ahci: RAID mode SATA patch for Intel Ibex Peak DeviceIDs
[linux-2.6/mini2440.git] / mm / truncate.c
blob6650c1d878b463a114e0e024688ecdc1d0fa6b74
1 /*
2 * mm/truncate.c - code for taking down pages from address_spaces
4 * Copyright (C) 2002, Linus Torvalds
6 * 10Sep2002 akpm@zip.com.au
7 * Initial version.
8 */
10 #include <linux/kernel.h>
11 #include <linux/backing-dev.h>
12 #include <linux/mm.h>
13 #include <linux/swap.h>
14 #include <linux/module.h>
15 #include <linux/pagemap.h>
16 #include <linux/highmem.h>
17 #include <linux/pagevec.h>
18 #include <linux/task_io_accounting_ops.h>
19 #include <linux/buffer_head.h> /* grr. try_to_release_page,
20 do_invalidatepage */
23 /**
24 * do_invalidatepage - invalidate part or all of a page
25 * @page: the page which is affected
26 * @offset: the index of the truncation point
28 * do_invalidatepage() is called when all or part of the page has become
29 * invalidated by a truncate operation.
31 * do_invalidatepage() does not have to release all buffers, but it must
32 * ensure that no dirty buffer is left outside @offset and that no I/O
33 * is underway against any of the blocks which are outside the truncation
34 * point. Because the caller is about to free (and possibly reuse) those
35 * blocks on-disk.
37 void do_invalidatepage(struct page *page, unsigned long offset)
39 void (*invalidatepage)(struct page *, unsigned long);
40 invalidatepage = page->mapping->a_ops->invalidatepage;
41 #ifdef CONFIG_BLOCK
42 if (!invalidatepage)
43 invalidatepage = block_invalidatepage;
44 #endif
45 if (invalidatepage)
46 (*invalidatepage)(page, offset);
49 static inline void truncate_partial_page(struct page *page, unsigned partial)
51 zero_user_segment(page, partial, PAGE_CACHE_SIZE);
52 if (PagePrivate(page))
53 do_invalidatepage(page, partial);
57 * This cancels just the dirty bit on the kernel page itself, it
58 * does NOT actually remove dirty bits on any mmap's that may be
59 * around. It also leaves the page tagged dirty, so any sync
60 * activity will still find it on the dirty lists, and in particular,
61 * clear_page_dirty_for_io() will still look at the dirty bits in
62 * the VM.
64 * Doing this should *normally* only ever be done when a page
65 * is truncated, and is not actually mapped anywhere at all. However,
66 * fs/buffer.c does this when it notices that somebody has cleaned
67 * out all the buffers on a page without actually doing it through
68 * the VM. Can you say "ext3 is horribly ugly"? Tought you could.
70 void cancel_dirty_page(struct page *page, unsigned int account_size)
72 if (TestClearPageDirty(page)) {
73 struct address_space *mapping = page->mapping;
74 if (mapping && mapping_cap_account_dirty(mapping)) {
75 dec_zone_page_state(page, NR_FILE_DIRTY);
76 dec_bdi_stat(mapping->backing_dev_info,
77 BDI_RECLAIMABLE);
78 if (account_size)
79 task_io_account_cancelled_write(account_size);
83 EXPORT_SYMBOL(cancel_dirty_page);
86 * If truncate cannot remove the fs-private metadata from the page, the page
87 * becomes orphaned. It will be left on the LRU and may even be mapped into
88 * user pagetables if we're racing with filemap_fault().
90 * We need to bale out if page->mapping is no longer equal to the original
91 * mapping. This happens a) when the VM reclaimed the page while we waited on
92 * its lock, b) when a concurrent invalidate_mapping_pages got there first and
93 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
95 static void
96 truncate_complete_page(struct address_space *mapping, struct page *page)
98 if (page->mapping != mapping)
99 return;
101 if (PagePrivate(page))
102 do_invalidatepage(page, 0);
104 cancel_dirty_page(page, PAGE_CACHE_SIZE);
106 remove_from_page_cache(page);
107 ClearPageMappedToDisk(page);
108 page_cache_release(page); /* pagecache ref */
112 * This is for invalidate_mapping_pages(). That function can be called at
113 * any time, and is not supposed to throw away dirty pages. But pages can
114 * be marked dirty at any time too, so use remove_mapping which safely
115 * discards clean, unused pages.
117 * Returns non-zero if the page was successfully invalidated.
119 static int
120 invalidate_complete_page(struct address_space *mapping, struct page *page)
122 int ret;
124 if (page->mapping != mapping)
125 return 0;
127 if (PagePrivate(page) && !try_to_release_page(page, 0))
128 return 0;
130 ret = remove_mapping(mapping, page);
132 return ret;
136 * truncate_inode_pages - truncate range of pages specified by start & end byte offsets
137 * @mapping: mapping to truncate
138 * @lstart: offset from which to truncate
139 * @lend: offset to which to truncate
141 * Truncate the page cache, removing the pages that are between
142 * specified offsets (and zeroing out partial page
143 * (if lstart is not page aligned)).
145 * Truncate takes two passes - the first pass is nonblocking. It will not
146 * block on page locks and it will not block on writeback. The second pass
147 * will wait. This is to prevent as much IO as possible in the affected region.
148 * The first pass will remove most pages, so the search cost of the second pass
149 * is low.
151 * When looking at page->index outside the page lock we need to be careful to
152 * copy it into a local to avoid races (it could change at any time).
154 * We pass down the cache-hot hint to the page freeing code. Even if the
155 * mapping is large, it is probably the case that the final pages are the most
156 * recently touched, and freeing happens in ascending file offset order.
158 void truncate_inode_pages_range(struct address_space *mapping,
159 loff_t lstart, loff_t lend)
161 const pgoff_t start = (lstart + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
162 pgoff_t end;
163 const unsigned partial = lstart & (PAGE_CACHE_SIZE - 1);
164 struct pagevec pvec;
165 pgoff_t next;
166 int i;
168 if (mapping->nrpages == 0)
169 return;
171 BUG_ON((lend & (PAGE_CACHE_SIZE - 1)) != (PAGE_CACHE_SIZE - 1));
172 end = (lend >> PAGE_CACHE_SHIFT);
174 pagevec_init(&pvec, 0);
175 next = start;
176 while (next <= end &&
177 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
178 for (i = 0; i < pagevec_count(&pvec); i++) {
179 struct page *page = pvec.pages[i];
180 pgoff_t page_index = page->index;
182 if (page_index > end) {
183 next = page_index;
184 break;
187 if (page_index > next)
188 next = page_index;
189 next++;
190 if (!trylock_page(page))
191 continue;
192 if (PageWriteback(page)) {
193 unlock_page(page);
194 continue;
196 if (page_mapped(page)) {
197 unmap_mapping_range(mapping,
198 (loff_t)page_index<<PAGE_CACHE_SHIFT,
199 PAGE_CACHE_SIZE, 0);
201 truncate_complete_page(mapping, page);
202 unlock_page(page);
204 pagevec_release(&pvec);
205 cond_resched();
208 if (partial) {
209 struct page *page = find_lock_page(mapping, start - 1);
210 if (page) {
211 wait_on_page_writeback(page);
212 truncate_partial_page(page, partial);
213 unlock_page(page);
214 page_cache_release(page);
218 next = start;
219 for ( ; ; ) {
220 cond_resched();
221 if (!pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
222 if (next == start)
223 break;
224 next = start;
225 continue;
227 if (pvec.pages[0]->index > end) {
228 pagevec_release(&pvec);
229 break;
231 for (i = 0; i < pagevec_count(&pvec); i++) {
232 struct page *page = pvec.pages[i];
234 if (page->index > end)
235 break;
236 lock_page(page);
237 wait_on_page_writeback(page);
238 if (page_mapped(page)) {
239 unmap_mapping_range(mapping,
240 (loff_t)page->index<<PAGE_CACHE_SHIFT,
241 PAGE_CACHE_SIZE, 0);
243 if (page->index > next)
244 next = page->index;
245 next++;
246 truncate_complete_page(mapping, page);
247 unlock_page(page);
249 pagevec_release(&pvec);
252 EXPORT_SYMBOL(truncate_inode_pages_range);
255 * truncate_inode_pages - truncate *all* the pages from an offset
256 * @mapping: mapping to truncate
257 * @lstart: offset from which to truncate
259 * Called under (and serialised by) inode->i_mutex.
261 void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
263 truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
265 EXPORT_SYMBOL(truncate_inode_pages);
267 unsigned long __invalidate_mapping_pages(struct address_space *mapping,
268 pgoff_t start, pgoff_t end, bool be_atomic)
270 struct pagevec pvec;
271 pgoff_t next = start;
272 unsigned long ret = 0;
273 int i;
275 pagevec_init(&pvec, 0);
276 while (next <= end &&
277 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
278 for (i = 0; i < pagevec_count(&pvec); i++) {
279 struct page *page = pvec.pages[i];
280 pgoff_t index;
281 int lock_failed;
283 lock_failed = !trylock_page(page);
286 * We really shouldn't be looking at the ->index of an
287 * unlocked page. But we're not allowed to lock these
288 * pages. So we rely upon nobody altering the ->index
289 * of this (pinned-by-us) page.
291 index = page->index;
292 if (index > next)
293 next = index;
294 next++;
295 if (lock_failed)
296 continue;
298 if (PageDirty(page) || PageWriteback(page))
299 goto unlock;
300 if (page_mapped(page))
301 goto unlock;
302 ret += invalidate_complete_page(mapping, page);
303 unlock:
304 unlock_page(page);
305 if (next > end)
306 break;
308 pagevec_release(&pvec);
309 if (likely(!be_atomic))
310 cond_resched();
312 return ret;
316 * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode
317 * @mapping: the address_space which holds the pages to invalidate
318 * @start: the offset 'from' which to invalidate
319 * @end: the offset 'to' which to invalidate (inclusive)
321 * This function only removes the unlocked pages, if you want to
322 * remove all the pages of one inode, you must call truncate_inode_pages.
324 * invalidate_mapping_pages() will not block on IO activity. It will not
325 * invalidate pages which are dirty, locked, under writeback or mapped into
326 * pagetables.
328 unsigned long invalidate_mapping_pages(struct address_space *mapping,
329 pgoff_t start, pgoff_t end)
331 return __invalidate_mapping_pages(mapping, start, end, false);
333 EXPORT_SYMBOL(invalidate_mapping_pages);
336 * This is like invalidate_complete_page(), except it ignores the page's
337 * refcount. We do this because invalidate_inode_pages2() needs stronger
338 * invalidation guarantees, and cannot afford to leave pages behind because
339 * shrink_page_list() has a temp ref on them, or because they're transiently
340 * sitting in the lru_cache_add() pagevecs.
342 static int
343 invalidate_complete_page2(struct address_space *mapping, struct page *page)
345 if (page->mapping != mapping)
346 return 0;
348 if (PagePrivate(page) && !try_to_release_page(page, GFP_KERNEL))
349 return 0;
351 spin_lock_irq(&mapping->tree_lock);
352 if (PageDirty(page))
353 goto failed;
355 BUG_ON(PagePrivate(page));
356 __remove_from_page_cache(page);
357 spin_unlock_irq(&mapping->tree_lock);
358 page_cache_release(page); /* pagecache ref */
359 return 1;
360 failed:
361 spin_unlock_irq(&mapping->tree_lock);
362 return 0;
365 static int do_launder_page(struct address_space *mapping, struct page *page)
367 if (!PageDirty(page))
368 return 0;
369 if (page->mapping != mapping || mapping->a_ops->launder_page == NULL)
370 return 0;
371 return mapping->a_ops->launder_page(page);
375 * invalidate_inode_pages2_range - remove range of pages from an address_space
376 * @mapping: the address_space
377 * @start: the page offset 'from' which to invalidate
378 * @end: the page offset 'to' which to invalidate (inclusive)
380 * Any pages which are found to be mapped into pagetables are unmapped prior to
381 * invalidation.
383 * Returns -EBUSY if any pages could not be invalidated.
385 int invalidate_inode_pages2_range(struct address_space *mapping,
386 pgoff_t start, pgoff_t end)
388 struct pagevec pvec;
389 pgoff_t next;
390 int i;
391 int ret = 0;
392 int ret2 = 0;
393 int did_range_unmap = 0;
394 int wrapped = 0;
396 pagevec_init(&pvec, 0);
397 next = start;
398 while (next <= end && !wrapped &&
399 pagevec_lookup(&pvec, mapping, next,
400 min(end - next, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) {
401 for (i = 0; i < pagevec_count(&pvec); i++) {
402 struct page *page = pvec.pages[i];
403 pgoff_t page_index;
405 lock_page(page);
406 if (page->mapping != mapping) {
407 unlock_page(page);
408 continue;
410 page_index = page->index;
411 next = page_index + 1;
412 if (next == 0)
413 wrapped = 1;
414 if (page_index > end) {
415 unlock_page(page);
416 break;
418 wait_on_page_writeback(page);
419 if (page_mapped(page)) {
420 if (!did_range_unmap) {
422 * Zap the rest of the file in one hit.
424 unmap_mapping_range(mapping,
425 (loff_t)page_index<<PAGE_CACHE_SHIFT,
426 (loff_t)(end - page_index + 1)
427 << PAGE_CACHE_SHIFT,
429 did_range_unmap = 1;
430 } else {
432 * Just zap this page
434 unmap_mapping_range(mapping,
435 (loff_t)page_index<<PAGE_CACHE_SHIFT,
436 PAGE_CACHE_SIZE, 0);
439 BUG_ON(page_mapped(page));
440 ret2 = do_launder_page(mapping, page);
441 if (ret2 == 0) {
442 if (!invalidate_complete_page2(mapping, page))
443 ret2 = -EBUSY;
445 if (ret2 < 0)
446 ret = ret2;
447 unlock_page(page);
449 pagevec_release(&pvec);
450 cond_resched();
452 return ret;
454 EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
457 * invalidate_inode_pages2 - remove all pages from an address_space
458 * @mapping: the address_space
460 * Any pages which are found to be mapped into pagetables are unmapped prior to
461 * invalidation.
463 * Returns -EIO if any pages could not be invalidated.
465 int invalidate_inode_pages2(struct address_space *mapping)
467 return invalidate_inode_pages2_range(mapping, 0, -1);
469 EXPORT_SYMBOL_GPL(invalidate_inode_pages2);