 dprintk("attempting mmap of %lu bytes\n", info
->mmap_size
);
133 down_write(&ctx
->mm
->mmap_sem
);
134 info
->mmap_base
= do_mmap(NULL
, 0, info
->mmap_size
,
135 PROT_READ
|PROT_WRITE
, MAP_ANON
|MAP_PRIVATE
,
137 if (IS_ERR((void *)info
->mmap_base
)) {
138 up_write(&ctx
->mm
->mmap_sem
);
139 printk("mmap err: %ld\n", -info
->mmap_base
);
145 dprintk("mmap address: 0x%08lx\n", info
->mmap_base
);
146 info
->nr_pages
= get_user_pages(current
, ctx
->mm
,
147 info
->mmap_base
, nr_pages
,
148 1, 0, info
->ring_pages
, NULL
);
149 up_write(&ctx
->mm
->mmap_sem
);
151 if (unlikely(info
->nr_pages
!= nr_pages
)) {
156 ctx
->user_id
= info
->mmap_base
;
158 info
->nr
= nr_events
; /* trusted copy */
160 ring
= kmap_atomic(info
->ring_pages
[0], KM_USER0
);
161 ring
->nr
= nr_events
; /* user copy */
162 ring
->id
= ctx
->user_id
;
163 ring
->head
= ring
->tail
= 0;
164 ring
->magic
= AIO_RING_MAGIC
;
165 ring
->compat_features
= AIO_RING_COMPAT_FEATURES
;
166 ring
->incompat_features
= AIO_RING_INCOMPAT_FEATURES
;
167 ring
->header_length
= sizeof(struct aio_ring
);
168 kunmap_atomic(ring
, KM_USER0
);
174 /* aio_ring_event: returns a pointer to the event at the given index from
175 * kmap_atomic(, km). Release the pointer with put_aio_ring_event();
177 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
178 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
179 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
181 #define aio_ring_event(info, nr, km) ({ \
182 unsigned pos = (nr) + AIO_EVENTS_OFFSET; \
183 struct io_event *__event; \
184 __event = kmap_atomic( \
185 (info)->ring_pages[pos / AIO_EVENTS_PER_PAGE], km); \
186 __event += pos % AIO_EVENTS_PER_PAGE; \
190 #define put_aio_ring_event(event, km) do { \
191 struct io_event *__event = (event); \
193 kunmap_atomic((void *)((unsigned long)__event & PAGE_MASK), km); \
197 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
199 static struct kioctx
*ioctx_alloc(unsigned nr_events
)
201 struct mm_struct
*mm
;
204 /* Prevent overflows */
205 if ((nr_events
> (0x10000000U
/ sizeof(struct io_event
))) ||
206 (nr_events
> (0x10000000U
/ sizeof(struct kiocb
)))) {
207 pr_debug("ENOMEM: nr_events too high\n");
208 return ERR_PTR(-EINVAL
);
211 if ((unsigned long)nr_events
> aio_max_nr
)
212 return ERR_PTR(-EAGAIN
);
214 ctx
= kmem_cache_alloc(kioctx_cachep
, GFP_KERNEL
);
216 return ERR_PTR(-ENOMEM
);
218 memset(ctx
, 0, sizeof(*ctx
));
219 ctx
->max_reqs
= nr_events
;
220 mm
= ctx
->mm
= current
->mm
;
221 atomic_inc(&mm
->mm_count
);
223 atomic_set(&ctx
->users
, 1);
224 spin_lock_init(&ctx
->ctx_lock
);
225 spin_lock_init(&ctx
->ring_info
.ring_lock
);
226 init_waitqueue_head(&ctx
->wait
);
228 INIT_LIST_HEAD(&ctx
->active_reqs
);
229 INIT_LIST_HEAD(&ctx
->run_list
);
230 INIT_WORK(&ctx
->wq
, aio_kick_handler
, ctx
);
232 if (aio_setup_ring(ctx
) < 0)
235 /* limit the number of system wide aios */
236 spin_lock(&aio_nr_lock
);
237 if (aio_nr
+ ctx
->max_reqs
> aio_max_nr
||
238 aio_nr
+ ctx
->max_reqs
< aio_nr
)
241 aio_nr
+= ctx
->max_reqs
;
242 spin_unlock(&aio_nr_lock
);
243 if (ctx
->max_reqs
== 0)
246 /* now link into global list. kludge. FIXME */
247 write_lock(&mm
->ioctx_list_lock
);
248 ctx
->next
= mm
->ioctx_list
;
249 mm
->ioctx_list
= ctx
;
250 write_unlock(&mm
->ioctx_list_lock
);
252 dprintk("aio: allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
253 ctx
, ctx
->user_id
, current
->mm
, ctx
->ring_info
.nr
);
258 return ERR_PTR(-EAGAIN
);
262 kmem_cache_free(kioctx_cachep
, ctx
);
263 ctx
= ERR_PTR(-ENOMEM
);
265 dprintk("aio: error allocating ioctx %p\n", ctx
);
270 * Cancels all outstanding aio requests on an aio context. Used
271 * when the processes owning a context have all exited to encourage
272 * the rapid destruction of the kioctx.
274 static void aio_cancel_all(struct kioctx
*ctx
)
276 int (*cancel
)(struct kiocb
*, struct io_event
*);
278 spin_lock_irq(&ctx
->ctx_lock
);
280 while (!list_empty(&ctx
->active_reqs
)) {
281 struct list_head
*pos
= ctx
->active_reqs
.next
;
282 struct kiocb
*iocb
= list_kiocb(pos
);
283 list_del_init(&iocb
->ki_list
);
284 cancel
= iocb
->ki_cancel
;
285 kiocbSetCancelled(iocb
);
288 spin_unlock_irq(&ctx
->ctx_lock
);
290 spin_lock_irq(&ctx
->ctx_lock
);
293 spin_unlock_irq(&ctx
->ctx_lock
);
296 static void wait_for_all_aios(struct kioctx
*ctx
)
298 struct task_struct
*tsk
= current
;
299 DECLARE_WAITQUEUE(wait
, tsk
);
301 if (!ctx
->reqs_active
)
304 add_wait_queue(&ctx
->wait
, &wait
);
305 set_task_state(tsk
, TASK_UNINTERRUPTIBLE
);
306 while (ctx
->reqs_active
) {
308 set_task_state(tsk
, TASK_UNINTERRUPTIBLE
);
310 __set_task_state(tsk
, TASK_RUNNING
);
311 remove_wait_queue(&ctx
->wait
, &wait
);
314 /* wait_on_sync_kiocb:
315 * Waits on the given sync kiocb to complete.
317 ssize_t fastcall
wait_on_sync_kiocb(struct kiocb
*iocb
)
319 while (iocb
->ki_users
) {
320 set_current_state(TASK_UNINTERRUPTIBLE
);
325 __set_current_state(TASK_RUNNING
);
326 return iocb
->ki_user_data
;
329 /* exit_aio: called when the last user of mm goes away. At this point,
330 * there is no way for any new requests to be submited or any of the
331 * io_* syscalls to be called on the context. However, there may be
332 * outstanding requests which hold references to the context; as they
333 * go away, they will call put_ioctx and release any pinned memory
334 * associated with the request (held via struct page * references).
336 void fastcall
exit_aio(struct mm_struct
*mm
)
338 struct kioctx
*ctx
= mm
->ioctx_list
;
339 mm
->ioctx_list
= NULL
;
341 struct kioctx
*next
= ctx
->next
;
345 wait_for_all_aios(ctx
);
347 * this is an overkill, but ensures we don't leave
348 * the ctx on the aio_wq
350 flush_workqueue(aio_wq
);
352 if (1 != atomic_read(&ctx
->users
))
354 "exit_aio:ioctx still alive: %d %d %d\n",
355 atomic_read(&ctx
->users
), ctx
->dead
,
363 * Called when the last user of an aio context has gone away,
364 * and the struct needs to be freed.
366 void fastcall
__put_ioctx(struct kioctx
*ctx
)
368 unsigned nr_events
= ctx
->max_reqs
;
370 if (unlikely(ctx
->reqs_active
))
373 cancel_delayed_work(&ctx
->wq
);
374 flush_workqueue(aio_wq
);
378 pr_debug("__put_ioctx: freeing %p\n", ctx
);
379 kmem_cache_free(kioctx_cachep
, ctx
);
382 spin_lock(&aio_nr_lock
);
383 BUG_ON(aio_nr
- nr_events
> aio_nr
);
385 spin_unlock(&aio_nr_lock
);
390 * Allocate a slot for an aio request. Increments the users count
391 * of the kioctx so that the kioctx stays around until all requests are
392 * complete. Returns NULL if no requests are free.
394 * Returns with kiocb->users set to 2. The io submit code path holds
395 * an extra reference while submitting the i/o.
396 * This prevents races between the aio code path referencing the
397 * req (after submitting it) and aio_complete() freeing the req.
399 static struct kiocb
*FASTCALL(__aio_get_req(struct kioctx
*ctx
));
400 static struct kiocb fastcall
*__aio_get_req(struct kioctx
*ctx
)
402 struct kiocb
*req
= NULL
;
403 struct aio_ring
*ring
;
406 req
= kmem_cache_alloc(kiocb_cachep
, GFP_KERNEL
);
414 req
->ki_cancel
= NULL
;
415 req
->ki_retry
= NULL
;
418 INIT_LIST_HEAD(&req
->ki_run_list
);
420 /* Check if the completion queue has enough free space to
421 * accept an event from this io.
423 spin_lock_irq(&ctx
->ctx_lock
);
424 ring
= kmap_atomic(ctx
->ring_info
.ring_pages
[0], KM_USER0
);
425 if (ctx
->reqs_active
< aio_ring_avail(&ctx
->ring_info
, ring
)) {
426 list_add(&req
->ki_list
, &ctx
->active_reqs
);
431 kunmap_atomic(ring
, KM_USER0
);
432 spin_unlock_irq(&ctx
->ctx_lock
);
435 kmem_cache_free(kiocb_cachep
, req
);
442 static inline struct kiocb
*aio_get_req(struct kioctx
*ctx
)
445 /* Handle a potential starvation case -- should be exceedingly rare as
446 * requests will be stuck on fput_head only if the aio_fput_routine is
447 * delayed and the requests were the last user of the struct file.
449 req
= __aio_get_req(ctx
);
450 if (unlikely(NULL
== req
)) {
451 aio_fput_routine(NULL
);
452 req
= __aio_get_req(ctx
);
457 static inline void really_put_req(struct kioctx
*ctx
, struct kiocb
*req
)
459 assert_spin_locked(&ctx
->ctx_lock
);
463 kmem_cache_free(kiocb_cachep
, req
);
466 if (unlikely(!ctx
->reqs_active
&& ctx
->dead
))
470 static void aio_fput_routine(void *data
)
472 spin_lock_irq(&fput_lock
);
473 while (likely(!list_empty(&fput_head
))) {
474 struct kiocb
*req
= list_kiocb(fput_head
.next
);
475 struct kioctx
*ctx
= req
->ki_ctx
;
477 list_del(&req
->ki_list
);
478 spin_unlock_irq(&fput_lock
);
480 /* Complete the fput */
481 __fput(req
->ki_filp
);
483 /* Link the iocb into the context's free list */
484 spin_lock_irq(&ctx
->ctx_lock
);
485 really_put_req(ctx
, req
);
486 spin_unlock_irq(&ctx
->ctx_lock
);
489 spin_lock_irq(&fput_lock
);
491 spin_unlock_irq(&fput_lock
);
495 * Returns true if this put was the last user of the request.
497 static int __aio_put_req(struct kioctx
*ctx
, struct kiocb
*req
)
499 dprintk(KERN_DEBUG
"aio_put(%p): f_count=%d\n",
500 req
, atomic_read(&req
->ki_filp
->f_count
));
502 assert_spin_locked(&ctx
->ctx_lock
);
505 if (unlikely(req
->ki_users
< 0))
507 if (likely(req
->ki_users
))
509 list_del(&req
->ki_list
); /* remove from active_reqs */
510 req
->ki_cancel
= NULL
;
511 req
->ki_retry
= NULL
;
513 /* Must be done under the lock to serialise against cancellation.
514 * Call this aio_fput as it duplicates fput via the fput_work.
516 if (unlikely(atomic_dec_and_test(&req
->ki_filp
->f_count
))) {
518 spin_lock(&fput_lock
);
519 list_add(&req
->ki_list
, &fput_head
);
520 spin_unlock(&fput_lock
);
521 queue_work(aio_wq
, &fput_work
);
523 really_put_req(ctx
, req
);
528 * Returns true if this put was the last user of the kiocb,
529 * false if the request is still in use.
531 int fastcall
aio_put_req(struct kiocb
*req
)
533 struct kioctx
*ctx
= req
->ki_ctx
;
535 spin_lock_irq(&ctx
->ctx_lock
);
536 ret
= __aio_put_req(ctx
, req
);
537 spin_unlock_irq(&ctx
->ctx_lock
);
543 /* Lookup an ioctx id. ioctx_list is lockless for reads.
544 * FIXME: this is O(n) and is only suitable for development.
546 struct kioctx
*lookup_ioctx(unsigned long ctx_id
)
548 struct kioctx
*ioctx
;
549 struct mm_struct
*mm
;
552 read_lock(&mm
->ioctx_list_lock
);
553 for (ioctx
= mm
->ioctx_list
; ioctx
; ioctx
= ioctx
->next
)
554 if (likely(ioctx
->user_id
== ctx_id
&& !ioctx
->dead
)) {
558 read_unlock(&mm
->ioctx_list_lock
);
565 * Makes the calling kernel thread take on the specified
567 * Called by the retry thread execute retries within the
568 * iocb issuer's mm context, so that copy_from/to_user
569 * operations work seamlessly for aio.
570 * (Note: this routine is intended to be called only
571 * from a kernel thread context)
573 static void use_mm(struct mm_struct
*mm
)
575 struct mm_struct
*active_mm
;
576 struct task_struct
*tsk
= current
;
579 tsk
->flags
|= PF_BORROWED_MM
;
580 active_mm
= tsk
->active_mm
;
581 atomic_inc(&mm
->mm_count
);
585 * Note that on UML this *requires* PF_BORROWED_MM to be set, otherwise
586 * it won't work. Update it accordingly if you change it here
588 activate_mm(active_mm
, mm
);
596 * Reverses the effect of use_mm, i.e. releases the
597 * specified mm context which was earlier taken on
598 * by the calling kernel thread
599 * (Note: this routine is intended to be called only
600 * from a kernel thread context)
602 * Comments: Called with ctx->ctx_lock held. This nests
603 * task_lock instead ctx_lock.
605 static void unuse_mm(struct mm_struct
*mm
)
607 struct task_struct
*tsk
= current
;
610 tsk
->flags
&= ~PF_BORROWED_MM
;
612 /* active_mm is still 'mm' */
613 enter_lazy_tlb(mm
, tsk
);
618 * Queue up a kiocb to be retried. Assumes that the kiocb
619 * has already been marked as kicked, and places it on
620 * the retry run list for the corresponding ioctx, if it
621 * isn't already queued. Returns 1 if it actually queued
622 * the kiocb (to tell the caller to activate the work
623 * queue to process it), or 0, if it found that it was
626 static inline int __queue_kicked_iocb(struct kiocb
*iocb
)
628 struct kioctx
*ctx
= iocb
->ki_ctx
;
630 assert_spin_locked(&ctx
->ctx_lock
);
632 if (list_empty(&iocb
->ki_run_list
)) {
633 list_add_tail(&iocb
->ki_run_list
,
641 * This is the core aio execution routine. It is
642 * invoked both for initial i/o submission and
643 * subsequent retries via the aio_kick_handler.
644 * Expects to be invoked with iocb->ki_ctx->lock
645 * already held. The lock is released and reaquired
646 * as needed during processing.
648 * Calls the iocb retry method (already setup for the
649 * iocb on initial submission) for operation specific
650 * handling, but takes care of most of common retry
651 * execution details for a given iocb. The retry method
652 * needs to be non-blocking as far as possible, to avoid
653 * holding up other iocbs waiting to be serviced by the
654 * retry kernel thread.
656 * The trickier parts in this code have to do with
657 * ensuring that only one retry instance is in progress
658 * for a given iocb at any time. Providing that guarantee
659 * simplifies the coding of individual aio operations as
660 * it avoids various potential races.
662 static ssize_t
aio_run_iocb(struct kiocb
*iocb
)
664 struct kioctx
*ctx
= iocb
->ki_ctx
;
665 ssize_t (*retry
)(struct kiocb
*);
668 if (iocb
->ki_retried
++ > 1024*1024) {
669 printk("Maximal retry count. Bytes done %Zd\n",
670 iocb
->ki_nbytes
- iocb
->ki_left
);
674 if (!(iocb
->ki_retried
& 0xff)) {
675 pr_debug("%ld retry: %d of %d\n", iocb
->ki_retried
,
676 iocb
->ki_nbytes
- iocb
->ki_left
, iocb
->ki_nbytes
);
679 if (!(retry
= iocb
->ki_retry
)) {
680 printk("aio_run_iocb: iocb->ki_retry = NULL\n");
685 * We don't want the next retry iteration for this
686 * operation to start until this one has returned and
687 * updated the iocb state. However, wait_queue functions
688 * can trigger a kick_iocb from interrupt context in the
689 * meantime, indicating that data is available for the next
690 * iteration. We want to remember that and enable the
691 * next retry iteration _after_ we are through with
694 * So, in order to be able to register a "kick", but
695 * prevent it from being queued now, we clear the kick
696 * flag, but make the kick code *think* that the iocb is
697 * still on the run list until we are actually done.
698 * When we are done with this iteration, we check if
699 * the iocb was kicked in the meantime and if so, queue
703 kiocbClearKicked(iocb
);
706 * This is so that aio_complete knows it doesn't need to
707 * pull the iocb off the run list (We can't just call
708 * INIT_LIST_HEAD because we don't want a kick_iocb to
709 * queue this on the run list yet)
711 iocb
->ki_run_list
.next
= iocb
->ki_run_list
.prev
= NULL
;
712 spin_unlock_irq(&ctx
->ctx_lock
);
714 /* Quit retrying if the i/o has been cancelled */
715 if (kiocbIsCancelled(iocb
)) {
717 aio_complete(iocb
, ret
, 0);
718 /* must not access the iocb after this */
723 * Now we are all set to call the retry method in async
724 * context. By setting this thread's io_wait context
725 * to point to the wait queue entry inside the currently
726 * running iocb for the duration of the retry, we ensure
727 * that async notification wakeups are queued by the
728 * operation instead of blocking waits, and when notified,
729 * cause the iocb to be kicked for continuation (through
730 * the aio_wake_function callback).
732 BUG_ON(current
->io_wait
!= NULL
);
733 current
->io_wait
= &iocb
->ki_wait
;
735 current
->io_wait
= NULL
;
737 if (ret
!= -EIOCBRETRY
&& ret
!= -EIOCBQUEUED
) {
738 BUG_ON(!list_empty(&iocb
->ki_wait
.task_list
));
739 aio_complete(iocb
, ret
, 0);
742 spin_lock_irq(&ctx
->ctx_lock
);
744 if (-EIOCBRETRY
== ret
) {
746 * OK, now that we are done with this iteration
747 * and know that there is more left to go,
748 * this is where we let go so that a subsequent
749 * "kick" can start the next iteration
752 /* will make __queue_kicked_iocb succeed from here on */
753 INIT_LIST_HEAD(&iocb
->ki_run_list
);
754 /* we must queue the next iteration ourselves, if it
755 * has already been kicked */
756 if (kiocbIsKicked(iocb
)) {
757 __queue_kicked_iocb(iocb
);
760 * __queue_kicked_iocb will always return 1 here, because
761 * iocb->ki_run_list is empty at this point so it should
762 * be safe to unconditionally queue the context into the
773 * Process all pending retries queued on the ioctx
775 * Assumes it is operating within the aio issuer's mm
778 static int __aio_run_iocbs(struct kioctx
*ctx
)
783 assert_spin_locked(&ctx
->ctx_lock
);
785 list_splice_init(&ctx
->run_list
, &run_list
);
786 while (!list_empty(&run_list
)) {
787 iocb
= list_entry(run_list
.next
, struct kiocb
,
789 list_del(&iocb
->ki_run_list
);
791 * Hold an extra reference while retrying i/o.
793 iocb
->ki_users
++; /* grab extra reference */
795 if (__aio_put_req(ctx
, iocb
)) /* drop extra ref */
798 if (!list_empty(&ctx
->run_list
))
803 static void aio_queue_work(struct kioctx
* ctx
)
805 unsigned long timeout
;
807 * if someone is waiting, get the work started right
808 * away, otherwise, use a longer delay
811 if (waitqueue_active(&ctx
->wait
))
815 queue_delayed_work(aio_wq
, &ctx
->wq
, timeout
);
821 * Process all pending retries queued on the ioctx
823 * Assumes it is operating within the aio issuer's mm
826 static inline void aio_run_iocbs(struct kioctx
*ctx
)
830 spin_lock_irq(&ctx
->ctx_lock
);
832 requeue
= __aio_run_iocbs(ctx
);
833 spin_unlock_irq(&ctx
->ctx_lock
);
839 * just like aio_run_iocbs, but keeps running them until
840 * the list stays empty
842 static inline void aio_run_all_iocbs(struct kioctx
*ctx
)
844 spin_lock_irq(&ctx
->ctx_lock
);
845 while (__aio_run_iocbs(ctx
))
847 spin_unlock_irq(&ctx
->ctx_lock
);
852 * Work queue handler triggered to process pending
853 * retries on an ioctx. Takes on the aio issuer's
854 * mm context before running the iocbs, so that
855 * copy_xxx_user operates on the issuer's address
857 * Run on aiod's context.
859 static void aio_kick_handler(void *data
)
861 struct kioctx
*ctx
= data
;
862 mm_segment_t oldfs
= get_fs();
867 spin_lock_irq(&ctx
->ctx_lock
);
868 requeue
=__aio_run_iocbs(ctx
);
870 spin_unlock_irq(&ctx
->ctx_lock
);
873 * we're in a worker thread already, don't use queue_delayed_work,
876 queue_work(aio_wq
, &ctx
->wq
);
881 * Called by kick_iocb to queue the kiocb for retry
882 * and if required activate the aio work queue to process
885 static void try_queue_kicked_iocb(struct kiocb
*iocb
)
887 struct kioctx
*ctx
= iocb
->ki_ctx
;
891 /* We're supposed to be the only path putting the iocb back on the run
892 * list. If we find that the iocb is *back* on a wait queue already
893 * than retry has happened before we could queue the iocb. This also
894 * means that the retry could have completed and freed our iocb, no
896 BUG_ON((!list_empty(&iocb
->ki_wait
.task_list
)));
898 spin_lock_irqsave(&ctx
->ctx_lock
, flags
);
899 /* set this inside the lock so that we can't race with aio_run_iocb()
900 * testing it and putting the iocb on the run list under the lock */
901 if (!kiocbTryKick(iocb
))
902 run
= __queue_kicked_iocb(iocb
);
903 spin_unlock_irqrestore(&ctx
->ctx_lock
, flags
);
910 * Called typically from a wait queue callback context
911 * (aio_wake_function) to trigger a retry of the iocb.
912 * The retry is usually executed by aio workqueue
913 * threads (See aio_kick_handler).
915 void fastcall
kick_iocb(struct kiocb
*iocb
)
917 /* sync iocbs are easy: they can only ever be executing from a
919 if (is_sync_kiocb(iocb
)) {
920 kiocbSetKicked(iocb
);
921 wake_up_process(iocb
->ki_obj
.tsk
);
925 try_queue_kicked_iocb(iocb
);
927 EXPORT_SYMBOL(kick_iocb
);
930 * Called when the io request on the given iocb is complete.
931 * Returns true if this is the last user of the request. The
932 * only other user of the request can be the cancellation code.
934 int fastcall
aio_complete(struct kiocb
*iocb
, long res
, long res2
)
936 struct kioctx
*ctx
= iocb
->ki_ctx
;
937 struct aio_ring_info
*info
;
938 struct aio_ring
*ring
;
939 struct io_event
*event
;
945 * Special case handling for sync iocbs:
946 * - events go directly into the iocb for fast handling
947 * - the sync task with the iocb in its stack holds the single iocb
948 * ref, no other paths have a way to get another ref
949 * - the sync task helpfully left a reference to itself in the iocb
951 if (is_sync_kiocb(iocb
)) {
952 BUG_ON(iocb
->ki_users
!= 1);
953 iocb
->ki_user_data
= res
;
955 wake_up_process(iocb
->ki_obj
.tsk
);
959 info
= &ctx
->ring_info
;
961 /* add a completion event to the ring buffer.
962 * must be done holding ctx->ctx_lock to prevent
963 * other code from messing with the tail
964 * pointer since we might be called from irq
967 spin_lock_irqsave(&ctx
->ctx_lock
, flags
);
969 if (iocb
->ki_run_list
.prev
&& !list_empty(&iocb
->ki_run_list
))
970 list_del_init(&iocb
->ki_run_list
);
973 * cancelled requests don't get events, userland was given one
974 * when the event got cancelled.
976 if (kiocbIsCancelled(iocb
))
979 ring
= kmap_atomic(info
->ring_pages
[0], KM_IRQ1
);
982 event
= aio_ring_event(info
, tail
, KM_IRQ0
);
983 if (++tail
>= info
->nr
)
986 event
->obj
= (u64
)(unsigned long)iocb
->ki_obj
.user
;
987 event
->data
= iocb
->ki_user_data
;
991 dprintk("aio_complete: %p[%lu]: %p: %p %Lx %lx %lx\n",
992 ctx
, tail
, iocb
, iocb
->ki_obj
.user
, iocb
->ki_user_data
,
995 /* after flagging the request as done, we
996 * must never even look at it again
998 smp_wmb(); /* make event visible before updating tail */
1003 put_aio_ring_event(event
, KM_IRQ0
);
1004 kunmap_atomic(ring
, KM_IRQ1
);
1006 pr_debug("added to ring %p at [%lu]\n", iocb
, tail
);
1008 pr_debug("%ld retries: %d of %d\n", iocb
->ki_retried
,
1009 iocb
->ki_nbytes
- iocb
->ki_left
, iocb
->ki_nbytes
);
1011 /* everything turned out well, dispose of the aiocb. */
1012 ret
= __aio_put_req(ctx
, iocb
);
1014 spin_unlock_irqrestore(&ctx
->ctx_lock
, flags
);
1016 if (waitqueue_active(&ctx
->wait
))
1017 wake_up(&ctx
->wait
);
1026 * Pull an event off of the ioctx's event ring. Returns the number of
1027 * events fetched (0 or 1 ;-)
1028 * FIXME: make this use cmpxchg.
1029 * TODO: make the ringbuffer user mmap()able (requires FIXME).
1031 static int aio_read_evt(struct kioctx
*ioctx
, struct io_event
*ent
)
1033 struct aio_ring_info
*info
= &ioctx
->ring_info
;
1034 struct aio_ring
*ring
;
1038 ring
= kmap_atomic(info
->ring_pages
[0], KM_USER0
);
1039 dprintk("in aio_read_evt h%lu t%lu m%lu\n",
1040 (unsigned long)ring
->head
, (unsigned long)ring
->tail
,
1041 (unsigned long)ring
->nr
);
1043 if (ring
->head
== ring
->tail
)
1046 spin_lock(&info
->ring_lock
);
1048 head
= ring
->head
% info
->nr
;
1049 if (head
!= ring
->tail
) {
1050 struct io_event
*evp
= aio_ring_event(info
, head
, KM_USER1
);
1052 head
= (head
+ 1) % info
->nr
;
1053 smp_mb(); /* finish reading the event before updatng the head */
1056 put_aio_ring_event(evp
, KM_USER1
);
1058 spin_unlock(&info
->ring_lock
);
1061 kunmap_atomic(ring
, KM_USER0
);
1062 dprintk("leaving aio_read_evt: %d h%lu t%lu\n", ret
,
1063 (unsigned long)ring
->head
, (unsigned long)ring
->tail
);
1067 struct aio_timeout
{
1068 struct timer_list timer
;
1070 struct task_struct
*p
;
1073 static void timeout_func(unsigned long data
)
1075 struct aio_timeout
*to
= (struct aio_timeout
*)data
;
1078 wake_up_process(to
->p
);
1081 static inline void init_timeout(struct aio_timeout
*to
)
1083 init_timer(&to
->timer
);
1084 to
->timer
.data
= (unsigned long)to
;
1085 to
->timer
.function
= timeout_func
;
1090 static inline void set_timeout(long start_jiffies
, struct aio_timeout
*to
,
1091 const struct timespec
*ts
)
1093 to
->timer
.expires
= start_jiffies
+ timespec_to_jiffies(ts
);
1094 if (time_after(to
->timer
.expires
, jiffies
))
1095 add_timer(&to
->timer
);
1100 static inline void clear_timeout(struct aio_timeout
*to
)
1102 del_singleshot_timer_sync(&to
->timer
);
1105 static int read_events(struct kioctx
*ctx
,
1106 long min_nr
, long nr
,
1107 struct io_event __user
*event
,
1108 struct timespec __user
*timeout
)
1110 long start_jiffies
= jiffies
;
1111 struct task_struct
*tsk
= current
;
1112 DECLARE_WAITQUEUE(wait
, tsk
);
1115 struct io_event ent
;
1116 struct aio_timeout to
;
1119 /* needed to zero any padding within an entry (there shouldn't be
1120 * any, but C is fun!
1122 memset(&ent
, 0, sizeof(ent
));
1125 while (likely(i
< nr
)) {
1126 ret
= aio_read_evt(ctx
, &ent
);
1127 if (unlikely(ret
<= 0))
1130 dprintk("read event: %Lx %Lx %Lx %Lx\n",
1131 ent
.data
, ent
.obj
, ent
.res
, ent
.res2
);
1133 /* Could we split the check in two? */
1135 if (unlikely(copy_to_user(event
, &ent
, sizeof(ent
)))) {
1136 dprintk("aio: lost an event due to EFAULT.\n");
1141 /* Good, event copied to userland, update counts. */
1153 /* racey check, but it gets redone */
1154 if (!retry
&& unlikely(!list_empty(&ctx
->run_list
))) {
1156 aio_run_all_iocbs(ctx
);
1164 if (unlikely(copy_from_user(&ts
, timeout
, sizeof(ts
))))
1167 set_timeout(start_jiffies
, &to
, &ts
);
1170 while (likely(i
< nr
)) {
1171 add_wait_queue_exclusive(&ctx
->wait
, &wait
);
1173 set_task_state(tsk
, TASK_INTERRUPTIBLE
);
1174 ret
= aio_read_evt(ctx
, &ent
);
1180 if (to
.timed_out
) /* Only check after read evt */
1183 if (signal_pending(tsk
)) {
1187 /*ret = aio_read_evt(ctx, &ent);*/
1190 set_task_state(tsk
, TASK_RUNNING
);
1191 remove_wait_queue(&ctx
->wait
, &wait
);
1193 if (unlikely(ret
<= 0))
1197 if (unlikely(copy_to_user(event
, &ent
, sizeof(ent
)))) {
1198 dprintk("aio: lost an event due to EFAULT.\n");
1202 /* Good, event copied to userland, update counts. */
1213 /* Take an ioctx and remove it from the list of ioctx's. Protects
1214 * against races with itself via ->dead.
1216 static void io_destroy(struct kioctx
*ioctx
)
1218 struct mm_struct
*mm
= current
->mm
;
1219 struct kioctx
**tmp
;
1222 /* delete the entry from the list is someone else hasn't already */
1223 write_lock(&mm
->ioctx_list_lock
);
1224 was_dead
= ioctx
->dead
;
1226 for (tmp
= &mm
->ioctx_list
; *tmp
&& *tmp
!= ioctx
;
1227 tmp
= &(*tmp
)->next
)
1231 write_unlock(&mm
->ioctx_list_lock
);
1233 dprintk("aio_release(%p)\n", ioctx
);
1234 if (likely(!was_dead
))
1235 put_ioctx(ioctx
); /* twice for the list */
1237 aio_cancel_all(ioctx
);
1238 wait_for_all_aios(ioctx
);
1239 put_ioctx(ioctx
); /* once for the lookup */
1243 * Create an aio_context capable of receiving at least nr_events.
1244 * ctxp must not point to an aio_context that already exists, and
1245 * must be initialized to 0 prior to the call. On successful
1246 * creation of the aio_context, *ctxp is filled in with the resulting
1247 * handle. May fail with -EINVAL if *ctxp is not initialized,
1248 * if the specified nr_events exceeds internal limits. May fail
1249 * with -EAGAIN if the specified nr_events exceeds the user's limit
1250 * of available events. May fail with -ENOMEM if insufficient kernel
1251 * resources are available. May fail with -EFAULT if an invalid
1252 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1255 asmlinkage
long sys_io_setup(unsigned nr_events
, aio_context_t __user
*ctxp
)
1257 struct kioctx
*ioctx
= NULL
;
1261 ret
= get_user(ctx
, ctxp
);
1266 if (unlikely(ctx
|| nr_events
== 0)) {
1267 pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n",
1272 ioctx
= ioctx_alloc(nr_events
);
1273 ret
= PTR_ERR(ioctx
);
1274 if (!IS_ERR(ioctx
)) {
1275 ret
= put_user(ioctx
->user_id
, ctxp
);
1279 get_ioctx(ioctx
); /* io_destroy() expects us to hold a ref */
1288 * Destroy the aio_context specified. May cancel any outstanding
1289 * AIOs and block on completion. Will fail with -ENOSYS if not
1290 * implemented. May fail with -EFAULT if the context pointed to
1293 asmlinkage
long sys_io_destroy(aio_context_t ctx
)
1295 struct kioctx
*ioctx
= lookup_ioctx(ctx
);
1296 if (likely(NULL
!= ioctx
)) {
1300 pr_debug("EINVAL: io_destroy: invalid context id\n");
1305 * aio_p{read,write} are the default ki_retry methods for
1306 * IO_CMD_P{READ,WRITE}. They maintains kiocb retry state around potentially
1307 * multiple calls to f_op->aio_read(). They loop around partial progress
1308 * instead of returning -EIOCBRETRY because they don't have the means to call
1311 static ssize_t
aio_pread(struct kiocb
*iocb
)
1313 struct file
*file
= iocb
->ki_filp
;
1314 struct address_space
*mapping
= file
->f_mapping
;
1315 struct inode
*inode
= mapping
->host
;
1319 ret
= file
->f_op
->aio_read(iocb
, iocb
->ki_buf
,
1320 iocb
->ki_left
, iocb
->ki_pos
);
1322 * Can't just depend on iocb->ki_left to determine
1323 * whether we are done. This may have been a short read.
1326 iocb
->ki_buf
+= ret
;
1327 iocb
->ki_left
-= ret
;
1331 * For pipes and sockets we return once we have some data; for
1332 * regular files we retry till we complete the entire read or
1333 * find that we can't read any more data (e.g short reads).
1335 } while (ret
> 0 && iocb
->ki_left
> 0 &&
1336 !S_ISFIFO(inode
->i_mode
) && !S_ISSOCK(inode
->i_mode
));
1338 /* This means we must have transferred all that we could */
1339 /* No need to retry anymore */
1340 if ((ret
== 0) || (iocb
->ki_left
== 0))
1341 ret
= iocb
->ki_nbytes
- iocb
->ki_left
;
1346 /* see aio_pread() */
1347 static ssize_t
aio_pwrite(struct kiocb
*iocb
)
1349 struct file
*file
= iocb
->ki_filp
;
1353 ret
= file
->f_op
->aio_write(iocb
, iocb
->ki_buf
,
1354 iocb
->ki_left
, iocb
->ki_pos
);
1356 iocb
->ki_buf
+= ret
;
1357 iocb
->ki_left
-= ret
;
1359 } while (ret
> 0 && iocb
->ki_left
> 0);
1361 if ((ret
== 0) || (iocb
->ki_left
== 0))
1362 ret
= iocb
->ki_nbytes
- iocb
->ki_left
;
1367 static ssize_t
aio_fdsync(struct kiocb
*iocb
)
1369 struct file
*file
= iocb
->ki_filp
;
1370 ssize_t ret
= -EINVAL
;
1372 if (file
->f_op
->aio_fsync
)
1373 ret
= file
->f_op
->aio_fsync(iocb
, 1);
1377 static ssize_t
aio_fsync(struct kiocb
*iocb
)
1379 struct file
*file
= iocb
->ki_filp
;
1380 ssize_t ret
= -EINVAL
;
1382 if (file
->f_op
->aio_fsync
)
1383 ret
= file
->f_op
->aio_fsync(iocb
, 0);
1389 * Performs the initial checks and aio retry method
1390 * setup for the kiocb at the time of io submission.
1392 static ssize_t
aio_setup_iocb(struct kiocb
*kiocb
)
1394 struct file
*file
= kiocb
->ki_filp
;
1397 switch (kiocb
->ki_opcode
) {
1398 case IOCB_CMD_PREAD
:
1400 if (unlikely(!(file
->f_mode
& FMODE_READ
)))
1403 if (unlikely(!access_ok(VERIFY_WRITE
, kiocb
->ki_buf
,
1406 ret
= security_file_permission(file
, MAY_READ
);
1410 if (file
->f_op
->aio_read
)
1411 kiocb
->ki_retry
= aio_pread
;
1413 case IOCB_CMD_PWRITE
:
1415 if (unlikely(!(file
->f_mode
& FMODE_WRITE
)))
1418 if (unlikely(!access_ok(VERIFY_READ
, kiocb
->ki_buf
,
1421 ret
= security_file_permission(file
, MAY_WRITE
);
1425 if (file
->f_op
->aio_write
)
1426 kiocb
->ki_retry
= aio_pwrite
;
1428 case IOCB_CMD_FDSYNC
:
1430 if (file
->f_op
->aio_fsync
)
1431 kiocb
->ki_retry
= aio_fdsync
;
1433 case IOCB_CMD_FSYNC
:
1435 if (file
->f_op
->aio_fsync
)
1436 kiocb
->ki_retry
= aio_fsync
;
1439 dprintk("EINVAL: io_submit: no operation provided\n");
1443 if (!kiocb
->ki_retry
)
1450 * aio_wake_function:
1451 * wait queue callback function for aio notification,
1452 * Simply triggers a retry of the operation via kick_iocb.
1454 * This callback is specified in the wait queue entry in
1455 * a kiocb (current->io_wait points to this wait queue
1456 * entry when an aio operation executes; it is used
1457 * instead of a synchronous wait when an i/o blocking
1458 * condition is encountered during aio).
1461 * This routine is executed with the wait queue lock held.
1462 * Since kick_iocb acquires iocb->ctx->ctx_lock, it nests
1463 * the ioctx lock inside the wait queue lock. This is safe
1464 * because this callback isn't used for wait queues which
1465 * are nested inside ioctx lock (i.e. ctx->wait)
1467 static int aio_wake_function(wait_queue_t
*wait
, unsigned mode
,
1468 int sync
, void *key
)
1470 struct kiocb
*iocb
= container_of(wait
, struct kiocb
, ki_wait
);
1472 list_del_init(&wait
->task_list
);
1477 int fastcall
io_submit_one(struct kioctx
*ctx
, struct iocb __user
*user_iocb
,
1484 /* enforce forwards compatibility on users */
1485 if (unlikely(iocb
->aio_reserved1
|| iocb
->aio_reserved2
||
1486 iocb
->aio_reserved3
)) {
1487 pr_debug("EINVAL: io_submit: reserve field set\n");
1491 /* prevent overflows */
1493 (iocb
->aio_buf
!= (unsigned long)iocb
->aio_buf
) ||
1494 (iocb
->aio_nbytes
!= (size_t)iocb
->aio_nbytes
) ||
1495 ((ssize_t
)iocb
->aio_nbytes
< 0)
1497 pr_debug("EINVAL: io_submit: overflow check\n");
1501 file
= fget(iocb
->aio_fildes
);
1502 if (unlikely(!file
))
1505 req
= aio_get_req(ctx
); /* returns with 2 references to req */
1506 if (unlikely(!req
)) {
1511 req
->ki_filp
= file
;
1512 ret
= put_user(req
->ki_key
, &user_iocb
->aio_key
);
1513 if (unlikely(ret
)) {
1514 dprintk("EFAULT: aio_key\n");
1518 req
->ki_obj
.user
= user_iocb
;
1519 req
->ki_user_data
= iocb
->aio_data
;
1520 req
->ki_pos
= iocb
->aio_offset
;
1522 req
->ki_buf
= (char __user
*)(unsigned long)iocb
->aio_buf
;
1523 req
->ki_left
= req
->ki_nbytes
= iocb
->aio_nbytes
;
1524 req
->ki_opcode
= iocb
->aio_lio_opcode
;
1525 init_waitqueue_func_entry(&req
->ki_wait
, aio_wake_function
);
1526 INIT_LIST_HEAD(&req
->ki_wait
.task_list
);
1527 req
->ki_retried
= 0;
1529 ret
= aio_setup_iocb(req
);
1534 spin_lock_irq(&ctx
->ctx_lock
);
1536 if (!list_empty(&ctx
->run_list
)) {
1537 /* drain the run list */
1538 while (__aio_run_iocbs(ctx
))
1541 spin_unlock_irq(&ctx
->ctx_lock
);
1542 aio_put_req(req
); /* drop extra ref to req */
1546 aio_put_req(req
); /* drop extra ref to req */
1547 aio_put_req(req
); /* drop i/o ref to req */
1552 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
1553 * the number of iocbs queued. May return -EINVAL if the aio_context
1554 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
1555 * *iocbpp[0] is not properly initialized, if the operation specified
1556 * is invalid for the file descriptor in the iocb. May fail with
1557 * -EFAULT if any of the data structures point to invalid data. May
1558 * fail with -EBADF if the file descriptor specified in the first
1559 * iocb is invalid. May fail with -EAGAIN if insufficient resources
1560 * are available to queue any iocbs. Will return 0 if nr is 0. Will
1561 * fail with -ENOSYS if not implemented.
1563 asmlinkage
long sys_io_submit(aio_context_t ctx_id
, long nr
,
1564 struct iocb __user
* __user
*iocbpp
)
1570 if (unlikely(nr
< 0))
1573 if (unlikely(!access_ok(VERIFY_READ
, iocbpp
, (nr
*sizeof(*iocbpp
)))))
1576 ctx
= lookup_ioctx(ctx_id
);
1577 if (unlikely(!ctx
)) {
1578 pr_debug("EINVAL: io_submit: invalid context id\n");
1583 * AKPM: should this return a partial result if some of the IOs were
1584 * successfully submitted?
1586 for (i
=0; i
<nr
; i
++) {
1587 struct iocb __user
*user_iocb
;
1590 if (unlikely(__get_user(user_iocb
, iocbpp
+ i
))) {
1595 if (unlikely(copy_from_user(&tmp
, user_iocb
, sizeof(tmp
)))) {
1600 ret
= io_submit_one(ctx
, user_iocb
, &tmp
);
1610 * Finds a given iocb for cancellation.
1612 static struct kiocb
*lookup_kiocb(struct kioctx
*ctx
, struct iocb __user
*iocb
,
1615 struct list_head
*pos
;
1617 assert_spin_locked(&ctx
->ctx_lock
);
1619 /* TODO: use a hash or array, this sucks. */
1620 list_for_each(pos
, &ctx
->active_reqs
) {
1621 struct kiocb
*kiocb
= list_kiocb(pos
);
1622 if (kiocb
->ki_obj
.user
== iocb
&& kiocb
->ki_key
== key
)
1629 * Attempts to cancel an iocb previously passed to io_submit. If
1630 * the operation is successfully cancelled, the resulting event is
1631 * copied into the memory pointed to by result without being placed
1632 * into the completion queue and 0 is returned. May fail with
1633 * -EFAULT if any of the data structures pointed to are invalid.
1634 * May fail with -EINVAL if aio_context specified by ctx_id is
1635 * invalid. May fail with -EAGAIN if the iocb specified was not
1636 * cancelled. Will fail with -ENOSYS if not implemented.
1638 asmlinkage
long sys_io_cancel(aio_context_t ctx_id
, struct iocb __user
*iocb
,
1639 struct io_event __user
*result
)
1641 int (*cancel
)(struct kiocb
*iocb
, struct io_event
*res
);
1643 struct kiocb
*kiocb
;
1647 ret
= get_user(key
, &iocb
->aio_key
);
1651 ctx
= lookup_ioctx(ctx_id
);
1655 spin_lock_irq(&ctx
->ctx_lock
);
1657 kiocb
= lookup_kiocb(ctx
, iocb
, key
);
1658 if (kiocb
&& kiocb
->ki_cancel
) {
1659 cancel
= kiocb
->ki_cancel
;
1661 kiocbSetCancelled(kiocb
);
1664 spin_unlock_irq(&ctx
->ctx_lock
);
1666 if (NULL
!= cancel
) {
1667 struct io_event tmp
;
1668 pr_debug("calling cancel\n");
1669 memset(&tmp
, 0, sizeof(tmp
));
1670 tmp
.obj
= (u64
)(unsigned long)kiocb
->ki_obj
.user
;
1671 tmp
.data
= kiocb
->ki_user_data
;
1672 ret
= cancel(kiocb
, &tmp
);
1674 /* Cancellation succeeded -- copy the result
1675 * into the user's buffer.
1677 if (copy_to_user(result
, &tmp
, sizeof(tmp
)))
1689 * Attempts to read at least min_nr events and up to nr events from
1690 * the completion queue for the aio_context specified by ctx_id. May
1691 * fail with -EINVAL if ctx_id is invalid, if min_nr is out of range,
1692 * if nr is out of range, if when is out of range. May fail with
1693 * -EFAULT if any of the memory specified to is invalid. May return
1694 * 0 or < min_nr if no events are available and the timeout specified
1695 * by when has elapsed, where when == NULL specifies an infinite
1696 * timeout. Note that the timeout pointed to by when is relative and
1697 * will be updated if not NULL and the operation blocks. Will fail
1698 * with -ENOSYS if not implemented.
1700 asmlinkage
long sys_io_getevents(aio_context_t ctx_id
,
1703 struct io_event __user
*events
,
1704 struct timespec __user
*timeout
)
1706 struct kioctx
*ioctx
= lookup_ioctx(ctx_id
);
1709 if (likely(ioctx
)) {
1710 if (likely(min_nr
<= nr
&& min_nr
>= 0 && nr
>= 0))
1711 ret
= read_events(ioctx
, min_nr
, nr
, events
, timeout
);
1718 __initcall(aio_setup
);
1720 EXPORT_SYMBOL(aio_complete
);
1721 EXPORT_SYMBOL(aio_put_req
);
1722 EXPORT_SYMBOL(wait_on_sync_kiocb
);