x86: ioremap mptable
[linux-2.6/mini2440.git] / kernel / signal.c
blob2a74fe87c0ddb7c46ede38a542c7e2331a5aa44e
1 /*
2 * linux/kernel/signal.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
13 #include <linux/slab.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/tty.h>
19 #include <linux/binfmts.h>
20 #include <linux/security.h>
21 #include <linux/syscalls.h>
22 #include <linux/ptrace.h>
23 #include <linux/signal.h>
24 #include <linux/signalfd.h>
25 #include <linux/tracehook.h>
26 #include <linux/capability.h>
27 #include <linux/freezer.h>
28 #include <linux/pid_namespace.h>
29 #include <linux/nsproxy.h>
30 #include <trace/sched.h>
32 #include <asm/param.h>
33 #include <asm/uaccess.h>
34 #include <asm/unistd.h>
35 #include <asm/siginfo.h>
36 #include "audit.h" /* audit_signal_info() */
39 * SLAB caches for signal bits.
42 static struct kmem_cache *sigqueue_cachep;
44 DEFINE_TRACE(sched_signal_send);
46 static void __user *sig_handler(struct task_struct *t, int sig)
48 return t->sighand->action[sig - 1].sa.sa_handler;
51 static int sig_handler_ignored(void __user *handler, int sig)
53 /* Is it explicitly or implicitly ignored? */
54 return handler == SIG_IGN ||
55 (handler == SIG_DFL && sig_kernel_ignore(sig));
58 static int sig_ignored(struct task_struct *t, int sig)
60 void __user *handler;
63 * Blocked signals are never ignored, since the
64 * signal handler may change by the time it is
65 * unblocked.
67 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
68 return 0;
70 handler = sig_handler(t, sig);
71 if (!sig_handler_ignored(handler, sig))
72 return 0;
75 * Tracers may want to know about even ignored signals.
77 return !tracehook_consider_ignored_signal(t, sig, handler);
81 * Re-calculate pending state from the set of locally pending
82 * signals, globally pending signals, and blocked signals.
84 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
86 unsigned long ready;
87 long i;
89 switch (_NSIG_WORDS) {
90 default:
91 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
92 ready |= signal->sig[i] &~ blocked->sig[i];
93 break;
95 case 4: ready = signal->sig[3] &~ blocked->sig[3];
96 ready |= signal->sig[2] &~ blocked->sig[2];
97 ready |= signal->sig[1] &~ blocked->sig[1];
98 ready |= signal->sig[0] &~ blocked->sig[0];
99 break;
101 case 2: ready = signal->sig[1] &~ blocked->sig[1];
102 ready |= signal->sig[0] &~ blocked->sig[0];
103 break;
105 case 1: ready = signal->sig[0] &~ blocked->sig[0];
107 return ready != 0;
110 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
112 static int recalc_sigpending_tsk(struct task_struct *t)
114 if (t->signal->group_stop_count > 0 ||
115 PENDING(&t->pending, &t->blocked) ||
116 PENDING(&t->signal->shared_pending, &t->blocked)) {
117 set_tsk_thread_flag(t, TIF_SIGPENDING);
118 return 1;
121 * We must never clear the flag in another thread, or in current
122 * when it's possible the current syscall is returning -ERESTART*.
123 * So we don't clear it here, and only callers who know they should do.
125 return 0;
129 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
130 * This is superfluous when called on current, the wakeup is a harmless no-op.
132 void recalc_sigpending_and_wake(struct task_struct *t)
134 if (recalc_sigpending_tsk(t))
135 signal_wake_up(t, 0);
138 void recalc_sigpending(void)
140 if (unlikely(tracehook_force_sigpending()))
141 set_thread_flag(TIF_SIGPENDING);
142 else if (!recalc_sigpending_tsk(current) && !freezing(current))
143 clear_thread_flag(TIF_SIGPENDING);
147 /* Given the mask, find the first available signal that should be serviced. */
149 int next_signal(struct sigpending *pending, sigset_t *mask)
151 unsigned long i, *s, *m, x;
152 int sig = 0;
154 s = pending->signal.sig;
155 m = mask->sig;
156 switch (_NSIG_WORDS) {
157 default:
158 for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m)
159 if ((x = *s &~ *m) != 0) {
160 sig = ffz(~x) + i*_NSIG_BPW + 1;
161 break;
163 break;
165 case 2: if ((x = s[0] &~ m[0]) != 0)
166 sig = 1;
167 else if ((x = s[1] &~ m[1]) != 0)
168 sig = _NSIG_BPW + 1;
169 else
170 break;
171 sig += ffz(~x);
172 break;
174 case 1: if ((x = *s &~ *m) != 0)
175 sig = ffz(~x) + 1;
176 break;
179 return sig;
183 * allocate a new signal queue record
184 * - this may be called without locks if and only if t == current, otherwise an
185 * appopriate lock must be held to stop the target task from exiting
187 static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags,
188 int override_rlimit)
190 struct sigqueue *q = NULL;
191 struct user_struct *user;
194 * We won't get problems with the target's UID changing under us
195 * because changing it requires RCU be used, and if t != current, the
196 * caller must be holding the RCU readlock (by way of a spinlock) and
197 * we use RCU protection here
199 user = get_uid(__task_cred(t)->user);
200 atomic_inc(&user->sigpending);
201 if (override_rlimit ||
202 atomic_read(&user->sigpending) <=
203 t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur)
204 q = kmem_cache_alloc(sigqueue_cachep, flags);
205 if (unlikely(q == NULL)) {
206 atomic_dec(&user->sigpending);
207 free_uid(user);
208 } else {
209 INIT_LIST_HEAD(&q->list);
210 q->flags = 0;
211 q->user = user;
214 return q;
217 static void __sigqueue_free(struct sigqueue *q)
219 if (q->flags & SIGQUEUE_PREALLOC)
220 return;
221 atomic_dec(&q->user->sigpending);
222 free_uid(q->user);
223 kmem_cache_free(sigqueue_cachep, q);
226 void flush_sigqueue(struct sigpending *queue)
228 struct sigqueue *q;
230 sigemptyset(&queue->signal);
231 while (!list_empty(&queue->list)) {
232 q = list_entry(queue->list.next, struct sigqueue , list);
233 list_del_init(&q->list);
234 __sigqueue_free(q);
239 * Flush all pending signals for a task.
241 void flush_signals(struct task_struct *t)
243 unsigned long flags;
245 spin_lock_irqsave(&t->sighand->siglock, flags);
246 clear_tsk_thread_flag(t, TIF_SIGPENDING);
247 flush_sigqueue(&t->pending);
248 flush_sigqueue(&t->signal->shared_pending);
249 spin_unlock_irqrestore(&t->sighand->siglock, flags);
252 static void __flush_itimer_signals(struct sigpending *pending)
254 sigset_t signal, retain;
255 struct sigqueue *q, *n;
257 signal = pending->signal;
258 sigemptyset(&retain);
260 list_for_each_entry_safe(q, n, &pending->list, list) {
261 int sig = q->info.si_signo;
263 if (likely(q->info.si_code != SI_TIMER)) {
264 sigaddset(&retain, sig);
265 } else {
266 sigdelset(&signal, sig);
267 list_del_init(&q->list);
268 __sigqueue_free(q);
272 sigorsets(&pending->signal, &signal, &retain);
275 void flush_itimer_signals(void)
277 struct task_struct *tsk = current;
278 unsigned long flags;
280 spin_lock_irqsave(&tsk->sighand->siglock, flags);
281 __flush_itimer_signals(&tsk->pending);
282 __flush_itimer_signals(&tsk->signal->shared_pending);
283 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
286 void ignore_signals(struct task_struct *t)
288 int i;
290 for (i = 0; i < _NSIG; ++i)
291 t->sighand->action[i].sa.sa_handler = SIG_IGN;
293 flush_signals(t);
297 * Flush all handlers for a task.
300 void
301 flush_signal_handlers(struct task_struct *t, int force_default)
303 int i;
304 struct k_sigaction *ka = &t->sighand->action[0];
305 for (i = _NSIG ; i != 0 ; i--) {
306 if (force_default || ka->sa.sa_handler != SIG_IGN)
307 ka->sa.sa_handler = SIG_DFL;
308 ka->sa.sa_flags = 0;
309 sigemptyset(&ka->sa.sa_mask);
310 ka++;
314 int unhandled_signal(struct task_struct *tsk, int sig)
316 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
317 if (is_global_init(tsk))
318 return 1;
319 if (handler != SIG_IGN && handler != SIG_DFL)
320 return 0;
321 return !tracehook_consider_fatal_signal(tsk, sig, handler);
325 /* Notify the system that a driver wants to block all signals for this
326 * process, and wants to be notified if any signals at all were to be
327 * sent/acted upon. If the notifier routine returns non-zero, then the
328 * signal will be acted upon after all. If the notifier routine returns 0,
329 * then then signal will be blocked. Only one block per process is
330 * allowed. priv is a pointer to private data that the notifier routine
331 * can use to determine if the signal should be blocked or not. */
333 void
334 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
336 unsigned long flags;
338 spin_lock_irqsave(&current->sighand->siglock, flags);
339 current->notifier_mask = mask;
340 current->notifier_data = priv;
341 current->notifier = notifier;
342 spin_unlock_irqrestore(&current->sighand->siglock, flags);
345 /* Notify the system that blocking has ended. */
347 void
348 unblock_all_signals(void)
350 unsigned long flags;
352 spin_lock_irqsave(&current->sighand->siglock, flags);
353 current->notifier = NULL;
354 current->notifier_data = NULL;
355 recalc_sigpending();
356 spin_unlock_irqrestore(&current->sighand->siglock, flags);
359 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
361 struct sigqueue *q, *first = NULL;
364 * Collect the siginfo appropriate to this signal. Check if
365 * there is another siginfo for the same signal.
367 list_for_each_entry(q, &list->list, list) {
368 if (q->info.si_signo == sig) {
369 if (first)
370 goto still_pending;
371 first = q;
375 sigdelset(&list->signal, sig);
377 if (first) {
378 still_pending:
379 list_del_init(&first->list);
380 copy_siginfo(info, &first->info);
381 __sigqueue_free(first);
382 } else {
383 /* Ok, it wasn't in the queue. This must be
384 a fast-pathed signal or we must have been
385 out of queue space. So zero out the info.
387 info->si_signo = sig;
388 info->si_errno = 0;
389 info->si_code = 0;
390 info->si_pid = 0;
391 info->si_uid = 0;
395 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
396 siginfo_t *info)
398 int sig = next_signal(pending, mask);
400 if (sig) {
401 if (current->notifier) {
402 if (sigismember(current->notifier_mask, sig)) {
403 if (!(current->notifier)(current->notifier_data)) {
404 clear_thread_flag(TIF_SIGPENDING);
405 return 0;
410 collect_signal(sig, pending, info);
413 return sig;
417 * Dequeue a signal and return the element to the caller, which is
418 * expected to free it.
420 * All callers have to hold the siglock.
422 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
424 int signr;
426 /* We only dequeue private signals from ourselves, we don't let
427 * signalfd steal them
429 signr = __dequeue_signal(&tsk->pending, mask, info);
430 if (!signr) {
431 signr = __dequeue_signal(&tsk->signal->shared_pending,
432 mask, info);
434 * itimer signal ?
436 * itimers are process shared and we restart periodic
437 * itimers in the signal delivery path to prevent DoS
438 * attacks in the high resolution timer case. This is
439 * compliant with the old way of self restarting
440 * itimers, as the SIGALRM is a legacy signal and only
441 * queued once. Changing the restart behaviour to
442 * restart the timer in the signal dequeue path is
443 * reducing the timer noise on heavy loaded !highres
444 * systems too.
446 if (unlikely(signr == SIGALRM)) {
447 struct hrtimer *tmr = &tsk->signal->real_timer;
449 if (!hrtimer_is_queued(tmr) &&
450 tsk->signal->it_real_incr.tv64 != 0) {
451 hrtimer_forward(tmr, tmr->base->get_time(),
452 tsk->signal->it_real_incr);
453 hrtimer_restart(tmr);
458 recalc_sigpending();
459 if (!signr)
460 return 0;
462 if (unlikely(sig_kernel_stop(signr))) {
464 * Set a marker that we have dequeued a stop signal. Our
465 * caller might release the siglock and then the pending
466 * stop signal it is about to process is no longer in the
467 * pending bitmasks, but must still be cleared by a SIGCONT
468 * (and overruled by a SIGKILL). So those cases clear this
469 * shared flag after we've set it. Note that this flag may
470 * remain set after the signal we return is ignored or
471 * handled. That doesn't matter because its only purpose
472 * is to alert stop-signal processing code when another
473 * processor has come along and cleared the flag.
475 tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
477 if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
479 * Release the siglock to ensure proper locking order
480 * of timer locks outside of siglocks. Note, we leave
481 * irqs disabled here, since the posix-timers code is
482 * about to disable them again anyway.
484 spin_unlock(&tsk->sighand->siglock);
485 do_schedule_next_timer(info);
486 spin_lock(&tsk->sighand->siglock);
488 return signr;
492 * Tell a process that it has a new active signal..
494 * NOTE! we rely on the previous spin_lock to
495 * lock interrupts for us! We can only be called with
496 * "siglock" held, and the local interrupt must
497 * have been disabled when that got acquired!
499 * No need to set need_resched since signal event passing
500 * goes through ->blocked
502 void signal_wake_up(struct task_struct *t, int resume)
504 unsigned int mask;
506 set_tsk_thread_flag(t, TIF_SIGPENDING);
509 * For SIGKILL, we want to wake it up in the stopped/traced/killable
510 * case. We don't check t->state here because there is a race with it
511 * executing another processor and just now entering stopped state.
512 * By using wake_up_state, we ensure the process will wake up and
513 * handle its death signal.
515 mask = TASK_INTERRUPTIBLE;
516 if (resume)
517 mask |= TASK_WAKEKILL;
518 if (!wake_up_state(t, mask))
519 kick_process(t);
523 * Remove signals in mask from the pending set and queue.
524 * Returns 1 if any signals were found.
526 * All callers must be holding the siglock.
528 * This version takes a sigset mask and looks at all signals,
529 * not just those in the first mask word.
531 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
533 struct sigqueue *q, *n;
534 sigset_t m;
536 sigandsets(&m, mask, &s->signal);
537 if (sigisemptyset(&m))
538 return 0;
540 signandsets(&s->signal, &s->signal, mask);
541 list_for_each_entry_safe(q, n, &s->list, list) {
542 if (sigismember(mask, q->info.si_signo)) {
543 list_del_init(&q->list);
544 __sigqueue_free(q);
547 return 1;
550 * Remove signals in mask from the pending set and queue.
551 * Returns 1 if any signals were found.
553 * All callers must be holding the siglock.
555 static int rm_from_queue(unsigned long mask, struct sigpending *s)
557 struct sigqueue *q, *n;
559 if (!sigtestsetmask(&s->signal, mask))
560 return 0;
562 sigdelsetmask(&s->signal, mask);
563 list_for_each_entry_safe(q, n, &s->list, list) {
564 if (q->info.si_signo < SIGRTMIN &&
565 (mask & sigmask(q->info.si_signo))) {
566 list_del_init(&q->list);
567 __sigqueue_free(q);
570 return 1;
574 * Bad permissions for sending the signal
575 * - the caller must hold at least the RCU read lock
577 static int check_kill_permission(int sig, struct siginfo *info,
578 struct task_struct *t)
580 const struct cred *cred = current_cred(), *tcred;
581 struct pid *sid;
582 int error;
584 if (!valid_signal(sig))
585 return -EINVAL;
587 if (info != SEND_SIG_NOINFO && (is_si_special(info) || SI_FROMKERNEL(info)))
588 return 0;
590 error = audit_signal_info(sig, t); /* Let audit system see the signal */
591 if (error)
592 return error;
594 tcred = __task_cred(t);
595 if ((cred->euid ^ tcred->suid) &&
596 (cred->euid ^ tcred->uid) &&
597 (cred->uid ^ tcred->suid) &&
598 (cred->uid ^ tcred->uid) &&
599 !capable(CAP_KILL)) {
600 switch (sig) {
601 case SIGCONT:
602 sid = task_session(t);
604 * We don't return the error if sid == NULL. The
605 * task was unhashed, the caller must notice this.
607 if (!sid || sid == task_session(current))
608 break;
609 default:
610 return -EPERM;
614 return security_task_kill(t, info, sig, 0);
618 * Handle magic process-wide effects of stop/continue signals. Unlike
619 * the signal actions, these happen immediately at signal-generation
620 * time regardless of blocking, ignoring, or handling. This does the
621 * actual continuing for SIGCONT, but not the actual stopping for stop
622 * signals. The process stop is done as a signal action for SIG_DFL.
624 * Returns true if the signal should be actually delivered, otherwise
625 * it should be dropped.
627 static int prepare_signal(int sig, struct task_struct *p)
629 struct signal_struct *signal = p->signal;
630 struct task_struct *t;
632 if (unlikely(signal->flags & SIGNAL_GROUP_EXIT)) {
634 * The process is in the middle of dying, nothing to do.
636 } else if (sig_kernel_stop(sig)) {
638 * This is a stop signal. Remove SIGCONT from all queues.
640 rm_from_queue(sigmask(SIGCONT), &signal->shared_pending);
641 t = p;
642 do {
643 rm_from_queue(sigmask(SIGCONT), &t->pending);
644 } while_each_thread(p, t);
645 } else if (sig == SIGCONT) {
646 unsigned int why;
648 * Remove all stop signals from all queues,
649 * and wake all threads.
651 rm_from_queue(SIG_KERNEL_STOP_MASK, &signal->shared_pending);
652 t = p;
653 do {
654 unsigned int state;
655 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
657 * If there is a handler for SIGCONT, we must make
658 * sure that no thread returns to user mode before
659 * we post the signal, in case it was the only
660 * thread eligible to run the signal handler--then
661 * it must not do anything between resuming and
662 * running the handler. With the TIF_SIGPENDING
663 * flag set, the thread will pause and acquire the
664 * siglock that we hold now and until we've queued
665 * the pending signal.
667 * Wake up the stopped thread _after_ setting
668 * TIF_SIGPENDING
670 state = __TASK_STOPPED;
671 if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
672 set_tsk_thread_flag(t, TIF_SIGPENDING);
673 state |= TASK_INTERRUPTIBLE;
675 wake_up_state(t, state);
676 } while_each_thread(p, t);
679 * Notify the parent with CLD_CONTINUED if we were stopped.
681 * If we were in the middle of a group stop, we pretend it
682 * was already finished, and then continued. Since SIGCHLD
683 * doesn't queue we report only CLD_STOPPED, as if the next
684 * CLD_CONTINUED was dropped.
686 why = 0;
687 if (signal->flags & SIGNAL_STOP_STOPPED)
688 why |= SIGNAL_CLD_CONTINUED;
689 else if (signal->group_stop_count)
690 why |= SIGNAL_CLD_STOPPED;
692 if (why) {
694 * The first thread which returns from finish_stop()
695 * will take ->siglock, notice SIGNAL_CLD_MASK, and
696 * notify its parent. See get_signal_to_deliver().
698 signal->flags = why | SIGNAL_STOP_CONTINUED;
699 signal->group_stop_count = 0;
700 signal->group_exit_code = 0;
701 } else {
703 * We are not stopped, but there could be a stop
704 * signal in the middle of being processed after
705 * being removed from the queue. Clear that too.
707 signal->flags &= ~SIGNAL_STOP_DEQUEUED;
711 return !sig_ignored(p, sig);
715 * Test if P wants to take SIG. After we've checked all threads with this,
716 * it's equivalent to finding no threads not blocking SIG. Any threads not
717 * blocking SIG were ruled out because they are not running and already
718 * have pending signals. Such threads will dequeue from the shared queue
719 * as soon as they're available, so putting the signal on the shared queue
720 * will be equivalent to sending it to one such thread.
722 static inline int wants_signal(int sig, struct task_struct *p)
724 if (sigismember(&p->blocked, sig))
725 return 0;
726 if (p->flags & PF_EXITING)
727 return 0;
728 if (sig == SIGKILL)
729 return 1;
730 if (task_is_stopped_or_traced(p))
731 return 0;
732 return task_curr(p) || !signal_pending(p);
735 static void complete_signal(int sig, struct task_struct *p, int group)
737 struct signal_struct *signal = p->signal;
738 struct task_struct *t;
741 * Now find a thread we can wake up to take the signal off the queue.
743 * If the main thread wants the signal, it gets first crack.
744 * Probably the least surprising to the average bear.
746 if (wants_signal(sig, p))
747 t = p;
748 else if (!group || thread_group_empty(p))
750 * There is just one thread and it does not need to be woken.
751 * It will dequeue unblocked signals before it runs again.
753 return;
754 else {
756 * Otherwise try to find a suitable thread.
758 t = signal->curr_target;
759 while (!wants_signal(sig, t)) {
760 t = next_thread(t);
761 if (t == signal->curr_target)
763 * No thread needs to be woken.
764 * Any eligible threads will see
765 * the signal in the queue soon.
767 return;
769 signal->curr_target = t;
773 * Found a killable thread. If the signal will be fatal,
774 * then start taking the whole group down immediately.
776 if (sig_fatal(p, sig) &&
777 !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
778 !sigismember(&t->real_blocked, sig) &&
779 (sig == SIGKILL ||
780 !tracehook_consider_fatal_signal(t, sig, SIG_DFL))) {
782 * This signal will be fatal to the whole group.
784 if (!sig_kernel_coredump(sig)) {
786 * Start a group exit and wake everybody up.
787 * This way we don't have other threads
788 * running and doing things after a slower
789 * thread has the fatal signal pending.
791 signal->flags = SIGNAL_GROUP_EXIT;
792 signal->group_exit_code = sig;
793 signal->group_stop_count = 0;
794 t = p;
795 do {
796 sigaddset(&t->pending.signal, SIGKILL);
797 signal_wake_up(t, 1);
798 } while_each_thread(p, t);
799 return;
804 * The signal is already in the shared-pending queue.
805 * Tell the chosen thread to wake up and dequeue it.
807 signal_wake_up(t, sig == SIGKILL);
808 return;
811 static inline int legacy_queue(struct sigpending *signals, int sig)
813 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
816 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
817 int group)
819 struct sigpending *pending;
820 struct sigqueue *q;
822 trace_sched_signal_send(sig, t);
824 assert_spin_locked(&t->sighand->siglock);
825 if (!prepare_signal(sig, t))
826 return 0;
828 pending = group ? &t->signal->shared_pending : &t->pending;
830 * Short-circuit ignored signals and support queuing
831 * exactly one non-rt signal, so that we can get more
832 * detailed information about the cause of the signal.
834 if (legacy_queue(pending, sig))
835 return 0;
837 * fast-pathed signals for kernel-internal things like SIGSTOP
838 * or SIGKILL.
840 if (info == SEND_SIG_FORCED)
841 goto out_set;
843 /* Real-time signals must be queued if sent by sigqueue, or
844 some other real-time mechanism. It is implementation
845 defined whether kill() does so. We attempt to do so, on
846 the principle of least surprise, but since kill is not
847 allowed to fail with EAGAIN when low on memory we just
848 make sure at least one signal gets delivered and don't
849 pass on the info struct. */
851 q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN &&
852 (is_si_special(info) ||
853 info->si_code >= 0)));
854 if (q) {
855 list_add_tail(&q->list, &pending->list);
856 switch ((unsigned long) info) {
857 case (unsigned long) SEND_SIG_NOINFO:
858 q->info.si_signo = sig;
859 q->info.si_errno = 0;
860 q->info.si_code = SI_USER;
861 q->info.si_pid = task_tgid_nr_ns(current,
862 task_active_pid_ns(t));
863 q->info.si_uid = current_uid();
864 break;
865 case (unsigned long) SEND_SIG_PRIV:
866 q->info.si_signo = sig;
867 q->info.si_errno = 0;
868 q->info.si_code = SI_KERNEL;
869 q->info.si_pid = 0;
870 q->info.si_uid = 0;
871 break;
872 default:
873 copy_siginfo(&q->info, info);
874 break;
876 } else if (!is_si_special(info)) {
877 if (sig >= SIGRTMIN && info->si_code != SI_USER)
879 * Queue overflow, abort. We may abort if the signal was rt
880 * and sent by user using something other than kill().
882 return -EAGAIN;
885 out_set:
886 signalfd_notify(t, sig);
887 sigaddset(&pending->signal, sig);
888 complete_signal(sig, t, group);
889 return 0;
892 int print_fatal_signals;
894 static void print_fatal_signal(struct pt_regs *regs, int signr)
896 printk("%s/%d: potentially unexpected fatal signal %d.\n",
897 current->comm, task_pid_nr(current), signr);
899 #if defined(__i386__) && !defined(__arch_um__)
900 printk("code at %08lx: ", regs->ip);
902 int i;
903 for (i = 0; i < 16; i++) {
904 unsigned char insn;
906 __get_user(insn, (unsigned char *)(regs->ip + i));
907 printk("%02x ", insn);
910 #endif
911 printk("\n");
912 preempt_disable();
913 show_regs(regs);
914 preempt_enable();
917 static int __init setup_print_fatal_signals(char *str)
919 get_option (&str, &print_fatal_signals);
921 return 1;
924 __setup("print-fatal-signals=", setup_print_fatal_signals);
927 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
929 return send_signal(sig, info, p, 1);
932 static int
933 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
935 return send_signal(sig, info, t, 0);
939 * Force a signal that the process can't ignore: if necessary
940 * we unblock the signal and change any SIG_IGN to SIG_DFL.
942 * Note: If we unblock the signal, we always reset it to SIG_DFL,
943 * since we do not want to have a signal handler that was blocked
944 * be invoked when user space had explicitly blocked it.
946 * We don't want to have recursive SIGSEGV's etc, for example,
947 * that is why we also clear SIGNAL_UNKILLABLE.
950 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
952 unsigned long int flags;
953 int ret, blocked, ignored;
954 struct k_sigaction *action;
956 spin_lock_irqsave(&t->sighand->siglock, flags);
957 action = &t->sighand->action[sig-1];
958 ignored = action->sa.sa_handler == SIG_IGN;
959 blocked = sigismember(&t->blocked, sig);
960 if (blocked || ignored) {
961 action->sa.sa_handler = SIG_DFL;
962 if (blocked) {
963 sigdelset(&t->blocked, sig);
964 recalc_sigpending_and_wake(t);
967 if (action->sa.sa_handler == SIG_DFL)
968 t->signal->flags &= ~SIGNAL_UNKILLABLE;
969 ret = specific_send_sig_info(sig, info, t);
970 spin_unlock_irqrestore(&t->sighand->siglock, flags);
972 return ret;
975 void
976 force_sig_specific(int sig, struct task_struct *t)
978 force_sig_info(sig, SEND_SIG_FORCED, t);
982 * Nuke all other threads in the group.
984 void zap_other_threads(struct task_struct *p)
986 struct task_struct *t;
988 p->signal->group_stop_count = 0;
990 for (t = next_thread(p); t != p; t = next_thread(t)) {
992 * Don't bother with already dead threads
994 if (t->exit_state)
995 continue;
997 /* SIGKILL will be handled before any pending SIGSTOP */
998 sigaddset(&t->pending.signal, SIGKILL);
999 signal_wake_up(t, 1);
1003 int __fatal_signal_pending(struct task_struct *tsk)
1005 return sigismember(&tsk->pending.signal, SIGKILL);
1007 EXPORT_SYMBOL(__fatal_signal_pending);
1009 struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags)
1011 struct sighand_struct *sighand;
1013 rcu_read_lock();
1014 for (;;) {
1015 sighand = rcu_dereference(tsk->sighand);
1016 if (unlikely(sighand == NULL))
1017 break;
1019 spin_lock_irqsave(&sighand->siglock, *flags);
1020 if (likely(sighand == tsk->sighand))
1021 break;
1022 spin_unlock_irqrestore(&sighand->siglock, *flags);
1024 rcu_read_unlock();
1026 return sighand;
1030 * send signal info to all the members of a group
1031 * - the caller must hold the RCU read lock at least
1033 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1035 unsigned long flags;
1036 int ret;
1038 ret = check_kill_permission(sig, info, p);
1040 if (!ret && sig) {
1041 ret = -ESRCH;
1042 if (lock_task_sighand(p, &flags)) {
1043 ret = __group_send_sig_info(sig, info, p);
1044 unlock_task_sighand(p, &flags);
1048 return ret;
1052 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1053 * control characters do (^C, ^Z etc)
1054 * - the caller must hold at least a readlock on tasklist_lock
1056 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1058 struct task_struct *p = NULL;
1059 int retval, success;
1061 success = 0;
1062 retval = -ESRCH;
1063 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1064 int err = group_send_sig_info(sig, info, p);
1065 success |= !err;
1066 retval = err;
1067 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1068 return success ? 0 : retval;
1071 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1073 int error = -ESRCH;
1074 struct task_struct *p;
1076 rcu_read_lock();
1077 retry:
1078 p = pid_task(pid, PIDTYPE_PID);
1079 if (p) {
1080 error = group_send_sig_info(sig, info, p);
1081 if (unlikely(error == -ESRCH))
1083 * The task was unhashed in between, try again.
1084 * If it is dead, pid_task() will return NULL,
1085 * if we race with de_thread() it will find the
1086 * new leader.
1088 goto retry;
1090 rcu_read_unlock();
1092 return error;
1096 kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1098 int error;
1099 rcu_read_lock();
1100 error = kill_pid_info(sig, info, find_vpid(pid));
1101 rcu_read_unlock();
1102 return error;
1105 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1106 int kill_pid_info_as_uid(int sig, struct siginfo *info, struct pid *pid,
1107 uid_t uid, uid_t euid, u32 secid)
1109 int ret = -EINVAL;
1110 struct task_struct *p;
1111 const struct cred *pcred;
1113 if (!valid_signal(sig))
1114 return ret;
1116 read_lock(&tasklist_lock);
1117 p = pid_task(pid, PIDTYPE_PID);
1118 if (!p) {
1119 ret = -ESRCH;
1120 goto out_unlock;
1122 pcred = __task_cred(p);
1123 if ((info == SEND_SIG_NOINFO ||
1124 (!is_si_special(info) && SI_FROMUSER(info))) &&
1125 euid != pcred->suid && euid != pcred->uid &&
1126 uid != pcred->suid && uid != pcred->uid) {
1127 ret = -EPERM;
1128 goto out_unlock;
1130 ret = security_task_kill(p, info, sig, secid);
1131 if (ret)
1132 goto out_unlock;
1133 if (sig && p->sighand) {
1134 unsigned long flags;
1135 spin_lock_irqsave(&p->sighand->siglock, flags);
1136 ret = __group_send_sig_info(sig, info, p);
1137 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1139 out_unlock:
1140 read_unlock(&tasklist_lock);
1141 return ret;
1143 EXPORT_SYMBOL_GPL(kill_pid_info_as_uid);
1146 * kill_something_info() interprets pid in interesting ways just like kill(2).
1148 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1149 * is probably wrong. Should make it like BSD or SYSV.
1152 static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1154 int ret;
1156 if (pid > 0) {
1157 rcu_read_lock();
1158 ret = kill_pid_info(sig, info, find_vpid(pid));
1159 rcu_read_unlock();
1160 return ret;
1163 read_lock(&tasklist_lock);
1164 if (pid != -1) {
1165 ret = __kill_pgrp_info(sig, info,
1166 pid ? find_vpid(-pid) : task_pgrp(current));
1167 } else {
1168 int retval = 0, count = 0;
1169 struct task_struct * p;
1171 for_each_process(p) {
1172 if (task_pid_vnr(p) > 1 &&
1173 !same_thread_group(p, current)) {
1174 int err = group_send_sig_info(sig, info, p);
1175 ++count;
1176 if (err != -EPERM)
1177 retval = err;
1180 ret = count ? retval : -ESRCH;
1182 read_unlock(&tasklist_lock);
1184 return ret;
1188 * These are for backward compatibility with the rest of the kernel source.
1192 * The caller must ensure the task can't exit.
1195 send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1197 int ret;
1198 unsigned long flags;
1201 * Make sure legacy kernel users don't send in bad values
1202 * (normal paths check this in check_kill_permission).
1204 if (!valid_signal(sig))
1205 return -EINVAL;
1207 spin_lock_irqsave(&p->sighand->siglock, flags);
1208 ret = specific_send_sig_info(sig, info, p);
1209 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1210 return ret;
1213 #define __si_special(priv) \
1214 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1217 send_sig(int sig, struct task_struct *p, int priv)
1219 return send_sig_info(sig, __si_special(priv), p);
1222 void
1223 force_sig(int sig, struct task_struct *p)
1225 force_sig_info(sig, SEND_SIG_PRIV, p);
1229 * When things go south during signal handling, we
1230 * will force a SIGSEGV. And if the signal that caused
1231 * the problem was already a SIGSEGV, we'll want to
1232 * make sure we don't even try to deliver the signal..
1235 force_sigsegv(int sig, struct task_struct *p)
1237 if (sig == SIGSEGV) {
1238 unsigned long flags;
1239 spin_lock_irqsave(&p->sighand->siglock, flags);
1240 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1241 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1243 force_sig(SIGSEGV, p);
1244 return 0;
1247 int kill_pgrp(struct pid *pid, int sig, int priv)
1249 int ret;
1251 read_lock(&tasklist_lock);
1252 ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1253 read_unlock(&tasklist_lock);
1255 return ret;
1257 EXPORT_SYMBOL(kill_pgrp);
1259 int kill_pid(struct pid *pid, int sig, int priv)
1261 return kill_pid_info(sig, __si_special(priv), pid);
1263 EXPORT_SYMBOL(kill_pid);
1266 * These functions support sending signals using preallocated sigqueue
1267 * structures. This is needed "because realtime applications cannot
1268 * afford to lose notifications of asynchronous events, like timer
1269 * expirations or I/O completions". In the case of Posix Timers
1270 * we allocate the sigqueue structure from the timer_create. If this
1271 * allocation fails we are able to report the failure to the application
1272 * with an EAGAIN error.
1275 struct sigqueue *sigqueue_alloc(void)
1277 struct sigqueue *q;
1279 if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0)))
1280 q->flags |= SIGQUEUE_PREALLOC;
1281 return(q);
1284 void sigqueue_free(struct sigqueue *q)
1286 unsigned long flags;
1287 spinlock_t *lock = &current->sighand->siglock;
1289 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1291 * We must hold ->siglock while testing q->list
1292 * to serialize with collect_signal() or with
1293 * __exit_signal()->flush_sigqueue().
1295 spin_lock_irqsave(lock, flags);
1296 q->flags &= ~SIGQUEUE_PREALLOC;
1298 * If it is queued it will be freed when dequeued,
1299 * like the "regular" sigqueue.
1301 if (!list_empty(&q->list))
1302 q = NULL;
1303 spin_unlock_irqrestore(lock, flags);
1305 if (q)
1306 __sigqueue_free(q);
1309 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1311 int sig = q->info.si_signo;
1312 struct sigpending *pending;
1313 unsigned long flags;
1314 int ret;
1316 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1318 ret = -1;
1319 if (!likely(lock_task_sighand(t, &flags)))
1320 goto ret;
1322 ret = 1; /* the signal is ignored */
1323 if (!prepare_signal(sig, t))
1324 goto out;
1326 ret = 0;
1327 if (unlikely(!list_empty(&q->list))) {
1329 * If an SI_TIMER entry is already queue just increment
1330 * the overrun count.
1332 BUG_ON(q->info.si_code != SI_TIMER);
1333 q->info.si_overrun++;
1334 goto out;
1336 q->info.si_overrun = 0;
1338 signalfd_notify(t, sig);
1339 pending = group ? &t->signal->shared_pending : &t->pending;
1340 list_add_tail(&q->list, &pending->list);
1341 sigaddset(&pending->signal, sig);
1342 complete_signal(sig, t, group);
1343 out:
1344 unlock_task_sighand(t, &flags);
1345 ret:
1346 return ret;
1350 * Wake up any threads in the parent blocked in wait* syscalls.
1352 static inline void __wake_up_parent(struct task_struct *p,
1353 struct task_struct *parent)
1355 wake_up_interruptible_sync(&parent->signal->wait_chldexit);
1359 * Let a parent know about the death of a child.
1360 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1362 * Returns -1 if our parent ignored us and so we've switched to
1363 * self-reaping, or else @sig.
1365 int do_notify_parent(struct task_struct *tsk, int sig)
1367 struct siginfo info;
1368 unsigned long flags;
1369 struct sighand_struct *psig;
1370 int ret = sig;
1372 BUG_ON(sig == -1);
1374 /* do_notify_parent_cldstop should have been called instead. */
1375 BUG_ON(task_is_stopped_or_traced(tsk));
1377 BUG_ON(!tsk->ptrace &&
1378 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1380 info.si_signo = sig;
1381 info.si_errno = 0;
1383 * we are under tasklist_lock here so our parent is tied to
1384 * us and cannot exit and release its namespace.
1386 * the only it can is to switch its nsproxy with sys_unshare,
1387 * bu uncharing pid namespaces is not allowed, so we'll always
1388 * see relevant namespace
1390 * write_lock() currently calls preempt_disable() which is the
1391 * same as rcu_read_lock(), but according to Oleg, this is not
1392 * correct to rely on this
1394 rcu_read_lock();
1395 info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns);
1396 info.si_uid = __task_cred(tsk)->uid;
1397 rcu_read_unlock();
1399 info.si_utime = cputime_to_clock_t(cputime_add(tsk->utime,
1400 tsk->signal->utime));
1401 info.si_stime = cputime_to_clock_t(cputime_add(tsk->stime,
1402 tsk->signal->stime));
1404 info.si_status = tsk->exit_code & 0x7f;
1405 if (tsk->exit_code & 0x80)
1406 info.si_code = CLD_DUMPED;
1407 else if (tsk->exit_code & 0x7f)
1408 info.si_code = CLD_KILLED;
1409 else {
1410 info.si_code = CLD_EXITED;
1411 info.si_status = tsk->exit_code >> 8;
1414 psig = tsk->parent->sighand;
1415 spin_lock_irqsave(&psig->siglock, flags);
1416 if (!tsk->ptrace && sig == SIGCHLD &&
1417 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1418 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1420 * We are exiting and our parent doesn't care. POSIX.1
1421 * defines special semantics for setting SIGCHLD to SIG_IGN
1422 * or setting the SA_NOCLDWAIT flag: we should be reaped
1423 * automatically and not left for our parent's wait4 call.
1424 * Rather than having the parent do it as a magic kind of
1425 * signal handler, we just set this to tell do_exit that we
1426 * can be cleaned up without becoming a zombie. Note that
1427 * we still call __wake_up_parent in this case, because a
1428 * blocked sys_wait4 might now return -ECHILD.
1430 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1431 * is implementation-defined: we do (if you don't want
1432 * it, just use SIG_IGN instead).
1434 ret = tsk->exit_signal = -1;
1435 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1436 sig = -1;
1438 if (valid_signal(sig) && sig > 0)
1439 __group_send_sig_info(sig, &info, tsk->parent);
1440 __wake_up_parent(tsk, tsk->parent);
1441 spin_unlock_irqrestore(&psig->siglock, flags);
1443 return ret;
1446 static void do_notify_parent_cldstop(struct task_struct *tsk, int why)
1448 struct siginfo info;
1449 unsigned long flags;
1450 struct task_struct *parent;
1451 struct sighand_struct *sighand;
1453 if (tsk->ptrace & PT_PTRACED)
1454 parent = tsk->parent;
1455 else {
1456 tsk = tsk->group_leader;
1457 parent = tsk->real_parent;
1460 info.si_signo = SIGCHLD;
1461 info.si_errno = 0;
1463 * see comment in do_notify_parent() abot the following 3 lines
1465 rcu_read_lock();
1466 info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns);
1467 info.si_uid = __task_cred(tsk)->uid;
1468 rcu_read_unlock();
1470 info.si_utime = cputime_to_clock_t(tsk->utime);
1471 info.si_stime = cputime_to_clock_t(tsk->stime);
1473 info.si_code = why;
1474 switch (why) {
1475 case CLD_CONTINUED:
1476 info.si_status = SIGCONT;
1477 break;
1478 case CLD_STOPPED:
1479 info.si_status = tsk->signal->group_exit_code & 0x7f;
1480 break;
1481 case CLD_TRAPPED:
1482 info.si_status = tsk->exit_code & 0x7f;
1483 break;
1484 default:
1485 BUG();
1488 sighand = parent->sighand;
1489 spin_lock_irqsave(&sighand->siglock, flags);
1490 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1491 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1492 __group_send_sig_info(SIGCHLD, &info, parent);
1494 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1496 __wake_up_parent(tsk, parent);
1497 spin_unlock_irqrestore(&sighand->siglock, flags);
1500 static inline int may_ptrace_stop(void)
1502 if (!likely(current->ptrace & PT_PTRACED))
1503 return 0;
1505 * Are we in the middle of do_coredump?
1506 * If so and our tracer is also part of the coredump stopping
1507 * is a deadlock situation, and pointless because our tracer
1508 * is dead so don't allow us to stop.
1509 * If SIGKILL was already sent before the caller unlocked
1510 * ->siglock we must see ->core_state != NULL. Otherwise it
1511 * is safe to enter schedule().
1513 if (unlikely(current->mm->core_state) &&
1514 unlikely(current->mm == current->parent->mm))
1515 return 0;
1517 return 1;
1521 * Return nonzero if there is a SIGKILL that should be waking us up.
1522 * Called with the siglock held.
1524 static int sigkill_pending(struct task_struct *tsk)
1526 return sigismember(&tsk->pending.signal, SIGKILL) ||
1527 sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1531 * This must be called with current->sighand->siglock held.
1533 * This should be the path for all ptrace stops.
1534 * We always set current->last_siginfo while stopped here.
1535 * That makes it a way to test a stopped process for
1536 * being ptrace-stopped vs being job-control-stopped.
1538 * If we actually decide not to stop at all because the tracer
1539 * is gone, we keep current->exit_code unless clear_code.
1541 static void ptrace_stop(int exit_code, int clear_code, siginfo_t *info)
1543 if (arch_ptrace_stop_needed(exit_code, info)) {
1545 * The arch code has something special to do before a
1546 * ptrace stop. This is allowed to block, e.g. for faults
1547 * on user stack pages. We can't keep the siglock while
1548 * calling arch_ptrace_stop, so we must release it now.
1549 * To preserve proper semantics, we must do this before
1550 * any signal bookkeeping like checking group_stop_count.
1551 * Meanwhile, a SIGKILL could come in before we retake the
1552 * siglock. That must prevent us from sleeping in TASK_TRACED.
1553 * So after regaining the lock, we must check for SIGKILL.
1555 spin_unlock_irq(&current->sighand->siglock);
1556 arch_ptrace_stop(exit_code, info);
1557 spin_lock_irq(&current->sighand->siglock);
1558 if (sigkill_pending(current))
1559 return;
1563 * If there is a group stop in progress,
1564 * we must participate in the bookkeeping.
1566 if (current->signal->group_stop_count > 0)
1567 --current->signal->group_stop_count;
1569 current->last_siginfo = info;
1570 current->exit_code = exit_code;
1572 /* Let the debugger run. */
1573 __set_current_state(TASK_TRACED);
1574 spin_unlock_irq(&current->sighand->siglock);
1575 read_lock(&tasklist_lock);
1576 if (may_ptrace_stop()) {
1577 do_notify_parent_cldstop(current, CLD_TRAPPED);
1578 read_unlock(&tasklist_lock);
1579 schedule();
1580 } else {
1582 * By the time we got the lock, our tracer went away.
1583 * Don't drop the lock yet, another tracer may come.
1585 __set_current_state(TASK_RUNNING);
1586 if (clear_code)
1587 current->exit_code = 0;
1588 read_unlock(&tasklist_lock);
1592 * While in TASK_TRACED, we were considered "frozen enough".
1593 * Now that we woke up, it's crucial if we're supposed to be
1594 * frozen that we freeze now before running anything substantial.
1596 try_to_freeze();
1599 * We are back. Now reacquire the siglock before touching
1600 * last_siginfo, so that we are sure to have synchronized with
1601 * any signal-sending on another CPU that wants to examine it.
1603 spin_lock_irq(&current->sighand->siglock);
1604 current->last_siginfo = NULL;
1607 * Queued signals ignored us while we were stopped for tracing.
1608 * So check for any that we should take before resuming user mode.
1609 * This sets TIF_SIGPENDING, but never clears it.
1611 recalc_sigpending_tsk(current);
1614 void ptrace_notify(int exit_code)
1616 siginfo_t info;
1618 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1620 memset(&info, 0, sizeof info);
1621 info.si_signo = SIGTRAP;
1622 info.si_code = exit_code;
1623 info.si_pid = task_pid_vnr(current);
1624 info.si_uid = current_uid();
1626 /* Let the debugger run. */
1627 spin_lock_irq(&current->sighand->siglock);
1628 ptrace_stop(exit_code, 1, &info);
1629 spin_unlock_irq(&current->sighand->siglock);
1632 static void
1633 finish_stop(int stop_count)
1636 * If there are no other threads in the group, or if there is
1637 * a group stop in progress and we are the last to stop,
1638 * report to the parent. When ptraced, every thread reports itself.
1640 if (tracehook_notify_jctl(stop_count == 0, CLD_STOPPED)) {
1641 read_lock(&tasklist_lock);
1642 do_notify_parent_cldstop(current, CLD_STOPPED);
1643 read_unlock(&tasklist_lock);
1646 do {
1647 schedule();
1648 } while (try_to_freeze());
1650 * Now we don't run again until continued.
1652 current->exit_code = 0;
1656 * This performs the stopping for SIGSTOP and other stop signals.
1657 * We have to stop all threads in the thread group.
1658 * Returns nonzero if we've actually stopped and released the siglock.
1659 * Returns zero if we didn't stop and still hold the siglock.
1661 static int do_signal_stop(int signr)
1663 struct signal_struct *sig = current->signal;
1664 int stop_count;
1666 if (sig->group_stop_count > 0) {
1668 * There is a group stop in progress. We don't need to
1669 * start another one.
1671 stop_count = --sig->group_stop_count;
1672 } else {
1673 struct task_struct *t;
1675 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED) ||
1676 unlikely(signal_group_exit(sig)))
1677 return 0;
1679 * There is no group stop already in progress.
1680 * We must initiate one now.
1682 sig->group_exit_code = signr;
1684 stop_count = 0;
1685 for (t = next_thread(current); t != current; t = next_thread(t))
1687 * Setting state to TASK_STOPPED for a group
1688 * stop is always done with the siglock held,
1689 * so this check has no races.
1691 if (!(t->flags & PF_EXITING) &&
1692 !task_is_stopped_or_traced(t)) {
1693 stop_count++;
1694 signal_wake_up(t, 0);
1696 sig->group_stop_count = stop_count;
1699 if (stop_count == 0)
1700 sig->flags = SIGNAL_STOP_STOPPED;
1701 current->exit_code = sig->group_exit_code;
1702 __set_current_state(TASK_STOPPED);
1704 spin_unlock_irq(&current->sighand->siglock);
1705 finish_stop(stop_count);
1706 return 1;
1709 static int ptrace_signal(int signr, siginfo_t *info,
1710 struct pt_regs *regs, void *cookie)
1712 if (!(current->ptrace & PT_PTRACED))
1713 return signr;
1715 ptrace_signal_deliver(regs, cookie);
1717 /* Let the debugger run. */
1718 ptrace_stop(signr, 0, info);
1720 /* We're back. Did the debugger cancel the sig? */
1721 signr = current->exit_code;
1722 if (signr == 0)
1723 return signr;
1725 current->exit_code = 0;
1727 /* Update the siginfo structure if the signal has
1728 changed. If the debugger wanted something
1729 specific in the siginfo structure then it should
1730 have updated *info via PTRACE_SETSIGINFO. */
1731 if (signr != info->si_signo) {
1732 info->si_signo = signr;
1733 info->si_errno = 0;
1734 info->si_code = SI_USER;
1735 info->si_pid = task_pid_vnr(current->parent);
1736 info->si_uid = task_uid(current->parent);
1739 /* If the (new) signal is now blocked, requeue it. */
1740 if (sigismember(&current->blocked, signr)) {
1741 specific_send_sig_info(signr, info, current);
1742 signr = 0;
1745 return signr;
1748 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
1749 struct pt_regs *regs, void *cookie)
1751 struct sighand_struct *sighand = current->sighand;
1752 struct signal_struct *signal = current->signal;
1753 int signr;
1755 relock:
1757 * We'll jump back here after any time we were stopped in TASK_STOPPED.
1758 * While in TASK_STOPPED, we were considered "frozen enough".
1759 * Now that we woke up, it's crucial if we're supposed to be
1760 * frozen that we freeze now before running anything substantial.
1762 try_to_freeze();
1764 spin_lock_irq(&sighand->siglock);
1766 * Every stopped thread goes here after wakeup. Check to see if
1767 * we should notify the parent, prepare_signal(SIGCONT) encodes
1768 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
1770 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
1771 int why = (signal->flags & SIGNAL_STOP_CONTINUED)
1772 ? CLD_CONTINUED : CLD_STOPPED;
1773 signal->flags &= ~SIGNAL_CLD_MASK;
1774 spin_unlock_irq(&sighand->siglock);
1776 if (unlikely(!tracehook_notify_jctl(1, why)))
1777 goto relock;
1779 read_lock(&tasklist_lock);
1780 do_notify_parent_cldstop(current->group_leader, why);
1781 read_unlock(&tasklist_lock);
1782 goto relock;
1785 for (;;) {
1786 struct k_sigaction *ka;
1788 if (unlikely(signal->group_stop_count > 0) &&
1789 do_signal_stop(0))
1790 goto relock;
1793 * Tracing can induce an artifical signal and choose sigaction.
1794 * The return value in @signr determines the default action,
1795 * but @info->si_signo is the signal number we will report.
1797 signr = tracehook_get_signal(current, regs, info, return_ka);
1798 if (unlikely(signr < 0))
1799 goto relock;
1800 if (unlikely(signr != 0))
1801 ka = return_ka;
1802 else {
1803 signr = dequeue_signal(current, &current->blocked,
1804 info);
1806 if (!signr)
1807 break; /* will return 0 */
1809 if (signr != SIGKILL) {
1810 signr = ptrace_signal(signr, info,
1811 regs, cookie);
1812 if (!signr)
1813 continue;
1816 ka = &sighand->action[signr-1];
1819 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
1820 continue;
1821 if (ka->sa.sa_handler != SIG_DFL) {
1822 /* Run the handler. */
1823 *return_ka = *ka;
1825 if (ka->sa.sa_flags & SA_ONESHOT)
1826 ka->sa.sa_handler = SIG_DFL;
1828 break; /* will return non-zero "signr" value */
1832 * Now we are doing the default action for this signal.
1834 if (sig_kernel_ignore(signr)) /* Default is nothing. */
1835 continue;
1838 * Global init gets no signals it doesn't want.
1840 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
1841 !signal_group_exit(signal))
1842 continue;
1844 if (sig_kernel_stop(signr)) {
1846 * The default action is to stop all threads in
1847 * the thread group. The job control signals
1848 * do nothing in an orphaned pgrp, but SIGSTOP
1849 * always works. Note that siglock needs to be
1850 * dropped during the call to is_orphaned_pgrp()
1851 * because of lock ordering with tasklist_lock.
1852 * This allows an intervening SIGCONT to be posted.
1853 * We need to check for that and bail out if necessary.
1855 if (signr != SIGSTOP) {
1856 spin_unlock_irq(&sighand->siglock);
1858 /* signals can be posted during this window */
1860 if (is_current_pgrp_orphaned())
1861 goto relock;
1863 spin_lock_irq(&sighand->siglock);
1866 if (likely(do_signal_stop(info->si_signo))) {
1867 /* It released the siglock. */
1868 goto relock;
1872 * We didn't actually stop, due to a race
1873 * with SIGCONT or something like that.
1875 continue;
1878 spin_unlock_irq(&sighand->siglock);
1881 * Anything else is fatal, maybe with a core dump.
1883 current->flags |= PF_SIGNALED;
1885 if (sig_kernel_coredump(signr)) {
1886 if (print_fatal_signals)
1887 print_fatal_signal(regs, info->si_signo);
1889 * If it was able to dump core, this kills all
1890 * other threads in the group and synchronizes with
1891 * their demise. If we lost the race with another
1892 * thread getting here, it set group_exit_code
1893 * first and our do_group_exit call below will use
1894 * that value and ignore the one we pass it.
1896 do_coredump(info->si_signo, info->si_signo, regs);
1900 * Death signals, no core dump.
1902 do_group_exit(info->si_signo);
1903 /* NOTREACHED */
1905 spin_unlock_irq(&sighand->siglock);
1906 return signr;
1909 void exit_signals(struct task_struct *tsk)
1911 int group_stop = 0;
1912 struct task_struct *t;
1914 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
1915 tsk->flags |= PF_EXITING;
1916 return;
1919 spin_lock_irq(&tsk->sighand->siglock);
1921 * From now this task is not visible for group-wide signals,
1922 * see wants_signal(), do_signal_stop().
1924 tsk->flags |= PF_EXITING;
1925 if (!signal_pending(tsk))
1926 goto out;
1928 /* It could be that __group_complete_signal() choose us to
1929 * notify about group-wide signal. Another thread should be
1930 * woken now to take the signal since we will not.
1932 for (t = tsk; (t = next_thread(t)) != tsk; )
1933 if (!signal_pending(t) && !(t->flags & PF_EXITING))
1934 recalc_sigpending_and_wake(t);
1936 if (unlikely(tsk->signal->group_stop_count) &&
1937 !--tsk->signal->group_stop_count) {
1938 tsk->signal->flags = SIGNAL_STOP_STOPPED;
1939 group_stop = 1;
1941 out:
1942 spin_unlock_irq(&tsk->sighand->siglock);
1944 if (unlikely(group_stop) && tracehook_notify_jctl(1, CLD_STOPPED)) {
1945 read_lock(&tasklist_lock);
1946 do_notify_parent_cldstop(tsk, CLD_STOPPED);
1947 read_unlock(&tasklist_lock);
1951 EXPORT_SYMBOL(recalc_sigpending);
1952 EXPORT_SYMBOL_GPL(dequeue_signal);
1953 EXPORT_SYMBOL(flush_signals);
1954 EXPORT_SYMBOL(force_sig);
1955 EXPORT_SYMBOL(send_sig);
1956 EXPORT_SYMBOL(send_sig_info);
1957 EXPORT_SYMBOL(sigprocmask);
1958 EXPORT_SYMBOL(block_all_signals);
1959 EXPORT_SYMBOL(unblock_all_signals);
1963 * System call entry points.
1966 SYSCALL_DEFINE0(restart_syscall)
1968 struct restart_block *restart = &current_thread_info()->restart_block;
1969 return restart->fn(restart);
1972 long do_no_restart_syscall(struct restart_block *param)
1974 return -EINTR;
1978 * We don't need to get the kernel lock - this is all local to this
1979 * particular thread.. (and that's good, because this is _heavily_
1980 * used by various programs)
1984 * This is also useful for kernel threads that want to temporarily
1985 * (or permanently) block certain signals.
1987 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
1988 * interface happily blocks "unblockable" signals like SIGKILL
1989 * and friends.
1991 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
1993 int error;
1995 spin_lock_irq(&current->sighand->siglock);
1996 if (oldset)
1997 *oldset = current->blocked;
1999 error = 0;
2000 switch (how) {
2001 case SIG_BLOCK:
2002 sigorsets(&current->blocked, &current->blocked, set);
2003 break;
2004 case SIG_UNBLOCK:
2005 signandsets(&current->blocked, &current->blocked, set);
2006 break;
2007 case SIG_SETMASK:
2008 current->blocked = *set;
2009 break;
2010 default:
2011 error = -EINVAL;
2013 recalc_sigpending();
2014 spin_unlock_irq(&current->sighand->siglock);
2016 return error;
2019 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, set,
2020 sigset_t __user *, oset, size_t, sigsetsize)
2022 int error = -EINVAL;
2023 sigset_t old_set, new_set;
2025 /* XXX: Don't preclude handling different sized sigset_t's. */
2026 if (sigsetsize != sizeof(sigset_t))
2027 goto out;
2029 if (set) {
2030 error = -EFAULT;
2031 if (copy_from_user(&new_set, set, sizeof(*set)))
2032 goto out;
2033 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2035 error = sigprocmask(how, &new_set, &old_set);
2036 if (error)
2037 goto out;
2038 if (oset)
2039 goto set_old;
2040 } else if (oset) {
2041 spin_lock_irq(&current->sighand->siglock);
2042 old_set = current->blocked;
2043 spin_unlock_irq(&current->sighand->siglock);
2045 set_old:
2046 error = -EFAULT;
2047 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2048 goto out;
2050 error = 0;
2051 out:
2052 return error;
2055 long do_sigpending(void __user *set, unsigned long sigsetsize)
2057 long error = -EINVAL;
2058 sigset_t pending;
2060 if (sigsetsize > sizeof(sigset_t))
2061 goto out;
2063 spin_lock_irq(&current->sighand->siglock);
2064 sigorsets(&pending, &current->pending.signal,
2065 &current->signal->shared_pending.signal);
2066 spin_unlock_irq(&current->sighand->siglock);
2068 /* Outside the lock because only this thread touches it. */
2069 sigandsets(&pending, &current->blocked, &pending);
2071 error = -EFAULT;
2072 if (!copy_to_user(set, &pending, sigsetsize))
2073 error = 0;
2075 out:
2076 return error;
2079 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, set, size_t, sigsetsize)
2081 return do_sigpending(set, sigsetsize);
2084 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2086 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2088 int err;
2090 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2091 return -EFAULT;
2092 if (from->si_code < 0)
2093 return __copy_to_user(to, from, sizeof(siginfo_t))
2094 ? -EFAULT : 0;
2096 * If you change siginfo_t structure, please be sure
2097 * this code is fixed accordingly.
2098 * Please remember to update the signalfd_copyinfo() function
2099 * inside fs/signalfd.c too, in case siginfo_t changes.
2100 * It should never copy any pad contained in the structure
2101 * to avoid security leaks, but must copy the generic
2102 * 3 ints plus the relevant union member.
2104 err = __put_user(from->si_signo, &to->si_signo);
2105 err |= __put_user(from->si_errno, &to->si_errno);
2106 err |= __put_user((short)from->si_code, &to->si_code);
2107 switch (from->si_code & __SI_MASK) {
2108 case __SI_KILL:
2109 err |= __put_user(from->si_pid, &to->si_pid);
2110 err |= __put_user(from->si_uid, &to->si_uid);
2111 break;
2112 case __SI_TIMER:
2113 err |= __put_user(from->si_tid, &to->si_tid);
2114 err |= __put_user(from->si_overrun, &to->si_overrun);
2115 err |= __put_user(from->si_ptr, &to->si_ptr);
2116 break;
2117 case __SI_POLL:
2118 err |= __put_user(from->si_band, &to->si_band);
2119 err |= __put_user(from->si_fd, &to->si_fd);
2120 break;
2121 case __SI_FAULT:
2122 err |= __put_user(from->si_addr, &to->si_addr);
2123 #ifdef __ARCH_SI_TRAPNO
2124 err |= __put_user(from->si_trapno, &to->si_trapno);
2125 #endif
2126 break;
2127 case __SI_CHLD:
2128 err |= __put_user(from->si_pid, &to->si_pid);
2129 err |= __put_user(from->si_uid, &to->si_uid);
2130 err |= __put_user(from->si_status, &to->si_status);
2131 err |= __put_user(from->si_utime, &to->si_utime);
2132 err |= __put_user(from->si_stime, &to->si_stime);
2133 break;
2134 case __SI_RT: /* This is not generated by the kernel as of now. */
2135 case __SI_MESGQ: /* But this is */
2136 err |= __put_user(from->si_pid, &to->si_pid);
2137 err |= __put_user(from->si_uid, &to->si_uid);
2138 err |= __put_user(from->si_ptr, &to->si_ptr);
2139 break;
2140 default: /* this is just in case for now ... */
2141 err |= __put_user(from->si_pid, &to->si_pid);
2142 err |= __put_user(from->si_uid, &to->si_uid);
2143 break;
2145 return err;
2148 #endif
2150 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
2151 siginfo_t __user *, uinfo, const struct timespec __user *, uts,
2152 size_t, sigsetsize)
2154 int ret, sig;
2155 sigset_t these;
2156 struct timespec ts;
2157 siginfo_t info;
2158 long timeout = 0;
2160 /* XXX: Don't preclude handling different sized sigset_t's. */
2161 if (sigsetsize != sizeof(sigset_t))
2162 return -EINVAL;
2164 if (copy_from_user(&these, uthese, sizeof(these)))
2165 return -EFAULT;
2168 * Invert the set of allowed signals to get those we
2169 * want to block.
2171 sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
2172 signotset(&these);
2174 if (uts) {
2175 if (copy_from_user(&ts, uts, sizeof(ts)))
2176 return -EFAULT;
2177 if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
2178 || ts.tv_sec < 0)
2179 return -EINVAL;
2182 spin_lock_irq(&current->sighand->siglock);
2183 sig = dequeue_signal(current, &these, &info);
2184 if (!sig) {
2185 timeout = MAX_SCHEDULE_TIMEOUT;
2186 if (uts)
2187 timeout = (timespec_to_jiffies(&ts)
2188 + (ts.tv_sec || ts.tv_nsec));
2190 if (timeout) {
2191 /* None ready -- temporarily unblock those we're
2192 * interested while we are sleeping in so that we'll
2193 * be awakened when they arrive. */
2194 current->real_blocked = current->blocked;
2195 sigandsets(&current->blocked, &current->blocked, &these);
2196 recalc_sigpending();
2197 spin_unlock_irq(&current->sighand->siglock);
2199 timeout = schedule_timeout_interruptible(timeout);
2201 spin_lock_irq(&current->sighand->siglock);
2202 sig = dequeue_signal(current, &these, &info);
2203 current->blocked = current->real_blocked;
2204 siginitset(&current->real_blocked, 0);
2205 recalc_sigpending();
2208 spin_unlock_irq(&current->sighand->siglock);
2210 if (sig) {
2211 ret = sig;
2212 if (uinfo) {
2213 if (copy_siginfo_to_user(uinfo, &info))
2214 ret = -EFAULT;
2216 } else {
2217 ret = -EAGAIN;
2218 if (timeout)
2219 ret = -EINTR;
2222 return ret;
2225 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
2227 struct siginfo info;
2229 info.si_signo = sig;
2230 info.si_errno = 0;
2231 info.si_code = SI_USER;
2232 info.si_pid = task_tgid_vnr(current);
2233 info.si_uid = current_uid();
2235 return kill_something_info(sig, &info, pid);
2238 static int do_tkill(pid_t tgid, pid_t pid, int sig)
2240 int error;
2241 struct siginfo info;
2242 struct task_struct *p;
2243 unsigned long flags;
2245 error = -ESRCH;
2246 info.si_signo = sig;
2247 info.si_errno = 0;
2248 info.si_code = SI_TKILL;
2249 info.si_pid = task_tgid_vnr(current);
2250 info.si_uid = current_uid();
2252 rcu_read_lock();
2253 p = find_task_by_vpid(pid);
2254 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2255 error = check_kill_permission(sig, &info, p);
2257 * The null signal is a permissions and process existence
2258 * probe. No signal is actually delivered.
2260 * If lock_task_sighand() fails we pretend the task dies
2261 * after receiving the signal. The window is tiny, and the
2262 * signal is private anyway.
2264 if (!error && sig && lock_task_sighand(p, &flags)) {
2265 error = specific_send_sig_info(sig, &info, p);
2266 unlock_task_sighand(p, &flags);
2269 rcu_read_unlock();
2271 return error;
2275 * sys_tgkill - send signal to one specific thread
2276 * @tgid: the thread group ID of the thread
2277 * @pid: the PID of the thread
2278 * @sig: signal to be sent
2280 * This syscall also checks the @tgid and returns -ESRCH even if the PID
2281 * exists but it's not belonging to the target process anymore. This
2282 * method solves the problem of threads exiting and PIDs getting reused.
2284 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
2286 /* This is only valid for single tasks */
2287 if (pid <= 0 || tgid <= 0)
2288 return -EINVAL;
2290 return do_tkill(tgid, pid, sig);
2294 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2296 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
2298 /* This is only valid for single tasks */
2299 if (pid <= 0)
2300 return -EINVAL;
2302 return do_tkill(0, pid, sig);
2305 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
2306 siginfo_t __user *, uinfo)
2308 siginfo_t info;
2310 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2311 return -EFAULT;
2313 /* Not even root can pretend to send signals from the kernel.
2314 Nor can they impersonate a kill(), which adds source info. */
2315 if (info.si_code >= 0)
2316 return -EPERM;
2317 info.si_signo = sig;
2319 /* POSIX.1b doesn't mention process groups. */
2320 return kill_proc_info(sig, &info, pid);
2323 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2325 struct task_struct *t = current;
2326 struct k_sigaction *k;
2327 sigset_t mask;
2329 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2330 return -EINVAL;
2332 k = &t->sighand->action[sig-1];
2334 spin_lock_irq(&current->sighand->siglock);
2335 if (oact)
2336 *oact = *k;
2338 if (act) {
2339 sigdelsetmask(&act->sa.sa_mask,
2340 sigmask(SIGKILL) | sigmask(SIGSTOP));
2341 *k = *act;
2343 * POSIX 3.3.1.3:
2344 * "Setting a signal action to SIG_IGN for a signal that is
2345 * pending shall cause the pending signal to be discarded,
2346 * whether or not it is blocked."
2348 * "Setting a signal action to SIG_DFL for a signal that is
2349 * pending and whose default action is to ignore the signal
2350 * (for example, SIGCHLD), shall cause the pending signal to
2351 * be discarded, whether or not it is blocked"
2353 if (sig_handler_ignored(sig_handler(t, sig), sig)) {
2354 sigemptyset(&mask);
2355 sigaddset(&mask, sig);
2356 rm_from_queue_full(&mask, &t->signal->shared_pending);
2357 do {
2358 rm_from_queue_full(&mask, &t->pending);
2359 t = next_thread(t);
2360 } while (t != current);
2364 spin_unlock_irq(&current->sighand->siglock);
2365 return 0;
2368 int
2369 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2371 stack_t oss;
2372 int error;
2374 if (uoss) {
2375 oss.ss_sp = (void __user *) current->sas_ss_sp;
2376 oss.ss_size = current->sas_ss_size;
2377 oss.ss_flags = sas_ss_flags(sp);
2380 if (uss) {
2381 void __user *ss_sp;
2382 size_t ss_size;
2383 int ss_flags;
2385 error = -EFAULT;
2386 if (!access_ok(VERIFY_READ, uss, sizeof(*uss))
2387 || __get_user(ss_sp, &uss->ss_sp)
2388 || __get_user(ss_flags, &uss->ss_flags)
2389 || __get_user(ss_size, &uss->ss_size))
2390 goto out;
2392 error = -EPERM;
2393 if (on_sig_stack(sp))
2394 goto out;
2396 error = -EINVAL;
2399 * Note - this code used to test ss_flags incorrectly
2400 * old code may have been written using ss_flags==0
2401 * to mean ss_flags==SS_ONSTACK (as this was the only
2402 * way that worked) - this fix preserves that older
2403 * mechanism
2405 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2406 goto out;
2408 if (ss_flags == SS_DISABLE) {
2409 ss_size = 0;
2410 ss_sp = NULL;
2411 } else {
2412 error = -ENOMEM;
2413 if (ss_size < MINSIGSTKSZ)
2414 goto out;
2417 current->sas_ss_sp = (unsigned long) ss_sp;
2418 current->sas_ss_size = ss_size;
2421 if (uoss) {
2422 error = -EFAULT;
2423 if (copy_to_user(uoss, &oss, sizeof(oss)))
2424 goto out;
2427 error = 0;
2428 out:
2429 return error;
2432 #ifdef __ARCH_WANT_SYS_SIGPENDING
2434 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
2436 return do_sigpending(set, sizeof(*set));
2439 #endif
2441 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
2442 /* Some platforms have their own version with special arguments others
2443 support only sys_rt_sigprocmask. */
2445 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, set,
2446 old_sigset_t __user *, oset)
2448 int error;
2449 old_sigset_t old_set, new_set;
2451 if (set) {
2452 error = -EFAULT;
2453 if (copy_from_user(&new_set, set, sizeof(*set)))
2454 goto out;
2455 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
2457 spin_lock_irq(&current->sighand->siglock);
2458 old_set = current->blocked.sig[0];
2460 error = 0;
2461 switch (how) {
2462 default:
2463 error = -EINVAL;
2464 break;
2465 case SIG_BLOCK:
2466 sigaddsetmask(&current->blocked, new_set);
2467 break;
2468 case SIG_UNBLOCK:
2469 sigdelsetmask(&current->blocked, new_set);
2470 break;
2471 case SIG_SETMASK:
2472 current->blocked.sig[0] = new_set;
2473 break;
2476 recalc_sigpending();
2477 spin_unlock_irq(&current->sighand->siglock);
2478 if (error)
2479 goto out;
2480 if (oset)
2481 goto set_old;
2482 } else if (oset) {
2483 old_set = current->blocked.sig[0];
2484 set_old:
2485 error = -EFAULT;
2486 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2487 goto out;
2489 error = 0;
2490 out:
2491 return error;
2493 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2495 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
2496 SYSCALL_DEFINE4(rt_sigaction, int, sig,
2497 const struct sigaction __user *, act,
2498 struct sigaction __user *, oact,
2499 size_t, sigsetsize)
2501 struct k_sigaction new_sa, old_sa;
2502 int ret = -EINVAL;
2504 /* XXX: Don't preclude handling different sized sigset_t's. */
2505 if (sigsetsize != sizeof(sigset_t))
2506 goto out;
2508 if (act) {
2509 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
2510 return -EFAULT;
2513 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
2515 if (!ret && oact) {
2516 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
2517 return -EFAULT;
2519 out:
2520 return ret;
2522 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2524 #ifdef __ARCH_WANT_SYS_SGETMASK
2527 * For backwards compatibility. Functionality superseded by sigprocmask.
2529 SYSCALL_DEFINE0(sgetmask)
2531 /* SMP safe */
2532 return current->blocked.sig[0];
2535 SYSCALL_DEFINE1(ssetmask, int, newmask)
2537 int old;
2539 spin_lock_irq(&current->sighand->siglock);
2540 old = current->blocked.sig[0];
2542 siginitset(&current->blocked, newmask & ~(sigmask(SIGKILL)|
2543 sigmask(SIGSTOP)));
2544 recalc_sigpending();
2545 spin_unlock_irq(&current->sighand->siglock);
2547 return old;
2549 #endif /* __ARCH_WANT_SGETMASK */
2551 #ifdef __ARCH_WANT_SYS_SIGNAL
2553 * For backwards compatibility. Functionality superseded by sigaction.
2555 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
2557 struct k_sigaction new_sa, old_sa;
2558 int ret;
2560 new_sa.sa.sa_handler = handler;
2561 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
2562 sigemptyset(&new_sa.sa.sa_mask);
2564 ret = do_sigaction(sig, &new_sa, &old_sa);
2566 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
2568 #endif /* __ARCH_WANT_SYS_SIGNAL */
2570 #ifdef __ARCH_WANT_SYS_PAUSE
2572 SYSCALL_DEFINE0(pause)
2574 current->state = TASK_INTERRUPTIBLE;
2575 schedule();
2576 return -ERESTARTNOHAND;
2579 #endif
2581 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
2582 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
2584 sigset_t newset;
2586 /* XXX: Don't preclude handling different sized sigset_t's. */
2587 if (sigsetsize != sizeof(sigset_t))
2588 return -EINVAL;
2590 if (copy_from_user(&newset, unewset, sizeof(newset)))
2591 return -EFAULT;
2592 sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2594 spin_lock_irq(&current->sighand->siglock);
2595 current->saved_sigmask = current->blocked;
2596 current->blocked = newset;
2597 recalc_sigpending();
2598 spin_unlock_irq(&current->sighand->siglock);
2600 current->state = TASK_INTERRUPTIBLE;
2601 schedule();
2602 set_restore_sigmask();
2603 return -ERESTARTNOHAND;
2605 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
2607 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
2609 return NULL;
2612 void __init signals_init(void)
2614 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);