[PARISC] fix section mismatch in smp.c
[linux-2.6/mini2440.git] / mm / page_alloc.c
blob8b000d6803c298adf0c2402a3cd9296b350e32e5
1 /*
2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/bootmem.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/suspend.h>
27 #include <linux/pagevec.h>
28 #include <linux/blkdev.h>
29 #include <linux/slab.h>
30 #include <linux/notifier.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/memory_hotplug.h>
36 #include <linux/nodemask.h>
37 #include <linux/vmalloc.h>
38 #include <linux/mempolicy.h>
39 #include <linux/stop_machine.h>
40 #include <linux/sort.h>
41 #include <linux/pfn.h>
42 #include <linux/backing-dev.h>
43 #include <linux/fault-inject.h>
45 #include <asm/tlbflush.h>
46 #include <asm/div64.h>
47 #include "internal.h"
50 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
51 * initializer cleaner
53 nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
54 EXPORT_SYMBOL(node_online_map);
55 nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
56 EXPORT_SYMBOL(node_possible_map);
57 unsigned long totalram_pages __read_mostly;
58 unsigned long totalreserve_pages __read_mostly;
59 long nr_swap_pages;
60 int percpu_pagelist_fraction;
62 static void __free_pages_ok(struct page *page, unsigned int order);
65 * results with 256, 32 in the lowmem_reserve sysctl:
66 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
67 * 1G machine -> (16M dma, 784M normal, 224M high)
68 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
69 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
70 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
72 * TBD: should special case ZONE_DMA32 machines here - in those we normally
73 * don't need any ZONE_NORMAL reservation
75 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
76 #ifdef CONFIG_ZONE_DMA
77 256,
78 #endif
79 #ifdef CONFIG_ZONE_DMA32
80 256,
81 #endif
82 #ifdef CONFIG_HIGHMEM
84 #endif
87 EXPORT_SYMBOL(totalram_pages);
89 static char * const zone_names[MAX_NR_ZONES] = {
90 #ifdef CONFIG_ZONE_DMA
91 "DMA",
92 #endif
93 #ifdef CONFIG_ZONE_DMA32
94 "DMA32",
95 #endif
96 "Normal",
97 #ifdef CONFIG_HIGHMEM
98 "HighMem"
99 #endif
102 int min_free_kbytes = 1024;
104 unsigned long __meminitdata nr_kernel_pages;
105 unsigned long __meminitdata nr_all_pages;
106 static unsigned long __meminitdata dma_reserve;
108 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
110 * MAX_ACTIVE_REGIONS determines the maxmimum number of distinct
111 * ranges of memory (RAM) that may be registered with add_active_range().
112 * Ranges passed to add_active_range() will be merged if possible
113 * so the number of times add_active_range() can be called is
114 * related to the number of nodes and the number of holes
116 #ifdef CONFIG_MAX_ACTIVE_REGIONS
117 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
118 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
119 #else
120 #if MAX_NUMNODES >= 32
121 /* If there can be many nodes, allow up to 50 holes per node */
122 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
123 #else
124 /* By default, allow up to 256 distinct regions */
125 #define MAX_ACTIVE_REGIONS 256
126 #endif
127 #endif
129 struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
130 int __meminitdata nr_nodemap_entries;
131 unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
132 unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
133 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
134 unsigned long __initdata node_boundary_start_pfn[MAX_NUMNODES];
135 unsigned long __initdata node_boundary_end_pfn[MAX_NUMNODES];
136 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
137 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
139 #ifdef CONFIG_DEBUG_VM
140 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
142 int ret = 0;
143 unsigned seq;
144 unsigned long pfn = page_to_pfn(page);
146 do {
147 seq = zone_span_seqbegin(zone);
148 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
149 ret = 1;
150 else if (pfn < zone->zone_start_pfn)
151 ret = 1;
152 } while (zone_span_seqretry(zone, seq));
154 return ret;
157 static int page_is_consistent(struct zone *zone, struct page *page)
159 if (!pfn_valid_within(page_to_pfn(page)))
160 return 0;
161 if (zone != page_zone(page))
162 return 0;
164 return 1;
167 * Temporary debugging check for pages not lying within a given zone.
169 static int bad_range(struct zone *zone, struct page *page)
171 if (page_outside_zone_boundaries(zone, page))
172 return 1;
173 if (!page_is_consistent(zone, page))
174 return 1;
176 return 0;
178 #else
179 static inline int bad_range(struct zone *zone, struct page *page)
181 return 0;
183 #endif
185 static void bad_page(struct page *page)
187 printk(KERN_EMERG "Bad page state in process '%s'\n"
188 KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
189 KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
190 KERN_EMERG "Backtrace:\n",
191 current->comm, page, (int)(2*sizeof(unsigned long)),
192 (unsigned long)page->flags, page->mapping,
193 page_mapcount(page), page_count(page));
194 dump_stack();
195 page->flags &= ~(1 << PG_lru |
196 1 << PG_private |
197 1 << PG_locked |
198 1 << PG_active |
199 1 << PG_dirty |
200 1 << PG_reclaim |
201 1 << PG_slab |
202 1 << PG_swapcache |
203 1 << PG_writeback |
204 1 << PG_buddy );
205 set_page_count(page, 0);
206 reset_page_mapcount(page);
207 page->mapping = NULL;
208 add_taint(TAINT_BAD_PAGE);
212 * Higher-order pages are called "compound pages". They are structured thusly:
214 * The first PAGE_SIZE page is called the "head page".
216 * The remaining PAGE_SIZE pages are called "tail pages".
218 * All pages have PG_compound set. All pages have their ->private pointing at
219 * the head page (even the head page has this).
221 * The first tail page's ->lru.next holds the address of the compound page's
222 * put_page() function. Its ->lru.prev holds the order of allocation.
223 * This usage means that zero-order pages may not be compound.
226 static void free_compound_page(struct page *page)
228 __free_pages_ok(page, compound_order(page));
231 static void prep_compound_page(struct page *page, unsigned long order)
233 int i;
234 int nr_pages = 1 << order;
236 set_compound_page_dtor(page, free_compound_page);
237 set_compound_order(page, order);
238 __SetPageHead(page);
239 for (i = 1; i < nr_pages; i++) {
240 struct page *p = page + i;
242 __SetPageTail(p);
243 p->first_page = page;
247 static void destroy_compound_page(struct page *page, unsigned long order)
249 int i;
250 int nr_pages = 1 << order;
252 if (unlikely(compound_order(page) != order))
253 bad_page(page);
255 if (unlikely(!PageHead(page)))
256 bad_page(page);
257 __ClearPageHead(page);
258 for (i = 1; i < nr_pages; i++) {
259 struct page *p = page + i;
261 if (unlikely(!PageTail(p) |
262 (p->first_page != page)))
263 bad_page(page);
264 __ClearPageTail(p);
268 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
270 int i;
272 VM_BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
274 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
275 * and __GFP_HIGHMEM from hard or soft interrupt context.
277 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
278 for (i = 0; i < (1 << order); i++)
279 clear_highpage(page + i);
283 * function for dealing with page's order in buddy system.
284 * zone->lock is already acquired when we use these.
285 * So, we don't need atomic page->flags operations here.
287 static inline unsigned long page_order(struct page *page)
289 return page_private(page);
292 static inline void set_page_order(struct page *page, int order)
294 set_page_private(page, order);
295 __SetPageBuddy(page);
298 static inline void rmv_page_order(struct page *page)
300 __ClearPageBuddy(page);
301 set_page_private(page, 0);
305 * Locate the struct page for both the matching buddy in our
306 * pair (buddy1) and the combined O(n+1) page they form (page).
308 * 1) Any buddy B1 will have an order O twin B2 which satisfies
309 * the following equation:
310 * B2 = B1 ^ (1 << O)
311 * For example, if the starting buddy (buddy2) is #8 its order
312 * 1 buddy is #10:
313 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
315 * 2) Any buddy B will have an order O+1 parent P which
316 * satisfies the following equation:
317 * P = B & ~(1 << O)
319 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
321 static inline struct page *
322 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
324 unsigned long buddy_idx = page_idx ^ (1 << order);
326 return page + (buddy_idx - page_idx);
329 static inline unsigned long
330 __find_combined_index(unsigned long page_idx, unsigned int order)
332 return (page_idx & ~(1 << order));
336 * This function checks whether a page is free && is the buddy
337 * we can do coalesce a page and its buddy if
338 * (a) the buddy is not in a hole &&
339 * (b) the buddy is in the buddy system &&
340 * (c) a page and its buddy have the same order &&
341 * (d) a page and its buddy are in the same zone.
343 * For recording whether a page is in the buddy system, we use PG_buddy.
344 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
346 * For recording page's order, we use page_private(page).
348 static inline int page_is_buddy(struct page *page, struct page *buddy,
349 int order)
351 if (!pfn_valid_within(page_to_pfn(buddy)))
352 return 0;
354 if (page_zone_id(page) != page_zone_id(buddy))
355 return 0;
357 if (PageBuddy(buddy) && page_order(buddy) == order) {
358 BUG_ON(page_count(buddy) != 0);
359 return 1;
361 return 0;
365 * Freeing function for a buddy system allocator.
367 * The concept of a buddy system is to maintain direct-mapped table
368 * (containing bit values) for memory blocks of various "orders".
369 * The bottom level table contains the map for the smallest allocatable
370 * units of memory (here, pages), and each level above it describes
371 * pairs of units from the levels below, hence, "buddies".
372 * At a high level, all that happens here is marking the table entry
373 * at the bottom level available, and propagating the changes upward
374 * as necessary, plus some accounting needed to play nicely with other
375 * parts of the VM system.
376 * At each level, we keep a list of pages, which are heads of continuous
377 * free pages of length of (1 << order) and marked with PG_buddy. Page's
378 * order is recorded in page_private(page) field.
379 * So when we are allocating or freeing one, we can derive the state of the
380 * other. That is, if we allocate a small block, and both were
381 * free, the remainder of the region must be split into blocks.
382 * If a block is freed, and its buddy is also free, then this
383 * triggers coalescing into a block of larger size.
385 * -- wli
388 static inline void __free_one_page(struct page *page,
389 struct zone *zone, unsigned int order)
391 unsigned long page_idx;
392 int order_size = 1 << order;
394 if (unlikely(PageCompound(page)))
395 destroy_compound_page(page, order);
397 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
399 VM_BUG_ON(page_idx & (order_size - 1));
400 VM_BUG_ON(bad_range(zone, page));
402 __mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
403 while (order < MAX_ORDER-1) {
404 unsigned long combined_idx;
405 struct free_area *area;
406 struct page *buddy;
408 buddy = __page_find_buddy(page, page_idx, order);
409 if (!page_is_buddy(page, buddy, order))
410 break; /* Move the buddy up one level. */
412 list_del(&buddy->lru);
413 area = zone->free_area + order;
414 area->nr_free--;
415 rmv_page_order(buddy);
416 combined_idx = __find_combined_index(page_idx, order);
417 page = page + (combined_idx - page_idx);
418 page_idx = combined_idx;
419 order++;
421 set_page_order(page, order);
422 list_add(&page->lru, &zone->free_area[order].free_list);
423 zone->free_area[order].nr_free++;
426 static inline int free_pages_check(struct page *page)
428 if (unlikely(page_mapcount(page) |
429 (page->mapping != NULL) |
430 (page_count(page) != 0) |
431 (page->flags & (
432 1 << PG_lru |
433 1 << PG_private |
434 1 << PG_locked |
435 1 << PG_active |
436 1 << PG_slab |
437 1 << PG_swapcache |
438 1 << PG_writeback |
439 1 << PG_reserved |
440 1 << PG_buddy ))))
441 bad_page(page);
443 * PageReclaim == PageTail. It is only an error
444 * for PageReclaim to be set if PageCompound is clear.
446 if (unlikely(!PageCompound(page) && PageReclaim(page)))
447 bad_page(page);
448 if (PageDirty(page))
449 __ClearPageDirty(page);
451 * For now, we report if PG_reserved was found set, but do not
452 * clear it, and do not free the page. But we shall soon need
453 * to do more, for when the ZERO_PAGE count wraps negative.
455 return PageReserved(page);
459 * Frees a list of pages.
460 * Assumes all pages on list are in same zone, and of same order.
461 * count is the number of pages to free.
463 * If the zone was previously in an "all pages pinned" state then look to
464 * see if this freeing clears that state.
466 * And clear the zone's pages_scanned counter, to hold off the "all pages are
467 * pinned" detection logic.
469 static void free_pages_bulk(struct zone *zone, int count,
470 struct list_head *list, int order)
472 spin_lock(&zone->lock);
473 zone->all_unreclaimable = 0;
474 zone->pages_scanned = 0;
475 while (count--) {
476 struct page *page;
478 VM_BUG_ON(list_empty(list));
479 page = list_entry(list->prev, struct page, lru);
480 /* have to delete it as __free_one_page list manipulates */
481 list_del(&page->lru);
482 __free_one_page(page, zone, order);
484 spin_unlock(&zone->lock);
487 static void free_one_page(struct zone *zone, struct page *page, int order)
489 spin_lock(&zone->lock);
490 zone->all_unreclaimable = 0;
491 zone->pages_scanned = 0;
492 __free_one_page(page, zone, order);
493 spin_unlock(&zone->lock);
496 static void __free_pages_ok(struct page *page, unsigned int order)
498 unsigned long flags;
499 int i;
500 int reserved = 0;
502 for (i = 0 ; i < (1 << order) ; ++i)
503 reserved += free_pages_check(page + i);
504 if (reserved)
505 return;
507 if (!PageHighMem(page))
508 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
509 arch_free_page(page, order);
510 kernel_map_pages(page, 1 << order, 0);
512 local_irq_save(flags);
513 __count_vm_events(PGFREE, 1 << order);
514 free_one_page(page_zone(page), page, order);
515 local_irq_restore(flags);
519 * permit the bootmem allocator to evade page validation on high-order frees
521 void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
523 if (order == 0) {
524 __ClearPageReserved(page);
525 set_page_count(page, 0);
526 set_page_refcounted(page);
527 __free_page(page);
528 } else {
529 int loop;
531 prefetchw(page);
532 for (loop = 0; loop < BITS_PER_LONG; loop++) {
533 struct page *p = &page[loop];
535 if (loop + 1 < BITS_PER_LONG)
536 prefetchw(p + 1);
537 __ClearPageReserved(p);
538 set_page_count(p, 0);
541 set_page_refcounted(page);
542 __free_pages(page, order);
548 * The order of subdivision here is critical for the IO subsystem.
549 * Please do not alter this order without good reasons and regression
550 * testing. Specifically, as large blocks of memory are subdivided,
551 * the order in which smaller blocks are delivered depends on the order
552 * they're subdivided in this function. This is the primary factor
553 * influencing the order in which pages are delivered to the IO
554 * subsystem according to empirical testing, and this is also justified
555 * by considering the behavior of a buddy system containing a single
556 * large block of memory acted on by a series of small allocations.
557 * This behavior is a critical factor in sglist merging's success.
559 * -- wli
561 static inline void expand(struct zone *zone, struct page *page,
562 int low, int high, struct free_area *area)
564 unsigned long size = 1 << high;
566 while (high > low) {
567 area--;
568 high--;
569 size >>= 1;
570 VM_BUG_ON(bad_range(zone, &page[size]));
571 list_add(&page[size].lru, &area->free_list);
572 area->nr_free++;
573 set_page_order(&page[size], high);
578 * This page is about to be returned from the page allocator
580 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
582 if (unlikely(page_mapcount(page) |
583 (page->mapping != NULL) |
584 (page_count(page) != 0) |
585 (page->flags & (
586 1 << PG_lru |
587 1 << PG_private |
588 1 << PG_locked |
589 1 << PG_active |
590 1 << PG_dirty |
591 1 << PG_reclaim |
592 1 << PG_slab |
593 1 << PG_swapcache |
594 1 << PG_writeback |
595 1 << PG_reserved |
596 1 << PG_buddy ))))
597 bad_page(page);
600 * For now, we report if PG_reserved was found set, but do not
601 * clear it, and do not allocate the page: as a safety net.
603 if (PageReserved(page))
604 return 1;
606 page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
607 1 << PG_referenced | 1 << PG_arch_1 |
608 1 << PG_owner_priv_1 | 1 << PG_mappedtodisk);
609 set_page_private(page, 0);
610 set_page_refcounted(page);
612 arch_alloc_page(page, order);
613 kernel_map_pages(page, 1 << order, 1);
615 if (gfp_flags & __GFP_ZERO)
616 prep_zero_page(page, order, gfp_flags);
618 if (order && (gfp_flags & __GFP_COMP))
619 prep_compound_page(page, order);
621 return 0;
625 * Do the hard work of removing an element from the buddy allocator.
626 * Call me with the zone->lock already held.
628 static struct page *__rmqueue(struct zone *zone, unsigned int order)
630 struct free_area * area;
631 unsigned int current_order;
632 struct page *page;
634 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
635 area = zone->free_area + current_order;
636 if (list_empty(&area->free_list))
637 continue;
639 page = list_entry(area->free_list.next, struct page, lru);
640 list_del(&page->lru);
641 rmv_page_order(page);
642 area->nr_free--;
643 __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
644 expand(zone, page, order, current_order, area);
645 return page;
648 return NULL;
652 * Obtain a specified number of elements from the buddy allocator, all under
653 * a single hold of the lock, for efficiency. Add them to the supplied list.
654 * Returns the number of new pages which were placed at *list.
656 static int rmqueue_bulk(struct zone *zone, unsigned int order,
657 unsigned long count, struct list_head *list)
659 int i;
661 spin_lock(&zone->lock);
662 for (i = 0; i < count; ++i) {
663 struct page *page = __rmqueue(zone, order);
664 if (unlikely(page == NULL))
665 break;
666 list_add_tail(&page->lru, list);
668 spin_unlock(&zone->lock);
669 return i;
672 #if MAX_NUMNODES > 1
673 int nr_node_ids __read_mostly = MAX_NUMNODES;
674 EXPORT_SYMBOL(nr_node_ids);
677 * Figure out the number of possible node ids.
679 static void __init setup_nr_node_ids(void)
681 unsigned int node;
682 unsigned int highest = 0;
684 for_each_node_mask(node, node_possible_map)
685 highest = node;
686 nr_node_ids = highest + 1;
688 #else
689 static void __init setup_nr_node_ids(void) {}
690 #endif
692 #ifdef CONFIG_NUMA
694 * Called from the vmstat counter updater to drain pagesets of this
695 * currently executing processor on remote nodes after they have
696 * expired.
698 * Note that this function must be called with the thread pinned to
699 * a single processor.
701 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
703 unsigned long flags;
704 int to_drain;
706 local_irq_save(flags);
707 if (pcp->count >= pcp->batch)
708 to_drain = pcp->batch;
709 else
710 to_drain = pcp->count;
711 free_pages_bulk(zone, to_drain, &pcp->list, 0);
712 pcp->count -= to_drain;
713 local_irq_restore(flags);
715 #endif
717 static void __drain_pages(unsigned int cpu)
719 unsigned long flags;
720 struct zone *zone;
721 int i;
723 for_each_zone(zone) {
724 struct per_cpu_pageset *pset;
726 if (!populated_zone(zone))
727 continue;
729 pset = zone_pcp(zone, cpu);
730 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
731 struct per_cpu_pages *pcp;
733 pcp = &pset->pcp[i];
734 local_irq_save(flags);
735 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
736 pcp->count = 0;
737 local_irq_restore(flags);
742 #ifdef CONFIG_PM
744 void mark_free_pages(struct zone *zone)
746 unsigned long pfn, max_zone_pfn;
747 unsigned long flags;
748 int order;
749 struct list_head *curr;
751 if (!zone->spanned_pages)
752 return;
754 spin_lock_irqsave(&zone->lock, flags);
756 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
757 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
758 if (pfn_valid(pfn)) {
759 struct page *page = pfn_to_page(pfn);
761 if (!swsusp_page_is_forbidden(page))
762 swsusp_unset_page_free(page);
765 for (order = MAX_ORDER - 1; order >= 0; --order)
766 list_for_each(curr, &zone->free_area[order].free_list) {
767 unsigned long i;
769 pfn = page_to_pfn(list_entry(curr, struct page, lru));
770 for (i = 0; i < (1UL << order); i++)
771 swsusp_set_page_free(pfn_to_page(pfn + i));
774 spin_unlock_irqrestore(&zone->lock, flags);
778 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
780 void drain_local_pages(void)
782 unsigned long flags;
784 local_irq_save(flags);
785 __drain_pages(smp_processor_id());
786 local_irq_restore(flags);
788 #endif /* CONFIG_PM */
791 * Free a 0-order page
793 static void fastcall free_hot_cold_page(struct page *page, int cold)
795 struct zone *zone = page_zone(page);
796 struct per_cpu_pages *pcp;
797 unsigned long flags;
799 if (PageAnon(page))
800 page->mapping = NULL;
801 if (free_pages_check(page))
802 return;
804 if (!PageHighMem(page))
805 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
806 arch_free_page(page, 0);
807 kernel_map_pages(page, 1, 0);
809 pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
810 local_irq_save(flags);
811 __count_vm_event(PGFREE);
812 list_add(&page->lru, &pcp->list);
813 pcp->count++;
814 if (pcp->count >= pcp->high) {
815 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
816 pcp->count -= pcp->batch;
818 local_irq_restore(flags);
819 put_cpu();
822 void fastcall free_hot_page(struct page *page)
824 free_hot_cold_page(page, 0);
827 void fastcall free_cold_page(struct page *page)
829 free_hot_cold_page(page, 1);
833 * split_page takes a non-compound higher-order page, and splits it into
834 * n (1<<order) sub-pages: page[0..n]
835 * Each sub-page must be freed individually.
837 * Note: this is probably too low level an operation for use in drivers.
838 * Please consult with lkml before using this in your driver.
840 void split_page(struct page *page, unsigned int order)
842 int i;
844 VM_BUG_ON(PageCompound(page));
845 VM_BUG_ON(!page_count(page));
846 for (i = 1; i < (1 << order); i++)
847 set_page_refcounted(page + i);
851 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
852 * we cheat by calling it from here, in the order > 0 path. Saves a branch
853 * or two.
855 static struct page *buffered_rmqueue(struct zonelist *zonelist,
856 struct zone *zone, int order, gfp_t gfp_flags)
858 unsigned long flags;
859 struct page *page;
860 int cold = !!(gfp_flags & __GFP_COLD);
861 int cpu;
863 again:
864 cpu = get_cpu();
865 if (likely(order == 0)) {
866 struct per_cpu_pages *pcp;
868 pcp = &zone_pcp(zone, cpu)->pcp[cold];
869 local_irq_save(flags);
870 if (!pcp->count) {
871 pcp->count = rmqueue_bulk(zone, 0,
872 pcp->batch, &pcp->list);
873 if (unlikely(!pcp->count))
874 goto failed;
876 page = list_entry(pcp->list.next, struct page, lru);
877 list_del(&page->lru);
878 pcp->count--;
879 } else {
880 spin_lock_irqsave(&zone->lock, flags);
881 page = __rmqueue(zone, order);
882 spin_unlock(&zone->lock);
883 if (!page)
884 goto failed;
887 __count_zone_vm_events(PGALLOC, zone, 1 << order);
888 zone_statistics(zonelist, zone);
889 local_irq_restore(flags);
890 put_cpu();
892 VM_BUG_ON(bad_range(zone, page));
893 if (prep_new_page(page, order, gfp_flags))
894 goto again;
895 return page;
897 failed:
898 local_irq_restore(flags);
899 put_cpu();
900 return NULL;
903 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
904 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
905 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
906 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
907 #define ALLOC_HARDER 0x10 /* try to alloc harder */
908 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
909 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
911 #ifdef CONFIG_FAIL_PAGE_ALLOC
913 static struct fail_page_alloc_attr {
914 struct fault_attr attr;
916 u32 ignore_gfp_highmem;
917 u32 ignore_gfp_wait;
919 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
921 struct dentry *ignore_gfp_highmem_file;
922 struct dentry *ignore_gfp_wait_file;
924 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
926 } fail_page_alloc = {
927 .attr = FAULT_ATTR_INITIALIZER,
928 .ignore_gfp_wait = 1,
929 .ignore_gfp_highmem = 1,
932 static int __init setup_fail_page_alloc(char *str)
934 return setup_fault_attr(&fail_page_alloc.attr, str);
936 __setup("fail_page_alloc=", setup_fail_page_alloc);
938 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
940 if (gfp_mask & __GFP_NOFAIL)
941 return 0;
942 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
943 return 0;
944 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
945 return 0;
947 return should_fail(&fail_page_alloc.attr, 1 << order);
950 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
952 static int __init fail_page_alloc_debugfs(void)
954 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
955 struct dentry *dir;
956 int err;
958 err = init_fault_attr_dentries(&fail_page_alloc.attr,
959 "fail_page_alloc");
960 if (err)
961 return err;
962 dir = fail_page_alloc.attr.dentries.dir;
964 fail_page_alloc.ignore_gfp_wait_file =
965 debugfs_create_bool("ignore-gfp-wait", mode, dir,
966 &fail_page_alloc.ignore_gfp_wait);
968 fail_page_alloc.ignore_gfp_highmem_file =
969 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
970 &fail_page_alloc.ignore_gfp_highmem);
972 if (!fail_page_alloc.ignore_gfp_wait_file ||
973 !fail_page_alloc.ignore_gfp_highmem_file) {
974 err = -ENOMEM;
975 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
976 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
977 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
980 return err;
983 late_initcall(fail_page_alloc_debugfs);
985 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
987 #else /* CONFIG_FAIL_PAGE_ALLOC */
989 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
991 return 0;
994 #endif /* CONFIG_FAIL_PAGE_ALLOC */
997 * Return 1 if free pages are above 'mark'. This takes into account the order
998 * of the allocation.
1000 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1001 int classzone_idx, int alloc_flags)
1003 /* free_pages my go negative - that's OK */
1004 long min = mark;
1005 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1006 int o;
1008 if (alloc_flags & ALLOC_HIGH)
1009 min -= min / 2;
1010 if (alloc_flags & ALLOC_HARDER)
1011 min -= min / 4;
1013 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1014 return 0;
1015 for (o = 0; o < order; o++) {
1016 /* At the next order, this order's pages become unavailable */
1017 free_pages -= z->free_area[o].nr_free << o;
1019 /* Require fewer higher order pages to be free */
1020 min >>= 1;
1022 if (free_pages <= min)
1023 return 0;
1025 return 1;
1028 #ifdef CONFIG_NUMA
1030 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1031 * skip over zones that are not allowed by the cpuset, or that have
1032 * been recently (in last second) found to be nearly full. See further
1033 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1034 * that have to skip over alot of full or unallowed zones.
1036 * If the zonelist cache is present in the passed in zonelist, then
1037 * returns a pointer to the allowed node mask (either the current
1038 * tasks mems_allowed, or node_online_map.)
1040 * If the zonelist cache is not available for this zonelist, does
1041 * nothing and returns NULL.
1043 * If the fullzones BITMAP in the zonelist cache is stale (more than
1044 * a second since last zap'd) then we zap it out (clear its bits.)
1046 * We hold off even calling zlc_setup, until after we've checked the
1047 * first zone in the zonelist, on the theory that most allocations will
1048 * be satisfied from that first zone, so best to examine that zone as
1049 * quickly as we can.
1051 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1053 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1054 nodemask_t *allowednodes; /* zonelist_cache approximation */
1056 zlc = zonelist->zlcache_ptr;
1057 if (!zlc)
1058 return NULL;
1060 if (jiffies - zlc->last_full_zap > 1 * HZ) {
1061 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1062 zlc->last_full_zap = jiffies;
1065 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1066 &cpuset_current_mems_allowed :
1067 &node_online_map;
1068 return allowednodes;
1072 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1073 * if it is worth looking at further for free memory:
1074 * 1) Check that the zone isn't thought to be full (doesn't have its
1075 * bit set in the zonelist_cache fullzones BITMAP).
1076 * 2) Check that the zones node (obtained from the zonelist_cache
1077 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1078 * Return true (non-zero) if zone is worth looking at further, or
1079 * else return false (zero) if it is not.
1081 * This check -ignores- the distinction between various watermarks,
1082 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1083 * found to be full for any variation of these watermarks, it will
1084 * be considered full for up to one second by all requests, unless
1085 * we are so low on memory on all allowed nodes that we are forced
1086 * into the second scan of the zonelist.
1088 * In the second scan we ignore this zonelist cache and exactly
1089 * apply the watermarks to all zones, even it is slower to do so.
1090 * We are low on memory in the second scan, and should leave no stone
1091 * unturned looking for a free page.
1093 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1094 nodemask_t *allowednodes)
1096 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1097 int i; /* index of *z in zonelist zones */
1098 int n; /* node that zone *z is on */
1100 zlc = zonelist->zlcache_ptr;
1101 if (!zlc)
1102 return 1;
1104 i = z - zonelist->zones;
1105 n = zlc->z_to_n[i];
1107 /* This zone is worth trying if it is allowed but not full */
1108 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1112 * Given 'z' scanning a zonelist, set the corresponding bit in
1113 * zlc->fullzones, so that subsequent attempts to allocate a page
1114 * from that zone don't waste time re-examining it.
1116 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1118 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1119 int i; /* index of *z in zonelist zones */
1121 zlc = zonelist->zlcache_ptr;
1122 if (!zlc)
1123 return;
1125 i = z - zonelist->zones;
1127 set_bit(i, zlc->fullzones);
1130 #else /* CONFIG_NUMA */
1132 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1134 return NULL;
1137 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1138 nodemask_t *allowednodes)
1140 return 1;
1143 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1146 #endif /* CONFIG_NUMA */
1149 * get_page_from_freelist goes through the zonelist trying to allocate
1150 * a page.
1152 static struct page *
1153 get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
1154 struct zonelist *zonelist, int alloc_flags)
1156 struct zone **z;
1157 struct page *page = NULL;
1158 int classzone_idx = zone_idx(zonelist->zones[0]);
1159 struct zone *zone;
1160 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1161 int zlc_active = 0; /* set if using zonelist_cache */
1162 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1164 zonelist_scan:
1166 * Scan zonelist, looking for a zone with enough free.
1167 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1169 z = zonelist->zones;
1171 do {
1172 if (NUMA_BUILD && zlc_active &&
1173 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1174 continue;
1175 zone = *z;
1176 if (unlikely(NUMA_BUILD && (gfp_mask & __GFP_THISNODE) &&
1177 zone->zone_pgdat != zonelist->zones[0]->zone_pgdat))
1178 break;
1179 if ((alloc_flags & ALLOC_CPUSET) &&
1180 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1181 goto try_next_zone;
1183 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1184 unsigned long mark;
1185 if (alloc_flags & ALLOC_WMARK_MIN)
1186 mark = zone->pages_min;
1187 else if (alloc_flags & ALLOC_WMARK_LOW)
1188 mark = zone->pages_low;
1189 else
1190 mark = zone->pages_high;
1191 if (!zone_watermark_ok(zone, order, mark,
1192 classzone_idx, alloc_flags)) {
1193 if (!zone_reclaim_mode ||
1194 !zone_reclaim(zone, gfp_mask, order))
1195 goto this_zone_full;
1199 page = buffered_rmqueue(zonelist, zone, order, gfp_mask);
1200 if (page)
1201 break;
1202 this_zone_full:
1203 if (NUMA_BUILD)
1204 zlc_mark_zone_full(zonelist, z);
1205 try_next_zone:
1206 if (NUMA_BUILD && !did_zlc_setup) {
1207 /* we do zlc_setup after the first zone is tried */
1208 allowednodes = zlc_setup(zonelist, alloc_flags);
1209 zlc_active = 1;
1210 did_zlc_setup = 1;
1212 } while (*(++z) != NULL);
1214 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1215 /* Disable zlc cache for second zonelist scan */
1216 zlc_active = 0;
1217 goto zonelist_scan;
1219 return page;
1223 * This is the 'heart' of the zoned buddy allocator.
1225 struct page * fastcall
1226 __alloc_pages(gfp_t gfp_mask, unsigned int order,
1227 struct zonelist *zonelist)
1229 const gfp_t wait = gfp_mask & __GFP_WAIT;
1230 struct zone **z;
1231 struct page *page;
1232 struct reclaim_state reclaim_state;
1233 struct task_struct *p = current;
1234 int do_retry;
1235 int alloc_flags;
1236 int did_some_progress;
1238 might_sleep_if(wait);
1240 if (should_fail_alloc_page(gfp_mask, order))
1241 return NULL;
1243 restart:
1244 z = zonelist->zones; /* the list of zones suitable for gfp_mask */
1246 if (unlikely(*z == NULL)) {
1247 /* Should this ever happen?? */
1248 return NULL;
1251 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1252 zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
1253 if (page)
1254 goto got_pg;
1257 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1258 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1259 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1260 * using a larger set of nodes after it has established that the
1261 * allowed per node queues are empty and that nodes are
1262 * over allocated.
1264 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1265 goto nopage;
1267 for (z = zonelist->zones; *z; z++)
1268 wakeup_kswapd(*z, order);
1271 * OK, we're below the kswapd watermark and have kicked background
1272 * reclaim. Now things get more complex, so set up alloc_flags according
1273 * to how we want to proceed.
1275 * The caller may dip into page reserves a bit more if the caller
1276 * cannot run direct reclaim, or if the caller has realtime scheduling
1277 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1278 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1280 alloc_flags = ALLOC_WMARK_MIN;
1281 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1282 alloc_flags |= ALLOC_HARDER;
1283 if (gfp_mask & __GFP_HIGH)
1284 alloc_flags |= ALLOC_HIGH;
1285 if (wait)
1286 alloc_flags |= ALLOC_CPUSET;
1289 * Go through the zonelist again. Let __GFP_HIGH and allocations
1290 * coming from realtime tasks go deeper into reserves.
1292 * This is the last chance, in general, before the goto nopage.
1293 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1294 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1296 page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
1297 if (page)
1298 goto got_pg;
1300 /* This allocation should allow future memory freeing. */
1302 rebalance:
1303 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1304 && !in_interrupt()) {
1305 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
1306 nofail_alloc:
1307 /* go through the zonelist yet again, ignoring mins */
1308 page = get_page_from_freelist(gfp_mask, order,
1309 zonelist, ALLOC_NO_WATERMARKS);
1310 if (page)
1311 goto got_pg;
1312 if (gfp_mask & __GFP_NOFAIL) {
1313 congestion_wait(WRITE, HZ/50);
1314 goto nofail_alloc;
1317 goto nopage;
1320 /* Atomic allocations - we can't balance anything */
1321 if (!wait)
1322 goto nopage;
1324 cond_resched();
1326 /* We now go into synchronous reclaim */
1327 cpuset_memory_pressure_bump();
1328 p->flags |= PF_MEMALLOC;
1329 reclaim_state.reclaimed_slab = 0;
1330 p->reclaim_state = &reclaim_state;
1332 did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask);
1334 p->reclaim_state = NULL;
1335 p->flags &= ~PF_MEMALLOC;
1337 cond_resched();
1339 if (likely(did_some_progress)) {
1340 page = get_page_from_freelist(gfp_mask, order,
1341 zonelist, alloc_flags);
1342 if (page)
1343 goto got_pg;
1344 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1346 * Go through the zonelist yet one more time, keep
1347 * very high watermark here, this is only to catch
1348 * a parallel oom killing, we must fail if we're still
1349 * under heavy pressure.
1351 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1352 zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1353 if (page)
1354 goto got_pg;
1356 out_of_memory(zonelist, gfp_mask, order);
1357 goto restart;
1361 * Don't let big-order allocations loop unless the caller explicitly
1362 * requests that. Wait for some write requests to complete then retry.
1364 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1365 * <= 3, but that may not be true in other implementations.
1367 do_retry = 0;
1368 if (!(gfp_mask & __GFP_NORETRY)) {
1369 if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
1370 do_retry = 1;
1371 if (gfp_mask & __GFP_NOFAIL)
1372 do_retry = 1;
1374 if (do_retry) {
1375 congestion_wait(WRITE, HZ/50);
1376 goto rebalance;
1379 nopage:
1380 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1381 printk(KERN_WARNING "%s: page allocation failure."
1382 " order:%d, mode:0x%x\n",
1383 p->comm, order, gfp_mask);
1384 dump_stack();
1385 show_mem();
1387 got_pg:
1388 return page;
1391 EXPORT_SYMBOL(__alloc_pages);
1394 * Common helper functions.
1396 fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1398 struct page * page;
1399 page = alloc_pages(gfp_mask, order);
1400 if (!page)
1401 return 0;
1402 return (unsigned long) page_address(page);
1405 EXPORT_SYMBOL(__get_free_pages);
1407 fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1409 struct page * page;
1412 * get_zeroed_page() returns a 32-bit address, which cannot represent
1413 * a highmem page
1415 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1417 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1418 if (page)
1419 return (unsigned long) page_address(page);
1420 return 0;
1423 EXPORT_SYMBOL(get_zeroed_page);
1425 void __pagevec_free(struct pagevec *pvec)
1427 int i = pagevec_count(pvec);
1429 while (--i >= 0)
1430 free_hot_cold_page(pvec->pages[i], pvec->cold);
1433 fastcall void __free_pages(struct page *page, unsigned int order)
1435 if (put_page_testzero(page)) {
1436 if (order == 0)
1437 free_hot_page(page);
1438 else
1439 __free_pages_ok(page, order);
1443 EXPORT_SYMBOL(__free_pages);
1445 fastcall void free_pages(unsigned long addr, unsigned int order)
1447 if (addr != 0) {
1448 VM_BUG_ON(!virt_addr_valid((void *)addr));
1449 __free_pages(virt_to_page((void *)addr), order);
1453 EXPORT_SYMBOL(free_pages);
1455 static unsigned int nr_free_zone_pages(int offset)
1457 /* Just pick one node, since fallback list is circular */
1458 pg_data_t *pgdat = NODE_DATA(numa_node_id());
1459 unsigned int sum = 0;
1461 struct zonelist *zonelist = pgdat->node_zonelists + offset;
1462 struct zone **zonep = zonelist->zones;
1463 struct zone *zone;
1465 for (zone = *zonep++; zone; zone = *zonep++) {
1466 unsigned long size = zone->present_pages;
1467 unsigned long high = zone->pages_high;
1468 if (size > high)
1469 sum += size - high;
1472 return sum;
1476 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1478 unsigned int nr_free_buffer_pages(void)
1480 return nr_free_zone_pages(gfp_zone(GFP_USER));
1484 * Amount of free RAM allocatable within all zones
1486 unsigned int nr_free_pagecache_pages(void)
1488 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER));
1491 static inline void show_node(struct zone *zone)
1493 if (NUMA_BUILD)
1494 printk("Node %d ", zone_to_nid(zone));
1497 void si_meminfo(struct sysinfo *val)
1499 val->totalram = totalram_pages;
1500 val->sharedram = 0;
1501 val->freeram = global_page_state(NR_FREE_PAGES);
1502 val->bufferram = nr_blockdev_pages();
1503 val->totalhigh = totalhigh_pages;
1504 val->freehigh = nr_free_highpages();
1505 val->mem_unit = PAGE_SIZE;
1508 EXPORT_SYMBOL(si_meminfo);
1510 #ifdef CONFIG_NUMA
1511 void si_meminfo_node(struct sysinfo *val, int nid)
1513 pg_data_t *pgdat = NODE_DATA(nid);
1515 val->totalram = pgdat->node_present_pages;
1516 val->freeram = node_page_state(nid, NR_FREE_PAGES);
1517 #ifdef CONFIG_HIGHMEM
1518 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1519 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
1520 NR_FREE_PAGES);
1521 #else
1522 val->totalhigh = 0;
1523 val->freehigh = 0;
1524 #endif
1525 val->mem_unit = PAGE_SIZE;
1527 #endif
1529 #define K(x) ((x) << (PAGE_SHIFT-10))
1532 * Show free area list (used inside shift_scroll-lock stuff)
1533 * We also calculate the percentage fragmentation. We do this by counting the
1534 * memory on each free list with the exception of the first item on the list.
1536 void show_free_areas(void)
1538 int cpu;
1539 struct zone *zone;
1541 for_each_zone(zone) {
1542 if (!populated_zone(zone))
1543 continue;
1545 show_node(zone);
1546 printk("%s per-cpu:\n", zone->name);
1548 for_each_online_cpu(cpu) {
1549 struct per_cpu_pageset *pageset;
1551 pageset = zone_pcp(zone, cpu);
1553 printk("CPU %4d: Hot: hi:%5d, btch:%4d usd:%4d "
1554 "Cold: hi:%5d, btch:%4d usd:%4d\n",
1555 cpu, pageset->pcp[0].high,
1556 pageset->pcp[0].batch, pageset->pcp[0].count,
1557 pageset->pcp[1].high, pageset->pcp[1].batch,
1558 pageset->pcp[1].count);
1562 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n"
1563 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
1564 global_page_state(NR_ACTIVE),
1565 global_page_state(NR_INACTIVE),
1566 global_page_state(NR_FILE_DIRTY),
1567 global_page_state(NR_WRITEBACK),
1568 global_page_state(NR_UNSTABLE_NFS),
1569 global_page_state(NR_FREE_PAGES),
1570 global_page_state(NR_SLAB_RECLAIMABLE) +
1571 global_page_state(NR_SLAB_UNRECLAIMABLE),
1572 global_page_state(NR_FILE_MAPPED),
1573 global_page_state(NR_PAGETABLE),
1574 global_page_state(NR_BOUNCE));
1576 for_each_zone(zone) {
1577 int i;
1579 if (!populated_zone(zone))
1580 continue;
1582 show_node(zone);
1583 printk("%s"
1584 " free:%lukB"
1585 " min:%lukB"
1586 " low:%lukB"
1587 " high:%lukB"
1588 " active:%lukB"
1589 " inactive:%lukB"
1590 " present:%lukB"
1591 " pages_scanned:%lu"
1592 " all_unreclaimable? %s"
1593 "\n",
1594 zone->name,
1595 K(zone_page_state(zone, NR_FREE_PAGES)),
1596 K(zone->pages_min),
1597 K(zone->pages_low),
1598 K(zone->pages_high),
1599 K(zone_page_state(zone, NR_ACTIVE)),
1600 K(zone_page_state(zone, NR_INACTIVE)),
1601 K(zone->present_pages),
1602 zone->pages_scanned,
1603 (zone->all_unreclaimable ? "yes" : "no")
1605 printk("lowmem_reserve[]:");
1606 for (i = 0; i < MAX_NR_ZONES; i++)
1607 printk(" %lu", zone->lowmem_reserve[i]);
1608 printk("\n");
1611 for_each_zone(zone) {
1612 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1614 if (!populated_zone(zone))
1615 continue;
1617 show_node(zone);
1618 printk("%s: ", zone->name);
1620 spin_lock_irqsave(&zone->lock, flags);
1621 for (order = 0; order < MAX_ORDER; order++) {
1622 nr[order] = zone->free_area[order].nr_free;
1623 total += nr[order] << order;
1625 spin_unlock_irqrestore(&zone->lock, flags);
1626 for (order = 0; order < MAX_ORDER; order++)
1627 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1628 printk("= %lukB\n", K(total));
1631 show_swap_cache_info();
1635 * Builds allocation fallback zone lists.
1637 * Add all populated zones of a node to the zonelist.
1639 static int __meminit build_zonelists_node(pg_data_t *pgdat,
1640 struct zonelist *zonelist, int nr_zones, enum zone_type zone_type)
1642 struct zone *zone;
1644 BUG_ON(zone_type >= MAX_NR_ZONES);
1645 zone_type++;
1647 do {
1648 zone_type--;
1649 zone = pgdat->node_zones + zone_type;
1650 if (populated_zone(zone)) {
1651 zonelist->zones[nr_zones++] = zone;
1652 check_highest_zone(zone_type);
1655 } while (zone_type);
1656 return nr_zones;
1659 #ifdef CONFIG_NUMA
1660 #define MAX_NODE_LOAD (num_online_nodes())
1661 static int __meminitdata node_load[MAX_NUMNODES];
1663 * find_next_best_node - find the next node that should appear in a given node's fallback list
1664 * @node: node whose fallback list we're appending
1665 * @used_node_mask: nodemask_t of already used nodes
1667 * We use a number of factors to determine which is the next node that should
1668 * appear on a given node's fallback list. The node should not have appeared
1669 * already in @node's fallback list, and it should be the next closest node
1670 * according to the distance array (which contains arbitrary distance values
1671 * from each node to each node in the system), and should also prefer nodes
1672 * with no CPUs, since presumably they'll have very little allocation pressure
1673 * on them otherwise.
1674 * It returns -1 if no node is found.
1676 static int __meminit find_next_best_node(int node, nodemask_t *used_node_mask)
1678 int n, val;
1679 int min_val = INT_MAX;
1680 int best_node = -1;
1682 /* Use the local node if we haven't already */
1683 if (!node_isset(node, *used_node_mask)) {
1684 node_set(node, *used_node_mask);
1685 return node;
1688 for_each_online_node(n) {
1689 cpumask_t tmp;
1691 /* Don't want a node to appear more than once */
1692 if (node_isset(n, *used_node_mask))
1693 continue;
1695 /* Use the distance array to find the distance */
1696 val = node_distance(node, n);
1698 /* Penalize nodes under us ("prefer the next node") */
1699 val += (n < node);
1701 /* Give preference to headless and unused nodes */
1702 tmp = node_to_cpumask(n);
1703 if (!cpus_empty(tmp))
1704 val += PENALTY_FOR_NODE_WITH_CPUS;
1706 /* Slight preference for less loaded node */
1707 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1708 val += node_load[n];
1710 if (val < min_val) {
1711 min_val = val;
1712 best_node = n;
1716 if (best_node >= 0)
1717 node_set(best_node, *used_node_mask);
1719 return best_node;
1722 static void __meminit build_zonelists(pg_data_t *pgdat)
1724 int j, node, local_node;
1725 enum zone_type i;
1726 int prev_node, load;
1727 struct zonelist *zonelist;
1728 nodemask_t used_mask;
1730 /* initialize zonelists */
1731 for (i = 0; i < MAX_NR_ZONES; i++) {
1732 zonelist = pgdat->node_zonelists + i;
1733 zonelist->zones[0] = NULL;
1736 /* NUMA-aware ordering of nodes */
1737 local_node = pgdat->node_id;
1738 load = num_online_nodes();
1739 prev_node = local_node;
1740 nodes_clear(used_mask);
1741 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
1742 int distance = node_distance(local_node, node);
1745 * If another node is sufficiently far away then it is better
1746 * to reclaim pages in a zone before going off node.
1748 if (distance > RECLAIM_DISTANCE)
1749 zone_reclaim_mode = 1;
1752 * We don't want to pressure a particular node.
1753 * So adding penalty to the first node in same
1754 * distance group to make it round-robin.
1757 if (distance != node_distance(local_node, prev_node))
1758 node_load[node] += load;
1759 prev_node = node;
1760 load--;
1761 for (i = 0; i < MAX_NR_ZONES; i++) {
1762 zonelist = pgdat->node_zonelists + i;
1763 for (j = 0; zonelist->zones[j] != NULL; j++);
1765 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1766 zonelist->zones[j] = NULL;
1771 /* Construct the zonelist performance cache - see further mmzone.h */
1772 static void __meminit build_zonelist_cache(pg_data_t *pgdat)
1774 int i;
1776 for (i = 0; i < MAX_NR_ZONES; i++) {
1777 struct zonelist *zonelist;
1778 struct zonelist_cache *zlc;
1779 struct zone **z;
1781 zonelist = pgdat->node_zonelists + i;
1782 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
1783 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1784 for (z = zonelist->zones; *z; z++)
1785 zlc->z_to_n[z - zonelist->zones] = zone_to_nid(*z);
1789 #else /* CONFIG_NUMA */
1791 static void __meminit build_zonelists(pg_data_t *pgdat)
1793 int node, local_node;
1794 enum zone_type i,j;
1796 local_node = pgdat->node_id;
1797 for (i = 0; i < MAX_NR_ZONES; i++) {
1798 struct zonelist *zonelist;
1800 zonelist = pgdat->node_zonelists + i;
1802 j = build_zonelists_node(pgdat, zonelist, 0, i);
1804 * Now we build the zonelist so that it contains the zones
1805 * of all the other nodes.
1806 * We don't want to pressure a particular node, so when
1807 * building the zones for node N, we make sure that the
1808 * zones coming right after the local ones are those from
1809 * node N+1 (modulo N)
1811 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
1812 if (!node_online(node))
1813 continue;
1814 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1816 for (node = 0; node < local_node; node++) {
1817 if (!node_online(node))
1818 continue;
1819 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1822 zonelist->zones[j] = NULL;
1826 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
1827 static void __meminit build_zonelist_cache(pg_data_t *pgdat)
1829 int i;
1831 for (i = 0; i < MAX_NR_ZONES; i++)
1832 pgdat->node_zonelists[i].zlcache_ptr = NULL;
1835 #endif /* CONFIG_NUMA */
1837 /* return values int ....just for stop_machine_run() */
1838 static int __meminit __build_all_zonelists(void *dummy)
1840 int nid;
1842 for_each_online_node(nid) {
1843 build_zonelists(NODE_DATA(nid));
1844 build_zonelist_cache(NODE_DATA(nid));
1846 return 0;
1849 void __meminit build_all_zonelists(void)
1851 if (system_state == SYSTEM_BOOTING) {
1852 __build_all_zonelists(NULL);
1853 cpuset_init_current_mems_allowed();
1854 } else {
1855 /* we have to stop all cpus to guaranntee there is no user
1856 of zonelist */
1857 stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
1858 /* cpuset refresh routine should be here */
1860 vm_total_pages = nr_free_pagecache_pages();
1861 printk("Built %i zonelists. Total pages: %ld\n",
1862 num_online_nodes(), vm_total_pages);
1866 * Helper functions to size the waitqueue hash table.
1867 * Essentially these want to choose hash table sizes sufficiently
1868 * large so that collisions trying to wait on pages are rare.
1869 * But in fact, the number of active page waitqueues on typical
1870 * systems is ridiculously low, less than 200. So this is even
1871 * conservative, even though it seems large.
1873 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1874 * waitqueues, i.e. the size of the waitq table given the number of pages.
1876 #define PAGES_PER_WAITQUEUE 256
1878 #ifndef CONFIG_MEMORY_HOTPLUG
1879 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1881 unsigned long size = 1;
1883 pages /= PAGES_PER_WAITQUEUE;
1885 while (size < pages)
1886 size <<= 1;
1889 * Once we have dozens or even hundreds of threads sleeping
1890 * on IO we've got bigger problems than wait queue collision.
1891 * Limit the size of the wait table to a reasonable size.
1893 size = min(size, 4096UL);
1895 return max(size, 4UL);
1897 #else
1899 * A zone's size might be changed by hot-add, so it is not possible to determine
1900 * a suitable size for its wait_table. So we use the maximum size now.
1902 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
1904 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
1905 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
1906 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
1908 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
1909 * or more by the traditional way. (See above). It equals:
1911 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
1912 * ia64(16K page size) : = ( 8G + 4M)byte.
1913 * powerpc (64K page size) : = (32G +16M)byte.
1915 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1917 return 4096UL;
1919 #endif
1922 * This is an integer logarithm so that shifts can be used later
1923 * to extract the more random high bits from the multiplicative
1924 * hash function before the remainder is taken.
1926 static inline unsigned long wait_table_bits(unsigned long size)
1928 return ffz(~size);
1931 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1934 * Initially all pages are reserved - free ones are freed
1935 * up by free_all_bootmem() once the early boot process is
1936 * done. Non-atomic initialization, single-pass.
1938 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
1939 unsigned long start_pfn, enum memmap_context context)
1941 struct page *page;
1942 unsigned long end_pfn = start_pfn + size;
1943 unsigned long pfn;
1945 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1947 * There can be holes in boot-time mem_map[]s
1948 * handed to this function. They do not
1949 * exist on hotplugged memory.
1951 if (context == MEMMAP_EARLY) {
1952 if (!early_pfn_valid(pfn))
1953 continue;
1954 if (!early_pfn_in_nid(pfn, nid))
1955 continue;
1957 page = pfn_to_page(pfn);
1958 set_page_links(page, zone, nid, pfn);
1959 init_page_count(page);
1960 reset_page_mapcount(page);
1961 SetPageReserved(page);
1962 INIT_LIST_HEAD(&page->lru);
1963 #ifdef WANT_PAGE_VIRTUAL
1964 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1965 if (!is_highmem_idx(zone))
1966 set_page_address(page, __va(pfn << PAGE_SHIFT));
1967 #endif
1971 void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
1972 unsigned long size)
1974 int order;
1975 for (order = 0; order < MAX_ORDER ; order++) {
1976 INIT_LIST_HEAD(&zone->free_area[order].free_list);
1977 zone->free_area[order].nr_free = 0;
1981 #ifndef __HAVE_ARCH_MEMMAP_INIT
1982 #define memmap_init(size, nid, zone, start_pfn) \
1983 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1984 #endif
1986 static int __cpuinit zone_batchsize(struct zone *zone)
1988 int batch;
1991 * The per-cpu-pages pools are set to around 1000th of the
1992 * size of the zone. But no more than 1/2 of a meg.
1994 * OK, so we don't know how big the cache is. So guess.
1996 batch = zone->present_pages / 1024;
1997 if (batch * PAGE_SIZE > 512 * 1024)
1998 batch = (512 * 1024) / PAGE_SIZE;
1999 batch /= 4; /* We effectively *= 4 below */
2000 if (batch < 1)
2001 batch = 1;
2004 * Clamp the batch to a 2^n - 1 value. Having a power
2005 * of 2 value was found to be more likely to have
2006 * suboptimal cache aliasing properties in some cases.
2008 * For example if 2 tasks are alternately allocating
2009 * batches of pages, one task can end up with a lot
2010 * of pages of one half of the possible page colors
2011 * and the other with pages of the other colors.
2013 batch = (1 << (fls(batch + batch/2)-1)) - 1;
2015 return batch;
2018 inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2020 struct per_cpu_pages *pcp;
2022 memset(p, 0, sizeof(*p));
2024 pcp = &p->pcp[0]; /* hot */
2025 pcp->count = 0;
2026 pcp->high = 6 * batch;
2027 pcp->batch = max(1UL, 1 * batch);
2028 INIT_LIST_HEAD(&pcp->list);
2030 pcp = &p->pcp[1]; /* cold*/
2031 pcp->count = 0;
2032 pcp->high = 2 * batch;
2033 pcp->batch = max(1UL, batch/2);
2034 INIT_LIST_HEAD(&pcp->list);
2038 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2039 * to the value high for the pageset p.
2042 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2043 unsigned long high)
2045 struct per_cpu_pages *pcp;
2047 pcp = &p->pcp[0]; /* hot list */
2048 pcp->high = high;
2049 pcp->batch = max(1UL, high/4);
2050 if ((high/4) > (PAGE_SHIFT * 8))
2051 pcp->batch = PAGE_SHIFT * 8;
2055 #ifdef CONFIG_NUMA
2057 * Boot pageset table. One per cpu which is going to be used for all
2058 * zones and all nodes. The parameters will be set in such a way
2059 * that an item put on a list will immediately be handed over to
2060 * the buddy list. This is safe since pageset manipulation is done
2061 * with interrupts disabled.
2063 * Some NUMA counter updates may also be caught by the boot pagesets.
2065 * The boot_pagesets must be kept even after bootup is complete for
2066 * unused processors and/or zones. They do play a role for bootstrapping
2067 * hotplugged processors.
2069 * zoneinfo_show() and maybe other functions do
2070 * not check if the processor is online before following the pageset pointer.
2071 * Other parts of the kernel may not check if the zone is available.
2073 static struct per_cpu_pageset boot_pageset[NR_CPUS];
2076 * Dynamically allocate memory for the
2077 * per cpu pageset array in struct zone.
2079 static int __cpuinit process_zones(int cpu)
2081 struct zone *zone, *dzone;
2083 for_each_zone(zone) {
2085 if (!populated_zone(zone))
2086 continue;
2088 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
2089 GFP_KERNEL, cpu_to_node(cpu));
2090 if (!zone_pcp(zone, cpu))
2091 goto bad;
2093 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
2095 if (percpu_pagelist_fraction)
2096 setup_pagelist_highmark(zone_pcp(zone, cpu),
2097 (zone->present_pages / percpu_pagelist_fraction));
2100 return 0;
2101 bad:
2102 for_each_zone(dzone) {
2103 if (dzone == zone)
2104 break;
2105 kfree(zone_pcp(dzone, cpu));
2106 zone_pcp(dzone, cpu) = NULL;
2108 return -ENOMEM;
2111 static inline void free_zone_pagesets(int cpu)
2113 struct zone *zone;
2115 for_each_zone(zone) {
2116 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2118 /* Free per_cpu_pageset if it is slab allocated */
2119 if (pset != &boot_pageset[cpu])
2120 kfree(pset);
2121 zone_pcp(zone, cpu) = NULL;
2125 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
2126 unsigned long action,
2127 void *hcpu)
2129 int cpu = (long)hcpu;
2130 int ret = NOTIFY_OK;
2132 switch (action) {
2133 case CPU_UP_PREPARE:
2134 case CPU_UP_PREPARE_FROZEN:
2135 if (process_zones(cpu))
2136 ret = NOTIFY_BAD;
2137 break;
2138 case CPU_UP_CANCELED:
2139 case CPU_UP_CANCELED_FROZEN:
2140 case CPU_DEAD:
2141 case CPU_DEAD_FROZEN:
2142 free_zone_pagesets(cpu);
2143 break;
2144 default:
2145 break;
2147 return ret;
2150 static struct notifier_block __cpuinitdata pageset_notifier =
2151 { &pageset_cpuup_callback, NULL, 0 };
2153 void __init setup_per_cpu_pageset(void)
2155 int err;
2157 /* Initialize per_cpu_pageset for cpu 0.
2158 * A cpuup callback will do this for every cpu
2159 * as it comes online
2161 err = process_zones(smp_processor_id());
2162 BUG_ON(err);
2163 register_cpu_notifier(&pageset_notifier);
2166 #endif
2168 static noinline __init_refok
2169 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
2171 int i;
2172 struct pglist_data *pgdat = zone->zone_pgdat;
2173 size_t alloc_size;
2176 * The per-page waitqueue mechanism uses hashed waitqueues
2177 * per zone.
2179 zone->wait_table_hash_nr_entries =
2180 wait_table_hash_nr_entries(zone_size_pages);
2181 zone->wait_table_bits =
2182 wait_table_bits(zone->wait_table_hash_nr_entries);
2183 alloc_size = zone->wait_table_hash_nr_entries
2184 * sizeof(wait_queue_head_t);
2186 if (system_state == SYSTEM_BOOTING) {
2187 zone->wait_table = (wait_queue_head_t *)
2188 alloc_bootmem_node(pgdat, alloc_size);
2189 } else {
2191 * This case means that a zone whose size was 0 gets new memory
2192 * via memory hot-add.
2193 * But it may be the case that a new node was hot-added. In
2194 * this case vmalloc() will not be able to use this new node's
2195 * memory - this wait_table must be initialized to use this new
2196 * node itself as well.
2197 * To use this new node's memory, further consideration will be
2198 * necessary.
2200 zone->wait_table = (wait_queue_head_t *)vmalloc(alloc_size);
2202 if (!zone->wait_table)
2203 return -ENOMEM;
2205 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
2206 init_waitqueue_head(zone->wait_table + i);
2208 return 0;
2211 static __meminit void zone_pcp_init(struct zone *zone)
2213 int cpu;
2214 unsigned long batch = zone_batchsize(zone);
2216 for (cpu = 0; cpu < NR_CPUS; cpu++) {
2217 #ifdef CONFIG_NUMA
2218 /* Early boot. Slab allocator not functional yet */
2219 zone_pcp(zone, cpu) = &boot_pageset[cpu];
2220 setup_pageset(&boot_pageset[cpu],0);
2221 #else
2222 setup_pageset(zone_pcp(zone,cpu), batch);
2223 #endif
2225 if (zone->present_pages)
2226 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
2227 zone->name, zone->present_pages, batch);
2230 __meminit int init_currently_empty_zone(struct zone *zone,
2231 unsigned long zone_start_pfn,
2232 unsigned long size,
2233 enum memmap_context context)
2235 struct pglist_data *pgdat = zone->zone_pgdat;
2236 int ret;
2237 ret = zone_wait_table_init(zone, size);
2238 if (ret)
2239 return ret;
2240 pgdat->nr_zones = zone_idx(zone) + 1;
2242 zone->zone_start_pfn = zone_start_pfn;
2244 memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
2246 zone_init_free_lists(pgdat, zone, zone->spanned_pages);
2248 return 0;
2251 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2253 * Basic iterator support. Return the first range of PFNs for a node
2254 * Note: nid == MAX_NUMNODES returns first region regardless of node
2256 static int __meminit first_active_region_index_in_nid(int nid)
2258 int i;
2260 for (i = 0; i < nr_nodemap_entries; i++)
2261 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
2262 return i;
2264 return -1;
2268 * Basic iterator support. Return the next active range of PFNs for a node
2269 * Note: nid == MAX_NUMNODES returns next region regardles of node
2271 static int __meminit next_active_region_index_in_nid(int index, int nid)
2273 for (index = index + 1; index < nr_nodemap_entries; index++)
2274 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
2275 return index;
2277 return -1;
2280 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2282 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2283 * Architectures may implement their own version but if add_active_range()
2284 * was used and there are no special requirements, this is a convenient
2285 * alternative
2287 int __meminit early_pfn_to_nid(unsigned long pfn)
2289 int i;
2291 for (i = 0; i < nr_nodemap_entries; i++) {
2292 unsigned long start_pfn = early_node_map[i].start_pfn;
2293 unsigned long end_pfn = early_node_map[i].end_pfn;
2295 if (start_pfn <= pfn && pfn < end_pfn)
2296 return early_node_map[i].nid;
2299 return 0;
2301 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2303 /* Basic iterator support to walk early_node_map[] */
2304 #define for_each_active_range_index_in_nid(i, nid) \
2305 for (i = first_active_region_index_in_nid(nid); i != -1; \
2306 i = next_active_region_index_in_nid(i, nid))
2309 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
2310 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
2311 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
2313 * If an architecture guarantees that all ranges registered with
2314 * add_active_ranges() contain no holes and may be freed, this
2315 * this function may be used instead of calling free_bootmem() manually.
2317 void __init free_bootmem_with_active_regions(int nid,
2318 unsigned long max_low_pfn)
2320 int i;
2322 for_each_active_range_index_in_nid(i, nid) {
2323 unsigned long size_pages = 0;
2324 unsigned long end_pfn = early_node_map[i].end_pfn;
2326 if (early_node_map[i].start_pfn >= max_low_pfn)
2327 continue;
2329 if (end_pfn > max_low_pfn)
2330 end_pfn = max_low_pfn;
2332 size_pages = end_pfn - early_node_map[i].start_pfn;
2333 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
2334 PFN_PHYS(early_node_map[i].start_pfn),
2335 size_pages << PAGE_SHIFT);
2340 * sparse_memory_present_with_active_regions - Call memory_present for each active range
2341 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
2343 * If an architecture guarantees that all ranges registered with
2344 * add_active_ranges() contain no holes and may be freed, this
2345 * function may be used instead of calling memory_present() manually.
2347 void __init sparse_memory_present_with_active_regions(int nid)
2349 int i;
2351 for_each_active_range_index_in_nid(i, nid)
2352 memory_present(early_node_map[i].nid,
2353 early_node_map[i].start_pfn,
2354 early_node_map[i].end_pfn);
2358 * push_node_boundaries - Push node boundaries to at least the requested boundary
2359 * @nid: The nid of the node to push the boundary for
2360 * @start_pfn: The start pfn of the node
2361 * @end_pfn: The end pfn of the node
2363 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
2364 * time. Specifically, on x86_64, SRAT will report ranges that can potentially
2365 * be hotplugged even though no physical memory exists. This function allows
2366 * an arch to push out the node boundaries so mem_map is allocated that can
2367 * be used later.
2369 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2370 void __init push_node_boundaries(unsigned int nid,
2371 unsigned long start_pfn, unsigned long end_pfn)
2373 printk(KERN_DEBUG "Entering push_node_boundaries(%u, %lu, %lu)\n",
2374 nid, start_pfn, end_pfn);
2376 /* Initialise the boundary for this node if necessary */
2377 if (node_boundary_end_pfn[nid] == 0)
2378 node_boundary_start_pfn[nid] = -1UL;
2380 /* Update the boundaries */
2381 if (node_boundary_start_pfn[nid] > start_pfn)
2382 node_boundary_start_pfn[nid] = start_pfn;
2383 if (node_boundary_end_pfn[nid] < end_pfn)
2384 node_boundary_end_pfn[nid] = end_pfn;
2387 /* If necessary, push the node boundary out for reserve hotadd */
2388 static void __init account_node_boundary(unsigned int nid,
2389 unsigned long *start_pfn, unsigned long *end_pfn)
2391 printk(KERN_DEBUG "Entering account_node_boundary(%u, %lu, %lu)\n",
2392 nid, *start_pfn, *end_pfn);
2394 /* Return if boundary information has not been provided */
2395 if (node_boundary_end_pfn[nid] == 0)
2396 return;
2398 /* Check the boundaries and update if necessary */
2399 if (node_boundary_start_pfn[nid] < *start_pfn)
2400 *start_pfn = node_boundary_start_pfn[nid];
2401 if (node_boundary_end_pfn[nid] > *end_pfn)
2402 *end_pfn = node_boundary_end_pfn[nid];
2404 #else
2405 void __init push_node_boundaries(unsigned int nid,
2406 unsigned long start_pfn, unsigned long end_pfn) {}
2408 static void __init account_node_boundary(unsigned int nid,
2409 unsigned long *start_pfn, unsigned long *end_pfn) {}
2410 #endif
2414 * get_pfn_range_for_nid - Return the start and end page frames for a node
2415 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
2416 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
2417 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
2419 * It returns the start and end page frame of a node based on information
2420 * provided by an arch calling add_active_range(). If called for a node
2421 * with no available memory, a warning is printed and the start and end
2422 * PFNs will be 0.
2424 void __meminit get_pfn_range_for_nid(unsigned int nid,
2425 unsigned long *start_pfn, unsigned long *end_pfn)
2427 int i;
2428 *start_pfn = -1UL;
2429 *end_pfn = 0;
2431 for_each_active_range_index_in_nid(i, nid) {
2432 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
2433 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
2436 if (*start_pfn == -1UL) {
2437 printk(KERN_WARNING "Node %u active with no memory\n", nid);
2438 *start_pfn = 0;
2441 /* Push the node boundaries out if requested */
2442 account_node_boundary(nid, start_pfn, end_pfn);
2446 * Return the number of pages a zone spans in a node, including holes
2447 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
2449 unsigned long __meminit zone_spanned_pages_in_node(int nid,
2450 unsigned long zone_type,
2451 unsigned long *ignored)
2453 unsigned long node_start_pfn, node_end_pfn;
2454 unsigned long zone_start_pfn, zone_end_pfn;
2456 /* Get the start and end of the node and zone */
2457 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
2458 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
2459 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2461 /* Check that this node has pages within the zone's required range */
2462 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
2463 return 0;
2465 /* Move the zone boundaries inside the node if necessary */
2466 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
2467 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
2469 /* Return the spanned pages */
2470 return zone_end_pfn - zone_start_pfn;
2474 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
2475 * then all holes in the requested range will be accounted for.
2477 unsigned long __meminit __absent_pages_in_range(int nid,
2478 unsigned long range_start_pfn,
2479 unsigned long range_end_pfn)
2481 int i = 0;
2482 unsigned long prev_end_pfn = 0, hole_pages = 0;
2483 unsigned long start_pfn;
2485 /* Find the end_pfn of the first active range of pfns in the node */
2486 i = first_active_region_index_in_nid(nid);
2487 if (i == -1)
2488 return 0;
2490 /* Account for ranges before physical memory on this node */
2491 if (early_node_map[i].start_pfn > range_start_pfn)
2492 hole_pages = early_node_map[i].start_pfn - range_start_pfn;
2494 prev_end_pfn = early_node_map[i].start_pfn;
2496 /* Find all holes for the zone within the node */
2497 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
2499 /* No need to continue if prev_end_pfn is outside the zone */
2500 if (prev_end_pfn >= range_end_pfn)
2501 break;
2503 /* Make sure the end of the zone is not within the hole */
2504 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
2505 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
2507 /* Update the hole size cound and move on */
2508 if (start_pfn > range_start_pfn) {
2509 BUG_ON(prev_end_pfn > start_pfn);
2510 hole_pages += start_pfn - prev_end_pfn;
2512 prev_end_pfn = early_node_map[i].end_pfn;
2515 /* Account for ranges past physical memory on this node */
2516 if (range_end_pfn > prev_end_pfn)
2517 hole_pages += range_end_pfn -
2518 max(range_start_pfn, prev_end_pfn);
2520 return hole_pages;
2524 * absent_pages_in_range - Return number of page frames in holes within a range
2525 * @start_pfn: The start PFN to start searching for holes
2526 * @end_pfn: The end PFN to stop searching for holes
2528 * It returns the number of pages frames in memory holes within a range.
2530 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
2531 unsigned long end_pfn)
2533 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
2536 /* Return the number of page frames in holes in a zone on a node */
2537 unsigned long __meminit zone_absent_pages_in_node(int nid,
2538 unsigned long zone_type,
2539 unsigned long *ignored)
2541 unsigned long node_start_pfn, node_end_pfn;
2542 unsigned long zone_start_pfn, zone_end_pfn;
2544 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
2545 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
2546 node_start_pfn);
2547 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
2548 node_end_pfn);
2550 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
2553 #else
2554 static inline unsigned long zone_spanned_pages_in_node(int nid,
2555 unsigned long zone_type,
2556 unsigned long *zones_size)
2558 return zones_size[zone_type];
2561 static inline unsigned long zone_absent_pages_in_node(int nid,
2562 unsigned long zone_type,
2563 unsigned long *zholes_size)
2565 if (!zholes_size)
2566 return 0;
2568 return zholes_size[zone_type];
2571 #endif
2573 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
2574 unsigned long *zones_size, unsigned long *zholes_size)
2576 unsigned long realtotalpages, totalpages = 0;
2577 enum zone_type i;
2579 for (i = 0; i < MAX_NR_ZONES; i++)
2580 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
2581 zones_size);
2582 pgdat->node_spanned_pages = totalpages;
2584 realtotalpages = totalpages;
2585 for (i = 0; i < MAX_NR_ZONES; i++)
2586 realtotalpages -=
2587 zone_absent_pages_in_node(pgdat->node_id, i,
2588 zholes_size);
2589 pgdat->node_present_pages = realtotalpages;
2590 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
2591 realtotalpages);
2595 * Set up the zone data structures:
2596 * - mark all pages reserved
2597 * - mark all memory queues empty
2598 * - clear the memory bitmaps
2600 static void __meminit free_area_init_core(struct pglist_data *pgdat,
2601 unsigned long *zones_size, unsigned long *zholes_size)
2603 enum zone_type j;
2604 int nid = pgdat->node_id;
2605 unsigned long zone_start_pfn = pgdat->node_start_pfn;
2606 int ret;
2608 pgdat_resize_init(pgdat);
2609 pgdat->nr_zones = 0;
2610 init_waitqueue_head(&pgdat->kswapd_wait);
2611 pgdat->kswapd_max_order = 0;
2613 for (j = 0; j < MAX_NR_ZONES; j++) {
2614 struct zone *zone = pgdat->node_zones + j;
2615 unsigned long size, realsize, memmap_pages;
2617 size = zone_spanned_pages_in_node(nid, j, zones_size);
2618 realsize = size - zone_absent_pages_in_node(nid, j,
2619 zholes_size);
2622 * Adjust realsize so that it accounts for how much memory
2623 * is used by this zone for memmap. This affects the watermark
2624 * and per-cpu initialisations
2626 memmap_pages = (size * sizeof(struct page)) >> PAGE_SHIFT;
2627 if (realsize >= memmap_pages) {
2628 realsize -= memmap_pages;
2629 printk(KERN_DEBUG
2630 " %s zone: %lu pages used for memmap\n",
2631 zone_names[j], memmap_pages);
2632 } else
2633 printk(KERN_WARNING
2634 " %s zone: %lu pages exceeds realsize %lu\n",
2635 zone_names[j], memmap_pages, realsize);
2637 /* Account for reserved pages */
2638 if (j == 0 && realsize > dma_reserve) {
2639 realsize -= dma_reserve;
2640 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
2641 zone_names[0], dma_reserve);
2644 if (!is_highmem_idx(j))
2645 nr_kernel_pages += realsize;
2646 nr_all_pages += realsize;
2648 zone->spanned_pages = size;
2649 zone->present_pages = realsize;
2650 #ifdef CONFIG_NUMA
2651 zone->node = nid;
2652 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
2653 / 100;
2654 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
2655 #endif
2656 zone->name = zone_names[j];
2657 spin_lock_init(&zone->lock);
2658 spin_lock_init(&zone->lru_lock);
2659 zone_seqlock_init(zone);
2660 zone->zone_pgdat = pgdat;
2662 zone->prev_priority = DEF_PRIORITY;
2664 zone_pcp_init(zone);
2665 INIT_LIST_HEAD(&zone->active_list);
2666 INIT_LIST_HEAD(&zone->inactive_list);
2667 zone->nr_scan_active = 0;
2668 zone->nr_scan_inactive = 0;
2669 zap_zone_vm_stats(zone);
2670 atomic_set(&zone->reclaim_in_progress, 0);
2671 if (!size)
2672 continue;
2674 ret = init_currently_empty_zone(zone, zone_start_pfn,
2675 size, MEMMAP_EARLY);
2676 BUG_ON(ret);
2677 zone_start_pfn += size;
2681 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
2683 /* Skip empty nodes */
2684 if (!pgdat->node_spanned_pages)
2685 return;
2687 #ifdef CONFIG_FLAT_NODE_MEM_MAP
2688 /* ia64 gets its own node_mem_map, before this, without bootmem */
2689 if (!pgdat->node_mem_map) {
2690 unsigned long size, start, end;
2691 struct page *map;
2694 * The zone's endpoints aren't required to be MAX_ORDER
2695 * aligned but the node_mem_map endpoints must be in order
2696 * for the buddy allocator to function correctly.
2698 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
2699 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
2700 end = ALIGN(end, MAX_ORDER_NR_PAGES);
2701 size = (end - start) * sizeof(struct page);
2702 map = alloc_remap(pgdat->node_id, size);
2703 if (!map)
2704 map = alloc_bootmem_node(pgdat, size);
2705 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
2707 #ifdef CONFIG_FLATMEM
2709 * With no DISCONTIG, the global mem_map is just set as node 0's
2711 if (pgdat == NODE_DATA(0)) {
2712 mem_map = NODE_DATA(0)->node_mem_map;
2713 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2714 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
2715 mem_map -= pgdat->node_start_pfn;
2716 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
2718 #endif
2719 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
2722 void __meminit free_area_init_node(int nid, struct pglist_data *pgdat,
2723 unsigned long *zones_size, unsigned long node_start_pfn,
2724 unsigned long *zholes_size)
2726 pgdat->node_id = nid;
2727 pgdat->node_start_pfn = node_start_pfn;
2728 calculate_node_totalpages(pgdat, zones_size, zholes_size);
2730 alloc_node_mem_map(pgdat);
2732 free_area_init_core(pgdat, zones_size, zholes_size);
2735 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2737 * add_active_range - Register a range of PFNs backed by physical memory
2738 * @nid: The node ID the range resides on
2739 * @start_pfn: The start PFN of the available physical memory
2740 * @end_pfn: The end PFN of the available physical memory
2742 * These ranges are stored in an early_node_map[] and later used by
2743 * free_area_init_nodes() to calculate zone sizes and holes. If the
2744 * range spans a memory hole, it is up to the architecture to ensure
2745 * the memory is not freed by the bootmem allocator. If possible
2746 * the range being registered will be merged with existing ranges.
2748 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
2749 unsigned long end_pfn)
2751 int i;
2753 printk(KERN_DEBUG "Entering add_active_range(%d, %lu, %lu) "
2754 "%d entries of %d used\n",
2755 nid, start_pfn, end_pfn,
2756 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
2758 /* Merge with existing active regions if possible */
2759 for (i = 0; i < nr_nodemap_entries; i++) {
2760 if (early_node_map[i].nid != nid)
2761 continue;
2763 /* Skip if an existing region covers this new one */
2764 if (start_pfn >= early_node_map[i].start_pfn &&
2765 end_pfn <= early_node_map[i].end_pfn)
2766 return;
2768 /* Merge forward if suitable */
2769 if (start_pfn <= early_node_map[i].end_pfn &&
2770 end_pfn > early_node_map[i].end_pfn) {
2771 early_node_map[i].end_pfn = end_pfn;
2772 return;
2775 /* Merge backward if suitable */
2776 if (start_pfn < early_node_map[i].end_pfn &&
2777 end_pfn >= early_node_map[i].start_pfn) {
2778 early_node_map[i].start_pfn = start_pfn;
2779 return;
2783 /* Check that early_node_map is large enough */
2784 if (i >= MAX_ACTIVE_REGIONS) {
2785 printk(KERN_CRIT "More than %d memory regions, truncating\n",
2786 MAX_ACTIVE_REGIONS);
2787 return;
2790 early_node_map[i].nid = nid;
2791 early_node_map[i].start_pfn = start_pfn;
2792 early_node_map[i].end_pfn = end_pfn;
2793 nr_nodemap_entries = i + 1;
2797 * shrink_active_range - Shrink an existing registered range of PFNs
2798 * @nid: The node id the range is on that should be shrunk
2799 * @old_end_pfn: The old end PFN of the range
2800 * @new_end_pfn: The new PFN of the range
2802 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
2803 * The map is kept at the end physical page range that has already been
2804 * registered with add_active_range(). This function allows an arch to shrink
2805 * an existing registered range.
2807 void __init shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
2808 unsigned long new_end_pfn)
2810 int i;
2812 /* Find the old active region end and shrink */
2813 for_each_active_range_index_in_nid(i, nid)
2814 if (early_node_map[i].end_pfn == old_end_pfn) {
2815 early_node_map[i].end_pfn = new_end_pfn;
2816 break;
2821 * remove_all_active_ranges - Remove all currently registered regions
2823 * During discovery, it may be found that a table like SRAT is invalid
2824 * and an alternative discovery method must be used. This function removes
2825 * all currently registered regions.
2827 void __init remove_all_active_ranges(void)
2829 memset(early_node_map, 0, sizeof(early_node_map));
2830 nr_nodemap_entries = 0;
2831 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2832 memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
2833 memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
2834 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
2837 /* Compare two active node_active_regions */
2838 static int __init cmp_node_active_region(const void *a, const void *b)
2840 struct node_active_region *arange = (struct node_active_region *)a;
2841 struct node_active_region *brange = (struct node_active_region *)b;
2843 /* Done this way to avoid overflows */
2844 if (arange->start_pfn > brange->start_pfn)
2845 return 1;
2846 if (arange->start_pfn < brange->start_pfn)
2847 return -1;
2849 return 0;
2852 /* sort the node_map by start_pfn */
2853 static void __init sort_node_map(void)
2855 sort(early_node_map, (size_t)nr_nodemap_entries,
2856 sizeof(struct node_active_region),
2857 cmp_node_active_region, NULL);
2860 /* Find the lowest pfn for a node */
2861 unsigned long __init find_min_pfn_for_node(unsigned long nid)
2863 int i;
2864 unsigned long min_pfn = ULONG_MAX;
2866 /* Assuming a sorted map, the first range found has the starting pfn */
2867 for_each_active_range_index_in_nid(i, nid)
2868 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
2870 if (min_pfn == ULONG_MAX) {
2871 printk(KERN_WARNING
2872 "Could not find start_pfn for node %lu\n", nid);
2873 return 0;
2876 return min_pfn;
2880 * find_min_pfn_with_active_regions - Find the minimum PFN registered
2882 * It returns the minimum PFN based on information provided via
2883 * add_active_range().
2885 unsigned long __init find_min_pfn_with_active_regions(void)
2887 return find_min_pfn_for_node(MAX_NUMNODES);
2891 * find_max_pfn_with_active_regions - Find the maximum PFN registered
2893 * It returns the maximum PFN based on information provided via
2894 * add_active_range().
2896 unsigned long __init find_max_pfn_with_active_regions(void)
2898 int i;
2899 unsigned long max_pfn = 0;
2901 for (i = 0; i < nr_nodemap_entries; i++)
2902 max_pfn = max(max_pfn, early_node_map[i].end_pfn);
2904 return max_pfn;
2908 * free_area_init_nodes - Initialise all pg_data_t and zone data
2909 * @max_zone_pfn: an array of max PFNs for each zone
2911 * This will call free_area_init_node() for each active node in the system.
2912 * Using the page ranges provided by add_active_range(), the size of each
2913 * zone in each node and their holes is calculated. If the maximum PFN
2914 * between two adjacent zones match, it is assumed that the zone is empty.
2915 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
2916 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
2917 * starts where the previous one ended. For example, ZONE_DMA32 starts
2918 * at arch_max_dma_pfn.
2920 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
2922 unsigned long nid;
2923 enum zone_type i;
2925 /* Sort early_node_map as initialisation assumes it is sorted */
2926 sort_node_map();
2928 /* Record where the zone boundaries are */
2929 memset(arch_zone_lowest_possible_pfn, 0,
2930 sizeof(arch_zone_lowest_possible_pfn));
2931 memset(arch_zone_highest_possible_pfn, 0,
2932 sizeof(arch_zone_highest_possible_pfn));
2933 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
2934 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
2935 for (i = 1; i < MAX_NR_ZONES; i++) {
2936 arch_zone_lowest_possible_pfn[i] =
2937 arch_zone_highest_possible_pfn[i-1];
2938 arch_zone_highest_possible_pfn[i] =
2939 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
2942 /* Print out the zone ranges */
2943 printk("Zone PFN ranges:\n");
2944 for (i = 0; i < MAX_NR_ZONES; i++)
2945 printk(" %-8s %8lu -> %8lu\n",
2946 zone_names[i],
2947 arch_zone_lowest_possible_pfn[i],
2948 arch_zone_highest_possible_pfn[i]);
2950 /* Print out the early_node_map[] */
2951 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
2952 for (i = 0; i < nr_nodemap_entries; i++)
2953 printk(" %3d: %8lu -> %8lu\n", early_node_map[i].nid,
2954 early_node_map[i].start_pfn,
2955 early_node_map[i].end_pfn);
2957 /* Initialise every node */
2958 setup_nr_node_ids();
2959 for_each_online_node(nid) {
2960 pg_data_t *pgdat = NODE_DATA(nid);
2961 free_area_init_node(nid, pgdat, NULL,
2962 find_min_pfn_for_node(nid), NULL);
2965 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
2968 * set_dma_reserve - set the specified number of pages reserved in the first zone
2969 * @new_dma_reserve: The number of pages to mark reserved
2971 * The per-cpu batchsize and zone watermarks are determined by present_pages.
2972 * In the DMA zone, a significant percentage may be consumed by kernel image
2973 * and other unfreeable allocations which can skew the watermarks badly. This
2974 * function may optionally be used to account for unfreeable pages in the
2975 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
2976 * smaller per-cpu batchsize.
2978 void __init set_dma_reserve(unsigned long new_dma_reserve)
2980 dma_reserve = new_dma_reserve;
2983 #ifndef CONFIG_NEED_MULTIPLE_NODES
2984 static bootmem_data_t contig_bootmem_data;
2985 struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
2987 EXPORT_SYMBOL(contig_page_data);
2988 #endif
2990 void __init free_area_init(unsigned long *zones_size)
2992 free_area_init_node(0, NODE_DATA(0), zones_size,
2993 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
2996 static int page_alloc_cpu_notify(struct notifier_block *self,
2997 unsigned long action, void *hcpu)
2999 int cpu = (unsigned long)hcpu;
3001 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
3002 local_irq_disable();
3003 __drain_pages(cpu);
3004 vm_events_fold_cpu(cpu);
3005 local_irq_enable();
3006 refresh_cpu_vm_stats(cpu);
3008 return NOTIFY_OK;
3011 void __init page_alloc_init(void)
3013 hotcpu_notifier(page_alloc_cpu_notify, 0);
3017 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
3018 * or min_free_kbytes changes.
3020 static void calculate_totalreserve_pages(void)
3022 struct pglist_data *pgdat;
3023 unsigned long reserve_pages = 0;
3024 enum zone_type i, j;
3026 for_each_online_pgdat(pgdat) {
3027 for (i = 0; i < MAX_NR_ZONES; i++) {
3028 struct zone *zone = pgdat->node_zones + i;
3029 unsigned long max = 0;
3031 /* Find valid and maximum lowmem_reserve in the zone */
3032 for (j = i; j < MAX_NR_ZONES; j++) {
3033 if (zone->lowmem_reserve[j] > max)
3034 max = zone->lowmem_reserve[j];
3037 /* we treat pages_high as reserved pages. */
3038 max += zone->pages_high;
3040 if (max > zone->present_pages)
3041 max = zone->present_pages;
3042 reserve_pages += max;
3045 totalreserve_pages = reserve_pages;
3049 * setup_per_zone_lowmem_reserve - called whenever
3050 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
3051 * has a correct pages reserved value, so an adequate number of
3052 * pages are left in the zone after a successful __alloc_pages().
3054 static void setup_per_zone_lowmem_reserve(void)
3056 struct pglist_data *pgdat;
3057 enum zone_type j, idx;
3059 for_each_online_pgdat(pgdat) {
3060 for (j = 0; j < MAX_NR_ZONES; j++) {
3061 struct zone *zone = pgdat->node_zones + j;
3062 unsigned long present_pages = zone->present_pages;
3064 zone->lowmem_reserve[j] = 0;
3066 idx = j;
3067 while (idx) {
3068 struct zone *lower_zone;
3070 idx--;
3072 if (sysctl_lowmem_reserve_ratio[idx] < 1)
3073 sysctl_lowmem_reserve_ratio[idx] = 1;
3075 lower_zone = pgdat->node_zones + idx;
3076 lower_zone->lowmem_reserve[j] = present_pages /
3077 sysctl_lowmem_reserve_ratio[idx];
3078 present_pages += lower_zone->present_pages;
3083 /* update totalreserve_pages */
3084 calculate_totalreserve_pages();
3088 * setup_per_zone_pages_min - called when min_free_kbytes changes.
3090 * Ensures that the pages_{min,low,high} values for each zone are set correctly
3091 * with respect to min_free_kbytes.
3093 void setup_per_zone_pages_min(void)
3095 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
3096 unsigned long lowmem_pages = 0;
3097 struct zone *zone;
3098 unsigned long flags;
3100 /* Calculate total number of !ZONE_HIGHMEM pages */
3101 for_each_zone(zone) {
3102 if (!is_highmem(zone))
3103 lowmem_pages += zone->present_pages;
3106 for_each_zone(zone) {
3107 u64 tmp;
3109 spin_lock_irqsave(&zone->lru_lock, flags);
3110 tmp = (u64)pages_min * zone->present_pages;
3111 do_div(tmp, lowmem_pages);
3112 if (is_highmem(zone)) {
3114 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
3115 * need highmem pages, so cap pages_min to a small
3116 * value here.
3118 * The (pages_high-pages_low) and (pages_low-pages_min)
3119 * deltas controls asynch page reclaim, and so should
3120 * not be capped for highmem.
3122 int min_pages;
3124 min_pages = zone->present_pages / 1024;
3125 if (min_pages < SWAP_CLUSTER_MAX)
3126 min_pages = SWAP_CLUSTER_MAX;
3127 if (min_pages > 128)
3128 min_pages = 128;
3129 zone->pages_min = min_pages;
3130 } else {
3132 * If it's a lowmem zone, reserve a number of pages
3133 * proportionate to the zone's size.
3135 zone->pages_min = tmp;
3138 zone->pages_low = zone->pages_min + (tmp >> 2);
3139 zone->pages_high = zone->pages_min + (tmp >> 1);
3140 spin_unlock_irqrestore(&zone->lru_lock, flags);
3143 /* update totalreserve_pages */
3144 calculate_totalreserve_pages();
3148 * Initialise min_free_kbytes.
3150 * For small machines we want it small (128k min). For large machines
3151 * we want it large (64MB max). But it is not linear, because network
3152 * bandwidth does not increase linearly with machine size. We use
3154 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
3155 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
3157 * which yields
3159 * 16MB: 512k
3160 * 32MB: 724k
3161 * 64MB: 1024k
3162 * 128MB: 1448k
3163 * 256MB: 2048k
3164 * 512MB: 2896k
3165 * 1024MB: 4096k
3166 * 2048MB: 5792k
3167 * 4096MB: 8192k
3168 * 8192MB: 11584k
3169 * 16384MB: 16384k
3171 static int __init init_per_zone_pages_min(void)
3173 unsigned long lowmem_kbytes;
3175 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
3177 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
3178 if (min_free_kbytes < 128)
3179 min_free_kbytes = 128;
3180 if (min_free_kbytes > 65536)
3181 min_free_kbytes = 65536;
3182 setup_per_zone_pages_min();
3183 setup_per_zone_lowmem_reserve();
3184 return 0;
3186 module_init(init_per_zone_pages_min)
3189 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
3190 * that we can call two helper functions whenever min_free_kbytes
3191 * changes.
3193 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
3194 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3196 proc_dointvec(table, write, file, buffer, length, ppos);
3197 if (write)
3198 setup_per_zone_pages_min();
3199 return 0;
3202 #ifdef CONFIG_NUMA
3203 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
3204 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3206 struct zone *zone;
3207 int rc;
3209 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3210 if (rc)
3211 return rc;
3213 for_each_zone(zone)
3214 zone->min_unmapped_pages = (zone->present_pages *
3215 sysctl_min_unmapped_ratio) / 100;
3216 return 0;
3219 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
3220 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3222 struct zone *zone;
3223 int rc;
3225 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3226 if (rc)
3227 return rc;
3229 for_each_zone(zone)
3230 zone->min_slab_pages = (zone->present_pages *
3231 sysctl_min_slab_ratio) / 100;
3232 return 0;
3234 #endif
3237 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
3238 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
3239 * whenever sysctl_lowmem_reserve_ratio changes.
3241 * The reserve ratio obviously has absolutely no relation with the
3242 * pages_min watermarks. The lowmem reserve ratio can only make sense
3243 * if in function of the boot time zone sizes.
3245 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
3246 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3248 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3249 setup_per_zone_lowmem_reserve();
3250 return 0;
3254 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
3255 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
3256 * can have before it gets flushed back to buddy allocator.
3259 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
3260 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3262 struct zone *zone;
3263 unsigned int cpu;
3264 int ret;
3266 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3267 if (!write || (ret == -EINVAL))
3268 return ret;
3269 for_each_zone(zone) {
3270 for_each_online_cpu(cpu) {
3271 unsigned long high;
3272 high = zone->present_pages / percpu_pagelist_fraction;
3273 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
3276 return 0;
3279 int hashdist = HASHDIST_DEFAULT;
3281 #ifdef CONFIG_NUMA
3282 static int __init set_hashdist(char *str)
3284 if (!str)
3285 return 0;
3286 hashdist = simple_strtoul(str, &str, 0);
3287 return 1;
3289 __setup("hashdist=", set_hashdist);
3290 #endif
3293 * allocate a large system hash table from bootmem
3294 * - it is assumed that the hash table must contain an exact power-of-2
3295 * quantity of entries
3296 * - limit is the number of hash buckets, not the total allocation size
3298 void *__init alloc_large_system_hash(const char *tablename,
3299 unsigned long bucketsize,
3300 unsigned long numentries,
3301 int scale,
3302 int flags,
3303 unsigned int *_hash_shift,
3304 unsigned int *_hash_mask,
3305 unsigned long limit)
3307 unsigned long long max = limit;
3308 unsigned long log2qty, size;
3309 void *table = NULL;
3311 /* allow the kernel cmdline to have a say */
3312 if (!numentries) {
3313 /* round applicable memory size up to nearest megabyte */
3314 numentries = nr_kernel_pages;
3315 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
3316 numentries >>= 20 - PAGE_SHIFT;
3317 numentries <<= 20 - PAGE_SHIFT;
3319 /* limit to 1 bucket per 2^scale bytes of low memory */
3320 if (scale > PAGE_SHIFT)
3321 numentries >>= (scale - PAGE_SHIFT);
3322 else
3323 numentries <<= (PAGE_SHIFT - scale);
3325 /* Make sure we've got at least a 0-order allocation.. */
3326 if (unlikely((numentries * bucketsize) < PAGE_SIZE))
3327 numentries = PAGE_SIZE / bucketsize;
3329 numentries = roundup_pow_of_two(numentries);
3331 /* limit allocation size to 1/16 total memory by default */
3332 if (max == 0) {
3333 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
3334 do_div(max, bucketsize);
3337 if (numentries > max)
3338 numentries = max;
3340 log2qty = ilog2(numentries);
3342 do {
3343 size = bucketsize << log2qty;
3344 if (flags & HASH_EARLY)
3345 table = alloc_bootmem(size);
3346 else if (hashdist)
3347 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
3348 else {
3349 unsigned long order;
3350 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
3352 table = (void*) __get_free_pages(GFP_ATOMIC, order);
3354 } while (!table && size > PAGE_SIZE && --log2qty);
3356 if (!table)
3357 panic("Failed to allocate %s hash table\n", tablename);
3359 printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
3360 tablename,
3361 (1U << log2qty),
3362 ilog2(size) - PAGE_SHIFT,
3363 size);
3365 if (_hash_shift)
3366 *_hash_shift = log2qty;
3367 if (_hash_mask)
3368 *_hash_mask = (1 << log2qty) - 1;
3370 return table;
3373 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
3374 struct page *pfn_to_page(unsigned long pfn)
3376 return __pfn_to_page(pfn);
3378 unsigned long page_to_pfn(struct page *page)
3380 return __page_to_pfn(page);
3382 EXPORT_SYMBOL(pfn_to_page);
3383 EXPORT_SYMBOL(page_to_pfn);
3384 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */