2 * This file is part of UBIFS.
4 * Copyright (C) 2006-2008 Nokia Corporation.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
24 * This file contains functions for finding LEBs for various purposes e.g.
25 * garbage collection. In general, lprops category heaps and lists are used
26 * for fast access, falling back on scanning the LPT as a last resort.
29 #include <linux/sort.h>
33 * struct scan_data - data provided to scan callback functions
34 * @min_space: minimum number of bytes for which to scan
35 * @pick_free: whether it is OK to scan for empty LEBs
36 * @lnum: LEB number found is returned here
37 * @exclude_index: whether to exclude index LEBs
47 * valuable - determine whether LEB properties are valuable.
48 * @c: the UBIFS file-system description object
49 * @lprops: LEB properties
51 * This function return %1 if the LEB properties should be added to the LEB
52 * properties tree in memory. Otherwise %0 is returned.
54 static int valuable(struct ubifs_info
*c
, const struct ubifs_lprops
*lprops
)
56 int n
, cat
= lprops
->flags
& LPROPS_CAT_MASK
;
57 struct ubifs_lpt_heap
*heap
;
61 case LPROPS_DIRTY_IDX
:
63 heap
= &c
->lpt_heap
[cat
- 1];
64 if (heap
->cnt
< heap
->max_cnt
)
66 if (lprops
->free
+ lprops
->dirty
>= c
->dark_wm
)
70 n
= c
->lst
.empty_lebs
+ c
->freeable_cnt
-
71 c
->lst
.taken_empty_lebs
;
84 * scan_for_dirty_cb - dirty space scan callback.
85 * @c: the UBIFS file-system description object
86 * @lprops: LEB properties to scan
87 * @in_tree: whether the LEB properties are in main memory
88 * @data: information passed to and from the caller of the scan
90 * This function returns a code that indicates whether the scan should continue
91 * (%LPT_SCAN_CONTINUE), whether the LEB properties should be added to the tree
92 * in main memory (%LPT_SCAN_ADD), or whether the scan should stop
95 static int scan_for_dirty_cb(struct ubifs_info
*c
,
96 const struct ubifs_lprops
*lprops
, int in_tree
,
97 struct scan_data
*data
)
99 int ret
= LPT_SCAN_CONTINUE
;
101 /* Exclude LEBs that are currently in use */
102 if (lprops
->flags
& LPROPS_TAKEN
)
103 return LPT_SCAN_CONTINUE
;
104 /* Determine whether to add these LEB properties to the tree */
105 if (!in_tree
&& valuable(c
, lprops
))
107 /* Exclude LEBs with too little space */
108 if (lprops
->free
+ lprops
->dirty
< data
->min_space
)
110 /* If specified, exclude index LEBs */
111 if (data
->exclude_index
&& lprops
->flags
& LPROPS_INDEX
)
113 /* If specified, exclude empty or freeable LEBs */
114 if (lprops
->free
+ lprops
->dirty
== c
->leb_size
) {
115 if (!data
->pick_free
)
117 /* Exclude LEBs with too little dirty space (unless it is empty) */
118 } else if (lprops
->dirty
< c
->dead_wm
)
120 /* Finally we found space */
121 data
->lnum
= lprops
->lnum
;
122 return LPT_SCAN_ADD
| LPT_SCAN_STOP
;
126 * scan_for_dirty - find a data LEB with free space.
127 * @c: the UBIFS file-system description object
128 * @min_space: minimum amount free plus dirty space the returned LEB has to
130 * @pick_free: if it is OK to return a free or freeable LEB
131 * @exclude_index: whether to exclude index LEBs
133 * This function returns a pointer to the LEB properties found or a negative
136 static const struct ubifs_lprops
*scan_for_dirty(struct ubifs_info
*c
,
137 int min_space
, int pick_free
,
140 const struct ubifs_lprops
*lprops
;
141 struct ubifs_lpt_heap
*heap
;
142 struct scan_data data
;
145 /* There may be an LEB with enough dirty space on the free heap */
146 heap
= &c
->lpt_heap
[LPROPS_FREE
- 1];
147 for (i
= 0; i
< heap
->cnt
; i
++) {
148 lprops
= heap
->arr
[i
];
149 if (lprops
->free
+ lprops
->dirty
< min_space
)
151 if (lprops
->dirty
< c
->dead_wm
)
156 * A LEB may have fallen off of the bottom of the dirty heap, and ended
157 * up as uncategorized even though it has enough dirty space for us now,
158 * so check the uncategorized list. N.B. neither empty nor freeable LEBs
159 * can end up as uncategorized because they are kept on lists not
160 * finite-sized heaps.
162 list_for_each_entry(lprops
, &c
->uncat_list
, list
) {
163 if (lprops
->flags
& LPROPS_TAKEN
)
165 if (lprops
->free
+ lprops
->dirty
< min_space
)
167 if (exclude_index
&& (lprops
->flags
& LPROPS_INDEX
))
169 if (lprops
->dirty
< c
->dead_wm
)
173 /* We have looked everywhere in main memory, now scan the flash */
174 if (c
->pnodes_have
>= c
->pnode_cnt
)
175 /* All pnodes are in memory, so skip scan */
176 return ERR_PTR(-ENOSPC
);
177 data
.min_space
= min_space
;
178 data
.pick_free
= pick_free
;
180 data
.exclude_index
= exclude_index
;
181 err
= ubifs_lpt_scan_nolock(c
, -1, c
->lscan_lnum
,
182 (ubifs_lpt_scan_callback
)scan_for_dirty_cb
,
186 ubifs_assert(data
.lnum
>= c
->main_first
&& data
.lnum
< c
->leb_cnt
);
187 c
->lscan_lnum
= data
.lnum
;
188 lprops
= ubifs_lpt_lookup_dirty(c
, data
.lnum
);
191 ubifs_assert(lprops
->lnum
== data
.lnum
);
192 ubifs_assert(lprops
->free
+ lprops
->dirty
>= min_space
);
193 ubifs_assert(lprops
->dirty
>= c
->dead_wm
||
195 lprops
->free
+ lprops
->dirty
== c
->leb_size
));
196 ubifs_assert(!(lprops
->flags
& LPROPS_TAKEN
));
197 ubifs_assert(!exclude_index
|| !(lprops
->flags
& LPROPS_INDEX
));
202 * ubifs_find_dirty_leb - find a dirty LEB for the Garbage Collector.
203 * @c: the UBIFS file-system description object
204 * @ret_lp: LEB properties are returned here on exit
205 * @min_space: minimum amount free plus dirty space the returned LEB has to
207 * @pick_free: controls whether it is OK to pick empty or index LEBs
209 * This function tries to find a dirty logical eraseblock which has at least
210 * @min_space free and dirty space. It prefers to take an LEB from the dirty or
211 * dirty index heap, and it falls-back to LPT scanning if the heaps are empty
212 * or do not have an LEB which satisfies the @min_space criteria.
215 * o LEBs which have less than dead watermark of dirty space are never picked
218 * Returns zero and the LEB properties of
219 * found dirty LEB in case of success, %-ENOSPC if no dirty LEB was found and a
220 * negative error code in case of other failures. The returned LEB is marked as
223 * The additional @pick_free argument controls if this function has to return a
224 * free or freeable LEB if one is present. For example, GC must to set it to %1,
225 * when called from the journal space reservation function, because the
226 * appearance of free space may coincide with the loss of enough dirty space
227 * for GC to succeed anyway.
229 * In contrast, if the Garbage Collector is called from budgeting, it should
230 * just make free space, not return LEBs which are already free or freeable.
232 * In addition @pick_free is set to %2 by the recovery process in order to
233 * recover gc_lnum in which case an index LEB must not be returned.
235 int ubifs_find_dirty_leb(struct ubifs_info
*c
, struct ubifs_lprops
*ret_lp
,
236 int min_space
, int pick_free
)
238 int err
= 0, sum
, exclude_index
= pick_free
== 2 ? 1 : 0;
239 const struct ubifs_lprops
*lp
= NULL
, *idx_lp
= NULL
;
240 struct ubifs_lpt_heap
*heap
, *idx_heap
;
245 int lebs
, rsvd_idx_lebs
= 0;
247 spin_lock(&c
->space_lock
);
248 lebs
= c
->lst
.empty_lebs
;
249 lebs
+= c
->freeable_cnt
- c
->lst
.taken_empty_lebs
;
252 * Note, the index may consume more LEBs than have been reserved
253 * for it. It is OK because it might be consolidated by GC.
254 * But if the index takes fewer LEBs than it is reserved for it,
255 * this function must avoid picking those reserved LEBs.
257 if (c
->min_idx_lebs
>= c
->lst
.idx_lebs
) {
258 rsvd_idx_lebs
= c
->min_idx_lebs
- c
->lst
.idx_lebs
;
261 spin_unlock(&c
->space_lock
);
263 /* Check if there are enough free LEBs for the index */
264 if (rsvd_idx_lebs
< lebs
) {
265 /* OK, try to find an empty LEB */
266 lp
= ubifs_fast_find_empty(c
);
270 /* Or a freeable LEB */
271 lp
= ubifs_fast_find_freeable(c
);
276 * We cannot pick free/freeable LEBs in the below code.
280 spin_lock(&c
->space_lock
);
281 exclude_index
= (c
->min_idx_lebs
>= c
->lst
.idx_lebs
);
282 spin_unlock(&c
->space_lock
);
285 /* Look on the dirty and dirty index heaps */
286 heap
= &c
->lpt_heap
[LPROPS_DIRTY
- 1];
287 idx_heap
= &c
->lpt_heap
[LPROPS_DIRTY_IDX
- 1];
289 if (idx_heap
->cnt
&& !exclude_index
) {
290 idx_lp
= idx_heap
->arr
[0];
291 sum
= idx_lp
->free
+ idx_lp
->dirty
;
293 * Since we reserve twice as more space for the index than it
294 * actually takes, it does not make sense to pick indexing LEBs
295 * with less than half LEB of dirty space.
297 if (sum
< min_space
|| sum
< c
->half_leb_size
)
303 if (lp
->dirty
+ lp
->free
< min_space
)
307 /* Pick the LEB with most space */
309 if (idx_lp
->free
+ idx_lp
->dirty
>= lp
->free
+ lp
->dirty
)
311 } else if (idx_lp
&& !lp
)
315 ubifs_assert(lp
->dirty
>= c
->dead_wm
);
319 /* Did not find a dirty LEB on the dirty heaps, have to scan */
320 dbg_find("scanning LPT for a dirty LEB");
321 lp
= scan_for_dirty(c
, min_space
, pick_free
, exclude_index
);
326 ubifs_assert(lp
->dirty
>= c
->dead_wm
||
327 (pick_free
&& lp
->free
+ lp
->dirty
== c
->leb_size
));
330 dbg_find("found LEB %d, free %d, dirty %d, flags %#x",
331 lp
->lnum
, lp
->free
, lp
->dirty
, lp
->flags
);
333 lp
= ubifs_change_lp(c
, lp
, LPROPS_NC
, LPROPS_NC
,
334 lp
->flags
| LPROPS_TAKEN
, 0);
340 memcpy(ret_lp
, lp
, sizeof(struct ubifs_lprops
));
343 ubifs_release_lprops(c
);
348 * scan_for_free_cb - free space scan callback.
349 * @c: the UBIFS file-system description object
350 * @lprops: LEB properties to scan
351 * @in_tree: whether the LEB properties are in main memory
352 * @data: information passed to and from the caller of the scan
354 * This function returns a code that indicates whether the scan should continue
355 * (%LPT_SCAN_CONTINUE), whether the LEB properties should be added to the tree
356 * in main memory (%LPT_SCAN_ADD), or whether the scan should stop
359 static int scan_for_free_cb(struct ubifs_info
*c
,
360 const struct ubifs_lprops
*lprops
, int in_tree
,
361 struct scan_data
*data
)
363 int ret
= LPT_SCAN_CONTINUE
;
365 /* Exclude LEBs that are currently in use */
366 if (lprops
->flags
& LPROPS_TAKEN
)
367 return LPT_SCAN_CONTINUE
;
368 /* Determine whether to add these LEB properties to the tree */
369 if (!in_tree
&& valuable(c
, lprops
))
371 /* Exclude index LEBs */
372 if (lprops
->flags
& LPROPS_INDEX
)
374 /* Exclude LEBs with too little space */
375 if (lprops
->free
< data
->min_space
)
377 /* If specified, exclude empty LEBs */
378 if (!data
->pick_free
&& lprops
->free
== c
->leb_size
)
381 * LEBs that have only free and dirty space must not be allocated
382 * because they may have been unmapped already or they may have data
383 * that is obsolete only because of nodes that are still sitting in a
386 if (lprops
->free
+ lprops
->dirty
== c
->leb_size
&& lprops
->dirty
> 0)
388 /* Finally we found space */
389 data
->lnum
= lprops
->lnum
;
390 return LPT_SCAN_ADD
| LPT_SCAN_STOP
;
394 * do_find_free_space - find a data LEB with free space.
395 * @c: the UBIFS file-system description object
396 * @min_space: minimum amount of free space required
397 * @pick_free: whether it is OK to scan for empty LEBs
398 * @squeeze: whether to try to find space in a non-empty LEB first
400 * This function returns a pointer to the LEB properties found or a negative
404 const struct ubifs_lprops
*do_find_free_space(struct ubifs_info
*c
,
405 int min_space
, int pick_free
,
408 const struct ubifs_lprops
*lprops
;
409 struct ubifs_lpt_heap
*heap
;
410 struct scan_data data
;
414 lprops
= ubifs_fast_find_free(c
);
415 if (lprops
&& lprops
->free
>= min_space
)
419 lprops
= ubifs_fast_find_empty(c
);
424 lprops
= ubifs_fast_find_free(c
);
425 if (lprops
&& lprops
->free
>= min_space
)
428 /* There may be an LEB with enough free space on the dirty heap */
429 heap
= &c
->lpt_heap
[LPROPS_DIRTY
- 1];
430 for (i
= 0; i
< heap
->cnt
; i
++) {
431 lprops
= heap
->arr
[i
];
432 if (lprops
->free
>= min_space
)
436 * A LEB may have fallen off of the bottom of the free heap, and ended
437 * up as uncategorized even though it has enough free space for us now,
438 * so check the uncategorized list. N.B. neither empty nor freeable LEBs
439 * can end up as uncategorized because they are kept on lists not
440 * finite-sized heaps.
442 list_for_each_entry(lprops
, &c
->uncat_list
, list
) {
443 if (lprops
->flags
& LPROPS_TAKEN
)
445 if (lprops
->flags
& LPROPS_INDEX
)
447 if (lprops
->free
>= min_space
)
450 /* We have looked everywhere in main memory, now scan the flash */
451 if (c
->pnodes_have
>= c
->pnode_cnt
)
452 /* All pnodes are in memory, so skip scan */
453 return ERR_PTR(-ENOSPC
);
454 data
.min_space
= min_space
;
455 data
.pick_free
= pick_free
;
457 err
= ubifs_lpt_scan_nolock(c
, -1, c
->lscan_lnum
,
458 (ubifs_lpt_scan_callback
)scan_for_free_cb
,
462 ubifs_assert(data
.lnum
>= c
->main_first
&& data
.lnum
< c
->leb_cnt
);
463 c
->lscan_lnum
= data
.lnum
;
464 lprops
= ubifs_lpt_lookup_dirty(c
, data
.lnum
);
467 ubifs_assert(lprops
->lnum
== data
.lnum
);
468 ubifs_assert(lprops
->free
>= min_space
);
469 ubifs_assert(!(lprops
->flags
& LPROPS_TAKEN
));
470 ubifs_assert(!(lprops
->flags
& LPROPS_INDEX
));
475 * ubifs_find_free_space - find a data LEB with free space.
476 * @c: the UBIFS file-system description object
477 * @min_space: minimum amount of required free space
478 * @free: contains amount of free space in the LEB on exit
479 * @squeeze: whether to try to find space in a non-empty LEB first
481 * This function looks for an LEB with at least @min_space bytes of free space.
482 * It tries to find an empty LEB if possible. If no empty LEBs are available,
483 * this function searches for a non-empty data LEB. The returned LEB is marked
486 * This function returns found LEB number in case of success, %-ENOSPC if it
487 * failed to find a LEB with @min_space bytes of free space and other a negative
488 * error codes in case of failure.
490 int ubifs_find_free_space(struct ubifs_info
*c
, int min_space
, int *free
,
493 const struct ubifs_lprops
*lprops
;
494 int lebs
, rsvd_idx_lebs
, pick_free
= 0, err
, lnum
, flags
;
496 dbg_find("min_space %d", min_space
);
499 /* Check if there are enough empty LEBs for commit */
500 spin_lock(&c
->space_lock
);
501 if (c
->min_idx_lebs
> c
->lst
.idx_lebs
)
502 rsvd_idx_lebs
= c
->min_idx_lebs
- c
->lst
.idx_lebs
;
505 lebs
= c
->lst
.empty_lebs
+ c
->freeable_cnt
+ c
->idx_gc_cnt
-
506 c
->lst
.taken_empty_lebs
;
507 ubifs_assert(lebs
+ c
->lst
.idx_lebs
>= c
->min_idx_lebs
);
508 if (rsvd_idx_lebs
< lebs
)
510 * OK to allocate an empty LEB, but we still don't want to go
511 * looking for one if there aren't any.
513 if (c
->lst
.empty_lebs
- c
->lst
.taken_empty_lebs
> 0) {
516 * Because we release the space lock, we must account
517 * for this allocation here. After the LEB properties
518 * flags have been updated, we subtract one. Note, the
519 * result of this is that lprops also decreases
520 * @taken_empty_lebs in 'ubifs_change_lp()', so it is
521 * off by one for a short period of time which may
522 * introduce a small disturbance to budgeting
523 * calculations, but this is harmless because at the
524 * worst case this would make the budgeting subsystem
525 * be more pessimistic than needed.
527 * Fundamentally, this is about serialization of the
528 * budgeting and lprops subsystems. We could make the
529 * @space_lock a mutex and avoid dropping it before
530 * calling 'ubifs_change_lp()', but mutex is more
531 * heavy-weight, and we want budgeting to be as fast as
534 c
->lst
.taken_empty_lebs
+= 1;
536 spin_unlock(&c
->space_lock
);
538 lprops
= do_find_free_space(c
, min_space
, pick_free
, squeeze
);
539 if (IS_ERR(lprops
)) {
540 err
= PTR_ERR(lprops
);
545 flags
= lprops
->flags
| LPROPS_TAKEN
;
547 lprops
= ubifs_change_lp(c
, lprops
, LPROPS_NC
, LPROPS_NC
, flags
, 0);
548 if (IS_ERR(lprops
)) {
549 err
= PTR_ERR(lprops
);
554 spin_lock(&c
->space_lock
);
555 c
->lst
.taken_empty_lebs
-= 1;
556 spin_unlock(&c
->space_lock
);
559 *free
= lprops
->free
;
560 ubifs_release_lprops(c
);
562 if (*free
== c
->leb_size
) {
564 * Ensure that empty LEBs have been unmapped. They may not have
565 * been, for example, because of an unclean unmount. Also
566 * LEBs that were freeable LEBs (free + dirty == leb_size) will
567 * not have been unmapped.
569 err
= ubifs_leb_unmap(c
, lnum
);
574 dbg_find("found LEB %d, free %d", lnum
, *free
);
575 ubifs_assert(*free
>= min_space
);
580 spin_lock(&c
->space_lock
);
581 c
->lst
.taken_empty_lebs
-= 1;
582 spin_unlock(&c
->space_lock
);
584 ubifs_release_lprops(c
);
589 * scan_for_idx_cb - callback used by the scan for a free LEB for the index.
590 * @c: the UBIFS file-system description object
591 * @lprops: LEB properties to scan
592 * @in_tree: whether the LEB properties are in main memory
593 * @data: information passed to and from the caller of the scan
595 * This function returns a code that indicates whether the scan should continue
596 * (%LPT_SCAN_CONTINUE), whether the LEB properties should be added to the tree
597 * in main memory (%LPT_SCAN_ADD), or whether the scan should stop
600 static int scan_for_idx_cb(struct ubifs_info
*c
,
601 const struct ubifs_lprops
*lprops
, int in_tree
,
602 struct scan_data
*data
)
604 int ret
= LPT_SCAN_CONTINUE
;
606 /* Exclude LEBs that are currently in use */
607 if (lprops
->flags
& LPROPS_TAKEN
)
608 return LPT_SCAN_CONTINUE
;
609 /* Determine whether to add these LEB properties to the tree */
610 if (!in_tree
&& valuable(c
, lprops
))
612 /* Exclude index LEBS */
613 if (lprops
->flags
& LPROPS_INDEX
)
615 /* Exclude LEBs that cannot be made empty */
616 if (lprops
->free
+ lprops
->dirty
!= c
->leb_size
)
619 * We are allocating for the index so it is safe to allocate LEBs with
620 * only free and dirty space, because write buffers are sync'd at commit
623 data
->lnum
= lprops
->lnum
;
624 return LPT_SCAN_ADD
| LPT_SCAN_STOP
;
628 * scan_for_leb_for_idx - scan for a free LEB for the index.
629 * @c: the UBIFS file-system description object
631 static const struct ubifs_lprops
*scan_for_leb_for_idx(struct ubifs_info
*c
)
633 struct ubifs_lprops
*lprops
;
634 struct scan_data data
;
638 err
= ubifs_lpt_scan_nolock(c
, -1, c
->lscan_lnum
,
639 (ubifs_lpt_scan_callback
)scan_for_idx_cb
,
643 ubifs_assert(data
.lnum
>= c
->main_first
&& data
.lnum
< c
->leb_cnt
);
644 c
->lscan_lnum
= data
.lnum
;
645 lprops
= ubifs_lpt_lookup_dirty(c
, data
.lnum
);
648 ubifs_assert(lprops
->lnum
== data
.lnum
);
649 ubifs_assert(lprops
->free
+ lprops
->dirty
== c
->leb_size
);
650 ubifs_assert(!(lprops
->flags
& LPROPS_TAKEN
));
651 ubifs_assert(!(lprops
->flags
& LPROPS_INDEX
));
656 * ubifs_find_free_leb_for_idx - find a free LEB for the index.
657 * @c: the UBIFS file-system description object
659 * This function looks for a free LEB and returns that LEB number. The returned
660 * LEB is marked as "taken", "index".
662 * Only empty LEBs are allocated. This is for two reasons. First, the commit
663 * calculates the number of LEBs to allocate based on the assumption that they
664 * will be empty. Secondly, free space at the end of an index LEB is not
665 * guaranteed to be empty because it may have been used by the in-the-gaps
666 * method prior to an unclean unmount.
668 * If no LEB is found %-ENOSPC is returned. For other failures another negative
669 * error code is returned.
671 int ubifs_find_free_leb_for_idx(struct ubifs_info
*c
)
673 const struct ubifs_lprops
*lprops
;
674 int lnum
= -1, err
, flags
;
678 lprops
= ubifs_fast_find_empty(c
);
680 lprops
= ubifs_fast_find_freeable(c
);
682 ubifs_assert(c
->freeable_cnt
== 0);
683 if (c
->lst
.empty_lebs
- c
->lst
.taken_empty_lebs
> 0) {
684 lprops
= scan_for_leb_for_idx(c
);
685 if (IS_ERR(lprops
)) {
686 err
= PTR_ERR(lprops
);
700 dbg_find("found LEB %d, free %d, dirty %d, flags %#x",
701 lnum
, lprops
->free
, lprops
->dirty
, lprops
->flags
);
703 flags
= lprops
->flags
| LPROPS_TAKEN
| LPROPS_INDEX
;
704 lprops
= ubifs_change_lp(c
, lprops
, c
->leb_size
, 0, flags
, 0);
705 if (IS_ERR(lprops
)) {
706 err
= PTR_ERR(lprops
);
710 ubifs_release_lprops(c
);
713 * Ensure that empty LEBs have been unmapped. They may not have been,
714 * for example, because of an unclean unmount. Also LEBs that were
715 * freeable LEBs (free + dirty == leb_size) will not have been unmapped.
717 err
= ubifs_leb_unmap(c
, lnum
);
719 ubifs_change_one_lp(c
, lnum
, LPROPS_NC
, LPROPS_NC
, 0,
720 LPROPS_TAKEN
| LPROPS_INDEX
, 0);
727 ubifs_release_lprops(c
);
731 static int cmp_dirty_idx(const struct ubifs_lprops
**a
,
732 const struct ubifs_lprops
**b
)
734 const struct ubifs_lprops
*lpa
= *a
;
735 const struct ubifs_lprops
*lpb
= *b
;
737 return lpa
->dirty
+ lpa
->free
- lpb
->dirty
- lpb
->free
;
740 static void swap_dirty_idx(struct ubifs_lprops
**a
, struct ubifs_lprops
**b
,
743 struct ubifs_lprops
*t
= *a
;
750 * ubifs_save_dirty_idx_lnums - save an array of the most dirty index LEB nos.
751 * @c: the UBIFS file-system description object
753 * This function is called each commit to create an array of LEB numbers of
754 * dirty index LEBs sorted in order of dirty and free space. This is used by
755 * the in-the-gaps method of TNC commit.
757 int ubifs_save_dirty_idx_lnums(struct ubifs_info
*c
)
762 /* Copy the LPROPS_DIRTY_IDX heap */
763 c
->dirty_idx
.cnt
= c
->lpt_heap
[LPROPS_DIRTY_IDX
- 1].cnt
;
764 memcpy(c
->dirty_idx
.arr
, c
->lpt_heap
[LPROPS_DIRTY_IDX
- 1].arr
,
765 sizeof(void *) * c
->dirty_idx
.cnt
);
766 /* Sort it so that the dirtiest is now at the end */
767 sort(c
->dirty_idx
.arr
, c
->dirty_idx
.cnt
, sizeof(void *),
768 (int (*)(const void *, const void *))cmp_dirty_idx
,
769 (void (*)(void *, void *, int))swap_dirty_idx
);
770 dbg_find("found %d dirty index LEBs", c
->dirty_idx
.cnt
);
771 if (c
->dirty_idx
.cnt
)
772 dbg_find("dirtiest index LEB is %d with dirty %d and free %d",
773 c
->dirty_idx
.arr
[c
->dirty_idx
.cnt
- 1]->lnum
,
774 c
->dirty_idx
.arr
[c
->dirty_idx
.cnt
- 1]->dirty
,
775 c
->dirty_idx
.arr
[c
->dirty_idx
.cnt
- 1]->free
);
776 /* Replace the lprops pointers with LEB numbers */
777 for (i
= 0; i
< c
->dirty_idx
.cnt
; i
++)
778 c
->dirty_idx
.arr
[i
] = (void *)(size_t)c
->dirty_idx
.arr
[i
]->lnum
;
779 ubifs_release_lprops(c
);
784 * scan_dirty_idx_cb - callback used by the scan for a dirty index LEB.
785 * @c: the UBIFS file-system description object
786 * @lprops: LEB properties to scan
787 * @in_tree: whether the LEB properties are in main memory
788 * @data: information passed to and from the caller of the scan
790 * This function returns a code that indicates whether the scan should continue
791 * (%LPT_SCAN_CONTINUE), whether the LEB properties should be added to the tree
792 * in main memory (%LPT_SCAN_ADD), or whether the scan should stop
795 static int scan_dirty_idx_cb(struct ubifs_info
*c
,
796 const struct ubifs_lprops
*lprops
, int in_tree
,
797 struct scan_data
*data
)
799 int ret
= LPT_SCAN_CONTINUE
;
801 /* Exclude LEBs that are currently in use */
802 if (lprops
->flags
& LPROPS_TAKEN
)
803 return LPT_SCAN_CONTINUE
;
804 /* Determine whether to add these LEB properties to the tree */
805 if (!in_tree
&& valuable(c
, lprops
))
807 /* Exclude non-index LEBs */
808 if (!(lprops
->flags
& LPROPS_INDEX
))
810 /* Exclude LEBs with too little space */
811 if (lprops
->free
+ lprops
->dirty
< c
->min_idx_node_sz
)
813 /* Finally we found space */
814 data
->lnum
= lprops
->lnum
;
815 return LPT_SCAN_ADD
| LPT_SCAN_STOP
;
819 * find_dirty_idx_leb - find a dirty index LEB.
820 * @c: the UBIFS file-system description object
822 * This function returns LEB number upon success and a negative error code upon
823 * failure. In particular, -ENOSPC is returned if a dirty index LEB is not
826 * Note that this function scans the entire LPT but it is called very rarely.
828 static int find_dirty_idx_leb(struct ubifs_info
*c
)
830 const struct ubifs_lprops
*lprops
;
831 struct ubifs_lpt_heap
*heap
;
832 struct scan_data data
;
835 /* Check all structures in memory first */
837 heap
= &c
->lpt_heap
[LPROPS_DIRTY_IDX
- 1];
838 for (i
= 0; i
< heap
->cnt
; i
++) {
839 lprops
= heap
->arr
[i
];
840 ret
= scan_dirty_idx_cb(c
, lprops
, 1, &data
);
841 if (ret
& LPT_SCAN_STOP
)
844 list_for_each_entry(lprops
, &c
->frdi_idx_list
, list
) {
845 ret
= scan_dirty_idx_cb(c
, lprops
, 1, &data
);
846 if (ret
& LPT_SCAN_STOP
)
849 list_for_each_entry(lprops
, &c
->uncat_list
, list
) {
850 ret
= scan_dirty_idx_cb(c
, lprops
, 1, &data
);
851 if (ret
& LPT_SCAN_STOP
)
854 if (c
->pnodes_have
>= c
->pnode_cnt
)
855 /* All pnodes are in memory, so skip scan */
857 err
= ubifs_lpt_scan_nolock(c
, -1, c
->lscan_lnum
,
858 (ubifs_lpt_scan_callback
)scan_dirty_idx_cb
,
863 ubifs_assert(data
.lnum
>= c
->main_first
&& data
.lnum
< c
->leb_cnt
);
864 c
->lscan_lnum
= data
.lnum
;
865 lprops
= ubifs_lpt_lookup_dirty(c
, data
.lnum
);
867 return PTR_ERR(lprops
);
868 ubifs_assert(lprops
->lnum
== data
.lnum
);
869 ubifs_assert(lprops
->free
+ lprops
->dirty
>= c
->min_idx_node_sz
);
870 ubifs_assert(!(lprops
->flags
& LPROPS_TAKEN
));
871 ubifs_assert((lprops
->flags
& LPROPS_INDEX
));
873 dbg_find("found dirty LEB %d, free %d, dirty %d, flags %#x",
874 lprops
->lnum
, lprops
->free
, lprops
->dirty
, lprops
->flags
);
876 lprops
= ubifs_change_lp(c
, lprops
, LPROPS_NC
, LPROPS_NC
,
877 lprops
->flags
| LPROPS_TAKEN
, 0);
879 return PTR_ERR(lprops
);
885 * get_idx_gc_leb - try to get a LEB number from trivial GC.
886 * @c: the UBIFS file-system description object
888 static int get_idx_gc_leb(struct ubifs_info
*c
)
890 const struct ubifs_lprops
*lp
;
893 err
= ubifs_get_idx_gc_leb(c
);
898 * The LEB was due to be unmapped after the commit but
899 * it is needed now for this commit.
901 lp
= ubifs_lpt_lookup_dirty(c
, lnum
);
902 if (unlikely(IS_ERR(lp
)))
904 lp
= ubifs_change_lp(c
, lp
, LPROPS_NC
, LPROPS_NC
,
905 lp
->flags
| LPROPS_INDEX
, -1);
906 if (unlikely(IS_ERR(lp
)))
908 dbg_find("LEB %d, dirty %d and free %d flags %#x",
909 lp
->lnum
, lp
->dirty
, lp
->free
, lp
->flags
);
914 * find_dirtiest_idx_leb - find dirtiest index LEB from dirtiest array.
915 * @c: the UBIFS file-system description object
917 static int find_dirtiest_idx_leb(struct ubifs_info
*c
)
919 const struct ubifs_lprops
*lp
;
923 if (!c
->dirty_idx
.cnt
)
925 /* The lprops pointers were replaced by LEB numbers */
926 lnum
= (size_t)c
->dirty_idx
.arr
[--c
->dirty_idx
.cnt
];
927 lp
= ubifs_lpt_lookup(c
, lnum
);
930 if ((lp
->flags
& LPROPS_TAKEN
) || !(lp
->flags
& LPROPS_INDEX
))
932 lp
= ubifs_change_lp(c
, lp
, LPROPS_NC
, LPROPS_NC
,
933 lp
->flags
| LPROPS_TAKEN
, 0);
938 dbg_find("LEB %d, dirty %d and free %d flags %#x", lp
->lnum
, lp
->dirty
,
939 lp
->free
, lp
->flags
);
940 ubifs_assert(lp
->flags
| LPROPS_TAKEN
);
941 ubifs_assert(lp
->flags
| LPROPS_INDEX
);
946 * ubifs_find_dirty_idx_leb - try to find dirtiest index LEB as at last commit.
947 * @c: the UBIFS file-system description object
949 * This function attempts to find an untaken index LEB with the most free and
950 * dirty space that can be used without overwriting index nodes that were in the
951 * last index committed.
953 int ubifs_find_dirty_idx_leb(struct ubifs_info
*c
)
960 * We made an array of the dirtiest index LEB numbers as at the start of
961 * last commit. Try that array first.
963 err
= find_dirtiest_idx_leb(c
);
965 /* Next try scanning the entire LPT */
967 err
= find_dirty_idx_leb(c
);
969 /* Finally take any index LEBs awaiting trivial GC */
971 err
= get_idx_gc_leb(c
);
973 ubifs_release_lprops(c
);