2 * Copyright (C) 2001 Jens Axboe <axboe@suse.de>
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
19 #include <linux/swap.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/mempool.h>
27 #include <linux/workqueue.h>
29 #define BIO_POOL_SIZE 256
31 static kmem_cache_t
*bio_slab
;
33 #define BIOVEC_NR_POOLS 6
36 * a small number of entries is fine, not going to be performance critical.
37 * basically we just need to survive
39 #define BIO_SPLIT_ENTRIES 8
40 mempool_t
*bio_split_pool
;
49 * if you change this list, also change bvec_alloc or things will
50 * break badly! cannot be bigger than what you can fit into an
54 #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
55 static struct biovec_slab bvec_slabs
[BIOVEC_NR_POOLS
] __read_mostly
= {
56 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES
),
61 * bio_set is used to allow other portions of the IO system to
62 * allocate their own private memory pools for bio and iovec structures.
63 * These memory pools in turn all allocate from the bio_slab
64 * and the bvec_slabs[].
68 mempool_t
*bvec_pools
[BIOVEC_NR_POOLS
];
72 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
73 * IO code that does not need private memory pools.
75 static struct bio_set
*fs_bio_set
;
77 static inline struct bio_vec
*bvec_alloc_bs(unsigned int __nocast gfp_mask
, int nr
, unsigned long *idx
, struct bio_set
*bs
)
80 struct biovec_slab
*bp
;
83 * see comment near bvec_array define!
86 case 1 : *idx
= 0; break;
87 case 2 ... 4: *idx
= 1; break;
88 case 5 ... 16: *idx
= 2; break;
89 case 17 ... 64: *idx
= 3; break;
90 case 65 ... 128: *idx
= 4; break;
91 case 129 ... BIO_MAX_PAGES
: *idx
= 5; break;
96 * idx now points to the pool we want to allocate from
99 bp
= bvec_slabs
+ *idx
;
100 bvl
= mempool_alloc(bs
->bvec_pools
[*idx
], gfp_mask
);
102 memset(bvl
, 0, bp
->nr_vecs
* sizeof(struct bio_vec
));
108 * default destructor for a bio allocated with bio_alloc_bioset()
110 static void bio_destructor(struct bio
*bio
)
112 const int pool_idx
= BIO_POOL_IDX(bio
);
113 struct bio_set
*bs
= bio
->bi_set
;
115 BIO_BUG_ON(pool_idx
>= BIOVEC_NR_POOLS
);
117 mempool_free(bio
->bi_io_vec
, bs
->bvec_pools
[pool_idx
]);
118 mempool_free(bio
, bs
->bio_pool
);
121 inline void bio_init(struct bio
*bio
)
124 bio
->bi_flags
= 1 << BIO_UPTODATE
;
128 bio
->bi_phys_segments
= 0;
129 bio
->bi_hw_segments
= 0;
130 bio
->bi_hw_front_size
= 0;
131 bio
->bi_hw_back_size
= 0;
133 bio
->bi_max_vecs
= 0;
134 bio
->bi_end_io
= NULL
;
135 atomic_set(&bio
->bi_cnt
, 1);
136 bio
->bi_private
= NULL
;
140 * bio_alloc_bioset - allocate a bio for I/O
141 * @gfp_mask: the GFP_ mask given to the slab allocator
142 * @nr_iovecs: number of iovecs to pre-allocate
143 * @bs: the bio_set to allocate from
146 * bio_alloc_bioset will first try it's on mempool to satisfy the allocation.
147 * If %__GFP_WAIT is set then we will block on the internal pool waiting
148 * for a &struct bio to become free.
150 * allocate bio and iovecs from the memory pools specified by the
153 struct bio
*bio_alloc_bioset(unsigned int __nocast gfp_mask
, int nr_iovecs
, struct bio_set
*bs
)
155 struct bio
*bio
= mempool_alloc(bs
->bio_pool
, gfp_mask
);
158 struct bio_vec
*bvl
= NULL
;
161 if (likely(nr_iovecs
)) {
164 bvl
= bvec_alloc_bs(gfp_mask
, nr_iovecs
, &idx
, bs
);
165 if (unlikely(!bvl
)) {
166 mempool_free(bio
, bs
->bio_pool
);
170 bio
->bi_flags
|= idx
<< BIO_POOL_OFFSET
;
171 bio
->bi_max_vecs
= bvec_slabs
[idx
].nr_vecs
;
173 bio
->bi_io_vec
= bvl
;
174 bio
->bi_destructor
= bio_destructor
;
181 struct bio
*bio_alloc(unsigned int __nocast gfp_mask
, int nr_iovecs
)
183 return bio_alloc_bioset(gfp_mask
, nr_iovecs
, fs_bio_set
);
186 void zero_fill_bio(struct bio
*bio
)
192 bio_for_each_segment(bv
, bio
, i
) {
193 char *data
= bvec_kmap_irq(bv
, &flags
);
194 memset(data
, 0, bv
->bv_len
);
195 flush_dcache_page(bv
->bv_page
);
196 bvec_kunmap_irq(data
, &flags
);
199 EXPORT_SYMBOL(zero_fill_bio
);
202 * bio_put - release a reference to a bio
203 * @bio: bio to release reference to
206 * Put a reference to a &struct bio, either one you have gotten with
207 * bio_alloc or bio_get. The last put of a bio will free it.
209 void bio_put(struct bio
*bio
)
211 BIO_BUG_ON(!atomic_read(&bio
->bi_cnt
));
216 if (atomic_dec_and_test(&bio
->bi_cnt
)) {
218 bio
->bi_destructor(bio
);
222 inline int bio_phys_segments(request_queue_t
*q
, struct bio
*bio
)
224 if (unlikely(!bio_flagged(bio
, BIO_SEG_VALID
)))
225 blk_recount_segments(q
, bio
);
227 return bio
->bi_phys_segments
;
230 inline int bio_hw_segments(request_queue_t
*q
, struct bio
*bio
)
232 if (unlikely(!bio_flagged(bio
, BIO_SEG_VALID
)))
233 blk_recount_segments(q
, bio
);
235 return bio
->bi_hw_segments
;
239 * __bio_clone - clone a bio
240 * @bio: destination bio
241 * @bio_src: bio to clone
243 * Clone a &bio. Caller will own the returned bio, but not
244 * the actual data it points to. Reference count of returned
247 inline void __bio_clone(struct bio
*bio
, struct bio
*bio_src
)
249 request_queue_t
*q
= bdev_get_queue(bio_src
->bi_bdev
);
251 memcpy(bio
->bi_io_vec
, bio_src
->bi_io_vec
,
252 bio_src
->bi_max_vecs
* sizeof(struct bio_vec
));
254 bio
->bi_sector
= bio_src
->bi_sector
;
255 bio
->bi_bdev
= bio_src
->bi_bdev
;
256 bio
->bi_flags
|= 1 << BIO_CLONED
;
257 bio
->bi_rw
= bio_src
->bi_rw
;
258 bio
->bi_vcnt
= bio_src
->bi_vcnt
;
259 bio
->bi_size
= bio_src
->bi_size
;
260 bio
->bi_idx
= bio_src
->bi_idx
;
261 bio_phys_segments(q
, bio
);
262 bio_hw_segments(q
, bio
);
266 * bio_clone - clone a bio
268 * @gfp_mask: allocation priority
270 * Like __bio_clone, only also allocates the returned bio
272 struct bio
*bio_clone(struct bio
*bio
, unsigned int __nocast gfp_mask
)
274 struct bio
*b
= bio_alloc_bioset(gfp_mask
, bio
->bi_max_vecs
, fs_bio_set
);
283 * bio_get_nr_vecs - return approx number of vecs
286 * Return the approximate number of pages we can send to this target.
287 * There's no guarantee that you will be able to fit this number of pages
288 * into a bio, it does not account for dynamic restrictions that vary
291 int bio_get_nr_vecs(struct block_device
*bdev
)
293 request_queue_t
*q
= bdev_get_queue(bdev
);
296 nr_pages
= ((q
->max_sectors
<< 9) + PAGE_SIZE
- 1) >> PAGE_SHIFT
;
297 if (nr_pages
> q
->max_phys_segments
)
298 nr_pages
= q
->max_phys_segments
;
299 if (nr_pages
> q
->max_hw_segments
)
300 nr_pages
= q
->max_hw_segments
;
305 static int __bio_add_page(request_queue_t
*q
, struct bio
*bio
, struct page
306 *page
, unsigned int len
, unsigned int offset
)
308 int retried_segments
= 0;
309 struct bio_vec
*bvec
;
312 * cloned bio must not modify vec list
314 if (unlikely(bio_flagged(bio
, BIO_CLONED
)))
317 if (bio
->bi_vcnt
>= bio
->bi_max_vecs
)
320 if (((bio
->bi_size
+ len
) >> 9) > q
->max_sectors
)
324 * we might lose a segment or two here, but rather that than
325 * make this too complex.
328 while (bio
->bi_phys_segments
>= q
->max_phys_segments
329 || bio
->bi_hw_segments
>= q
->max_hw_segments
330 || BIOVEC_VIRT_OVERSIZE(bio
->bi_size
)) {
332 if (retried_segments
)
335 retried_segments
= 1;
336 blk_recount_segments(q
, bio
);
340 * setup the new entry, we might clear it again later if we
341 * cannot add the page
343 bvec
= &bio
->bi_io_vec
[bio
->bi_vcnt
];
344 bvec
->bv_page
= page
;
346 bvec
->bv_offset
= offset
;
349 * if queue has other restrictions (eg varying max sector size
350 * depending on offset), it can specify a merge_bvec_fn in the
351 * queue to get further control
353 if (q
->merge_bvec_fn
) {
355 * merge_bvec_fn() returns number of bytes it can accept
358 if (q
->merge_bvec_fn(q
, bio
, bvec
) < len
) {
359 bvec
->bv_page
= NULL
;
366 /* If we may be able to merge these biovecs, force a recount */
367 if (bio
->bi_vcnt
&& (BIOVEC_PHYS_MERGEABLE(bvec
-1, bvec
) ||
368 BIOVEC_VIRT_MERGEABLE(bvec
-1, bvec
)))
369 bio
->bi_flags
&= ~(1 << BIO_SEG_VALID
);
372 bio
->bi_phys_segments
++;
373 bio
->bi_hw_segments
++;
379 * bio_add_page - attempt to add page to bio
380 * @bio: destination bio
382 * @len: vec entry length
383 * @offset: vec entry offset
385 * Attempt to add a page to the bio_vec maplist. This can fail for a
386 * number of reasons, such as the bio being full or target block
387 * device limitations. The target block device must allow bio's
388 * smaller than PAGE_SIZE, so it is always possible to add a single
389 * page to an empty bio.
391 int bio_add_page(struct bio
*bio
, struct page
*page
, unsigned int len
,
394 return __bio_add_page(bdev_get_queue(bio
->bi_bdev
), bio
, page
,
398 struct bio_map_data
{
399 struct bio_vec
*iovecs
;
400 void __user
*userptr
;
403 static void bio_set_map_data(struct bio_map_data
*bmd
, struct bio
*bio
)
405 memcpy(bmd
->iovecs
, bio
->bi_io_vec
, sizeof(struct bio_vec
) * bio
->bi_vcnt
);
406 bio
->bi_private
= bmd
;
409 static void bio_free_map_data(struct bio_map_data
*bmd
)
415 static struct bio_map_data
*bio_alloc_map_data(int nr_segs
)
417 struct bio_map_data
*bmd
= kmalloc(sizeof(*bmd
), GFP_KERNEL
);
422 bmd
->iovecs
= kmalloc(sizeof(struct bio_vec
) * nr_segs
, GFP_KERNEL
);
431 * bio_uncopy_user - finish previously mapped bio
432 * @bio: bio being terminated
434 * Free pages allocated from bio_copy_user() and write back data
435 * to user space in case of a read.
437 int bio_uncopy_user(struct bio
*bio
)
439 struct bio_map_data
*bmd
= bio
->bi_private
;
440 const int read
= bio_data_dir(bio
) == READ
;
441 struct bio_vec
*bvec
;
444 __bio_for_each_segment(bvec
, bio
, i
, 0) {
445 char *addr
= page_address(bvec
->bv_page
);
446 unsigned int len
= bmd
->iovecs
[i
].bv_len
;
448 if (read
&& !ret
&& copy_to_user(bmd
->userptr
, addr
, len
))
451 __free_page(bvec
->bv_page
);
454 bio_free_map_data(bmd
);
460 * bio_copy_user - copy user data to bio
461 * @q: destination block queue
462 * @uaddr: start of user address
463 * @len: length in bytes
464 * @write_to_vm: bool indicating writing to pages or not
466 * Prepares and returns a bio for indirect user io, bouncing data
467 * to/from kernel pages as necessary. Must be paired with
468 * call bio_uncopy_user() on io completion.
470 struct bio
*bio_copy_user(request_queue_t
*q
, unsigned long uaddr
,
471 unsigned int len
, int write_to_vm
)
473 unsigned long end
= (uaddr
+ len
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
474 unsigned long start
= uaddr
>> PAGE_SHIFT
;
475 struct bio_map_data
*bmd
;
476 struct bio_vec
*bvec
;
481 bmd
= bio_alloc_map_data(end
- start
);
483 return ERR_PTR(-ENOMEM
);
485 bmd
->userptr
= (void __user
*) uaddr
;
488 bio
= bio_alloc(GFP_KERNEL
, end
- start
);
492 bio
->bi_rw
|= (!write_to_vm
<< BIO_RW
);
496 unsigned int bytes
= PAGE_SIZE
;
501 page
= alloc_page(q
->bounce_gfp
| GFP_KERNEL
);
507 if (__bio_add_page(q
, bio
, page
, bytes
, 0) < bytes
) {
522 char __user
*p
= (char __user
*) uaddr
;
525 * for a write, copy in data to kernel pages
528 bio_for_each_segment(bvec
, bio
, i
) {
529 char *addr
= page_address(bvec
->bv_page
);
531 if (copy_from_user(addr
, p
, bvec
->bv_len
))
537 bio_set_map_data(bmd
, bio
);
540 bio_for_each_segment(bvec
, bio
, i
)
541 __free_page(bvec
->bv_page
);
545 bio_free_map_data(bmd
);
549 static struct bio
*__bio_map_user(request_queue_t
*q
, struct block_device
*bdev
,
550 unsigned long uaddr
, unsigned int len
,
553 unsigned long end
= (uaddr
+ len
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
554 unsigned long start
= uaddr
>> PAGE_SHIFT
;
555 const int nr_pages
= end
- start
;
561 * transfer and buffer must be aligned to at least hardsector
562 * size for now, in the future we can relax this restriction
564 if ((uaddr
& queue_dma_alignment(q
)) || (len
& queue_dma_alignment(q
)))
565 return ERR_PTR(-EINVAL
);
567 bio
= bio_alloc(GFP_KERNEL
, nr_pages
);
569 return ERR_PTR(-ENOMEM
);
572 pages
= kmalloc(nr_pages
* sizeof(struct page
*), GFP_KERNEL
);
576 down_read(¤t
->mm
->mmap_sem
);
577 ret
= get_user_pages(current
, current
->mm
, uaddr
, nr_pages
,
578 write_to_vm
, 0, pages
, NULL
);
579 up_read(¤t
->mm
->mmap_sem
);
586 offset
= uaddr
& ~PAGE_MASK
;
587 for (i
= 0; i
< nr_pages
; i
++) {
588 unsigned int bytes
= PAGE_SIZE
- offset
;
599 if (__bio_add_page(q
, bio
, pages
[i
], bytes
, offset
) < bytes
)
607 * release the pages we didn't map into the bio, if any
610 page_cache_release(pages
[i
++]);
615 * set data direction, and check if mapped pages need bouncing
618 bio
->bi_rw
|= (1 << BIO_RW
);
620 bio
->bi_flags
|= (1 << BIO_USER_MAPPED
);
629 * bio_map_user - map user address into bio
630 * @q: the request_queue_t for the bio
631 * @bdev: destination block device
632 * @uaddr: start of user address
633 * @len: length in bytes
634 * @write_to_vm: bool indicating writing to pages or not
636 * Map the user space address into a bio suitable for io to a block
637 * device. Returns an error pointer in case of error.
639 struct bio
*bio_map_user(request_queue_t
*q
, struct block_device
*bdev
,
640 unsigned long uaddr
, unsigned int len
, int write_to_vm
)
644 bio
= __bio_map_user(q
, bdev
, uaddr
, len
, write_to_vm
);
650 * subtle -- if __bio_map_user() ended up bouncing a bio,
651 * it would normally disappear when its bi_end_io is run.
652 * however, we need it for the unmap, so grab an extra
657 if (bio
->bi_size
== len
)
661 * don't support partial mappings
663 bio_endio(bio
, bio
->bi_size
, 0);
665 return ERR_PTR(-EINVAL
);
668 static void __bio_unmap_user(struct bio
*bio
)
670 struct bio_vec
*bvec
;
674 * make sure we dirty pages we wrote to
676 __bio_for_each_segment(bvec
, bio
, i
, 0) {
677 if (bio_data_dir(bio
) == READ
)
678 set_page_dirty_lock(bvec
->bv_page
);
680 page_cache_release(bvec
->bv_page
);
687 * bio_unmap_user - unmap a bio
688 * @bio: the bio being unmapped
690 * Unmap a bio previously mapped by bio_map_user(). Must be called with
693 * bio_unmap_user() may sleep.
695 void bio_unmap_user(struct bio
*bio
)
697 __bio_unmap_user(bio
);
702 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
703 * for performing direct-IO in BIOs.
705 * The problem is that we cannot run set_page_dirty() from interrupt context
706 * because the required locks are not interrupt-safe. So what we can do is to
707 * mark the pages dirty _before_ performing IO. And in interrupt context,
708 * check that the pages are still dirty. If so, fine. If not, redirty them
709 * in process context.
711 * We special-case compound pages here: normally this means reads into hugetlb
712 * pages. The logic in here doesn't really work right for compound pages
713 * because the VM does not uniformly chase down the head page in all cases.
714 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
715 * handle them at all. So we skip compound pages here at an early stage.
717 * Note that this code is very hard to test under normal circumstances because
718 * direct-io pins the pages with get_user_pages(). This makes
719 * is_page_cache_freeable return false, and the VM will not clean the pages.
720 * But other code (eg, pdflush) could clean the pages if they are mapped
723 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
724 * deferred bio dirtying paths.
728 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
730 void bio_set_pages_dirty(struct bio
*bio
)
732 struct bio_vec
*bvec
= bio
->bi_io_vec
;
735 for (i
= 0; i
< bio
->bi_vcnt
; i
++) {
736 struct page
*page
= bvec
[i
].bv_page
;
738 if (page
&& !PageCompound(page
))
739 set_page_dirty_lock(page
);
743 static void bio_release_pages(struct bio
*bio
)
745 struct bio_vec
*bvec
= bio
->bi_io_vec
;
748 for (i
= 0; i
< bio
->bi_vcnt
; i
++) {
749 struct page
*page
= bvec
[i
].bv_page
;
757 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
758 * If they are, then fine. If, however, some pages are clean then they must
759 * have been written out during the direct-IO read. So we take another ref on
760 * the BIO and the offending pages and re-dirty the pages in process context.
762 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
763 * here on. It will run one page_cache_release() against each page and will
764 * run one bio_put() against the BIO.
767 static void bio_dirty_fn(void *data
);
769 static DECLARE_WORK(bio_dirty_work
, bio_dirty_fn
, NULL
);
770 static DEFINE_SPINLOCK(bio_dirty_lock
);
771 static struct bio
*bio_dirty_list
;
774 * This runs in process context
776 static void bio_dirty_fn(void *data
)
781 spin_lock_irqsave(&bio_dirty_lock
, flags
);
782 bio
= bio_dirty_list
;
783 bio_dirty_list
= NULL
;
784 spin_unlock_irqrestore(&bio_dirty_lock
, flags
);
787 struct bio
*next
= bio
->bi_private
;
789 bio_set_pages_dirty(bio
);
790 bio_release_pages(bio
);
796 void bio_check_pages_dirty(struct bio
*bio
)
798 struct bio_vec
*bvec
= bio
->bi_io_vec
;
799 int nr_clean_pages
= 0;
802 for (i
= 0; i
< bio
->bi_vcnt
; i
++) {
803 struct page
*page
= bvec
[i
].bv_page
;
805 if (PageDirty(page
) || PageCompound(page
)) {
806 page_cache_release(page
);
807 bvec
[i
].bv_page
= NULL
;
813 if (nr_clean_pages
) {
816 spin_lock_irqsave(&bio_dirty_lock
, flags
);
817 bio
->bi_private
= bio_dirty_list
;
818 bio_dirty_list
= bio
;
819 spin_unlock_irqrestore(&bio_dirty_lock
, flags
);
820 schedule_work(&bio_dirty_work
);
827 * bio_endio - end I/O on a bio
829 * @bytes_done: number of bytes completed
830 * @error: error, if any
833 * bio_endio() will end I/O on @bytes_done number of bytes. This may be
834 * just a partial part of the bio, or it may be the whole bio. bio_endio()
835 * is the preferred way to end I/O on a bio, it takes care of decrementing
836 * bi_size and clearing BIO_UPTODATE on error. @error is 0 on success, and
837 * and one of the established -Exxxx (-EIO, for instance) error values in
838 * case something went wrong. Noone should call bi_end_io() directly on
839 * a bio unless they own it and thus know that it has an end_io function.
841 void bio_endio(struct bio
*bio
, unsigned int bytes_done
, int error
)
844 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
846 if (unlikely(bytes_done
> bio
->bi_size
)) {
847 printk("%s: want %u bytes done, only %u left\n", __FUNCTION__
,
848 bytes_done
, bio
->bi_size
);
849 bytes_done
= bio
->bi_size
;
852 bio
->bi_size
-= bytes_done
;
853 bio
->bi_sector
+= (bytes_done
>> 9);
856 bio
->bi_end_io(bio
, bytes_done
, error
);
859 void bio_pair_release(struct bio_pair
*bp
)
861 if (atomic_dec_and_test(&bp
->cnt
)) {
862 struct bio
*master
= bp
->bio1
.bi_private
;
864 bio_endio(master
, master
->bi_size
, bp
->error
);
865 mempool_free(bp
, bp
->bio2
.bi_private
);
869 static int bio_pair_end_1(struct bio
* bi
, unsigned int done
, int err
)
871 struct bio_pair
*bp
= container_of(bi
, struct bio_pair
, bio1
);
879 bio_pair_release(bp
);
883 static int bio_pair_end_2(struct bio
* bi
, unsigned int done
, int err
)
885 struct bio_pair
*bp
= container_of(bi
, struct bio_pair
, bio2
);
893 bio_pair_release(bp
);
898 * split a bio - only worry about a bio with a single page
901 struct bio_pair
*bio_split(struct bio
*bi
, mempool_t
*pool
, int first_sectors
)
903 struct bio_pair
*bp
= mempool_alloc(pool
, GFP_NOIO
);
908 BUG_ON(bi
->bi_vcnt
!= 1);
909 BUG_ON(bi
->bi_idx
!= 0);
910 atomic_set(&bp
->cnt
, 3);
914 bp
->bio2
.bi_sector
+= first_sectors
;
915 bp
->bio2
.bi_size
-= first_sectors
<< 9;
916 bp
->bio1
.bi_size
= first_sectors
<< 9;
918 bp
->bv1
= bi
->bi_io_vec
[0];
919 bp
->bv2
= bi
->bi_io_vec
[0];
920 bp
->bv2
.bv_offset
+= first_sectors
<< 9;
921 bp
->bv2
.bv_len
-= first_sectors
<< 9;
922 bp
->bv1
.bv_len
= first_sectors
<< 9;
924 bp
->bio1
.bi_io_vec
= &bp
->bv1
;
925 bp
->bio2
.bi_io_vec
= &bp
->bv2
;
927 bp
->bio1
.bi_end_io
= bio_pair_end_1
;
928 bp
->bio2
.bi_end_io
= bio_pair_end_2
;
930 bp
->bio1
.bi_private
= bi
;
931 bp
->bio2
.bi_private
= pool
;
936 static void *bio_pair_alloc(unsigned int __nocast gfp_flags
, void *data
)
938 return kmalloc(sizeof(struct bio_pair
), gfp_flags
);
941 static void bio_pair_free(void *bp
, void *data
)
948 * create memory pools for biovec's in a bio_set.
949 * use the global biovec slabs created for general use.
951 static int biovec_create_pools(struct bio_set
*bs
, int pool_entries
, int scale
)
955 for (i
= 0; i
< BIOVEC_NR_POOLS
; i
++) {
956 struct biovec_slab
*bp
= bvec_slabs
+ i
;
957 mempool_t
**bvp
= bs
->bvec_pools
+ i
;
962 *bvp
= mempool_create(pool_entries
, mempool_alloc_slab
,
963 mempool_free_slab
, bp
->slab
);
970 static void biovec_free_pools(struct bio_set
*bs
)
974 for (i
= 0; i
< BIOVEC_NR_POOLS
; i
++) {
975 mempool_t
*bvp
= bs
->bvec_pools
[i
];
978 mempool_destroy(bvp
);
983 void bioset_free(struct bio_set
*bs
)
986 mempool_destroy(bs
->bio_pool
);
988 biovec_free_pools(bs
);
993 struct bio_set
*bioset_create(int bio_pool_size
, int bvec_pool_size
, int scale
)
995 struct bio_set
*bs
= kmalloc(sizeof(*bs
), GFP_KERNEL
);
1000 memset(bs
, 0, sizeof(*bs
));
1001 bs
->bio_pool
= mempool_create(bio_pool_size
, mempool_alloc_slab
,
1002 mempool_free_slab
, bio_slab
);
1007 if (!biovec_create_pools(bs
, bvec_pool_size
, scale
))
1015 static void __init
biovec_init_slabs(void)
1019 for (i
= 0; i
< BIOVEC_NR_POOLS
; i
++) {
1021 struct biovec_slab
*bvs
= bvec_slabs
+ i
;
1023 size
= bvs
->nr_vecs
* sizeof(struct bio_vec
);
1024 bvs
->slab
= kmem_cache_create(bvs
->name
, size
, 0,
1025 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
, NULL
);
1029 static int __init
init_bio(void)
1031 int megabytes
, bvec_pool_entries
;
1032 int scale
= BIOVEC_NR_POOLS
;
1034 bio_slab
= kmem_cache_create("bio", sizeof(struct bio
), 0,
1035 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
, NULL
);
1037 biovec_init_slabs();
1039 megabytes
= nr_free_pages() >> (20 - PAGE_SHIFT
);
1042 * find out where to start scaling
1044 if (megabytes
<= 16)
1046 else if (megabytes
<= 32)
1048 else if (megabytes
<= 64)
1050 else if (megabytes
<= 96)
1052 else if (megabytes
<= 128)
1056 * scale number of entries
1058 bvec_pool_entries
= megabytes
* 2;
1059 if (bvec_pool_entries
> 256)
1060 bvec_pool_entries
= 256;
1062 fs_bio_set
= bioset_create(BIO_POOL_SIZE
, bvec_pool_entries
, scale
);
1064 panic("bio: can't allocate bios\n");
1066 bio_split_pool
= mempool_create(BIO_SPLIT_ENTRIES
,
1067 bio_pair_alloc
, bio_pair_free
, NULL
);
1068 if (!bio_split_pool
)
1069 panic("bio: can't create split pool\n");
1074 subsys_initcall(init_bio
);
1076 EXPORT_SYMBOL(bio_alloc
);
1077 EXPORT_SYMBOL(bio_put
);
1078 EXPORT_SYMBOL(bio_endio
);
1079 EXPORT_SYMBOL(bio_init
);
1080 EXPORT_SYMBOL(__bio_clone
);
1081 EXPORT_SYMBOL(bio_clone
);
1082 EXPORT_SYMBOL(bio_phys_segments
);
1083 EXPORT_SYMBOL(bio_hw_segments
);
1084 EXPORT_SYMBOL(bio_add_page
);
1085 EXPORT_SYMBOL(bio_get_nr_vecs
);
1086 EXPORT_SYMBOL(bio_map_user
);
1087 EXPORT_SYMBOL(bio_unmap_user
);
1088 EXPORT_SYMBOL(bio_pair_release
);
1089 EXPORT_SYMBOL(bio_split
);
1090 EXPORT_SYMBOL(bio_split_pool
);
1091 EXPORT_SYMBOL(bio_copy_user
);
1092 EXPORT_SYMBOL(bio_uncopy_user
);
1093 EXPORT_SYMBOL(bioset_create
);
1094 EXPORT_SYMBOL(bioset_free
);
1095 EXPORT_SYMBOL(bio_alloc_bioset
);