drivers/misc/Makefile, Kconfig: cleanup
[linux-2.6/mini2440.git] / drivers / net / fec.c
blobecd5c71a7a8a5f6470f7362a051434f61529e5b3
1 /*
2 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
5 * Right now, I am very wasteful with the buffers. I allocate memory
6 * pages and then divide them into 2K frame buffers. This way I know I
7 * have buffers large enough to hold one frame within one buffer descriptor.
8 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
9 * will be much more memory efficient and will easily handle lots of
10 * small packets.
12 * Much better multiple PHY support by Magnus Damm.
13 * Copyright (c) 2000 Ericsson Radio Systems AB.
15 * Support for FEC controller of ColdFire processors.
16 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
18 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
19 * Copyright (c) 2004-2006 Macq Electronique SA.
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/string.h>
25 #include <linux/ptrace.h>
26 #include <linux/errno.h>
27 #include <linux/ioport.h>
28 #include <linux/slab.h>
29 #include <linux/interrupt.h>
30 #include <linux/pci.h>
31 #include <linux/init.h>
32 #include <linux/delay.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/skbuff.h>
36 #include <linux/spinlock.h>
37 #include <linux/workqueue.h>
38 #include <linux/bitops.h>
40 #include <asm/irq.h>
41 #include <asm/uaccess.h>
42 #include <asm/io.h>
43 #include <asm/pgtable.h>
44 #include <asm/cacheflush.h>
46 #include <asm/coldfire.h>
47 #include <asm/mcfsim.h>
48 #include "fec.h"
50 #if defined(CONFIG_FEC2)
51 #define FEC_MAX_PORTS 2
52 #else
53 #define FEC_MAX_PORTS 1
54 #endif
56 #if defined(CONFIG_M5272)
57 #define HAVE_mii_link_interrupt
58 #endif
61 * Define the fixed address of the FEC hardware.
63 static unsigned int fec_hw[] = {
64 #if defined(CONFIG_M5272)
65 (MCF_MBAR + 0x840),
66 #elif defined(CONFIG_M527x)
67 (MCF_MBAR + 0x1000),
68 (MCF_MBAR + 0x1800),
69 #elif defined(CONFIG_M523x) || defined(CONFIG_M528x)
70 (MCF_MBAR + 0x1000),
71 #elif defined(CONFIG_M520x)
72 (MCF_MBAR+0x30000),
73 #elif defined(CONFIG_M532x)
74 (MCF_MBAR+0xfc030000),
75 #else
76 &(((immap_t *)IMAP_ADDR)->im_cpm.cp_fec),
77 #endif
80 static unsigned char fec_mac_default[] = {
81 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
85 * Some hardware gets it MAC address out of local flash memory.
86 * if this is non-zero then assume it is the address to get MAC from.
88 #if defined(CONFIG_NETtel)
89 #define FEC_FLASHMAC 0xf0006006
90 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
91 #define FEC_FLASHMAC 0xf0006000
92 #elif defined(CONFIG_CANCam)
93 #define FEC_FLASHMAC 0xf0020000
94 #elif defined (CONFIG_M5272C3)
95 #define FEC_FLASHMAC (0xffe04000 + 4)
96 #elif defined(CONFIG_MOD5272)
97 #define FEC_FLASHMAC 0xffc0406b
98 #else
99 #define FEC_FLASHMAC 0
100 #endif
102 /* Forward declarations of some structures to support different PHYs
105 typedef struct {
106 uint mii_data;
107 void (*funct)(uint mii_reg, struct net_device *dev);
108 } phy_cmd_t;
110 typedef struct {
111 uint id;
112 char *name;
114 const phy_cmd_t *config;
115 const phy_cmd_t *startup;
116 const phy_cmd_t *ack_int;
117 const phy_cmd_t *shutdown;
118 } phy_info_t;
120 /* The number of Tx and Rx buffers. These are allocated from the page
121 * pool. The code may assume these are power of two, so it it best
122 * to keep them that size.
123 * We don't need to allocate pages for the transmitter. We just use
124 * the skbuffer directly.
126 #define FEC_ENET_RX_PAGES 8
127 #define FEC_ENET_RX_FRSIZE 2048
128 #define FEC_ENET_RX_FRPPG (PAGE_SIZE / FEC_ENET_RX_FRSIZE)
129 #define RX_RING_SIZE (FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES)
130 #define FEC_ENET_TX_FRSIZE 2048
131 #define FEC_ENET_TX_FRPPG (PAGE_SIZE / FEC_ENET_TX_FRSIZE)
132 #define TX_RING_SIZE 16 /* Must be power of two */
133 #define TX_RING_MOD_MASK 15 /* for this to work */
135 #if (((RX_RING_SIZE + TX_RING_SIZE) * 8) > PAGE_SIZE)
136 #error "FEC: descriptor ring size constants too large"
137 #endif
139 /* Interrupt events/masks.
141 #define FEC_ENET_HBERR ((uint)0x80000000) /* Heartbeat error */
142 #define FEC_ENET_BABR ((uint)0x40000000) /* Babbling receiver */
143 #define FEC_ENET_BABT ((uint)0x20000000) /* Babbling transmitter */
144 #define FEC_ENET_GRA ((uint)0x10000000) /* Graceful stop complete */
145 #define FEC_ENET_TXF ((uint)0x08000000) /* Full frame transmitted */
146 #define FEC_ENET_TXB ((uint)0x04000000) /* A buffer was transmitted */
147 #define FEC_ENET_RXF ((uint)0x02000000) /* Full frame received */
148 #define FEC_ENET_RXB ((uint)0x01000000) /* A buffer was received */
149 #define FEC_ENET_MII ((uint)0x00800000) /* MII interrupt */
150 #define FEC_ENET_EBERR ((uint)0x00400000) /* SDMA bus error */
152 /* The FEC stores dest/src/type, data, and checksum for receive packets.
154 #define PKT_MAXBUF_SIZE 1518
155 #define PKT_MINBUF_SIZE 64
156 #define PKT_MAXBLR_SIZE 1520
160 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
161 * size bits. Other FEC hardware does not, so we need to take that into
162 * account when setting it.
164 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
165 defined(CONFIG_M520x) || defined(CONFIG_M532x)
166 #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16)
167 #else
168 #define OPT_FRAME_SIZE 0
169 #endif
171 /* The FEC buffer descriptors track the ring buffers. The rx_bd_base and
172 * tx_bd_base always point to the base of the buffer descriptors. The
173 * cur_rx and cur_tx point to the currently available buffer.
174 * The dirty_tx tracks the current buffer that is being sent by the
175 * controller. The cur_tx and dirty_tx are equal under both completely
176 * empty and completely full conditions. The empty/ready indicator in
177 * the buffer descriptor determines the actual condition.
179 struct fec_enet_private {
180 /* Hardware registers of the FEC device */
181 volatile fec_t *hwp;
183 struct net_device *netdev;
185 /* The saved address of a sent-in-place packet/buffer, for skfree(). */
186 unsigned char *tx_bounce[TX_RING_SIZE];
187 struct sk_buff* tx_skbuff[TX_RING_SIZE];
188 ushort skb_cur;
189 ushort skb_dirty;
191 /* CPM dual port RAM relative addresses.
193 cbd_t *rx_bd_base; /* Address of Rx and Tx buffers. */
194 cbd_t *tx_bd_base;
195 cbd_t *cur_rx, *cur_tx; /* The next free ring entry */
196 cbd_t *dirty_tx; /* The ring entries to be free()ed. */
197 uint tx_full;
198 /* hold while accessing the HW like ringbuffer for tx/rx but not MAC */
199 spinlock_t hw_lock;
200 /* hold while accessing the mii_list_t() elements */
201 spinlock_t mii_lock;
203 uint phy_id;
204 uint phy_id_done;
205 uint phy_status;
206 uint phy_speed;
207 phy_info_t const *phy;
208 struct work_struct phy_task;
210 uint sequence_done;
211 uint mii_phy_task_queued;
213 uint phy_addr;
215 int index;
216 int opened;
217 int link;
218 int old_link;
219 int full_duplex;
222 static int fec_enet_open(struct net_device *dev);
223 static int fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev);
224 static void fec_enet_mii(struct net_device *dev);
225 static irqreturn_t fec_enet_interrupt(int irq, void * dev_id);
226 static void fec_enet_tx(struct net_device *dev);
227 static void fec_enet_rx(struct net_device *dev);
228 static int fec_enet_close(struct net_device *dev);
229 static void set_multicast_list(struct net_device *dev);
230 static void fec_restart(struct net_device *dev, int duplex);
231 static void fec_stop(struct net_device *dev);
232 static void fec_set_mac_address(struct net_device *dev);
235 /* MII processing. We keep this as simple as possible. Requests are
236 * placed on the list (if there is room). When the request is finished
237 * by the MII, an optional function may be called.
239 typedef struct mii_list {
240 uint mii_regval;
241 void (*mii_func)(uint val, struct net_device *dev);
242 struct mii_list *mii_next;
243 } mii_list_t;
245 #define NMII 20
246 static mii_list_t mii_cmds[NMII];
247 static mii_list_t *mii_free;
248 static mii_list_t *mii_head;
249 static mii_list_t *mii_tail;
251 static int mii_queue(struct net_device *dev, int request,
252 void (*func)(uint, struct net_device *));
254 /* Make MII read/write commands for the FEC.
256 #define mk_mii_read(REG) (0x60020000 | ((REG & 0x1f) << 18))
257 #define mk_mii_write(REG, VAL) (0x50020000 | ((REG & 0x1f) << 18) | \
258 (VAL & 0xffff))
259 #define mk_mii_end 0
261 /* Transmitter timeout.
263 #define TX_TIMEOUT (2*HZ)
265 /* Register definitions for the PHY.
268 #define MII_REG_CR 0 /* Control Register */
269 #define MII_REG_SR 1 /* Status Register */
270 #define MII_REG_PHYIR1 2 /* PHY Identification Register 1 */
271 #define MII_REG_PHYIR2 3 /* PHY Identification Register 2 */
272 #define MII_REG_ANAR 4 /* A-N Advertisement Register */
273 #define MII_REG_ANLPAR 5 /* A-N Link Partner Ability Register */
274 #define MII_REG_ANER 6 /* A-N Expansion Register */
275 #define MII_REG_ANNPTR 7 /* A-N Next Page Transmit Register */
276 #define MII_REG_ANLPRNPR 8 /* A-N Link Partner Received Next Page Reg. */
278 /* values for phy_status */
280 #define PHY_CONF_ANE 0x0001 /* 1 auto-negotiation enabled */
281 #define PHY_CONF_LOOP 0x0002 /* 1 loopback mode enabled */
282 #define PHY_CONF_SPMASK 0x00f0 /* mask for speed */
283 #define PHY_CONF_10HDX 0x0010 /* 10 Mbit half duplex supported */
284 #define PHY_CONF_10FDX 0x0020 /* 10 Mbit full duplex supported */
285 #define PHY_CONF_100HDX 0x0040 /* 100 Mbit half duplex supported */
286 #define PHY_CONF_100FDX 0x0080 /* 100 Mbit full duplex supported */
288 #define PHY_STAT_LINK 0x0100 /* 1 up - 0 down */
289 #define PHY_STAT_FAULT 0x0200 /* 1 remote fault */
290 #define PHY_STAT_ANC 0x0400 /* 1 auto-negotiation complete */
291 #define PHY_STAT_SPMASK 0xf000 /* mask for speed */
292 #define PHY_STAT_10HDX 0x1000 /* 10 Mbit half duplex selected */
293 #define PHY_STAT_10FDX 0x2000 /* 10 Mbit full duplex selected */
294 #define PHY_STAT_100HDX 0x4000 /* 100 Mbit half duplex selected */
295 #define PHY_STAT_100FDX 0x8000 /* 100 Mbit full duplex selected */
298 static int
299 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
301 struct fec_enet_private *fep;
302 volatile fec_t *fecp;
303 volatile cbd_t *bdp;
304 unsigned short status;
305 unsigned long flags;
307 fep = netdev_priv(dev);
308 fecp = (volatile fec_t*)dev->base_addr;
310 if (!fep->link) {
311 /* Link is down or autonegotiation is in progress. */
312 return 1;
315 spin_lock_irqsave(&fep->hw_lock, flags);
316 /* Fill in a Tx ring entry */
317 bdp = fep->cur_tx;
319 status = bdp->cbd_sc;
320 #ifndef final_version
321 if (status & BD_ENET_TX_READY) {
322 /* Ooops. All transmit buffers are full. Bail out.
323 * This should not happen, since dev->tbusy should be set.
325 printk("%s: tx queue full!.\n", dev->name);
326 spin_unlock_irqrestore(&fep->hw_lock, flags);
327 return 1;
329 #endif
331 /* Clear all of the status flags.
333 status &= ~BD_ENET_TX_STATS;
335 /* Set buffer length and buffer pointer.
337 bdp->cbd_bufaddr = __pa(skb->data);
338 bdp->cbd_datlen = skb->len;
341 * On some FEC implementations data must be aligned on
342 * 4-byte boundaries. Use bounce buffers to copy data
343 * and get it aligned. Ugh.
345 if (bdp->cbd_bufaddr & 0x3) {
346 unsigned int index;
347 index = bdp - fep->tx_bd_base;
348 memcpy(fep->tx_bounce[index], (void *) bdp->cbd_bufaddr, bdp->cbd_datlen);
349 bdp->cbd_bufaddr = __pa(fep->tx_bounce[index]);
352 /* Save skb pointer.
354 fep->tx_skbuff[fep->skb_cur] = skb;
356 dev->stats.tx_bytes += skb->len;
357 fep->skb_cur = (fep->skb_cur+1) & TX_RING_MOD_MASK;
359 /* Push the data cache so the CPM does not get stale memory
360 * data.
362 flush_dcache_range((unsigned long)skb->data,
363 (unsigned long)skb->data + skb->len);
365 /* Send it on its way. Tell FEC it's ready, interrupt when done,
366 * it's the last BD of the frame, and to put the CRC on the end.
369 status |= (BD_ENET_TX_READY | BD_ENET_TX_INTR
370 | BD_ENET_TX_LAST | BD_ENET_TX_TC);
371 bdp->cbd_sc = status;
373 dev->trans_start = jiffies;
375 /* Trigger transmission start */
376 fecp->fec_x_des_active = 0;
378 /* If this was the last BD in the ring, start at the beginning again.
380 if (status & BD_ENET_TX_WRAP) {
381 bdp = fep->tx_bd_base;
382 } else {
383 bdp++;
386 if (bdp == fep->dirty_tx) {
387 fep->tx_full = 1;
388 netif_stop_queue(dev);
391 fep->cur_tx = (cbd_t *)bdp;
393 spin_unlock_irqrestore(&fep->hw_lock, flags);
395 return 0;
398 static void
399 fec_timeout(struct net_device *dev)
401 struct fec_enet_private *fep = netdev_priv(dev);
403 printk("%s: transmit timed out.\n", dev->name);
404 dev->stats.tx_errors++;
405 #ifndef final_version
407 int i;
408 cbd_t *bdp;
410 printk("Ring data dump: cur_tx %lx%s, dirty_tx %lx cur_rx: %lx\n",
411 (unsigned long)fep->cur_tx, fep->tx_full ? " (full)" : "",
412 (unsigned long)fep->dirty_tx,
413 (unsigned long)fep->cur_rx);
415 bdp = fep->tx_bd_base;
416 printk(" tx: %u buffers\n", TX_RING_SIZE);
417 for (i = 0 ; i < TX_RING_SIZE; i++) {
418 printk(" %08x: %04x %04x %08x\n",
419 (uint) bdp,
420 bdp->cbd_sc,
421 bdp->cbd_datlen,
422 (int) bdp->cbd_bufaddr);
423 bdp++;
426 bdp = fep->rx_bd_base;
427 printk(" rx: %lu buffers\n", (unsigned long) RX_RING_SIZE);
428 for (i = 0 ; i < RX_RING_SIZE; i++) {
429 printk(" %08x: %04x %04x %08x\n",
430 (uint) bdp,
431 bdp->cbd_sc,
432 bdp->cbd_datlen,
433 (int) bdp->cbd_bufaddr);
434 bdp++;
437 #endif
438 fec_restart(dev, fep->full_duplex);
439 netif_wake_queue(dev);
442 /* The interrupt handler.
443 * This is called from the MPC core interrupt.
445 static irqreturn_t
446 fec_enet_interrupt(int irq, void * dev_id)
448 struct net_device *dev = dev_id;
449 volatile fec_t *fecp;
450 uint int_events;
451 irqreturn_t ret = IRQ_NONE;
453 fecp = (volatile fec_t*)dev->base_addr;
455 /* Get the interrupt events that caused us to be here.
457 do {
458 int_events = fecp->fec_ievent;
459 fecp->fec_ievent = int_events;
461 /* Handle receive event in its own function.
463 if (int_events & FEC_ENET_RXF) {
464 ret = IRQ_HANDLED;
465 fec_enet_rx(dev);
468 /* Transmit OK, or non-fatal error. Update the buffer
469 descriptors. FEC handles all errors, we just discover
470 them as part of the transmit process.
472 if (int_events & FEC_ENET_TXF) {
473 ret = IRQ_HANDLED;
474 fec_enet_tx(dev);
477 if (int_events & FEC_ENET_MII) {
478 ret = IRQ_HANDLED;
479 fec_enet_mii(dev);
482 } while (int_events);
484 return ret;
488 static void
489 fec_enet_tx(struct net_device *dev)
491 struct fec_enet_private *fep;
492 volatile cbd_t *bdp;
493 unsigned short status;
494 struct sk_buff *skb;
496 fep = netdev_priv(dev);
497 spin_lock_irq(&fep->hw_lock);
498 bdp = fep->dirty_tx;
500 while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) {
501 if (bdp == fep->cur_tx && fep->tx_full == 0) break;
503 skb = fep->tx_skbuff[fep->skb_dirty];
504 /* Check for errors. */
505 if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
506 BD_ENET_TX_RL | BD_ENET_TX_UN |
507 BD_ENET_TX_CSL)) {
508 dev->stats.tx_errors++;
509 if (status & BD_ENET_TX_HB) /* No heartbeat */
510 dev->stats.tx_heartbeat_errors++;
511 if (status & BD_ENET_TX_LC) /* Late collision */
512 dev->stats.tx_window_errors++;
513 if (status & BD_ENET_TX_RL) /* Retrans limit */
514 dev->stats.tx_aborted_errors++;
515 if (status & BD_ENET_TX_UN) /* Underrun */
516 dev->stats.tx_fifo_errors++;
517 if (status & BD_ENET_TX_CSL) /* Carrier lost */
518 dev->stats.tx_carrier_errors++;
519 } else {
520 dev->stats.tx_packets++;
523 #ifndef final_version
524 if (status & BD_ENET_TX_READY)
525 printk("HEY! Enet xmit interrupt and TX_READY.\n");
526 #endif
527 /* Deferred means some collisions occurred during transmit,
528 * but we eventually sent the packet OK.
530 if (status & BD_ENET_TX_DEF)
531 dev->stats.collisions++;
533 /* Free the sk buffer associated with this last transmit.
535 dev_kfree_skb_any(skb);
536 fep->tx_skbuff[fep->skb_dirty] = NULL;
537 fep->skb_dirty = (fep->skb_dirty + 1) & TX_RING_MOD_MASK;
539 /* Update pointer to next buffer descriptor to be transmitted.
541 if (status & BD_ENET_TX_WRAP)
542 bdp = fep->tx_bd_base;
543 else
544 bdp++;
546 /* Since we have freed up a buffer, the ring is no longer
547 * full.
549 if (fep->tx_full) {
550 fep->tx_full = 0;
551 if (netif_queue_stopped(dev))
552 netif_wake_queue(dev);
555 fep->dirty_tx = (cbd_t *)bdp;
556 spin_unlock_irq(&fep->hw_lock);
560 /* During a receive, the cur_rx points to the current incoming buffer.
561 * When we update through the ring, if the next incoming buffer has
562 * not been given to the system, we just set the empty indicator,
563 * effectively tossing the packet.
565 static void
566 fec_enet_rx(struct net_device *dev)
568 struct fec_enet_private *fep;
569 volatile fec_t *fecp;
570 volatile cbd_t *bdp;
571 unsigned short status;
572 struct sk_buff *skb;
573 ushort pkt_len;
574 __u8 *data;
576 #ifdef CONFIG_M532x
577 flush_cache_all();
578 #endif
580 fep = netdev_priv(dev);
581 fecp = (volatile fec_t*)dev->base_addr;
583 spin_lock_irq(&fep->hw_lock);
585 /* First, grab all of the stats for the incoming packet.
586 * These get messed up if we get called due to a busy condition.
588 bdp = fep->cur_rx;
590 while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
592 #ifndef final_version
593 /* Since we have allocated space to hold a complete frame,
594 * the last indicator should be set.
596 if ((status & BD_ENET_RX_LAST) == 0)
597 printk("FEC ENET: rcv is not +last\n");
598 #endif
600 if (!fep->opened)
601 goto rx_processing_done;
603 /* Check for errors. */
604 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
605 BD_ENET_RX_CR | BD_ENET_RX_OV)) {
606 dev->stats.rx_errors++;
607 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
608 /* Frame too long or too short. */
609 dev->stats.rx_length_errors++;
611 if (status & BD_ENET_RX_NO) /* Frame alignment */
612 dev->stats.rx_frame_errors++;
613 if (status & BD_ENET_RX_CR) /* CRC Error */
614 dev->stats.rx_crc_errors++;
615 if (status & BD_ENET_RX_OV) /* FIFO overrun */
616 dev->stats.rx_fifo_errors++;
619 /* Report late collisions as a frame error.
620 * On this error, the BD is closed, but we don't know what we
621 * have in the buffer. So, just drop this frame on the floor.
623 if (status & BD_ENET_RX_CL) {
624 dev->stats.rx_errors++;
625 dev->stats.rx_frame_errors++;
626 goto rx_processing_done;
629 /* Process the incoming frame.
631 dev->stats.rx_packets++;
632 pkt_len = bdp->cbd_datlen;
633 dev->stats.rx_bytes += pkt_len;
634 data = (__u8*)__va(bdp->cbd_bufaddr);
636 /* This does 16 byte alignment, exactly what we need.
637 * The packet length includes FCS, but we don't want to
638 * include that when passing upstream as it messes up
639 * bridging applications.
641 skb = dev_alloc_skb(pkt_len-4);
643 if (skb == NULL) {
644 printk("%s: Memory squeeze, dropping packet.\n", dev->name);
645 dev->stats.rx_dropped++;
646 } else {
647 skb_put(skb,pkt_len-4); /* Make room */
648 skb_copy_to_linear_data(skb, data, pkt_len-4);
649 skb->protocol=eth_type_trans(skb,dev);
650 netif_rx(skb);
652 rx_processing_done:
654 /* Clear the status flags for this buffer.
656 status &= ~BD_ENET_RX_STATS;
658 /* Mark the buffer empty.
660 status |= BD_ENET_RX_EMPTY;
661 bdp->cbd_sc = status;
663 /* Update BD pointer to next entry.
665 if (status & BD_ENET_RX_WRAP)
666 bdp = fep->rx_bd_base;
667 else
668 bdp++;
670 #if 1
671 /* Doing this here will keep the FEC running while we process
672 * incoming frames. On a heavily loaded network, we should be
673 * able to keep up at the expense of system resources.
675 fecp->fec_r_des_active = 0;
676 #endif
677 } /* while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) */
678 fep->cur_rx = (cbd_t *)bdp;
680 #if 0
681 /* Doing this here will allow us to process all frames in the
682 * ring before the FEC is allowed to put more there. On a heavily
683 * loaded network, some frames may be lost. Unfortunately, this
684 * increases the interrupt overhead since we can potentially work
685 * our way back to the interrupt return only to come right back
686 * here.
688 fecp->fec_r_des_active = 0;
689 #endif
691 spin_unlock_irq(&fep->hw_lock);
695 /* called from interrupt context */
696 static void
697 fec_enet_mii(struct net_device *dev)
699 struct fec_enet_private *fep;
700 volatile fec_t *ep;
701 mii_list_t *mip;
702 uint mii_reg;
704 fep = netdev_priv(dev);
705 spin_lock_irq(&fep->mii_lock);
707 ep = fep->hwp;
708 mii_reg = ep->fec_mii_data;
710 if ((mip = mii_head) == NULL) {
711 printk("MII and no head!\n");
712 goto unlock;
715 if (mip->mii_func != NULL)
716 (*(mip->mii_func))(mii_reg, dev);
718 mii_head = mip->mii_next;
719 mip->mii_next = mii_free;
720 mii_free = mip;
722 if ((mip = mii_head) != NULL)
723 ep->fec_mii_data = mip->mii_regval;
725 unlock:
726 spin_unlock_irq(&fep->mii_lock);
729 static int
730 mii_queue(struct net_device *dev, int regval, void (*func)(uint, struct net_device *))
732 struct fec_enet_private *fep;
733 unsigned long flags;
734 mii_list_t *mip;
735 int retval;
737 /* Add PHY address to register command.
739 fep = netdev_priv(dev);
740 spin_lock_irqsave(&fep->mii_lock, flags);
742 regval |= fep->phy_addr << 23;
743 retval = 0;
745 if ((mip = mii_free) != NULL) {
746 mii_free = mip->mii_next;
747 mip->mii_regval = regval;
748 mip->mii_func = func;
749 mip->mii_next = NULL;
750 if (mii_head) {
751 mii_tail->mii_next = mip;
752 mii_tail = mip;
753 } else {
754 mii_head = mii_tail = mip;
755 fep->hwp->fec_mii_data = regval;
757 } else {
758 retval = 1;
761 spin_unlock_irqrestore(&fep->mii_lock, flags);
762 return retval;
765 static void mii_do_cmd(struct net_device *dev, const phy_cmd_t *c)
767 if(!c)
768 return;
770 for (; c->mii_data != mk_mii_end; c++)
771 mii_queue(dev, c->mii_data, c->funct);
774 static void mii_parse_sr(uint mii_reg, struct net_device *dev)
776 struct fec_enet_private *fep = netdev_priv(dev);
777 volatile uint *s = &(fep->phy_status);
778 uint status;
780 status = *s & ~(PHY_STAT_LINK | PHY_STAT_FAULT | PHY_STAT_ANC);
782 if (mii_reg & 0x0004)
783 status |= PHY_STAT_LINK;
784 if (mii_reg & 0x0010)
785 status |= PHY_STAT_FAULT;
786 if (mii_reg & 0x0020)
787 status |= PHY_STAT_ANC;
788 *s = status;
791 static void mii_parse_cr(uint mii_reg, struct net_device *dev)
793 struct fec_enet_private *fep = netdev_priv(dev);
794 volatile uint *s = &(fep->phy_status);
795 uint status;
797 status = *s & ~(PHY_CONF_ANE | PHY_CONF_LOOP);
799 if (mii_reg & 0x1000)
800 status |= PHY_CONF_ANE;
801 if (mii_reg & 0x4000)
802 status |= PHY_CONF_LOOP;
803 *s = status;
806 static void mii_parse_anar(uint mii_reg, struct net_device *dev)
808 struct fec_enet_private *fep = netdev_priv(dev);
809 volatile uint *s = &(fep->phy_status);
810 uint status;
812 status = *s & ~(PHY_CONF_SPMASK);
814 if (mii_reg & 0x0020)
815 status |= PHY_CONF_10HDX;
816 if (mii_reg & 0x0040)
817 status |= PHY_CONF_10FDX;
818 if (mii_reg & 0x0080)
819 status |= PHY_CONF_100HDX;
820 if (mii_reg & 0x00100)
821 status |= PHY_CONF_100FDX;
822 *s = status;
825 /* ------------------------------------------------------------------------- */
826 /* The Level one LXT970 is used by many boards */
828 #define MII_LXT970_MIRROR 16 /* Mirror register */
829 #define MII_LXT970_IER 17 /* Interrupt Enable Register */
830 #define MII_LXT970_ISR 18 /* Interrupt Status Register */
831 #define MII_LXT970_CONFIG 19 /* Configuration Register */
832 #define MII_LXT970_CSR 20 /* Chip Status Register */
834 static void mii_parse_lxt970_csr(uint mii_reg, struct net_device *dev)
836 struct fec_enet_private *fep = netdev_priv(dev);
837 volatile uint *s = &(fep->phy_status);
838 uint status;
840 status = *s & ~(PHY_STAT_SPMASK);
841 if (mii_reg & 0x0800) {
842 if (mii_reg & 0x1000)
843 status |= PHY_STAT_100FDX;
844 else
845 status |= PHY_STAT_100HDX;
846 } else {
847 if (mii_reg & 0x1000)
848 status |= PHY_STAT_10FDX;
849 else
850 status |= PHY_STAT_10HDX;
852 *s = status;
855 static phy_cmd_t const phy_cmd_lxt970_config[] = {
856 { mk_mii_read(MII_REG_CR), mii_parse_cr },
857 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
858 { mk_mii_end, }
860 static phy_cmd_t const phy_cmd_lxt970_startup[] = { /* enable interrupts */
861 { mk_mii_write(MII_LXT970_IER, 0x0002), NULL },
862 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
863 { mk_mii_end, }
865 static phy_cmd_t const phy_cmd_lxt970_ack_int[] = {
866 /* read SR and ISR to acknowledge */
867 { mk_mii_read(MII_REG_SR), mii_parse_sr },
868 { mk_mii_read(MII_LXT970_ISR), NULL },
870 /* find out the current status */
871 { mk_mii_read(MII_LXT970_CSR), mii_parse_lxt970_csr },
872 { mk_mii_end, }
874 static phy_cmd_t const phy_cmd_lxt970_shutdown[] = { /* disable interrupts */
875 { mk_mii_write(MII_LXT970_IER, 0x0000), NULL },
876 { mk_mii_end, }
878 static phy_info_t const phy_info_lxt970 = {
879 .id = 0x07810000,
880 .name = "LXT970",
881 .config = phy_cmd_lxt970_config,
882 .startup = phy_cmd_lxt970_startup,
883 .ack_int = phy_cmd_lxt970_ack_int,
884 .shutdown = phy_cmd_lxt970_shutdown
887 /* ------------------------------------------------------------------------- */
888 /* The Level one LXT971 is used on some of my custom boards */
890 /* register definitions for the 971 */
892 #define MII_LXT971_PCR 16 /* Port Control Register */
893 #define MII_LXT971_SR2 17 /* Status Register 2 */
894 #define MII_LXT971_IER 18 /* Interrupt Enable Register */
895 #define MII_LXT971_ISR 19 /* Interrupt Status Register */
896 #define MII_LXT971_LCR 20 /* LED Control Register */
897 #define MII_LXT971_TCR 30 /* Transmit Control Register */
900 * I had some nice ideas of running the MDIO faster...
901 * The 971 should support 8MHz and I tried it, but things acted really
902 * weird, so 2.5 MHz ought to be enough for anyone...
905 static void mii_parse_lxt971_sr2(uint mii_reg, struct net_device *dev)
907 struct fec_enet_private *fep = netdev_priv(dev);
908 volatile uint *s = &(fep->phy_status);
909 uint status;
911 status = *s & ~(PHY_STAT_SPMASK | PHY_STAT_LINK | PHY_STAT_ANC);
913 if (mii_reg & 0x0400) {
914 fep->link = 1;
915 status |= PHY_STAT_LINK;
916 } else {
917 fep->link = 0;
919 if (mii_reg & 0x0080)
920 status |= PHY_STAT_ANC;
921 if (mii_reg & 0x4000) {
922 if (mii_reg & 0x0200)
923 status |= PHY_STAT_100FDX;
924 else
925 status |= PHY_STAT_100HDX;
926 } else {
927 if (mii_reg & 0x0200)
928 status |= PHY_STAT_10FDX;
929 else
930 status |= PHY_STAT_10HDX;
932 if (mii_reg & 0x0008)
933 status |= PHY_STAT_FAULT;
935 *s = status;
938 static phy_cmd_t const phy_cmd_lxt971_config[] = {
939 /* limit to 10MBit because my prototype board
940 * doesn't work with 100. */
941 { mk_mii_read(MII_REG_CR), mii_parse_cr },
942 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
943 { mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 },
944 { mk_mii_end, }
946 static phy_cmd_t const phy_cmd_lxt971_startup[] = { /* enable interrupts */
947 { mk_mii_write(MII_LXT971_IER, 0x00f2), NULL },
948 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
949 { mk_mii_write(MII_LXT971_LCR, 0xd422), NULL }, /* LED config */
950 /* Somehow does the 971 tell me that the link is down
951 * the first read after power-up.
952 * read here to get a valid value in ack_int */
953 { mk_mii_read(MII_REG_SR), mii_parse_sr },
954 { mk_mii_end, }
956 static phy_cmd_t const phy_cmd_lxt971_ack_int[] = {
957 /* acknowledge the int before reading status ! */
958 { mk_mii_read(MII_LXT971_ISR), NULL },
959 /* find out the current status */
960 { mk_mii_read(MII_REG_SR), mii_parse_sr },
961 { mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 },
962 { mk_mii_end, }
964 static phy_cmd_t const phy_cmd_lxt971_shutdown[] = { /* disable interrupts */
965 { mk_mii_write(MII_LXT971_IER, 0x0000), NULL },
966 { mk_mii_end, }
968 static phy_info_t const phy_info_lxt971 = {
969 .id = 0x0001378e,
970 .name = "LXT971",
971 .config = phy_cmd_lxt971_config,
972 .startup = phy_cmd_lxt971_startup,
973 .ack_int = phy_cmd_lxt971_ack_int,
974 .shutdown = phy_cmd_lxt971_shutdown
977 /* ------------------------------------------------------------------------- */
978 /* The Quality Semiconductor QS6612 is used on the RPX CLLF */
980 /* register definitions */
982 #define MII_QS6612_MCR 17 /* Mode Control Register */
983 #define MII_QS6612_FTR 27 /* Factory Test Register */
984 #define MII_QS6612_MCO 28 /* Misc. Control Register */
985 #define MII_QS6612_ISR 29 /* Interrupt Source Register */
986 #define MII_QS6612_IMR 30 /* Interrupt Mask Register */
987 #define MII_QS6612_PCR 31 /* 100BaseTx PHY Control Reg. */
989 static void mii_parse_qs6612_pcr(uint mii_reg, struct net_device *dev)
991 struct fec_enet_private *fep = netdev_priv(dev);
992 volatile uint *s = &(fep->phy_status);
993 uint status;
995 status = *s & ~(PHY_STAT_SPMASK);
997 switch((mii_reg >> 2) & 7) {
998 case 1: status |= PHY_STAT_10HDX; break;
999 case 2: status |= PHY_STAT_100HDX; break;
1000 case 5: status |= PHY_STAT_10FDX; break;
1001 case 6: status |= PHY_STAT_100FDX; break;
1004 *s = status;
1007 static phy_cmd_t const phy_cmd_qs6612_config[] = {
1008 /* The PHY powers up isolated on the RPX,
1009 * so send a command to allow operation.
1011 { mk_mii_write(MII_QS6612_PCR, 0x0dc0), NULL },
1013 /* parse cr and anar to get some info */
1014 { mk_mii_read(MII_REG_CR), mii_parse_cr },
1015 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
1016 { mk_mii_end, }
1018 static phy_cmd_t const phy_cmd_qs6612_startup[] = { /* enable interrupts */
1019 { mk_mii_write(MII_QS6612_IMR, 0x003a), NULL },
1020 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
1021 { mk_mii_end, }
1023 static phy_cmd_t const phy_cmd_qs6612_ack_int[] = {
1024 /* we need to read ISR, SR and ANER to acknowledge */
1025 { mk_mii_read(MII_QS6612_ISR), NULL },
1026 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1027 { mk_mii_read(MII_REG_ANER), NULL },
1029 /* read pcr to get info */
1030 { mk_mii_read(MII_QS6612_PCR), mii_parse_qs6612_pcr },
1031 { mk_mii_end, }
1033 static phy_cmd_t const phy_cmd_qs6612_shutdown[] = { /* disable interrupts */
1034 { mk_mii_write(MII_QS6612_IMR, 0x0000), NULL },
1035 { mk_mii_end, }
1037 static phy_info_t const phy_info_qs6612 = {
1038 .id = 0x00181440,
1039 .name = "QS6612",
1040 .config = phy_cmd_qs6612_config,
1041 .startup = phy_cmd_qs6612_startup,
1042 .ack_int = phy_cmd_qs6612_ack_int,
1043 .shutdown = phy_cmd_qs6612_shutdown
1046 /* ------------------------------------------------------------------------- */
1047 /* AMD AM79C874 phy */
1049 /* register definitions for the 874 */
1051 #define MII_AM79C874_MFR 16 /* Miscellaneous Feature Register */
1052 #define MII_AM79C874_ICSR 17 /* Interrupt/Status Register */
1053 #define MII_AM79C874_DR 18 /* Diagnostic Register */
1054 #define MII_AM79C874_PMLR 19 /* Power and Loopback Register */
1055 #define MII_AM79C874_MCR 21 /* ModeControl Register */
1056 #define MII_AM79C874_DC 23 /* Disconnect Counter */
1057 #define MII_AM79C874_REC 24 /* Recieve Error Counter */
1059 static void mii_parse_am79c874_dr(uint mii_reg, struct net_device *dev)
1061 struct fec_enet_private *fep = netdev_priv(dev);
1062 volatile uint *s = &(fep->phy_status);
1063 uint status;
1065 status = *s & ~(PHY_STAT_SPMASK | PHY_STAT_ANC);
1067 if (mii_reg & 0x0080)
1068 status |= PHY_STAT_ANC;
1069 if (mii_reg & 0x0400)
1070 status |= ((mii_reg & 0x0800) ? PHY_STAT_100FDX : PHY_STAT_100HDX);
1071 else
1072 status |= ((mii_reg & 0x0800) ? PHY_STAT_10FDX : PHY_STAT_10HDX);
1074 *s = status;
1077 static phy_cmd_t const phy_cmd_am79c874_config[] = {
1078 { mk_mii_read(MII_REG_CR), mii_parse_cr },
1079 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
1080 { mk_mii_read(MII_AM79C874_DR), mii_parse_am79c874_dr },
1081 { mk_mii_end, }
1083 static phy_cmd_t const phy_cmd_am79c874_startup[] = { /* enable interrupts */
1084 { mk_mii_write(MII_AM79C874_ICSR, 0xff00), NULL },
1085 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
1086 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1087 { mk_mii_end, }
1089 static phy_cmd_t const phy_cmd_am79c874_ack_int[] = {
1090 /* find out the current status */
1091 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1092 { mk_mii_read(MII_AM79C874_DR), mii_parse_am79c874_dr },
1093 /* we only need to read ISR to acknowledge */
1094 { mk_mii_read(MII_AM79C874_ICSR), NULL },
1095 { mk_mii_end, }
1097 static phy_cmd_t const phy_cmd_am79c874_shutdown[] = { /* disable interrupts */
1098 { mk_mii_write(MII_AM79C874_ICSR, 0x0000), NULL },
1099 { mk_mii_end, }
1101 static phy_info_t const phy_info_am79c874 = {
1102 .id = 0x00022561,
1103 .name = "AM79C874",
1104 .config = phy_cmd_am79c874_config,
1105 .startup = phy_cmd_am79c874_startup,
1106 .ack_int = phy_cmd_am79c874_ack_int,
1107 .shutdown = phy_cmd_am79c874_shutdown
1111 /* ------------------------------------------------------------------------- */
1112 /* Kendin KS8721BL phy */
1114 /* register definitions for the 8721 */
1116 #define MII_KS8721BL_RXERCR 21
1117 #define MII_KS8721BL_ICSR 22
1118 #define MII_KS8721BL_PHYCR 31
1120 static phy_cmd_t const phy_cmd_ks8721bl_config[] = {
1121 { mk_mii_read(MII_REG_CR), mii_parse_cr },
1122 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
1123 { mk_mii_end, }
1125 static phy_cmd_t const phy_cmd_ks8721bl_startup[] = { /* enable interrupts */
1126 { mk_mii_write(MII_KS8721BL_ICSR, 0xff00), NULL },
1127 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
1128 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1129 { mk_mii_end, }
1131 static phy_cmd_t const phy_cmd_ks8721bl_ack_int[] = {
1132 /* find out the current status */
1133 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1134 /* we only need to read ISR to acknowledge */
1135 { mk_mii_read(MII_KS8721BL_ICSR), NULL },
1136 { mk_mii_end, }
1138 static phy_cmd_t const phy_cmd_ks8721bl_shutdown[] = { /* disable interrupts */
1139 { mk_mii_write(MII_KS8721BL_ICSR, 0x0000), NULL },
1140 { mk_mii_end, }
1142 static phy_info_t const phy_info_ks8721bl = {
1143 .id = 0x00022161,
1144 .name = "KS8721BL",
1145 .config = phy_cmd_ks8721bl_config,
1146 .startup = phy_cmd_ks8721bl_startup,
1147 .ack_int = phy_cmd_ks8721bl_ack_int,
1148 .shutdown = phy_cmd_ks8721bl_shutdown
1151 /* ------------------------------------------------------------------------- */
1152 /* register definitions for the DP83848 */
1154 #define MII_DP8384X_PHYSTST 16 /* PHY Status Register */
1156 static void mii_parse_dp8384x_sr2(uint mii_reg, struct net_device *dev)
1158 struct fec_enet_private *fep = dev->priv;
1159 volatile uint *s = &(fep->phy_status);
1161 *s &= ~(PHY_STAT_SPMASK | PHY_STAT_LINK | PHY_STAT_ANC);
1163 /* Link up */
1164 if (mii_reg & 0x0001) {
1165 fep->link = 1;
1166 *s |= PHY_STAT_LINK;
1167 } else
1168 fep->link = 0;
1169 /* Status of link */
1170 if (mii_reg & 0x0010) /* Autonegotioation complete */
1171 *s |= PHY_STAT_ANC;
1172 if (mii_reg & 0x0002) { /* 10MBps? */
1173 if (mii_reg & 0x0004) /* Full Duplex? */
1174 *s |= PHY_STAT_10FDX;
1175 else
1176 *s |= PHY_STAT_10HDX;
1177 } else { /* 100 Mbps? */
1178 if (mii_reg & 0x0004) /* Full Duplex? */
1179 *s |= PHY_STAT_100FDX;
1180 else
1181 *s |= PHY_STAT_100HDX;
1183 if (mii_reg & 0x0008)
1184 *s |= PHY_STAT_FAULT;
1187 static phy_info_t phy_info_dp83848= {
1188 0x020005c9,
1189 "DP83848",
1191 (const phy_cmd_t []) { /* config */
1192 { mk_mii_read(MII_REG_CR), mii_parse_cr },
1193 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
1194 { mk_mii_read(MII_DP8384X_PHYSTST), mii_parse_dp8384x_sr2 },
1195 { mk_mii_end, }
1197 (const phy_cmd_t []) { /* startup - enable interrupts */
1198 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
1199 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1200 { mk_mii_end, }
1202 (const phy_cmd_t []) { /* ack_int - never happens, no interrupt */
1203 { mk_mii_end, }
1205 (const phy_cmd_t []) { /* shutdown */
1206 { mk_mii_end, }
1210 /* ------------------------------------------------------------------------- */
1212 static phy_info_t const * const phy_info[] = {
1213 &phy_info_lxt970,
1214 &phy_info_lxt971,
1215 &phy_info_qs6612,
1216 &phy_info_am79c874,
1217 &phy_info_ks8721bl,
1218 &phy_info_dp83848,
1219 NULL
1222 /* ------------------------------------------------------------------------- */
1223 #ifdef HAVE_mii_link_interrupt
1224 static irqreturn_t
1225 mii_link_interrupt(int irq, void * dev_id);
1226 #endif
1228 #if defined(CONFIG_M5272)
1230 * Code specific to Coldfire 5272 setup.
1232 static void __inline__ fec_request_intrs(struct net_device *dev)
1234 volatile unsigned long *icrp;
1235 static const struct idesc {
1236 char *name;
1237 unsigned short irq;
1238 irq_handler_t handler;
1239 } *idp, id[] = {
1240 { "fec(RX)", 86, fec_enet_interrupt },
1241 { "fec(TX)", 87, fec_enet_interrupt },
1242 { "fec(OTHER)", 88, fec_enet_interrupt },
1243 { "fec(MII)", 66, mii_link_interrupt },
1244 { NULL },
1247 /* Setup interrupt handlers. */
1248 for (idp = id; idp->name; idp++) {
1249 if (request_irq(idp->irq, idp->handler, IRQF_DISABLED, idp->name, dev) != 0)
1250 printk("FEC: Could not allocate %s IRQ(%d)!\n", idp->name, idp->irq);
1253 /* Unmask interrupt at ColdFire 5272 SIM */
1254 icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR3);
1255 *icrp = 0x00000ddd;
1256 icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1);
1257 *icrp = 0x0d000000;
1260 static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
1262 volatile fec_t *fecp;
1264 fecp = fep->hwp;
1265 fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;
1266 fecp->fec_x_cntrl = 0x00;
1269 * Set MII speed to 2.5 MHz
1270 * See 5272 manual section 11.5.8: MSCR
1272 fep->phy_speed = ((((MCF_CLK / 4) / (2500000 / 10)) + 5) / 10) * 2;
1273 fecp->fec_mii_speed = fep->phy_speed;
1275 fec_restart(dev, 0);
1278 static void __inline__ fec_get_mac(struct net_device *dev)
1280 struct fec_enet_private *fep = netdev_priv(dev);
1281 volatile fec_t *fecp;
1282 unsigned char *iap, tmpaddr[ETH_ALEN];
1284 fecp = fep->hwp;
1286 if (FEC_FLASHMAC) {
1288 * Get MAC address from FLASH.
1289 * If it is all 1's or 0's, use the default.
1291 iap = (unsigned char *)FEC_FLASHMAC;
1292 if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
1293 (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
1294 iap = fec_mac_default;
1295 if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
1296 (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
1297 iap = fec_mac_default;
1298 } else {
1299 *((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low;
1300 *((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16);
1301 iap = &tmpaddr[0];
1304 memcpy(dev->dev_addr, iap, ETH_ALEN);
1306 /* Adjust MAC if using default MAC address */
1307 if (iap == fec_mac_default)
1308 dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index;
1311 static void __inline__ fec_enable_phy_intr(void)
1315 static void __inline__ fec_disable_phy_intr(void)
1317 volatile unsigned long *icrp;
1318 icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1);
1319 *icrp = 0x08000000;
1322 static void __inline__ fec_phy_ack_intr(void)
1324 volatile unsigned long *icrp;
1325 /* Acknowledge the interrupt */
1326 icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1);
1327 *icrp = 0x0d000000;
1330 static void __inline__ fec_localhw_setup(void)
1335 * Do not need to make region uncached on 5272.
1337 static void __inline__ fec_uncache(unsigned long addr)
1341 /* ------------------------------------------------------------------------- */
1343 #elif defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x)
1346 * Code specific to Coldfire 5230/5231/5232/5234/5235,
1347 * the 5270/5271/5274/5275 and 5280/5282 setups.
1349 static void __inline__ fec_request_intrs(struct net_device *dev)
1351 struct fec_enet_private *fep;
1352 int b;
1353 static const struct idesc {
1354 char *name;
1355 unsigned short irq;
1356 } *idp, id[] = {
1357 { "fec(TXF)", 23 },
1358 { "fec(RXF)", 27 },
1359 { "fec(MII)", 29 },
1360 { NULL },
1363 fep = netdev_priv(dev);
1364 b = (fep->index) ? 128 : 64;
1366 /* Setup interrupt handlers. */
1367 for (idp = id; idp->name; idp++) {
1368 if (request_irq(b+idp->irq, fec_enet_interrupt, IRQF_DISABLED, idp->name, dev) != 0)
1369 printk("FEC: Could not allocate %s IRQ(%d)!\n", idp->name, b+idp->irq);
1372 /* Unmask interrupts at ColdFire 5280/5282 interrupt controller */
1374 volatile unsigned char *icrp;
1375 volatile unsigned long *imrp;
1376 int i, ilip;
1378 b = (fep->index) ? MCFICM_INTC1 : MCFICM_INTC0;
1379 icrp = (volatile unsigned char *) (MCF_IPSBAR + b +
1380 MCFINTC_ICR0);
1381 for (i = 23, ilip = 0x28; (i < 36); i++)
1382 icrp[i] = ilip--;
1384 imrp = (volatile unsigned long *) (MCF_IPSBAR + b +
1385 MCFINTC_IMRH);
1386 *imrp &= ~0x0000000f;
1387 imrp = (volatile unsigned long *) (MCF_IPSBAR + b +
1388 MCFINTC_IMRL);
1389 *imrp &= ~0xff800001;
1392 #if defined(CONFIG_M528x)
1393 /* Set up gpio outputs for MII lines */
1395 volatile u16 *gpio_paspar;
1396 volatile u8 *gpio_pehlpar;
1398 gpio_paspar = (volatile u16 *) (MCF_IPSBAR + 0x100056);
1399 gpio_pehlpar = (volatile u16 *) (MCF_IPSBAR + 0x100058);
1400 *gpio_paspar |= 0x0f00;
1401 *gpio_pehlpar = 0xc0;
1403 #endif
1405 #if defined(CONFIG_M527x)
1406 /* Set up gpio outputs for MII lines */
1408 volatile u8 *gpio_par_fec;
1409 volatile u16 *gpio_par_feci2c;
1411 gpio_par_feci2c = (volatile u16 *)(MCF_IPSBAR + 0x100082);
1412 /* Set up gpio outputs for FEC0 MII lines */
1413 gpio_par_fec = (volatile u8 *)(MCF_IPSBAR + 0x100078);
1415 *gpio_par_feci2c |= 0x0f00;
1416 *gpio_par_fec |= 0xc0;
1418 #if defined(CONFIG_FEC2)
1419 /* Set up gpio outputs for FEC1 MII lines */
1420 gpio_par_fec = (volatile u8 *)(MCF_IPSBAR + 0x100079);
1422 *gpio_par_feci2c |= 0x00a0;
1423 *gpio_par_fec |= 0xc0;
1424 #endif /* CONFIG_FEC2 */
1426 #endif /* CONFIG_M527x */
1429 static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
1431 volatile fec_t *fecp;
1433 fecp = fep->hwp;
1434 fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;
1435 fecp->fec_x_cntrl = 0x00;
1438 * Set MII speed to 2.5 MHz
1439 * See 5282 manual section 17.5.4.7: MSCR
1441 fep->phy_speed = ((((MCF_CLK / 2) / (2500000 / 10)) + 5) / 10) * 2;
1442 fecp->fec_mii_speed = fep->phy_speed;
1444 fec_restart(dev, 0);
1447 static void __inline__ fec_get_mac(struct net_device *dev)
1449 struct fec_enet_private *fep = netdev_priv(dev);
1450 volatile fec_t *fecp;
1451 unsigned char *iap, tmpaddr[ETH_ALEN];
1453 fecp = fep->hwp;
1455 if (FEC_FLASHMAC) {
1457 * Get MAC address from FLASH.
1458 * If it is all 1's or 0's, use the default.
1460 iap = FEC_FLASHMAC;
1461 if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
1462 (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
1463 iap = fec_mac_default;
1464 if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
1465 (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
1466 iap = fec_mac_default;
1467 } else {
1468 *((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low;
1469 *((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16);
1470 iap = &tmpaddr[0];
1473 memcpy(dev->dev_addr, iap, ETH_ALEN);
1475 /* Adjust MAC if using default MAC address */
1476 if (iap == fec_mac_default)
1477 dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index;
1480 static void __inline__ fec_enable_phy_intr(void)
1484 static void __inline__ fec_disable_phy_intr(void)
1488 static void __inline__ fec_phy_ack_intr(void)
1492 static void __inline__ fec_localhw_setup(void)
1497 * Do not need to make region uncached on 5272.
1499 static void __inline__ fec_uncache(unsigned long addr)
1503 /* ------------------------------------------------------------------------- */
1505 #elif defined(CONFIG_M520x)
1508 * Code specific to Coldfire 520x
1510 static void __inline__ fec_request_intrs(struct net_device *dev)
1512 struct fec_enet_private *fep;
1513 int b;
1514 static const struct idesc {
1515 char *name;
1516 unsigned short irq;
1517 } *idp, id[] = {
1518 { "fec(TXF)", 23 },
1519 { "fec(RXF)", 27 },
1520 { "fec(MII)", 29 },
1521 { NULL },
1524 fep = netdev_priv(dev);
1525 b = 64 + 13;
1527 /* Setup interrupt handlers. */
1528 for (idp = id; idp->name; idp++) {
1529 if (request_irq(b+idp->irq, fec_enet_interrupt, IRQF_DISABLED, idp->name,dev) != 0)
1530 printk("FEC: Could not allocate %s IRQ(%d)!\n", idp->name, b+idp->irq);
1533 /* Unmask interrupts at ColdFire interrupt controller */
1535 volatile unsigned char *icrp;
1536 volatile unsigned long *imrp;
1538 icrp = (volatile unsigned char *) (MCF_IPSBAR + MCFICM_INTC0 +
1539 MCFINTC_ICR0);
1540 for (b = 36; (b < 49); b++)
1541 icrp[b] = 0x04;
1542 imrp = (volatile unsigned long *) (MCF_IPSBAR + MCFICM_INTC0 +
1543 MCFINTC_IMRH);
1544 *imrp &= ~0x0001FFF0;
1546 *(volatile unsigned char *)(MCF_IPSBAR + MCF_GPIO_PAR_FEC) |= 0xf0;
1547 *(volatile unsigned char *)(MCF_IPSBAR + MCF_GPIO_PAR_FECI2C) |= 0x0f;
1550 static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
1552 volatile fec_t *fecp;
1554 fecp = fep->hwp;
1555 fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;
1556 fecp->fec_x_cntrl = 0x00;
1559 * Set MII speed to 2.5 MHz
1560 * See 5282 manual section 17.5.4.7: MSCR
1562 fep->phy_speed = ((((MCF_CLK / 2) / (2500000 / 10)) + 5) / 10) * 2;
1563 fecp->fec_mii_speed = fep->phy_speed;
1565 fec_restart(dev, 0);
1568 static void __inline__ fec_get_mac(struct net_device *dev)
1570 struct fec_enet_private *fep = netdev_priv(dev);
1571 volatile fec_t *fecp;
1572 unsigned char *iap, tmpaddr[ETH_ALEN];
1574 fecp = fep->hwp;
1576 if (FEC_FLASHMAC) {
1578 * Get MAC address from FLASH.
1579 * If it is all 1's or 0's, use the default.
1581 iap = FEC_FLASHMAC;
1582 if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
1583 (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
1584 iap = fec_mac_default;
1585 if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
1586 (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
1587 iap = fec_mac_default;
1588 } else {
1589 *((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low;
1590 *((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16);
1591 iap = &tmpaddr[0];
1594 memcpy(dev->dev_addr, iap, ETH_ALEN);
1596 /* Adjust MAC if using default MAC address */
1597 if (iap == fec_mac_default)
1598 dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index;
1601 static void __inline__ fec_enable_phy_intr(void)
1605 static void __inline__ fec_disable_phy_intr(void)
1609 static void __inline__ fec_phy_ack_intr(void)
1613 static void __inline__ fec_localhw_setup(void)
1617 static void __inline__ fec_uncache(unsigned long addr)
1621 /* ------------------------------------------------------------------------- */
1623 #elif defined(CONFIG_M532x)
1625 * Code specific for M532x
1627 static void __inline__ fec_request_intrs(struct net_device *dev)
1629 struct fec_enet_private *fep;
1630 int b;
1631 static const struct idesc {
1632 char *name;
1633 unsigned short irq;
1634 } *idp, id[] = {
1635 { "fec(TXF)", 36 },
1636 { "fec(RXF)", 40 },
1637 { "fec(MII)", 42 },
1638 { NULL },
1641 fep = netdev_priv(dev);
1642 b = (fep->index) ? 128 : 64;
1644 /* Setup interrupt handlers. */
1645 for (idp = id; idp->name; idp++) {
1646 if (request_irq(b+idp->irq, fec_enet_interrupt, IRQF_DISABLED, idp->name,dev) != 0)
1647 printk("FEC: Could not allocate %s IRQ(%d)!\n",
1648 idp->name, b+idp->irq);
1651 /* Unmask interrupts */
1652 MCF_INTC0_ICR36 = 0x2;
1653 MCF_INTC0_ICR37 = 0x2;
1654 MCF_INTC0_ICR38 = 0x2;
1655 MCF_INTC0_ICR39 = 0x2;
1656 MCF_INTC0_ICR40 = 0x2;
1657 MCF_INTC0_ICR41 = 0x2;
1658 MCF_INTC0_ICR42 = 0x2;
1659 MCF_INTC0_ICR43 = 0x2;
1660 MCF_INTC0_ICR44 = 0x2;
1661 MCF_INTC0_ICR45 = 0x2;
1662 MCF_INTC0_ICR46 = 0x2;
1663 MCF_INTC0_ICR47 = 0x2;
1664 MCF_INTC0_ICR48 = 0x2;
1666 MCF_INTC0_IMRH &= ~(
1667 MCF_INTC_IMRH_INT_MASK36 |
1668 MCF_INTC_IMRH_INT_MASK37 |
1669 MCF_INTC_IMRH_INT_MASK38 |
1670 MCF_INTC_IMRH_INT_MASK39 |
1671 MCF_INTC_IMRH_INT_MASK40 |
1672 MCF_INTC_IMRH_INT_MASK41 |
1673 MCF_INTC_IMRH_INT_MASK42 |
1674 MCF_INTC_IMRH_INT_MASK43 |
1675 MCF_INTC_IMRH_INT_MASK44 |
1676 MCF_INTC_IMRH_INT_MASK45 |
1677 MCF_INTC_IMRH_INT_MASK46 |
1678 MCF_INTC_IMRH_INT_MASK47 |
1679 MCF_INTC_IMRH_INT_MASK48 );
1681 /* Set up gpio outputs for MII lines */
1682 MCF_GPIO_PAR_FECI2C |= (0 |
1683 MCF_GPIO_PAR_FECI2C_PAR_MDC_EMDC |
1684 MCF_GPIO_PAR_FECI2C_PAR_MDIO_EMDIO);
1685 MCF_GPIO_PAR_FEC = (0 |
1686 MCF_GPIO_PAR_FEC_PAR_FEC_7W_FEC |
1687 MCF_GPIO_PAR_FEC_PAR_FEC_MII_FEC);
1690 static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
1692 volatile fec_t *fecp;
1694 fecp = fep->hwp;
1695 fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;
1696 fecp->fec_x_cntrl = 0x00;
1699 * Set MII speed to 2.5 MHz
1701 fep->phy_speed = ((((MCF_CLK / 2) / (2500000 / 10)) + 5) / 10) * 2;
1702 fecp->fec_mii_speed = fep->phy_speed;
1704 fec_restart(dev, 0);
1707 static void __inline__ fec_get_mac(struct net_device *dev)
1709 struct fec_enet_private *fep = netdev_priv(dev);
1710 volatile fec_t *fecp;
1711 unsigned char *iap, tmpaddr[ETH_ALEN];
1713 fecp = fep->hwp;
1715 if (FEC_FLASHMAC) {
1717 * Get MAC address from FLASH.
1718 * If it is all 1's or 0's, use the default.
1720 iap = FEC_FLASHMAC;
1721 if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
1722 (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
1723 iap = fec_mac_default;
1724 if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
1725 (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
1726 iap = fec_mac_default;
1727 } else {
1728 *((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low;
1729 *((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16);
1730 iap = &tmpaddr[0];
1733 memcpy(dev->dev_addr, iap, ETH_ALEN);
1735 /* Adjust MAC if using default MAC address */
1736 if (iap == fec_mac_default)
1737 dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index;
1740 static void __inline__ fec_enable_phy_intr(void)
1744 static void __inline__ fec_disable_phy_intr(void)
1748 static void __inline__ fec_phy_ack_intr(void)
1752 static void __inline__ fec_localhw_setup(void)
1757 * Do not need to make region uncached on 532x.
1759 static void __inline__ fec_uncache(unsigned long addr)
1763 /* ------------------------------------------------------------------------- */
1766 #else
1769 * Code specific to the MPC860T setup.
1771 static void __inline__ fec_request_intrs(struct net_device *dev)
1773 volatile immap_t *immap;
1775 immap = (immap_t *)IMAP_ADDR; /* pointer to internal registers */
1777 if (request_8xxirq(FEC_INTERRUPT, fec_enet_interrupt, 0, "fec", dev) != 0)
1778 panic("Could not allocate FEC IRQ!");
1781 static void __inline__ fec_get_mac(struct net_device *dev)
1783 bd_t *bd;
1785 bd = (bd_t *)__res;
1786 memcpy(dev->dev_addr, bd->bi_enetaddr, ETH_ALEN);
1789 static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
1791 extern uint _get_IMMR(void);
1792 volatile immap_t *immap;
1793 volatile fec_t *fecp;
1795 fecp = fep->hwp;
1796 immap = (immap_t *)IMAP_ADDR; /* pointer to internal registers */
1798 /* Configure all of port D for MII.
1800 immap->im_ioport.iop_pdpar = 0x1fff;
1802 /* Bits moved from Rev. D onward.
1804 if ((_get_IMMR() & 0xffff) < 0x0501)
1805 immap->im_ioport.iop_pddir = 0x1c58; /* Pre rev. D */
1806 else
1807 immap->im_ioport.iop_pddir = 0x1fff; /* Rev. D and later */
1809 /* Set MII speed to 2.5 MHz
1811 fecp->fec_mii_speed = fep->phy_speed =
1812 ((bd->bi_busfreq * 1000000) / 2500000) & 0x7e;
1815 static void __inline__ fec_enable_phy_intr(void)
1817 volatile fec_t *fecp;
1819 fecp = fep->hwp;
1821 /* Enable MII command finished interrupt
1823 fecp->fec_ivec = (FEC_INTERRUPT/2) << 29;
1826 static void __inline__ fec_disable_phy_intr(void)
1830 static void __inline__ fec_phy_ack_intr(void)
1834 static void __inline__ fec_localhw_setup(void)
1836 volatile fec_t *fecp;
1838 fecp = fep->hwp;
1839 fecp->fec_r_hash = PKT_MAXBUF_SIZE;
1840 /* Enable big endian and don't care about SDMA FC.
1842 fecp->fec_fun_code = 0x78000000;
1845 static void __inline__ fec_uncache(unsigned long addr)
1847 pte_t *pte;
1848 pte = va_to_pte(mem_addr);
1849 pte_val(*pte) |= _PAGE_NO_CACHE;
1850 flush_tlb_page(init_mm.mmap, mem_addr);
1853 #endif
1855 /* ------------------------------------------------------------------------- */
1857 static void mii_display_status(struct net_device *dev)
1859 struct fec_enet_private *fep = netdev_priv(dev);
1860 volatile uint *s = &(fep->phy_status);
1862 if (!fep->link && !fep->old_link) {
1863 /* Link is still down - don't print anything */
1864 return;
1867 printk("%s: status: ", dev->name);
1869 if (!fep->link) {
1870 printk("link down");
1871 } else {
1872 printk("link up");
1874 switch(*s & PHY_STAT_SPMASK) {
1875 case PHY_STAT_100FDX: printk(", 100MBit Full Duplex"); break;
1876 case PHY_STAT_100HDX: printk(", 100MBit Half Duplex"); break;
1877 case PHY_STAT_10FDX: printk(", 10MBit Full Duplex"); break;
1878 case PHY_STAT_10HDX: printk(", 10MBit Half Duplex"); break;
1879 default:
1880 printk(", Unknown speed/duplex");
1883 if (*s & PHY_STAT_ANC)
1884 printk(", auto-negotiation complete");
1887 if (*s & PHY_STAT_FAULT)
1888 printk(", remote fault");
1890 printk(".\n");
1893 static void mii_display_config(struct work_struct *work)
1895 struct fec_enet_private *fep = container_of(work, struct fec_enet_private, phy_task);
1896 struct net_device *dev = fep->netdev;
1897 uint status = fep->phy_status;
1900 ** When we get here, phy_task is already removed from
1901 ** the workqueue. It is thus safe to allow to reuse it.
1903 fep->mii_phy_task_queued = 0;
1904 printk("%s: config: auto-negotiation ", dev->name);
1906 if (status & PHY_CONF_ANE)
1907 printk("on");
1908 else
1909 printk("off");
1911 if (status & PHY_CONF_100FDX)
1912 printk(", 100FDX");
1913 if (status & PHY_CONF_100HDX)
1914 printk(", 100HDX");
1915 if (status & PHY_CONF_10FDX)
1916 printk(", 10FDX");
1917 if (status & PHY_CONF_10HDX)
1918 printk(", 10HDX");
1919 if (!(status & PHY_CONF_SPMASK))
1920 printk(", No speed/duplex selected?");
1922 if (status & PHY_CONF_LOOP)
1923 printk(", loopback enabled");
1925 printk(".\n");
1927 fep->sequence_done = 1;
1930 static void mii_relink(struct work_struct *work)
1932 struct fec_enet_private *fep = container_of(work, struct fec_enet_private, phy_task);
1933 struct net_device *dev = fep->netdev;
1934 int duplex;
1937 ** When we get here, phy_task is already removed from
1938 ** the workqueue. It is thus safe to allow to reuse it.
1940 fep->mii_phy_task_queued = 0;
1941 fep->link = (fep->phy_status & PHY_STAT_LINK) ? 1 : 0;
1942 mii_display_status(dev);
1943 fep->old_link = fep->link;
1945 if (fep->link) {
1946 duplex = 0;
1947 if (fep->phy_status
1948 & (PHY_STAT_100FDX | PHY_STAT_10FDX))
1949 duplex = 1;
1950 fec_restart(dev, duplex);
1951 } else
1952 fec_stop(dev);
1954 #if 0
1955 enable_irq(fep->mii_irq);
1956 #endif
1960 /* mii_queue_relink is called in interrupt context from mii_link_interrupt */
1961 static void mii_queue_relink(uint mii_reg, struct net_device *dev)
1963 struct fec_enet_private *fep = netdev_priv(dev);
1966 ** We cannot queue phy_task twice in the workqueue. It
1967 ** would cause an endless loop in the workqueue.
1968 ** Fortunately, if the last mii_relink entry has not yet been
1969 ** executed now, it will do the job for the current interrupt,
1970 ** which is just what we want.
1972 if (fep->mii_phy_task_queued)
1973 return;
1975 fep->mii_phy_task_queued = 1;
1976 INIT_WORK(&fep->phy_task, mii_relink);
1977 schedule_work(&fep->phy_task);
1980 /* mii_queue_config is called in interrupt context from fec_enet_mii */
1981 static void mii_queue_config(uint mii_reg, struct net_device *dev)
1983 struct fec_enet_private *fep = netdev_priv(dev);
1985 if (fep->mii_phy_task_queued)
1986 return;
1988 fep->mii_phy_task_queued = 1;
1989 INIT_WORK(&fep->phy_task, mii_display_config);
1990 schedule_work(&fep->phy_task);
1993 phy_cmd_t const phy_cmd_relink[] = {
1994 { mk_mii_read(MII_REG_CR), mii_queue_relink },
1995 { mk_mii_end, }
1997 phy_cmd_t const phy_cmd_config[] = {
1998 { mk_mii_read(MII_REG_CR), mii_queue_config },
1999 { mk_mii_end, }
2002 /* Read remainder of PHY ID.
2004 static void
2005 mii_discover_phy3(uint mii_reg, struct net_device *dev)
2007 struct fec_enet_private *fep;
2008 int i;
2010 fep = netdev_priv(dev);
2011 fep->phy_id |= (mii_reg & 0xffff);
2012 printk("fec: PHY @ 0x%x, ID 0x%08x", fep->phy_addr, fep->phy_id);
2014 for(i = 0; phy_info[i]; i++) {
2015 if(phy_info[i]->id == (fep->phy_id >> 4))
2016 break;
2019 if (phy_info[i])
2020 printk(" -- %s\n", phy_info[i]->name);
2021 else
2022 printk(" -- unknown PHY!\n");
2024 fep->phy = phy_info[i];
2025 fep->phy_id_done = 1;
2028 /* Scan all of the MII PHY addresses looking for someone to respond
2029 * with a valid ID. This usually happens quickly.
2031 static void
2032 mii_discover_phy(uint mii_reg, struct net_device *dev)
2034 struct fec_enet_private *fep;
2035 volatile fec_t *fecp;
2036 uint phytype;
2038 fep = netdev_priv(dev);
2039 fecp = fep->hwp;
2041 if (fep->phy_addr < 32) {
2042 if ((phytype = (mii_reg & 0xffff)) != 0xffff && phytype != 0) {
2044 /* Got first part of ID, now get remainder.
2046 fep->phy_id = phytype << 16;
2047 mii_queue(dev, mk_mii_read(MII_REG_PHYIR2),
2048 mii_discover_phy3);
2049 } else {
2050 fep->phy_addr++;
2051 mii_queue(dev, mk_mii_read(MII_REG_PHYIR1),
2052 mii_discover_phy);
2054 } else {
2055 printk("FEC: No PHY device found.\n");
2056 /* Disable external MII interface */
2057 fecp->fec_mii_speed = fep->phy_speed = 0;
2058 fec_disable_phy_intr();
2062 /* This interrupt occurs when the PHY detects a link change.
2064 #ifdef HAVE_mii_link_interrupt
2065 static irqreturn_t
2066 mii_link_interrupt(int irq, void * dev_id)
2068 struct net_device *dev = dev_id;
2069 struct fec_enet_private *fep = netdev_priv(dev);
2071 fec_phy_ack_intr();
2073 #if 0
2074 disable_irq(fep->mii_irq); /* disable now, enable later */
2075 #endif
2077 mii_do_cmd(dev, fep->phy->ack_int);
2078 mii_do_cmd(dev, phy_cmd_relink); /* restart and display status */
2080 return IRQ_HANDLED;
2082 #endif
2084 static int
2085 fec_enet_open(struct net_device *dev)
2087 struct fec_enet_private *fep = netdev_priv(dev);
2089 /* I should reset the ring buffers here, but I don't yet know
2090 * a simple way to do that.
2092 fec_set_mac_address(dev);
2094 fep->sequence_done = 0;
2095 fep->link = 0;
2097 if (fep->phy) {
2098 mii_do_cmd(dev, fep->phy->ack_int);
2099 mii_do_cmd(dev, fep->phy->config);
2100 mii_do_cmd(dev, phy_cmd_config); /* display configuration */
2102 /* Poll until the PHY tells us its configuration
2103 * (not link state).
2104 * Request is initiated by mii_do_cmd above, but answer
2105 * comes by interrupt.
2106 * This should take about 25 usec per register at 2.5 MHz,
2107 * and we read approximately 5 registers.
2109 while(!fep->sequence_done)
2110 schedule();
2112 mii_do_cmd(dev, fep->phy->startup);
2114 /* Set the initial link state to true. A lot of hardware
2115 * based on this device does not implement a PHY interrupt,
2116 * so we are never notified of link change.
2118 fep->link = 1;
2119 } else {
2120 fep->link = 1; /* lets just try it and see */
2121 /* no phy, go full duplex, it's most likely a hub chip */
2122 fec_restart(dev, 1);
2125 netif_start_queue(dev);
2126 fep->opened = 1;
2127 return 0; /* Success */
2130 static int
2131 fec_enet_close(struct net_device *dev)
2133 struct fec_enet_private *fep = netdev_priv(dev);
2135 /* Don't know what to do yet.
2137 fep->opened = 0;
2138 netif_stop_queue(dev);
2139 fec_stop(dev);
2141 return 0;
2144 /* Set or clear the multicast filter for this adaptor.
2145 * Skeleton taken from sunlance driver.
2146 * The CPM Ethernet implementation allows Multicast as well as individual
2147 * MAC address filtering. Some of the drivers check to make sure it is
2148 * a group multicast address, and discard those that are not. I guess I
2149 * will do the same for now, but just remove the test if you want
2150 * individual filtering as well (do the upper net layers want or support
2151 * this kind of feature?).
2154 #define HASH_BITS 6 /* #bits in hash */
2155 #define CRC32_POLY 0xEDB88320
2157 static void set_multicast_list(struct net_device *dev)
2159 struct fec_enet_private *fep;
2160 volatile fec_t *ep;
2161 struct dev_mc_list *dmi;
2162 unsigned int i, j, bit, data, crc;
2163 unsigned char hash;
2165 fep = netdev_priv(dev);
2166 ep = fep->hwp;
2168 if (dev->flags&IFF_PROMISC) {
2169 ep->fec_r_cntrl |= 0x0008;
2170 } else {
2172 ep->fec_r_cntrl &= ~0x0008;
2174 if (dev->flags & IFF_ALLMULTI) {
2175 /* Catch all multicast addresses, so set the
2176 * filter to all 1's.
2178 ep->fec_grp_hash_table_high = 0xffffffff;
2179 ep->fec_grp_hash_table_low = 0xffffffff;
2180 } else {
2181 /* Clear filter and add the addresses in hash register.
2183 ep->fec_grp_hash_table_high = 0;
2184 ep->fec_grp_hash_table_low = 0;
2186 dmi = dev->mc_list;
2188 for (j = 0; j < dev->mc_count; j++, dmi = dmi->next)
2190 /* Only support group multicast for now.
2192 if (!(dmi->dmi_addr[0] & 1))
2193 continue;
2195 /* calculate crc32 value of mac address
2197 crc = 0xffffffff;
2199 for (i = 0; i < dmi->dmi_addrlen; i++)
2201 data = dmi->dmi_addr[i];
2202 for (bit = 0; bit < 8; bit++, data >>= 1)
2204 crc = (crc >> 1) ^
2205 (((crc ^ data) & 1) ? CRC32_POLY : 0);
2209 /* only upper 6 bits (HASH_BITS) are used
2210 which point to specific bit in he hash registers
2212 hash = (crc >> (32 - HASH_BITS)) & 0x3f;
2214 if (hash > 31)
2215 ep->fec_grp_hash_table_high |= 1 << (hash - 32);
2216 else
2217 ep->fec_grp_hash_table_low |= 1 << hash;
2223 /* Set a MAC change in hardware.
2225 static void
2226 fec_set_mac_address(struct net_device *dev)
2228 volatile fec_t *fecp;
2230 fecp = ((struct fec_enet_private *)netdev_priv(dev))->hwp;
2232 /* Set station address. */
2233 fecp->fec_addr_low = dev->dev_addr[3] | (dev->dev_addr[2] << 8) |
2234 (dev->dev_addr[1] << 16) | (dev->dev_addr[0] << 24);
2235 fecp->fec_addr_high = (dev->dev_addr[5] << 16) |
2236 (dev->dev_addr[4] << 24);
2240 /* Initialize the FEC Ethernet on 860T (or ColdFire 5272).
2243 * XXX: We need to clean up on failure exits here.
2245 int __init fec_enet_init(struct net_device *dev)
2247 struct fec_enet_private *fep = netdev_priv(dev);
2248 unsigned long mem_addr;
2249 volatile cbd_t *bdp;
2250 cbd_t *cbd_base;
2251 volatile fec_t *fecp;
2252 int i, j;
2253 static int index = 0;
2255 /* Only allow us to be probed once. */
2256 if (index >= FEC_MAX_PORTS)
2257 return -ENXIO;
2259 /* Allocate memory for buffer descriptors.
2261 mem_addr = __get_free_page(GFP_KERNEL);
2262 if (mem_addr == 0) {
2263 printk("FEC: allocate descriptor memory failed?\n");
2264 return -ENOMEM;
2267 spin_lock_init(&fep->hw_lock);
2268 spin_lock_init(&fep->mii_lock);
2270 /* Create an Ethernet device instance.
2272 fecp = (volatile fec_t *) fec_hw[index];
2274 fep->index = index;
2275 fep->hwp = fecp;
2276 fep->netdev = dev;
2278 /* Whack a reset. We should wait for this.
2280 fecp->fec_ecntrl = 1;
2281 udelay(10);
2283 /* Set the Ethernet address. If using multiple Enets on the 8xx,
2284 * this needs some work to get unique addresses.
2286 * This is our default MAC address unless the user changes
2287 * it via eth_mac_addr (our dev->set_mac_addr handler).
2289 fec_get_mac(dev);
2291 cbd_base = (cbd_t *)mem_addr;
2292 /* XXX: missing check for allocation failure */
2294 fec_uncache(mem_addr);
2296 /* Set receive and transmit descriptor base.
2298 fep->rx_bd_base = cbd_base;
2299 fep->tx_bd_base = cbd_base + RX_RING_SIZE;
2301 fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
2302 fep->cur_rx = fep->rx_bd_base;
2304 fep->skb_cur = fep->skb_dirty = 0;
2306 /* Initialize the receive buffer descriptors.
2308 bdp = fep->rx_bd_base;
2309 for (i=0; i<FEC_ENET_RX_PAGES; i++) {
2311 /* Allocate a page.
2313 mem_addr = __get_free_page(GFP_KERNEL);
2314 /* XXX: missing check for allocation failure */
2316 fec_uncache(mem_addr);
2318 /* Initialize the BD for every fragment in the page.
2320 for (j=0; j<FEC_ENET_RX_FRPPG; j++) {
2321 bdp->cbd_sc = BD_ENET_RX_EMPTY;
2322 bdp->cbd_bufaddr = __pa(mem_addr);
2323 mem_addr += FEC_ENET_RX_FRSIZE;
2324 bdp++;
2328 /* Set the last buffer to wrap.
2330 bdp--;
2331 bdp->cbd_sc |= BD_SC_WRAP;
2333 /* ...and the same for transmmit.
2335 bdp = fep->tx_bd_base;
2336 for (i=0, j=FEC_ENET_TX_FRPPG; i<TX_RING_SIZE; i++) {
2337 if (j >= FEC_ENET_TX_FRPPG) {
2338 mem_addr = __get_free_page(GFP_KERNEL);
2339 j = 1;
2340 } else {
2341 mem_addr += FEC_ENET_TX_FRSIZE;
2342 j++;
2344 fep->tx_bounce[i] = (unsigned char *) mem_addr;
2346 /* Initialize the BD for every fragment in the page.
2348 bdp->cbd_sc = 0;
2349 bdp->cbd_bufaddr = 0;
2350 bdp++;
2353 /* Set the last buffer to wrap.
2355 bdp--;
2356 bdp->cbd_sc |= BD_SC_WRAP;
2358 /* Set receive and transmit descriptor base.
2360 fecp->fec_r_des_start = __pa((uint)(fep->rx_bd_base));
2361 fecp->fec_x_des_start = __pa((uint)(fep->tx_bd_base));
2363 /* Install our interrupt handlers. This varies depending on
2364 * the architecture.
2366 fec_request_intrs(dev);
2368 fecp->fec_grp_hash_table_high = 0;
2369 fecp->fec_grp_hash_table_low = 0;
2370 fecp->fec_r_buff_size = PKT_MAXBLR_SIZE;
2371 fecp->fec_ecntrl = 2;
2372 fecp->fec_r_des_active = 0;
2373 #ifndef CONFIG_M5272
2374 fecp->fec_hash_table_high = 0;
2375 fecp->fec_hash_table_low = 0;
2376 #endif
2378 dev->base_addr = (unsigned long)fecp;
2380 /* The FEC Ethernet specific entries in the device structure. */
2381 dev->open = fec_enet_open;
2382 dev->hard_start_xmit = fec_enet_start_xmit;
2383 dev->tx_timeout = fec_timeout;
2384 dev->watchdog_timeo = TX_TIMEOUT;
2385 dev->stop = fec_enet_close;
2386 dev->set_multicast_list = set_multicast_list;
2388 for (i=0; i<NMII-1; i++)
2389 mii_cmds[i].mii_next = &mii_cmds[i+1];
2390 mii_free = mii_cmds;
2392 /* setup MII interface */
2393 fec_set_mii(dev, fep);
2395 /* Clear and enable interrupts */
2396 fecp->fec_ievent = 0xffc00000;
2397 fecp->fec_imask = (FEC_ENET_TXF | FEC_ENET_RXF | FEC_ENET_MII);
2399 /* Queue up command to detect the PHY and initialize the
2400 * remainder of the interface.
2402 fep->phy_id_done = 0;
2403 fep->phy_addr = 0;
2404 mii_queue(dev, mk_mii_read(MII_REG_PHYIR1), mii_discover_phy);
2406 index++;
2407 return 0;
2410 /* This function is called to start or restart the FEC during a link
2411 * change. This only happens when switching between half and full
2412 * duplex.
2414 static void
2415 fec_restart(struct net_device *dev, int duplex)
2417 struct fec_enet_private *fep;
2418 volatile cbd_t *bdp;
2419 volatile fec_t *fecp;
2420 int i;
2422 fep = netdev_priv(dev);
2423 fecp = fep->hwp;
2425 /* Whack a reset. We should wait for this.
2427 fecp->fec_ecntrl = 1;
2428 udelay(10);
2430 /* Clear any outstanding interrupt.
2432 fecp->fec_ievent = 0xffc00000;
2433 fec_enable_phy_intr();
2435 /* Set station address.
2437 fec_set_mac_address(dev);
2439 /* Reset all multicast.
2441 fecp->fec_grp_hash_table_high = 0;
2442 fecp->fec_grp_hash_table_low = 0;
2444 /* Set maximum receive buffer size.
2446 fecp->fec_r_buff_size = PKT_MAXBLR_SIZE;
2448 fec_localhw_setup();
2450 /* Set receive and transmit descriptor base.
2452 fecp->fec_r_des_start = __pa((uint)(fep->rx_bd_base));
2453 fecp->fec_x_des_start = __pa((uint)(fep->tx_bd_base));
2455 fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
2456 fep->cur_rx = fep->rx_bd_base;
2458 /* Reset SKB transmit buffers.
2460 fep->skb_cur = fep->skb_dirty = 0;
2461 for (i=0; i<=TX_RING_MOD_MASK; i++) {
2462 if (fep->tx_skbuff[i] != NULL) {
2463 dev_kfree_skb_any(fep->tx_skbuff[i]);
2464 fep->tx_skbuff[i] = NULL;
2468 /* Initialize the receive buffer descriptors.
2470 bdp = fep->rx_bd_base;
2471 for (i=0; i<RX_RING_SIZE; i++) {
2473 /* Initialize the BD for every fragment in the page.
2475 bdp->cbd_sc = BD_ENET_RX_EMPTY;
2476 bdp++;
2479 /* Set the last buffer to wrap.
2481 bdp--;
2482 bdp->cbd_sc |= BD_SC_WRAP;
2484 /* ...and the same for transmmit.
2486 bdp = fep->tx_bd_base;
2487 for (i=0; i<TX_RING_SIZE; i++) {
2489 /* Initialize the BD for every fragment in the page.
2491 bdp->cbd_sc = 0;
2492 bdp->cbd_bufaddr = 0;
2493 bdp++;
2496 /* Set the last buffer to wrap.
2498 bdp--;
2499 bdp->cbd_sc |= BD_SC_WRAP;
2501 /* Enable MII mode.
2503 if (duplex) {
2504 fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;/* MII enable */
2505 fecp->fec_x_cntrl = 0x04; /* FD enable */
2506 } else {
2507 /* MII enable|No Rcv on Xmit */
2508 fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x06;
2509 fecp->fec_x_cntrl = 0x00;
2511 fep->full_duplex = duplex;
2513 /* Set MII speed.
2515 fecp->fec_mii_speed = fep->phy_speed;
2517 /* And last, enable the transmit and receive processing.
2519 fecp->fec_ecntrl = 2;
2520 fecp->fec_r_des_active = 0;
2522 /* Enable interrupts we wish to service.
2524 fecp->fec_imask = (FEC_ENET_TXF | FEC_ENET_RXF | FEC_ENET_MII);
2527 static void
2528 fec_stop(struct net_device *dev)
2530 volatile fec_t *fecp;
2531 struct fec_enet_private *fep;
2533 fep = netdev_priv(dev);
2534 fecp = fep->hwp;
2537 ** We cannot expect a graceful transmit stop without link !!!
2539 if (fep->link)
2541 fecp->fec_x_cntrl = 0x01; /* Graceful transmit stop */
2542 udelay(10);
2543 if (!(fecp->fec_ievent & FEC_ENET_GRA))
2544 printk("fec_stop : Graceful transmit stop did not complete !\n");
2547 /* Whack a reset. We should wait for this.
2549 fecp->fec_ecntrl = 1;
2550 udelay(10);
2552 /* Clear outstanding MII command interrupts.
2554 fecp->fec_ievent = FEC_ENET_MII;
2555 fec_enable_phy_intr();
2557 fecp->fec_imask = FEC_ENET_MII;
2558 fecp->fec_mii_speed = fep->phy_speed;
2561 static int __init fec_enet_module_init(void)
2563 struct net_device *dev;
2564 int i, err;
2565 DECLARE_MAC_BUF(mac);
2567 printk("FEC ENET Version 0.2\n");
2569 for (i = 0; (i < FEC_MAX_PORTS); i++) {
2570 dev = alloc_etherdev(sizeof(struct fec_enet_private));
2571 if (!dev)
2572 return -ENOMEM;
2573 err = fec_enet_init(dev);
2574 if (err) {
2575 free_netdev(dev);
2576 continue;
2578 if (register_netdev(dev) != 0) {
2579 /* XXX: missing cleanup here */
2580 free_netdev(dev);
2581 return -EIO;
2584 printk("%s: ethernet %s\n",
2585 dev->name, print_mac(mac, dev->dev_addr));
2587 return 0;
2590 module_init(fec_enet_module_init);
2592 MODULE_LICENSE("GPL");