2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
22 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
23 * enough at me, Linus for the original (flawed) idea, Matthew
24 * Kirkwood for proof-of-concept implementation.
26 * "The futexes are also cursed."
27 * "But they come in a choice of three flavours!"
29 * This program is free software; you can redistribute it and/or modify
30 * it under the terms of the GNU General Public License as published by
31 * the Free Software Foundation; either version 2 of the License, or
32 * (at your option) any later version.
34 * This program is distributed in the hope that it will be useful,
35 * but WITHOUT ANY WARRANTY; without even the implied warranty of
36 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
37 * GNU General Public License for more details.
39 * You should have received a copy of the GNU General Public License
40 * along with this program; if not, write to the Free Software
41 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
43 #include <linux/slab.h>
44 #include <linux/poll.h>
46 #include <linux/file.h>
47 #include <linux/jhash.h>
48 #include <linux/init.h>
49 #include <linux/futex.h>
50 #include <linux/mount.h>
51 #include <linux/pagemap.h>
52 #include <linux/syscalls.h>
53 #include <linux/signal.h>
54 #include <linux/module.h>
55 #include <linux/magic.h>
56 #include <linux/pid.h>
57 #include <linux/nsproxy.h>
59 #include <asm/futex.h>
61 #include "rtmutex_common.h"
63 int __read_mostly futex_cmpxchg_enabled
;
65 #define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
68 * Priority Inheritance state:
70 struct futex_pi_state
{
72 * list of 'owned' pi_state instances - these have to be
73 * cleaned up in do_exit() if the task exits prematurely:
75 struct list_head list
;
80 struct rt_mutex pi_mutex
;
82 struct task_struct
*owner
;
89 * We use this hashed waitqueue instead of a normal wait_queue_t, so
90 * we can wake only the relevant ones (hashed queues may be shared).
92 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
93 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
94 * The order of wakup is always to make the first condition true, then
95 * wake up q->waiter, then make the second condition true.
98 struct plist_node list
;
99 /* There can only be a single waiter */
100 wait_queue_head_t waiter
;
102 /* Which hash list lock to use: */
103 spinlock_t
*lock_ptr
;
105 /* Key which the futex is hashed on: */
108 /* Optional priority inheritance state: */
109 struct futex_pi_state
*pi_state
;
110 struct task_struct
*task
;
112 /* Bitset for the optional bitmasked wakeup */
117 * Split the global futex_lock into every hash list lock.
119 struct futex_hash_bucket
{
121 struct plist_head chain
;
124 static struct futex_hash_bucket futex_queues
[1<<FUTEX_HASHBITS
];
127 * We hash on the keys returned from get_futex_key (see below).
129 static struct futex_hash_bucket
*hash_futex(union futex_key
*key
)
131 u32 hash
= jhash2((u32
*)&key
->both
.word
,
132 (sizeof(key
->both
.word
)+sizeof(key
->both
.ptr
))/4,
134 return &futex_queues
[hash
& ((1 << FUTEX_HASHBITS
)-1)];
138 * Return 1 if two futex_keys are equal, 0 otherwise.
140 static inline int match_futex(union futex_key
*key1
, union futex_key
*key2
)
142 return (key1
->both
.word
== key2
->both
.word
143 && key1
->both
.ptr
== key2
->both
.ptr
144 && key1
->both
.offset
== key2
->both
.offset
);
148 * Take a reference to the resource addressed by a key.
149 * Can be called while holding spinlocks.
152 static void get_futex_key_refs(union futex_key
*key
)
157 switch (key
->both
.offset
& (FUT_OFF_INODE
|FUT_OFF_MMSHARED
)) {
159 atomic_inc(&key
->shared
.inode
->i_count
);
161 case FUT_OFF_MMSHARED
:
162 atomic_inc(&key
->private.mm
->mm_count
);
168 * Drop a reference to the resource addressed by a key.
169 * The hash bucket spinlock must not be held.
171 static void drop_futex_key_refs(union futex_key
*key
)
173 if (!key
->both
.ptr
) {
174 /* If we're here then we tried to put a key we failed to get */
179 switch (key
->both
.offset
& (FUT_OFF_INODE
|FUT_OFF_MMSHARED
)) {
181 iput(key
->shared
.inode
);
183 case FUT_OFF_MMSHARED
:
184 mmdrop(key
->private.mm
);
190 * get_futex_key - Get parameters which are the keys for a futex.
191 * @uaddr: virtual address of the futex
192 * @shared: NULL for a PROCESS_PRIVATE futex,
193 * ¤t->mm->mmap_sem for a PROCESS_SHARED futex
194 * @key: address where result is stored.
195 * @rw: mapping needs to be read/write (values: VERIFY_READ, VERIFY_WRITE)
197 * Returns a negative error code or 0
198 * The key words are stored in *key on success.
200 * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
201 * offset_within_page). For private mappings, it's (uaddr, current->mm).
202 * We can usually work out the index without swapping in the page.
204 * fshared is NULL for PROCESS_PRIVATE futexes
205 * For other futexes, it points to ¤t->mm->mmap_sem and
206 * caller must have taken the reader lock. but NOT any spinlocks.
209 get_futex_key(u32 __user
*uaddr
, int fshared
, union futex_key
*key
, int rw
)
211 unsigned long address
= (unsigned long)uaddr
;
212 struct mm_struct
*mm
= current
->mm
;
217 * The futex address must be "naturally" aligned.
219 key
->both
.offset
= address
% PAGE_SIZE
;
220 if (unlikely((address
% sizeof(u32
)) != 0))
222 address
-= key
->both
.offset
;
225 * PROCESS_PRIVATE futexes are fast.
226 * As the mm cannot disappear under us and the 'key' only needs
227 * virtual address, we dont even have to find the underlying vma.
228 * Note : We do have to check 'uaddr' is a valid user address,
229 * but access_ok() should be faster than find_vma()
232 if (unlikely(!access_ok(rw
, uaddr
, sizeof(u32
))))
234 key
->private.mm
= mm
;
235 key
->private.address
= address
;
236 get_futex_key_refs(key
);
241 err
= get_user_pages_fast(address
, 1, rw
== VERIFY_WRITE
, &page
);
246 if (!page
->mapping
) {
253 * Private mappings are handled in a simple way.
255 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
256 * it's a read-only handle, it's expected that futexes attach to
257 * the object not the particular process.
259 if (PageAnon(page
)) {
260 key
->both
.offset
|= FUT_OFF_MMSHARED
; /* ref taken on mm */
261 key
->private.mm
= mm
;
262 key
->private.address
= address
;
264 key
->both
.offset
|= FUT_OFF_INODE
; /* inode-based key */
265 key
->shared
.inode
= page
->mapping
->host
;
266 key
->shared
.pgoff
= page
->index
;
269 get_futex_key_refs(key
);
277 void put_futex_key(int fshared
, union futex_key
*key
)
279 drop_futex_key_refs(key
);
282 static u32
cmpxchg_futex_value_locked(u32 __user
*uaddr
, u32 uval
, u32 newval
)
287 curval
= futex_atomic_cmpxchg_inatomic(uaddr
, uval
, newval
);
293 static int get_futex_value_locked(u32
*dest
, u32 __user
*from
)
298 ret
= __copy_from_user_inatomic(dest
, from
, sizeof(u32
));
301 return ret
? -EFAULT
: 0;
307 static int futex_handle_fault(unsigned long address
, int attempt
)
309 struct vm_area_struct
* vma
;
310 struct mm_struct
*mm
= current
->mm
;
316 down_read(&mm
->mmap_sem
);
317 vma
= find_vma(mm
, address
);
318 if (vma
&& address
>= vma
->vm_start
&&
319 (vma
->vm_flags
& VM_WRITE
)) {
321 fault
= handle_mm_fault(mm
, vma
, address
, 1);
322 if (unlikely((fault
& VM_FAULT_ERROR
))) {
324 /* XXX: let's do this when we verify it is OK */
325 if (ret
& VM_FAULT_OOM
)
330 if (fault
& VM_FAULT_MAJOR
)
336 up_read(&mm
->mmap_sem
);
343 static int refill_pi_state_cache(void)
345 struct futex_pi_state
*pi_state
;
347 if (likely(current
->pi_state_cache
))
350 pi_state
= kzalloc(sizeof(*pi_state
), GFP_KERNEL
);
355 INIT_LIST_HEAD(&pi_state
->list
);
356 /* pi_mutex gets initialized later */
357 pi_state
->owner
= NULL
;
358 atomic_set(&pi_state
->refcount
, 1);
359 pi_state
->key
= FUTEX_KEY_INIT
;
361 current
->pi_state_cache
= pi_state
;
366 static struct futex_pi_state
* alloc_pi_state(void)
368 struct futex_pi_state
*pi_state
= current
->pi_state_cache
;
371 current
->pi_state_cache
= NULL
;
376 static void free_pi_state(struct futex_pi_state
*pi_state
)
378 if (!atomic_dec_and_test(&pi_state
->refcount
))
382 * If pi_state->owner is NULL, the owner is most probably dying
383 * and has cleaned up the pi_state already
385 if (pi_state
->owner
) {
386 spin_lock_irq(&pi_state
->owner
->pi_lock
);
387 list_del_init(&pi_state
->list
);
388 spin_unlock_irq(&pi_state
->owner
->pi_lock
);
390 rt_mutex_proxy_unlock(&pi_state
->pi_mutex
, pi_state
->owner
);
393 if (current
->pi_state_cache
)
397 * pi_state->list is already empty.
398 * clear pi_state->owner.
399 * refcount is at 0 - put it back to 1.
401 pi_state
->owner
= NULL
;
402 atomic_set(&pi_state
->refcount
, 1);
403 current
->pi_state_cache
= pi_state
;
408 * Look up the task based on what TID userspace gave us.
411 static struct task_struct
* futex_find_get_task(pid_t pid
)
413 struct task_struct
*p
;
414 const struct cred
*cred
= current_cred(), *pcred
;
417 p
= find_task_by_vpid(pid
);
421 pcred
= __task_cred(p
);
422 if (cred
->euid
!= pcred
->euid
&&
423 cred
->euid
!= pcred
->uid
)
435 * This task is holding PI mutexes at exit time => bad.
436 * Kernel cleans up PI-state, but userspace is likely hosed.
437 * (Robust-futex cleanup is separate and might save the day for userspace.)
439 void exit_pi_state_list(struct task_struct
*curr
)
441 struct list_head
*next
, *head
= &curr
->pi_state_list
;
442 struct futex_pi_state
*pi_state
;
443 struct futex_hash_bucket
*hb
;
444 union futex_key key
= FUTEX_KEY_INIT
;
446 if (!futex_cmpxchg_enabled
)
449 * We are a ZOMBIE and nobody can enqueue itself on
450 * pi_state_list anymore, but we have to be careful
451 * versus waiters unqueueing themselves:
453 spin_lock_irq(&curr
->pi_lock
);
454 while (!list_empty(head
)) {
457 pi_state
= list_entry(next
, struct futex_pi_state
, list
);
459 hb
= hash_futex(&key
);
460 spin_unlock_irq(&curr
->pi_lock
);
462 spin_lock(&hb
->lock
);
464 spin_lock_irq(&curr
->pi_lock
);
466 * We dropped the pi-lock, so re-check whether this
467 * task still owns the PI-state:
469 if (head
->next
!= next
) {
470 spin_unlock(&hb
->lock
);
474 WARN_ON(pi_state
->owner
!= curr
);
475 WARN_ON(list_empty(&pi_state
->list
));
476 list_del_init(&pi_state
->list
);
477 pi_state
->owner
= NULL
;
478 spin_unlock_irq(&curr
->pi_lock
);
480 rt_mutex_unlock(&pi_state
->pi_mutex
);
482 spin_unlock(&hb
->lock
);
484 spin_lock_irq(&curr
->pi_lock
);
486 spin_unlock_irq(&curr
->pi_lock
);
490 lookup_pi_state(u32 uval
, struct futex_hash_bucket
*hb
,
491 union futex_key
*key
, struct futex_pi_state
**ps
)
493 struct futex_pi_state
*pi_state
= NULL
;
494 struct futex_q
*this, *next
;
495 struct plist_head
*head
;
496 struct task_struct
*p
;
497 pid_t pid
= uval
& FUTEX_TID_MASK
;
501 plist_for_each_entry_safe(this, next
, head
, list
) {
502 if (match_futex(&this->key
, key
)) {
504 * Another waiter already exists - bump up
505 * the refcount and return its pi_state:
507 pi_state
= this->pi_state
;
509 * Userspace might have messed up non PI and PI futexes
511 if (unlikely(!pi_state
))
514 WARN_ON(!atomic_read(&pi_state
->refcount
));
515 WARN_ON(pid
&& pi_state
->owner
&&
516 pi_state
->owner
->pid
!= pid
);
518 atomic_inc(&pi_state
->refcount
);
526 * We are the first waiter - try to look up the real owner and attach
527 * the new pi_state to it, but bail out when TID = 0
531 p
= futex_find_get_task(pid
);
536 * We need to look at the task state flags to figure out,
537 * whether the task is exiting. To protect against the do_exit
538 * change of the task flags, we do this protected by
541 spin_lock_irq(&p
->pi_lock
);
542 if (unlikely(p
->flags
& PF_EXITING
)) {
544 * The task is on the way out. When PF_EXITPIDONE is
545 * set, we know that the task has finished the
548 int ret
= (p
->flags
& PF_EXITPIDONE
) ? -ESRCH
: -EAGAIN
;
550 spin_unlock_irq(&p
->pi_lock
);
555 pi_state
= alloc_pi_state();
558 * Initialize the pi_mutex in locked state and make 'p'
561 rt_mutex_init_proxy_locked(&pi_state
->pi_mutex
, p
);
563 /* Store the key for possible exit cleanups: */
564 pi_state
->key
= *key
;
566 WARN_ON(!list_empty(&pi_state
->list
));
567 list_add(&pi_state
->list
, &p
->pi_state_list
);
569 spin_unlock_irq(&p
->pi_lock
);
579 * The hash bucket lock must be held when this is called.
580 * Afterwards, the futex_q must not be accessed.
582 static void wake_futex(struct futex_q
*q
)
584 plist_del(&q
->list
, &q
->list
.plist
);
586 * The lock in wake_up_all() is a crucial memory barrier after the
587 * plist_del() and also before assigning to q->lock_ptr.
591 * The waiting task can free the futex_q as soon as this is written,
592 * without taking any locks. This must come last.
594 * A memory barrier is required here to prevent the following store
595 * to lock_ptr from getting ahead of the wakeup. Clearing the lock
596 * at the end of wake_up_all() does not prevent this store from
603 static int wake_futex_pi(u32 __user
*uaddr
, u32 uval
, struct futex_q
*this)
605 struct task_struct
*new_owner
;
606 struct futex_pi_state
*pi_state
= this->pi_state
;
612 spin_lock(&pi_state
->pi_mutex
.wait_lock
);
613 new_owner
= rt_mutex_next_owner(&pi_state
->pi_mutex
);
616 * This happens when we have stolen the lock and the original
617 * pending owner did not enqueue itself back on the rt_mutex.
618 * Thats not a tragedy. We know that way, that a lock waiter
619 * is on the fly. We make the futex_q waiter the pending owner.
622 new_owner
= this->task
;
625 * We pass it to the next owner. (The WAITERS bit is always
626 * kept enabled while there is PI state around. We must also
627 * preserve the owner died bit.)
629 if (!(uval
& FUTEX_OWNER_DIED
)) {
632 newval
= FUTEX_WAITERS
| task_pid_vnr(new_owner
);
634 curval
= cmpxchg_futex_value_locked(uaddr
, uval
, newval
);
636 if (curval
== -EFAULT
)
638 else if (curval
!= uval
)
641 spin_unlock(&pi_state
->pi_mutex
.wait_lock
);
646 spin_lock_irq(&pi_state
->owner
->pi_lock
);
647 WARN_ON(list_empty(&pi_state
->list
));
648 list_del_init(&pi_state
->list
);
649 spin_unlock_irq(&pi_state
->owner
->pi_lock
);
651 spin_lock_irq(&new_owner
->pi_lock
);
652 WARN_ON(!list_empty(&pi_state
->list
));
653 list_add(&pi_state
->list
, &new_owner
->pi_state_list
);
654 pi_state
->owner
= new_owner
;
655 spin_unlock_irq(&new_owner
->pi_lock
);
657 spin_unlock(&pi_state
->pi_mutex
.wait_lock
);
658 rt_mutex_unlock(&pi_state
->pi_mutex
);
663 static int unlock_futex_pi(u32 __user
*uaddr
, u32 uval
)
668 * There is no waiter, so we unlock the futex. The owner died
669 * bit has not to be preserved here. We are the owner:
671 oldval
= cmpxchg_futex_value_locked(uaddr
, uval
, 0);
673 if (oldval
== -EFAULT
)
682 * Express the locking dependencies for lockdep:
685 double_lock_hb(struct futex_hash_bucket
*hb1
, struct futex_hash_bucket
*hb2
)
688 spin_lock(&hb1
->lock
);
690 spin_lock_nested(&hb2
->lock
, SINGLE_DEPTH_NESTING
);
691 } else { /* hb1 > hb2 */
692 spin_lock(&hb2
->lock
);
693 spin_lock_nested(&hb1
->lock
, SINGLE_DEPTH_NESTING
);
698 * Wake up all waiters hashed on the physical page that is mapped
699 * to this virtual address:
701 static int futex_wake(u32 __user
*uaddr
, int fshared
, int nr_wake
, u32 bitset
)
703 struct futex_hash_bucket
*hb
;
704 struct futex_q
*this, *next
;
705 struct plist_head
*head
;
706 union futex_key key
= FUTEX_KEY_INIT
;
712 ret
= get_futex_key(uaddr
, fshared
, &key
, VERIFY_READ
);
713 if (unlikely(ret
!= 0))
716 hb
= hash_futex(&key
);
717 spin_lock(&hb
->lock
);
720 plist_for_each_entry_safe(this, next
, head
, list
) {
721 if (match_futex (&this->key
, &key
)) {
722 if (this->pi_state
) {
727 /* Check if one of the bits is set in both bitsets */
728 if (!(this->bitset
& bitset
))
732 if (++ret
>= nr_wake
)
737 spin_unlock(&hb
->lock
);
738 put_futex_key(fshared
, &key
);
744 * Wake up all waiters hashed on the physical page that is mapped
745 * to this virtual address:
748 futex_wake_op(u32 __user
*uaddr1
, int fshared
, u32 __user
*uaddr2
,
749 int nr_wake
, int nr_wake2
, int op
)
751 union futex_key key1
= FUTEX_KEY_INIT
, key2
= FUTEX_KEY_INIT
;
752 struct futex_hash_bucket
*hb1
, *hb2
;
753 struct plist_head
*head
;
754 struct futex_q
*this, *next
;
755 int ret
, op_ret
, attempt
= 0;
758 ret
= get_futex_key(uaddr1
, fshared
, &key1
, VERIFY_READ
);
759 if (unlikely(ret
!= 0))
761 ret
= get_futex_key(uaddr2
, fshared
, &key2
, VERIFY_WRITE
);
762 if (unlikely(ret
!= 0))
765 hb1
= hash_futex(&key1
);
766 hb2
= hash_futex(&key2
);
769 double_lock_hb(hb1
, hb2
);
771 op_ret
= futex_atomic_op_inuser(op
, uaddr2
);
772 if (unlikely(op_ret
< 0)) {
775 spin_unlock(&hb1
->lock
);
777 spin_unlock(&hb2
->lock
);
781 * we don't get EFAULT from MMU faults if we don't have an MMU,
782 * but we might get them from range checking
788 if (unlikely(op_ret
!= -EFAULT
)) {
794 * futex_atomic_op_inuser needs to both read and write
795 * *(int __user *)uaddr2, but we can't modify it
796 * non-atomically. Therefore, if get_user below is not
797 * enough, we need to handle the fault ourselves, while
798 * still holding the mmap_sem.
801 ret
= futex_handle_fault((unsigned long)uaddr2
,
808 ret
= get_user(dummy
, uaddr2
);
817 plist_for_each_entry_safe(this, next
, head
, list
) {
818 if (match_futex (&this->key
, &key1
)) {
820 if (++ret
>= nr_wake
)
829 plist_for_each_entry_safe(this, next
, head
, list
) {
830 if (match_futex (&this->key
, &key2
)) {
832 if (++op_ret
>= nr_wake2
)
839 spin_unlock(&hb1
->lock
);
841 spin_unlock(&hb2
->lock
);
843 put_futex_key(fshared
, &key2
);
845 put_futex_key(fshared
, &key1
);
851 * Requeue all waiters hashed on one physical page to another
854 static int futex_requeue(u32 __user
*uaddr1
, int fshared
, u32 __user
*uaddr2
,
855 int nr_wake
, int nr_requeue
, u32
*cmpval
)
857 union futex_key key1
= FUTEX_KEY_INIT
, key2
= FUTEX_KEY_INIT
;
858 struct futex_hash_bucket
*hb1
, *hb2
;
859 struct plist_head
*head1
;
860 struct futex_q
*this, *next
;
861 int ret
, drop_count
= 0;
864 ret
= get_futex_key(uaddr1
, fshared
, &key1
, VERIFY_READ
);
865 if (unlikely(ret
!= 0))
867 ret
= get_futex_key(uaddr2
, fshared
, &key2
, VERIFY_WRITE
);
868 if (unlikely(ret
!= 0))
871 hb1
= hash_futex(&key1
);
872 hb2
= hash_futex(&key2
);
874 double_lock_hb(hb1
, hb2
);
876 if (likely(cmpval
!= NULL
)) {
879 ret
= get_futex_value_locked(&curval
, uaddr1
);
882 spin_unlock(&hb1
->lock
);
884 spin_unlock(&hb2
->lock
);
886 ret
= get_user(curval
, uaddr1
);
893 if (curval
!= *cmpval
) {
900 plist_for_each_entry_safe(this, next
, head1
, list
) {
901 if (!match_futex (&this->key
, &key1
))
903 if (++ret
<= nr_wake
) {
907 * If key1 and key2 hash to the same bucket, no need to
910 if (likely(head1
!= &hb2
->chain
)) {
911 plist_del(&this->list
, &hb1
->chain
);
912 plist_add(&this->list
, &hb2
->chain
);
913 this->lock_ptr
= &hb2
->lock
;
914 #ifdef CONFIG_DEBUG_PI_LIST
915 this->list
.plist
.lock
= &hb2
->lock
;
919 get_futex_key_refs(&key2
);
922 if (ret
- nr_wake
>= nr_requeue
)
928 spin_unlock(&hb1
->lock
);
930 spin_unlock(&hb2
->lock
);
932 /* drop_futex_key_refs() must be called outside the spinlocks. */
933 while (--drop_count
>= 0)
934 drop_futex_key_refs(&key1
);
937 put_futex_key(fshared
, &key2
);
939 put_futex_key(fshared
, &key1
);
944 /* The key must be already stored in q->key. */
945 static inline struct futex_hash_bucket
*queue_lock(struct futex_q
*q
)
947 struct futex_hash_bucket
*hb
;
949 init_waitqueue_head(&q
->waiter
);
951 get_futex_key_refs(&q
->key
);
952 hb
= hash_futex(&q
->key
);
953 q
->lock_ptr
= &hb
->lock
;
955 spin_lock(&hb
->lock
);
959 static inline void queue_me(struct futex_q
*q
, struct futex_hash_bucket
*hb
)
964 * The priority used to register this element is
965 * - either the real thread-priority for the real-time threads
966 * (i.e. threads with a priority lower than MAX_RT_PRIO)
967 * - or MAX_RT_PRIO for non-RT threads.
968 * Thus, all RT-threads are woken first in priority order, and
969 * the others are woken last, in FIFO order.
971 prio
= min(current
->normal_prio
, MAX_RT_PRIO
);
973 plist_node_init(&q
->list
, prio
);
974 #ifdef CONFIG_DEBUG_PI_LIST
975 q
->list
.plist
.lock
= &hb
->lock
;
977 plist_add(&q
->list
, &hb
->chain
);
979 spin_unlock(&hb
->lock
);
983 queue_unlock(struct futex_q
*q
, struct futex_hash_bucket
*hb
)
985 spin_unlock(&hb
->lock
);
986 drop_futex_key_refs(&q
->key
);
990 * queue_me and unqueue_me must be called as a pair, each
991 * exactly once. They are called with the hashed spinlock held.
994 /* Return 1 if we were still queued (ie. 0 means we were woken) */
995 static int unqueue_me(struct futex_q
*q
)
997 spinlock_t
*lock_ptr
;
1000 /* In the common case we don't take the spinlock, which is nice. */
1002 lock_ptr
= q
->lock_ptr
;
1004 if (lock_ptr
!= NULL
) {
1005 spin_lock(lock_ptr
);
1007 * q->lock_ptr can change between reading it and
1008 * spin_lock(), causing us to take the wrong lock. This
1009 * corrects the race condition.
1011 * Reasoning goes like this: if we have the wrong lock,
1012 * q->lock_ptr must have changed (maybe several times)
1013 * between reading it and the spin_lock(). It can
1014 * change again after the spin_lock() but only if it was
1015 * already changed before the spin_lock(). It cannot,
1016 * however, change back to the original value. Therefore
1017 * we can detect whether we acquired the correct lock.
1019 if (unlikely(lock_ptr
!= q
->lock_ptr
)) {
1020 spin_unlock(lock_ptr
);
1023 WARN_ON(plist_node_empty(&q
->list
));
1024 plist_del(&q
->list
, &q
->list
.plist
);
1026 BUG_ON(q
->pi_state
);
1028 spin_unlock(lock_ptr
);
1032 drop_futex_key_refs(&q
->key
);
1037 * PI futexes can not be requeued and must remove themself from the
1038 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1041 static void unqueue_me_pi(struct futex_q
*q
)
1043 WARN_ON(plist_node_empty(&q
->list
));
1044 plist_del(&q
->list
, &q
->list
.plist
);
1046 BUG_ON(!q
->pi_state
);
1047 free_pi_state(q
->pi_state
);
1050 spin_unlock(q
->lock_ptr
);
1052 drop_futex_key_refs(&q
->key
);
1056 * Fixup the pi_state owner with the new owner.
1058 * Must be called with hash bucket lock held and mm->sem held for non
1061 static int fixup_pi_state_owner(u32 __user
*uaddr
, struct futex_q
*q
,
1062 struct task_struct
*newowner
, int fshared
)
1064 u32 newtid
= task_pid_vnr(newowner
) | FUTEX_WAITERS
;
1065 struct futex_pi_state
*pi_state
= q
->pi_state
;
1066 struct task_struct
*oldowner
= pi_state
->owner
;
1067 u32 uval
, curval
, newval
;
1068 int ret
, attempt
= 0;
1071 if (!pi_state
->owner
)
1072 newtid
|= FUTEX_OWNER_DIED
;
1075 * We are here either because we stole the rtmutex from the
1076 * pending owner or we are the pending owner which failed to
1077 * get the rtmutex. We have to replace the pending owner TID
1078 * in the user space variable. This must be atomic as we have
1079 * to preserve the owner died bit here.
1081 * Note: We write the user space value _before_ changing the
1082 * pi_state because we can fault here. Imagine swapped out
1083 * pages or a fork, which was running right before we acquired
1084 * mmap_sem, that marked all the anonymous memory readonly for
1087 * Modifying pi_state _before_ the user space value would
1088 * leave the pi_state in an inconsistent state when we fault
1089 * here, because we need to drop the hash bucket lock to
1090 * handle the fault. This might be observed in the PID check
1091 * in lookup_pi_state.
1094 if (get_futex_value_locked(&uval
, uaddr
))
1098 newval
= (uval
& FUTEX_OWNER_DIED
) | newtid
;
1100 curval
= cmpxchg_futex_value_locked(uaddr
, uval
, newval
);
1102 if (curval
== -EFAULT
)
1110 * We fixed up user space. Now we need to fix the pi_state
1113 if (pi_state
->owner
!= NULL
) {
1114 spin_lock_irq(&pi_state
->owner
->pi_lock
);
1115 WARN_ON(list_empty(&pi_state
->list
));
1116 list_del_init(&pi_state
->list
);
1117 spin_unlock_irq(&pi_state
->owner
->pi_lock
);
1120 pi_state
->owner
= newowner
;
1122 spin_lock_irq(&newowner
->pi_lock
);
1123 WARN_ON(!list_empty(&pi_state
->list
));
1124 list_add(&pi_state
->list
, &newowner
->pi_state_list
);
1125 spin_unlock_irq(&newowner
->pi_lock
);
1129 * To handle the page fault we need to drop the hash bucket
1130 * lock here. That gives the other task (either the pending
1131 * owner itself or the task which stole the rtmutex) the
1132 * chance to try the fixup of the pi_state. So once we are
1133 * back from handling the fault we need to check the pi_state
1134 * after reacquiring the hash bucket lock and before trying to
1135 * do another fixup. When the fixup has been done already we
1139 spin_unlock(q
->lock_ptr
);
1141 ret
= futex_handle_fault((unsigned long)uaddr
, attempt
++);
1143 spin_lock(q
->lock_ptr
);
1146 * Check if someone else fixed it for us:
1148 if (pi_state
->owner
!= oldowner
)
1158 * In case we must use restart_block to restart a futex_wait,
1159 * we encode in the 'flags' shared capability
1161 #define FLAGS_SHARED 0x01
1162 #define FLAGS_CLOCKRT 0x02
1164 static long futex_wait_restart(struct restart_block
*restart
);
1166 static int futex_wait(u32 __user
*uaddr
, int fshared
,
1167 u32 val
, ktime_t
*abs_time
, u32 bitset
, int clockrt
)
1169 struct task_struct
*curr
= current
;
1170 struct restart_block
*restart
;
1171 DECLARE_WAITQUEUE(wait
, curr
);
1172 struct futex_hash_bucket
*hb
;
1176 struct hrtimer_sleeper t
;
1185 q
.key
= FUTEX_KEY_INIT
;
1186 ret
= get_futex_key(uaddr
, fshared
, &q
.key
, VERIFY_READ
);
1187 if (unlikely(ret
!= 0))
1190 hb
= queue_lock(&q
);
1193 * Access the page AFTER the futex is queued.
1194 * Order is important:
1196 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1197 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
1199 * The basic logical guarantee of a futex is that it blocks ONLY
1200 * if cond(var) is known to be true at the time of blocking, for
1201 * any cond. If we queued after testing *uaddr, that would open
1202 * a race condition where we could block indefinitely with
1203 * cond(var) false, which would violate the guarantee.
1205 * A consequence is that futex_wait() can return zero and absorb
1206 * a wakeup when *uaddr != val on entry to the syscall. This is
1209 * for shared futexes, we hold the mmap semaphore, so the mapping
1210 * cannot have changed since we looked it up in get_futex_key.
1212 ret
= get_futex_value_locked(&uval
, uaddr
);
1214 if (unlikely(ret
)) {
1215 queue_unlock(&q
, hb
);
1216 put_futex_key(fshared
, &q
.key
);
1218 ret
= get_user(uval
, uaddr
);
1225 if (unlikely(uval
!= val
)) {
1226 queue_unlock(&q
, hb
);
1230 /* Only actually queue if *uaddr contained val. */
1234 * There might have been scheduling since the queue_me(), as we
1235 * cannot hold a spinlock across the get_user() in case it
1236 * faults, and we cannot just set TASK_INTERRUPTIBLE state when
1237 * queueing ourselves into the futex hash. This code thus has to
1238 * rely on the futex_wake() code removing us from hash when it
1242 /* add_wait_queue is the barrier after __set_current_state. */
1243 __set_current_state(TASK_INTERRUPTIBLE
);
1244 add_wait_queue(&q
.waiter
, &wait
);
1246 * !plist_node_empty() is safe here without any lock.
1247 * q.lock_ptr != 0 is not safe, because of ordering against wakeup.
1249 if (likely(!plist_node_empty(&q
.list
))) {
1253 unsigned long slack
;
1254 slack
= current
->timer_slack_ns
;
1255 if (rt_task(current
))
1257 hrtimer_init_on_stack(&t
.timer
,
1258 clockrt
? CLOCK_REALTIME
:
1261 hrtimer_init_sleeper(&t
, current
);
1262 hrtimer_set_expires_range_ns(&t
.timer
, *abs_time
, slack
);
1264 hrtimer_start_expires(&t
.timer
, HRTIMER_MODE_ABS
);
1265 if (!hrtimer_active(&t
.timer
))
1269 * the timer could have already expired, in which
1270 * case current would be flagged for rescheduling.
1271 * Don't bother calling schedule.
1276 hrtimer_cancel(&t
.timer
);
1278 /* Flag if a timeout occured */
1279 rem
= (t
.task
== NULL
);
1281 destroy_hrtimer_on_stack(&t
.timer
);
1284 __set_current_state(TASK_RUNNING
);
1287 * NOTE: we don't remove ourselves from the waitqueue because
1288 * we are the only user of it.
1291 /* If we were woken (and unqueued), we succeeded, whatever. */
1293 if (!unqueue_me(&q
))
1300 * We expect signal_pending(current), but another thread may
1301 * have handled it for us already.
1307 restart
= ¤t_thread_info()->restart_block
;
1308 restart
->fn
= futex_wait_restart
;
1309 restart
->futex
.uaddr
= (u32
*)uaddr
;
1310 restart
->futex
.val
= val
;
1311 restart
->futex
.time
= abs_time
->tv64
;
1312 restart
->futex
.bitset
= bitset
;
1313 restart
->futex
.flags
= 0;
1316 restart
->futex
.flags
|= FLAGS_SHARED
;
1318 restart
->futex
.flags
|= FLAGS_CLOCKRT
;
1320 ret
= -ERESTART_RESTARTBLOCK
;
1323 put_futex_key(fshared
, &q
.key
);
1329 static long futex_wait_restart(struct restart_block
*restart
)
1331 u32 __user
*uaddr
= (u32 __user
*)restart
->futex
.uaddr
;
1335 t
.tv64
= restart
->futex
.time
;
1336 restart
->fn
= do_no_restart_syscall
;
1337 if (restart
->futex
.flags
& FLAGS_SHARED
)
1339 return (long)futex_wait(uaddr
, fshared
, restart
->futex
.val
, &t
,
1340 restart
->futex
.bitset
,
1341 restart
->futex
.flags
& FLAGS_CLOCKRT
);
1346 * Userspace tried a 0 -> TID atomic transition of the futex value
1347 * and failed. The kernel side here does the whole locking operation:
1348 * if there are waiters then it will block, it does PI, etc. (Due to
1349 * races the kernel might see a 0 value of the futex too.)
1351 static int futex_lock_pi(u32 __user
*uaddr
, int fshared
,
1352 int detect
, ktime_t
*time
, int trylock
)
1354 struct hrtimer_sleeper timeout
, *to
= NULL
;
1355 struct task_struct
*curr
= current
;
1356 struct futex_hash_bucket
*hb
;
1357 u32 uval
, newval
, curval
;
1359 int ret
, lock_taken
, ownerdied
= 0, attempt
= 0;
1361 if (refill_pi_state_cache())
1366 hrtimer_init_on_stack(&to
->timer
, CLOCK_REALTIME
,
1368 hrtimer_init_sleeper(to
, current
);
1369 hrtimer_set_expires(&to
->timer
, *time
);
1374 q
.key
= FUTEX_KEY_INIT
;
1375 ret
= get_futex_key(uaddr
, fshared
, &q
.key
, VERIFY_WRITE
);
1376 if (unlikely(ret
!= 0))
1380 hb
= queue_lock(&q
);
1383 ret
= lock_taken
= 0;
1386 * To avoid races, we attempt to take the lock here again
1387 * (by doing a 0 -> TID atomic cmpxchg), while holding all
1388 * the locks. It will most likely not succeed.
1390 newval
= task_pid_vnr(current
);
1392 curval
= cmpxchg_futex_value_locked(uaddr
, 0, newval
);
1394 if (unlikely(curval
== -EFAULT
))
1398 * Detect deadlocks. In case of REQUEUE_PI this is a valid
1399 * situation and we return success to user space.
1401 if (unlikely((curval
& FUTEX_TID_MASK
) == task_pid_vnr(current
))) {
1403 goto out_unlock_put_key
;
1407 * Surprise - we got the lock. Just return to userspace:
1409 if (unlikely(!curval
))
1410 goto out_unlock_put_key
;
1415 * Set the WAITERS flag, so the owner will know it has someone
1416 * to wake at next unlock
1418 newval
= curval
| FUTEX_WAITERS
;
1421 * There are two cases, where a futex might have no owner (the
1422 * owner TID is 0): OWNER_DIED. We take over the futex in this
1423 * case. We also do an unconditional take over, when the owner
1424 * of the futex died.
1426 * This is safe as we are protected by the hash bucket lock !
1428 if (unlikely(ownerdied
|| !(curval
& FUTEX_TID_MASK
))) {
1429 /* Keep the OWNER_DIED bit */
1430 newval
= (curval
& ~FUTEX_TID_MASK
) | task_pid_vnr(current
);
1435 curval
= cmpxchg_futex_value_locked(uaddr
, uval
, newval
);
1437 if (unlikely(curval
== -EFAULT
))
1439 if (unlikely(curval
!= uval
))
1443 * We took the lock due to owner died take over.
1445 if (unlikely(lock_taken
))
1446 goto out_unlock_put_key
;
1449 * We dont have the lock. Look up the PI state (or create it if
1450 * we are the first waiter):
1452 ret
= lookup_pi_state(uval
, hb
, &q
.key
, &q
.pi_state
);
1454 if (unlikely(ret
)) {
1459 * Task is exiting and we just wait for the
1462 queue_unlock(&q
, hb
);
1468 * No owner found for this futex. Check if the
1469 * OWNER_DIED bit is set to figure out whether
1470 * this is a robust futex or not.
1472 if (get_futex_value_locked(&curval
, uaddr
))
1476 * We simply start over in case of a robust
1477 * futex. The code above will take the futex
1480 if (curval
& FUTEX_OWNER_DIED
) {
1485 goto out_unlock_put_key
;
1490 * Only actually queue now that the atomic ops are done:
1494 WARN_ON(!q
.pi_state
);
1496 * Block on the PI mutex:
1499 ret
= rt_mutex_timed_lock(&q
.pi_state
->pi_mutex
, to
, 1);
1501 ret
= rt_mutex_trylock(&q
.pi_state
->pi_mutex
);
1502 /* Fixup the trylock return value: */
1503 ret
= ret
? 0 : -EWOULDBLOCK
;
1506 spin_lock(q
.lock_ptr
);
1510 * Got the lock. We might not be the anticipated owner
1511 * if we did a lock-steal - fix up the PI-state in
1514 if (q
.pi_state
->owner
!= curr
)
1515 ret
= fixup_pi_state_owner(uaddr
, &q
, curr
, fshared
);
1518 * Catch the rare case, where the lock was released
1519 * when we were on the way back before we locked the
1522 if (q
.pi_state
->owner
== curr
) {
1524 * Try to get the rt_mutex now. This might
1525 * fail as some other task acquired the
1526 * rt_mutex after we removed ourself from the
1527 * rt_mutex waiters list.
1529 if (rt_mutex_trylock(&q
.pi_state
->pi_mutex
))
1533 * pi_state is incorrect, some other
1534 * task did a lock steal and we
1535 * returned due to timeout or signal
1536 * without taking the rt_mutex. Too
1537 * late. We can access the
1538 * rt_mutex_owner without locking, as
1539 * the other task is now blocked on
1540 * the hash bucket lock. Fix the state
1543 struct task_struct
*owner
;
1546 owner
= rt_mutex_owner(&q
.pi_state
->pi_mutex
);
1547 res
= fixup_pi_state_owner(uaddr
, &q
, owner
,
1550 /* propagate -EFAULT, if the fixup failed */
1556 * Paranoia check. If we did not take the lock
1557 * in the trylock above, then we should not be
1558 * the owner of the rtmutex, neither the real
1559 * nor the pending one:
1561 if (rt_mutex_owner(&q
.pi_state
->pi_mutex
) == curr
)
1562 printk(KERN_ERR
"futex_lock_pi: ret = %d "
1563 "pi-mutex: %p pi-state %p\n", ret
,
1564 q
.pi_state
->pi_mutex
.owner
,
1569 /* Unqueue and drop the lock */
1573 destroy_hrtimer_on_stack(&to
->timer
);
1574 return ret
!= -EINTR
? ret
: -ERESTARTNOINTR
;
1577 queue_unlock(&q
, hb
);
1580 put_futex_key(fshared
, &q
.key
);
1583 destroy_hrtimer_on_stack(&to
->timer
);
1588 * We have to r/w *(int __user *)uaddr, and we have to modify it
1589 * atomically. Therefore, if we continue to fault after get_user()
1590 * below, we need to handle the fault ourselves, while still holding
1591 * the mmap_sem. This can occur if the uaddr is under contention as
1592 * we have to drop the mmap_sem in order to call get_user().
1594 queue_unlock(&q
, hb
);
1597 ret
= futex_handle_fault((unsigned long)uaddr
, attempt
);
1600 goto retry_unlocked
;
1603 ret
= get_user(uval
, uaddr
);
1608 destroy_hrtimer_on_stack(&to
->timer
);
1613 * Userspace attempted a TID -> 0 atomic transition, and failed.
1614 * This is the in-kernel slowpath: we look up the PI state (if any),
1615 * and do the rt-mutex unlock.
1617 static int futex_unlock_pi(u32 __user
*uaddr
, int fshared
)
1619 struct futex_hash_bucket
*hb
;
1620 struct futex_q
*this, *next
;
1622 struct plist_head
*head
;
1623 union futex_key key
= FUTEX_KEY_INIT
;
1624 int ret
, attempt
= 0;
1627 if (get_user(uval
, uaddr
))
1630 * We release only a lock we actually own:
1632 if ((uval
& FUTEX_TID_MASK
) != task_pid_vnr(current
))
1635 ret
= get_futex_key(uaddr
, fshared
, &key
, VERIFY_WRITE
);
1636 if (unlikely(ret
!= 0))
1639 hb
= hash_futex(&key
);
1641 spin_lock(&hb
->lock
);
1644 * To avoid races, try to do the TID -> 0 atomic transition
1645 * again. If it succeeds then we can return without waking
1648 if (!(uval
& FUTEX_OWNER_DIED
))
1649 uval
= cmpxchg_futex_value_locked(uaddr
, task_pid_vnr(current
), 0);
1652 if (unlikely(uval
== -EFAULT
))
1655 * Rare case: we managed to release the lock atomically,
1656 * no need to wake anyone else up:
1658 if (unlikely(uval
== task_pid_vnr(current
)))
1662 * Ok, other tasks may need to be woken up - check waiters
1663 * and do the wakeup if necessary:
1667 plist_for_each_entry_safe(this, next
, head
, list
) {
1668 if (!match_futex (&this->key
, &key
))
1670 ret
= wake_futex_pi(uaddr
, uval
, this);
1672 * The atomic access to the futex value
1673 * generated a pagefault, so retry the
1674 * user-access and the wakeup:
1681 * No waiters - kernel unlocks the futex:
1683 if (!(uval
& FUTEX_OWNER_DIED
)) {
1684 ret
= unlock_futex_pi(uaddr
, uval
);
1690 spin_unlock(&hb
->lock
);
1691 put_futex_key(fshared
, &key
);
1698 * We have to r/w *(int __user *)uaddr, and we have to modify it
1699 * atomically. Therefore, if we continue to fault after get_user()
1700 * below, we need to handle the fault ourselves, while still holding
1701 * the mmap_sem. This can occur if the uaddr is under contention as
1702 * we have to drop the mmap_sem in order to call get_user().
1704 spin_unlock(&hb
->lock
);
1707 ret
= futex_handle_fault((unsigned long)uaddr
, attempt
);
1711 goto retry_unlocked
;
1714 ret
= get_user(uval
, uaddr
);
1722 * Support for robust futexes: the kernel cleans up held futexes at
1725 * Implementation: user-space maintains a per-thread list of locks it
1726 * is holding. Upon do_exit(), the kernel carefully walks this list,
1727 * and marks all locks that are owned by this thread with the
1728 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
1729 * always manipulated with the lock held, so the list is private and
1730 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
1731 * field, to allow the kernel to clean up if the thread dies after
1732 * acquiring the lock, but just before it could have added itself to
1733 * the list. There can only be one such pending lock.
1737 * sys_set_robust_list - set the robust-futex list head of a task
1738 * @head: pointer to the list-head
1739 * @len: length of the list-head, as userspace expects
1741 SYSCALL_DEFINE2(set_robust_list
, struct robust_list_head __user
*, head
,
1744 if (!futex_cmpxchg_enabled
)
1747 * The kernel knows only one size for now:
1749 if (unlikely(len
!= sizeof(*head
)))
1752 current
->robust_list
= head
;
1758 * sys_get_robust_list - get the robust-futex list head of a task
1759 * @pid: pid of the process [zero for current task]
1760 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
1761 * @len_ptr: pointer to a length field, the kernel fills in the header size
1763 SYSCALL_DEFINE3(get_robust_list
, int, pid
,
1764 struct robust_list_head __user
* __user
*, head_ptr
,
1765 size_t __user
*, len_ptr
)
1767 struct robust_list_head __user
*head
;
1769 const struct cred
*cred
= current_cred(), *pcred
;
1771 if (!futex_cmpxchg_enabled
)
1775 head
= current
->robust_list
;
1777 struct task_struct
*p
;
1781 p
= find_task_by_vpid(pid
);
1785 pcred
= __task_cred(p
);
1786 if (cred
->euid
!= pcred
->euid
&&
1787 cred
->euid
!= pcred
->uid
&&
1788 !capable(CAP_SYS_PTRACE
))
1790 head
= p
->robust_list
;
1794 if (put_user(sizeof(*head
), len_ptr
))
1796 return put_user(head
, head_ptr
);
1805 * Process a futex-list entry, check whether it's owned by the
1806 * dying task, and do notification if so:
1808 int handle_futex_death(u32 __user
*uaddr
, struct task_struct
*curr
, int pi
)
1810 u32 uval
, nval
, mval
;
1813 if (get_user(uval
, uaddr
))
1816 if ((uval
& FUTEX_TID_MASK
) == task_pid_vnr(curr
)) {
1818 * Ok, this dying thread is truly holding a futex
1819 * of interest. Set the OWNER_DIED bit atomically
1820 * via cmpxchg, and if the value had FUTEX_WAITERS
1821 * set, wake up a waiter (if any). (We have to do a
1822 * futex_wake() even if OWNER_DIED is already set -
1823 * to handle the rare but possible case of recursive
1824 * thread-death.) The rest of the cleanup is done in
1827 mval
= (uval
& FUTEX_WAITERS
) | FUTEX_OWNER_DIED
;
1828 nval
= futex_atomic_cmpxchg_inatomic(uaddr
, uval
, mval
);
1830 if (nval
== -EFAULT
)
1837 * Wake robust non-PI futexes here. The wakeup of
1838 * PI futexes happens in exit_pi_state():
1840 if (!pi
&& (uval
& FUTEX_WAITERS
))
1841 futex_wake(uaddr
, 1, 1, FUTEX_BITSET_MATCH_ANY
);
1847 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
1849 static inline int fetch_robust_entry(struct robust_list __user
**entry
,
1850 struct robust_list __user
* __user
*head
,
1853 unsigned long uentry
;
1855 if (get_user(uentry
, (unsigned long __user
*)head
))
1858 *entry
= (void __user
*)(uentry
& ~1UL);
1865 * Walk curr->robust_list (very carefully, it's a userspace list!)
1866 * and mark any locks found there dead, and notify any waiters.
1868 * We silently return on any sign of list-walking problem.
1870 void exit_robust_list(struct task_struct
*curr
)
1872 struct robust_list_head __user
*head
= curr
->robust_list
;
1873 struct robust_list __user
*entry
, *next_entry
, *pending
;
1874 unsigned int limit
= ROBUST_LIST_LIMIT
, pi
, next_pi
, pip
;
1875 unsigned long futex_offset
;
1878 if (!futex_cmpxchg_enabled
)
1882 * Fetch the list head (which was registered earlier, via
1883 * sys_set_robust_list()):
1885 if (fetch_robust_entry(&entry
, &head
->list
.next
, &pi
))
1888 * Fetch the relative futex offset:
1890 if (get_user(futex_offset
, &head
->futex_offset
))
1893 * Fetch any possibly pending lock-add first, and handle it
1896 if (fetch_robust_entry(&pending
, &head
->list_op_pending
, &pip
))
1899 next_entry
= NULL
; /* avoid warning with gcc */
1900 while (entry
!= &head
->list
) {
1902 * Fetch the next entry in the list before calling
1903 * handle_futex_death:
1905 rc
= fetch_robust_entry(&next_entry
, &entry
->next
, &next_pi
);
1907 * A pending lock might already be on the list, so
1908 * don't process it twice:
1910 if (entry
!= pending
)
1911 if (handle_futex_death((void __user
*)entry
+ futex_offset
,
1919 * Avoid excessively long or circular lists:
1928 handle_futex_death((void __user
*)pending
+ futex_offset
,
1932 long do_futex(u32 __user
*uaddr
, int op
, u32 val
, ktime_t
*timeout
,
1933 u32 __user
*uaddr2
, u32 val2
, u32 val3
)
1935 int clockrt
, ret
= -ENOSYS
;
1936 int cmd
= op
& FUTEX_CMD_MASK
;
1939 if (!(op
& FUTEX_PRIVATE_FLAG
))
1942 clockrt
= op
& FUTEX_CLOCK_REALTIME
;
1943 if (clockrt
&& cmd
!= FUTEX_WAIT_BITSET
)
1948 val3
= FUTEX_BITSET_MATCH_ANY
;
1949 case FUTEX_WAIT_BITSET
:
1950 ret
= futex_wait(uaddr
, fshared
, val
, timeout
, val3
, clockrt
);
1953 val3
= FUTEX_BITSET_MATCH_ANY
;
1954 case FUTEX_WAKE_BITSET
:
1955 ret
= futex_wake(uaddr
, fshared
, val
, val3
);
1958 ret
= futex_requeue(uaddr
, fshared
, uaddr2
, val
, val2
, NULL
);
1960 case FUTEX_CMP_REQUEUE
:
1961 ret
= futex_requeue(uaddr
, fshared
, uaddr2
, val
, val2
, &val3
);
1964 ret
= futex_wake_op(uaddr
, fshared
, uaddr2
, val
, val2
, val3
);
1967 if (futex_cmpxchg_enabled
)
1968 ret
= futex_lock_pi(uaddr
, fshared
, val
, timeout
, 0);
1970 case FUTEX_UNLOCK_PI
:
1971 if (futex_cmpxchg_enabled
)
1972 ret
= futex_unlock_pi(uaddr
, fshared
);
1974 case FUTEX_TRYLOCK_PI
:
1975 if (futex_cmpxchg_enabled
)
1976 ret
= futex_lock_pi(uaddr
, fshared
, 0, timeout
, 1);
1985 SYSCALL_DEFINE6(futex
, u32 __user
*, uaddr
, int, op
, u32
, val
,
1986 struct timespec __user
*, utime
, u32 __user
*, uaddr2
,
1990 ktime_t t
, *tp
= NULL
;
1992 int cmd
= op
& FUTEX_CMD_MASK
;
1994 if (utime
&& (cmd
== FUTEX_WAIT
|| cmd
== FUTEX_LOCK_PI
||
1995 cmd
== FUTEX_WAIT_BITSET
)) {
1996 if (copy_from_user(&ts
, utime
, sizeof(ts
)) != 0)
1998 if (!timespec_valid(&ts
))
2001 t
= timespec_to_ktime(ts
);
2002 if (cmd
== FUTEX_WAIT
)
2003 t
= ktime_add_safe(ktime_get(), t
);
2007 * requeue parameter in 'utime' if cmd == FUTEX_REQUEUE.
2008 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
2010 if (cmd
== FUTEX_REQUEUE
|| cmd
== FUTEX_CMP_REQUEUE
||
2011 cmd
== FUTEX_WAKE_OP
)
2012 val2
= (u32
) (unsigned long) utime
;
2014 return do_futex(uaddr
, op
, val
, tp
, uaddr2
, val2
, val3
);
2017 static int __init
futex_init(void)
2023 * This will fail and we want it. Some arch implementations do
2024 * runtime detection of the futex_atomic_cmpxchg_inatomic()
2025 * functionality. We want to know that before we call in any
2026 * of the complex code paths. Also we want to prevent
2027 * registration of robust lists in that case. NULL is
2028 * guaranteed to fault and we get -EFAULT on functional
2029 * implementation, the non functional ones will return
2032 curval
= cmpxchg_futex_value_locked(NULL
, 0, 0);
2033 if (curval
== -EFAULT
)
2034 futex_cmpxchg_enabled
= 1;
2036 for (i
= 0; i
< ARRAY_SIZE(futex_queues
); i
++) {
2037 plist_head_init(&futex_queues
[i
].chain
, &futex_queues
[i
].lock
);
2038 spin_lock_init(&futex_queues
[i
].lock
);
2043 __initcall(futex_init
);