drivers/misc/Makefile, Kconfig: cleanup
[linux-2.6/mini2440.git] / drivers / char / epca.c
blobcf2461d34e5fc17d56ca16e5e165a092bd0b6136
1 /*
2 Copyright (C) 1996 Digi International.
4 For technical support please email digiLinux@dgii.com or
5 call Digi tech support at (612) 912-3456
7 ** This driver is no longer supported by Digi **
9 Much of this design and code came from epca.c which was
10 copyright (C) 1994, 1995 Troy De Jongh, and subsquently
11 modified by David Nugent, Christoph Lameter, Mike McLagan.
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 2 of the License, or
16 (at your option) any later version.
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
27 /* See README.epca for change history --DAT*/
29 #include <linux/module.h>
30 #include <linux/kernel.h>
31 #include <linux/types.h>
32 #include <linux/init.h>
33 #include <linux/serial.h>
34 #include <linux/delay.h>
35 #include <linux/ctype.h>
36 #include <linux/tty.h>
37 #include <linux/tty_flip.h>
38 #include <linux/slab.h>
39 #include <linux/ioport.h>
40 #include <linux/interrupt.h>
41 #include <linux/uaccess.h>
42 #include <linux/io.h>
43 #include <linux/spinlock.h>
44 #include <linux/pci.h>
45 #include "digiPCI.h"
48 #include "digi1.h"
49 #include "digiFep1.h"
50 #include "epca.h"
51 #include "epcaconfig.h"
53 #define VERSION "1.3.0.1-LK2.6"
55 /* This major needs to be submitted to Linux to join the majors list */
56 #define DIGIINFOMAJOR 35 /* For Digi specific ioctl */
59 #define MAXCARDS 7
60 #define epcaassert(x, msg) if (!(x)) epca_error(__LINE__, msg)
62 #define PFX "epca: "
64 static int nbdevs, num_cards, liloconfig;
65 static int digi_poller_inhibited = 1 ;
67 static int setup_error_code;
68 static int invalid_lilo_config;
71 * The ISA boards do window flipping into the same spaces so its only sane with
72 * a single lock. It's still pretty efficient.
74 static DEFINE_SPINLOCK(epca_lock);
76 /* MAXBOARDS is typically 12, but ISA and EISA cards are restricted
77 to 7 below. */
78 static struct board_info boards[MAXBOARDS];
80 static struct tty_driver *pc_driver;
81 static struct tty_driver *pc_info;
83 /* ------------------ Begin Digi specific structures -------------------- */
86 * digi_channels represents an array of structures that keep track of each
87 * channel of the Digi product. Information such as transmit and receive
88 * pointers, termio data, and signal definitions (DTR, CTS, etc ...) are stored
89 * here. This structure is NOT used to overlay the cards physical channel
90 * structure.
92 static struct channel digi_channels[MAX_ALLOC];
95 * card_ptr is an array used to hold the address of the first channel structure
96 * of each card. This array will hold the addresses of various channels located
97 * in digi_channels.
99 static struct channel *card_ptr[MAXCARDS];
101 static struct timer_list epca_timer;
104 * Begin generic memory functions. These functions will be alias (point at)
105 * more specific functions dependent on the board being configured.
107 static void memwinon(struct board_info *b, unsigned int win);
108 static void memwinoff(struct board_info *b, unsigned int win);
109 static void globalwinon(struct channel *ch);
110 static void rxwinon(struct channel *ch);
111 static void txwinon(struct channel *ch);
112 static void memoff(struct channel *ch);
113 static void assertgwinon(struct channel *ch);
114 static void assertmemoff(struct channel *ch);
116 /* ---- Begin more 'specific' memory functions for cx_like products --- */
118 static void pcxem_memwinon(struct board_info *b, unsigned int win);
119 static void pcxem_memwinoff(struct board_info *b, unsigned int win);
120 static void pcxem_globalwinon(struct channel *ch);
121 static void pcxem_rxwinon(struct channel *ch);
122 static void pcxem_txwinon(struct channel *ch);
123 static void pcxem_memoff(struct channel *ch);
125 /* ------ Begin more 'specific' memory functions for the pcxe ------- */
127 static void pcxe_memwinon(struct board_info *b, unsigned int win);
128 static void pcxe_memwinoff(struct board_info *b, unsigned int win);
129 static void pcxe_globalwinon(struct channel *ch);
130 static void pcxe_rxwinon(struct channel *ch);
131 static void pcxe_txwinon(struct channel *ch);
132 static void pcxe_memoff(struct channel *ch);
134 /* ---- Begin more 'specific' memory functions for the pc64xe and pcxi ---- */
135 /* Note : pc64xe and pcxi share the same windowing routines */
137 static void pcxi_memwinon(struct board_info *b, unsigned int win);
138 static void pcxi_memwinoff(struct board_info *b, unsigned int win);
139 static void pcxi_globalwinon(struct channel *ch);
140 static void pcxi_rxwinon(struct channel *ch);
141 static void pcxi_txwinon(struct channel *ch);
142 static void pcxi_memoff(struct channel *ch);
144 /* - Begin 'specific' do nothing memory functions needed for some cards - */
146 static void dummy_memwinon(struct board_info *b, unsigned int win);
147 static void dummy_memwinoff(struct board_info *b, unsigned int win);
148 static void dummy_globalwinon(struct channel *ch);
149 static void dummy_rxwinon(struct channel *ch);
150 static void dummy_txwinon(struct channel *ch);
151 static void dummy_memoff(struct channel *ch);
152 static void dummy_assertgwinon(struct channel *ch);
153 static void dummy_assertmemoff(struct channel *ch);
155 static struct channel *verifyChannel(struct tty_struct *);
156 static void pc_sched_event(struct channel *, int);
157 static void epca_error(int, char *);
158 static void pc_close(struct tty_struct *, struct file *);
159 static void shutdown(struct channel *);
160 static void pc_hangup(struct tty_struct *);
161 static int pc_write_room(struct tty_struct *);
162 static int pc_chars_in_buffer(struct tty_struct *);
163 static void pc_flush_buffer(struct tty_struct *);
164 static void pc_flush_chars(struct tty_struct *);
165 static int block_til_ready(struct tty_struct *, struct file *,
166 struct channel *);
167 static int pc_open(struct tty_struct *, struct file *);
168 static void post_fep_init(unsigned int crd);
169 static void epcapoll(unsigned long);
170 static void doevent(int);
171 static void fepcmd(struct channel *, int, int, int, int, int);
172 static unsigned termios2digi_h(struct channel *ch, unsigned);
173 static unsigned termios2digi_i(struct channel *ch, unsigned);
174 static unsigned termios2digi_c(struct channel *ch, unsigned);
175 static void epcaparam(struct tty_struct *, struct channel *);
176 static void receive_data(struct channel *);
177 static int pc_ioctl(struct tty_struct *, struct file *,
178 unsigned int, unsigned long);
179 static int info_ioctl(struct tty_struct *, struct file *,
180 unsigned int, unsigned long);
181 static void pc_set_termios(struct tty_struct *, struct ktermios *);
182 static void do_softint(struct work_struct *work);
183 static void pc_stop(struct tty_struct *);
184 static void pc_start(struct tty_struct *);
185 static void pc_throttle(struct tty_struct *tty);
186 static void pc_unthrottle(struct tty_struct *tty);
187 static int pc_send_break(struct tty_struct *tty, int msec);
188 static void setup_empty_event(struct tty_struct *tty, struct channel *ch);
190 static int pc_write(struct tty_struct *, const unsigned char *, int);
191 static int pc_init(void);
192 static int init_PCI(void);
195 * Table of functions for each board to handle memory. Mantaining parallelism
196 * is a *very* good idea here. The idea is for the runtime code to blindly call
197 * these functions, not knowing/caring about the underlying hardware. This
198 * stuff should contain no conditionals; if more functionality is needed a
199 * different entry should be established. These calls are the interface calls
200 * and are the only functions that should be accessed. Anyone caught making
201 * direct calls deserves what they get.
203 static void memwinon(struct board_info *b, unsigned int win)
205 b->memwinon(b, win);
208 static void memwinoff(struct board_info *b, unsigned int win)
210 b->memwinoff(b, win);
213 static void globalwinon(struct channel *ch)
215 ch->board->globalwinon(ch);
218 static void rxwinon(struct channel *ch)
220 ch->board->rxwinon(ch);
223 static void txwinon(struct channel *ch)
225 ch->board->txwinon(ch);
228 static void memoff(struct channel *ch)
230 ch->board->memoff(ch);
232 static void assertgwinon(struct channel *ch)
234 ch->board->assertgwinon(ch);
237 static void assertmemoff(struct channel *ch)
239 ch->board->assertmemoff(ch);
242 /* PCXEM windowing is the same as that used in the PCXR and CX series cards. */
243 static void pcxem_memwinon(struct board_info *b, unsigned int win)
245 outb_p(FEPWIN | win, b->port + 1);
248 static void pcxem_memwinoff(struct board_info *b, unsigned int win)
250 outb_p(0, b->port + 1);
253 static void pcxem_globalwinon(struct channel *ch)
255 outb_p(FEPWIN, (int)ch->board->port + 1);
258 static void pcxem_rxwinon(struct channel *ch)
260 outb_p(ch->rxwin, (int)ch->board->port + 1);
263 static void pcxem_txwinon(struct channel *ch)
265 outb_p(ch->txwin, (int)ch->board->port + 1);
268 static void pcxem_memoff(struct channel *ch)
270 outb_p(0, (int)ch->board->port + 1);
273 /* ----------------- Begin pcxe memory window stuff ------------------ */
274 static void pcxe_memwinon(struct board_info *b, unsigned int win)
276 outb_p(FEPWIN | win, b->port + 1);
279 static void pcxe_memwinoff(struct board_info *b, unsigned int win)
281 outb_p(inb(b->port) & ~FEPMEM, b->port + 1);
282 outb_p(0, b->port + 1);
285 static void pcxe_globalwinon(struct channel *ch)
287 outb_p(FEPWIN, (int)ch->board->port + 1);
290 static void pcxe_rxwinon(struct channel *ch)
292 outb_p(ch->rxwin, (int)ch->board->port + 1);
295 static void pcxe_txwinon(struct channel *ch)
297 outb_p(ch->txwin, (int)ch->board->port + 1);
300 static void pcxe_memoff(struct channel *ch)
302 outb_p(0, (int)ch->board->port);
303 outb_p(0, (int)ch->board->port + 1);
306 /* ------------- Begin pc64xe and pcxi memory window stuff -------------- */
307 static void pcxi_memwinon(struct board_info *b, unsigned int win)
309 outb_p(inb(b->port) | FEPMEM, b->port);
312 static void pcxi_memwinoff(struct board_info *b, unsigned int win)
314 outb_p(inb(b->port) & ~FEPMEM, b->port);
317 static void pcxi_globalwinon(struct channel *ch)
319 outb_p(FEPMEM, ch->board->port);
322 static void pcxi_rxwinon(struct channel *ch)
324 outb_p(FEPMEM, ch->board->port);
327 static void pcxi_txwinon(struct channel *ch)
329 outb_p(FEPMEM, ch->board->port);
332 static void pcxi_memoff(struct channel *ch)
334 outb_p(0, ch->board->port);
337 static void pcxi_assertgwinon(struct channel *ch)
339 epcaassert(inb(ch->board->port) & FEPMEM, "Global memory off");
342 static void pcxi_assertmemoff(struct channel *ch)
344 epcaassert(!(inb(ch->board->port) & FEPMEM), "Memory on");
348 * Not all of the cards need specific memory windowing routines. Some cards
349 * (Such as PCI) needs no windowing routines at all. We provide these do
350 * nothing routines so that the same code base can be used. The driver will
351 * ALWAYS call a windowing routine if it thinks it needs to; regardless of the
352 * card. However, dependent on the card the routine may or may not do anything.
354 static void dummy_memwinon(struct board_info *b, unsigned int win)
358 static void dummy_memwinoff(struct board_info *b, unsigned int win)
362 static void dummy_globalwinon(struct channel *ch)
366 static void dummy_rxwinon(struct channel *ch)
370 static void dummy_txwinon(struct channel *ch)
374 static void dummy_memoff(struct channel *ch)
378 static void dummy_assertgwinon(struct channel *ch)
382 static void dummy_assertmemoff(struct channel *ch)
386 static struct channel *verifyChannel(struct tty_struct *tty)
389 * This routine basically provides a sanity check. It insures that the
390 * channel returned is within the proper range of addresses as well as
391 * properly initialized. If some bogus info gets passed in
392 * through tty->driver_data this should catch it.
394 if (tty) {
395 struct channel *ch = (struct channel *)tty->driver_data;
396 if (ch >= &digi_channels[0] && ch < &digi_channels[nbdevs]) {
397 if (ch->magic == EPCA_MAGIC)
398 return ch;
401 return NULL;
404 static void pc_sched_event(struct channel *ch, int event)
407 * We call this to schedule interrupt processing on some event. The
408 * kernel sees our request and calls the related routine in OUR driver.
410 ch->event |= 1 << event;
411 schedule_work(&ch->tqueue);
414 static void epca_error(int line, char *msg)
416 printk(KERN_ERR "epca_error (Digi): line = %d %s\n", line, msg);
419 static void pc_close(struct tty_struct *tty, struct file *filp)
421 struct channel *ch;
422 unsigned long flags;
424 * verifyChannel returns the channel from the tty struct if it is
425 * valid. This serves as a sanity check.
427 ch = verifyChannel(tty);
428 if (ch != NULL) {
429 spin_lock_irqsave(&epca_lock, flags);
430 if (tty_hung_up_p(filp)) {
431 spin_unlock_irqrestore(&epca_lock, flags);
432 return;
434 if (ch->port.count-- > 1) {
435 /* Begin channel is open more than once */
437 * Return without doing anything. Someone might still
438 * be using the channel.
440 spin_unlock_irqrestore(&epca_lock, flags);
441 return;
443 /* Port open only once go ahead with shutdown & reset */
444 BUG_ON(ch->port.count < 0);
447 * Let the rest of the driver know the channel is being closed.
448 * This becomes important if an open is attempted before close
449 * is finished.
451 ch->port.flags |= ASYNC_CLOSING;
452 tty->closing = 1;
454 spin_unlock_irqrestore(&epca_lock, flags);
456 if (ch->port.flags & ASYNC_INITIALIZED) {
457 /* Setup an event to indicate when the
458 transmit buffer empties */
459 setup_empty_event(tty, ch);
460 /* 30 seconds timeout */
461 tty_wait_until_sent(tty, 3000);
463 pc_flush_buffer(tty);
465 tty_ldisc_flush(tty);
466 shutdown(ch);
468 spin_lock_irqsave(&epca_lock, flags);
469 tty->closing = 0;
470 ch->event = 0;
471 ch->port.tty = NULL;
472 spin_unlock_irqrestore(&epca_lock, flags);
474 if (ch->port.blocked_open) {
475 if (ch->close_delay)
476 msleep_interruptible(jiffies_to_msecs(ch->close_delay));
477 wake_up_interruptible(&ch->port.open_wait);
479 ch->port.flags &= ~(ASYNC_NORMAL_ACTIVE | ASYNC_INITIALIZED |
480 ASYNC_CLOSING);
481 wake_up_interruptible(&ch->port.close_wait);
485 static void shutdown(struct channel *ch)
487 unsigned long flags;
488 struct tty_struct *tty;
489 struct board_chan __iomem *bc;
491 if (!(ch->port.flags & ASYNC_INITIALIZED))
492 return;
494 spin_lock_irqsave(&epca_lock, flags);
496 globalwinon(ch);
497 bc = ch->brdchan;
500 * In order for an event to be generated on the receipt of data the
501 * idata flag must be set. Since we are shutting down, this is not
502 * necessary clear this flag.
504 if (bc)
505 writeb(0, &bc->idata);
506 tty = ch->port.tty;
508 /* If we're a modem control device and HUPCL is on, drop RTS & DTR. */
509 if (tty->termios->c_cflag & HUPCL) {
510 ch->omodem &= ~(ch->m_rts | ch->m_dtr);
511 fepcmd(ch, SETMODEM, 0, ch->m_dtr | ch->m_rts, 10, 1);
513 memoff(ch);
516 * The channel has officialy been closed. The next time it is opened it
517 * will have to reinitialized. Set a flag to indicate this.
519 /* Prevent future Digi programmed interrupts from coming active */
520 ch->port.flags &= ~ASYNC_INITIALIZED;
521 spin_unlock_irqrestore(&epca_lock, flags);
524 static void pc_hangup(struct tty_struct *tty)
526 struct channel *ch;
528 * verifyChannel returns the channel from the tty struct if it is
529 * valid. This serves as a sanity check.
531 ch = verifyChannel(tty);
532 if (ch != NULL) {
533 unsigned long flags;
535 pc_flush_buffer(tty);
536 tty_ldisc_flush(tty);
537 shutdown(ch);
539 spin_lock_irqsave(&epca_lock, flags);
540 ch->port.tty = NULL;
541 ch->event = 0;
542 ch->port.count = 0;
543 ch->port.flags &= ~(ASYNC_NORMAL_ACTIVE | ASYNC_INITIALIZED);
544 spin_unlock_irqrestore(&epca_lock, flags);
545 wake_up_interruptible(&ch->port.open_wait);
549 static int pc_write(struct tty_struct *tty,
550 const unsigned char *buf, int bytesAvailable)
552 unsigned int head, tail;
553 int dataLen;
554 int size;
555 int amountCopied;
556 struct channel *ch;
557 unsigned long flags;
558 int remain;
559 struct board_chan __iomem *bc;
562 * pc_write is primarily called directly by the kernel routine
563 * tty_write (Though it can also be called by put_char) found in
564 * tty_io.c. pc_write is passed a line discipline buffer where the data
565 * to be written out is stored. The line discipline implementation
566 * itself is done at the kernel level and is not brought into the
567 * driver.
571 * verifyChannel returns the channel from the tty struct if it is
572 * valid. This serves as a sanity check.
574 ch = verifyChannel(tty);
575 if (ch == NULL)
576 return 0;
578 /* Make a pointer to the channel data structure found on the board. */
579 bc = ch->brdchan;
580 size = ch->txbufsize;
581 amountCopied = 0;
583 spin_lock_irqsave(&epca_lock, flags);
584 globalwinon(ch);
586 head = readw(&bc->tin) & (size - 1);
587 tail = readw(&bc->tout);
589 if (tail != readw(&bc->tout))
590 tail = readw(&bc->tout);
591 tail &= (size - 1);
593 if (head >= tail) {
594 /* head has not wrapped */
596 * remain (much like dataLen above) represents the total amount
597 * of space available on the card for data. Here dataLen
598 * represents the space existing between the head pointer and
599 * the end of buffer. This is important because a memcpy cannot
600 * be told to automatically wrap around when it hits the buffer
601 * end.
603 dataLen = size - head;
604 remain = size - (head - tail) - 1;
605 } else {
606 /* head has wrapped around */
607 remain = tail - head - 1;
608 dataLen = remain;
611 * Check the space on the card. If we have more data than space; reduce
612 * the amount of data to fit the space.
614 bytesAvailable = min(remain, bytesAvailable);
615 txwinon(ch);
616 while (bytesAvailable > 0) {
617 /* there is data to copy onto card */
620 * If head is not wrapped, the below will make sure the first
621 * data copy fills to the end of card buffer.
623 dataLen = min(bytesAvailable, dataLen);
624 memcpy_toio(ch->txptr + head, buf, dataLen);
625 buf += dataLen;
626 head += dataLen;
627 amountCopied += dataLen;
628 bytesAvailable -= dataLen;
630 if (head >= size) {
631 head = 0;
632 dataLen = tail;
635 ch->statusflags |= TXBUSY;
636 globalwinon(ch);
637 writew(head, &bc->tin);
639 if ((ch->statusflags & LOWWAIT) == 0) {
640 ch->statusflags |= LOWWAIT;
641 writeb(1, &bc->ilow);
643 memoff(ch);
644 spin_unlock_irqrestore(&epca_lock, flags);
645 return amountCopied;
648 static int pc_write_room(struct tty_struct *tty)
650 int remain = 0;
651 struct channel *ch;
652 unsigned long flags;
653 unsigned int head, tail;
654 struct board_chan __iomem *bc;
656 * verifyChannel returns the channel from the tty struct if it is
657 * valid. This serves as a sanity check.
659 ch = verifyChannel(tty);
660 if (ch != NULL) {
661 spin_lock_irqsave(&epca_lock, flags);
662 globalwinon(ch);
664 bc = ch->brdchan;
665 head = readw(&bc->tin) & (ch->txbufsize - 1);
666 tail = readw(&bc->tout);
668 if (tail != readw(&bc->tout))
669 tail = readw(&bc->tout);
670 /* Wrap tail if necessary */
671 tail &= (ch->txbufsize - 1);
672 remain = tail - head - 1;
673 if (remain < 0)
674 remain += ch->txbufsize;
676 if (remain && (ch->statusflags & LOWWAIT) == 0) {
677 ch->statusflags |= LOWWAIT;
678 writeb(1, &bc->ilow);
680 memoff(ch);
681 spin_unlock_irqrestore(&epca_lock, flags);
683 /* Return how much room is left on card */
684 return remain;
687 static int pc_chars_in_buffer(struct tty_struct *tty)
689 int chars;
690 unsigned int ctail, head, tail;
691 int remain;
692 unsigned long flags;
693 struct channel *ch;
694 struct board_chan __iomem *bc;
696 * verifyChannel returns the channel from the tty struct if it is
697 * valid. This serves as a sanity check.
699 ch = verifyChannel(tty);
700 if (ch == NULL)
701 return 0;
703 spin_lock_irqsave(&epca_lock, flags);
704 globalwinon(ch);
706 bc = ch->brdchan;
707 tail = readw(&bc->tout);
708 head = readw(&bc->tin);
709 ctail = readw(&ch->mailbox->cout);
711 if (tail == head && readw(&ch->mailbox->cin) == ctail &&
712 readb(&bc->tbusy) == 0)
713 chars = 0;
714 else { /* Begin if some space on the card has been used */
715 head = readw(&bc->tin) & (ch->txbufsize - 1);
716 tail &= (ch->txbufsize - 1);
718 * The logic here is basically opposite of the above
719 * pc_write_room here we are finding the amount of bytes in the
720 * buffer filled. Not the amount of bytes empty.
722 remain = tail - head - 1;
723 if (remain < 0)
724 remain += ch->txbufsize;
725 chars = (int)(ch->txbufsize - remain);
727 * Make it possible to wakeup anything waiting for output in
728 * tty_ioctl.c, etc.
730 * If not already set. Setup an event to indicate when the
731 * transmit buffer empties.
733 if (!(ch->statusflags & EMPTYWAIT))
734 setup_empty_event(tty, ch);
735 } /* End if some space on the card has been used */
736 memoff(ch);
737 spin_unlock_irqrestore(&epca_lock, flags);
738 /* Return number of characters residing on card. */
739 return chars;
742 static void pc_flush_buffer(struct tty_struct *tty)
744 unsigned int tail;
745 unsigned long flags;
746 struct channel *ch;
747 struct board_chan __iomem *bc;
749 * verifyChannel returns the channel from the tty struct if it is
750 * valid. This serves as a sanity check.
752 ch = verifyChannel(tty);
753 if (ch == NULL)
754 return;
756 spin_lock_irqsave(&epca_lock, flags);
757 globalwinon(ch);
758 bc = ch->brdchan;
759 tail = readw(&bc->tout);
760 /* Have FEP move tout pointer; effectively flushing transmit buffer */
761 fepcmd(ch, STOUT, (unsigned) tail, 0, 0, 0);
762 memoff(ch);
763 spin_unlock_irqrestore(&epca_lock, flags);
764 tty_wakeup(tty);
767 static void pc_flush_chars(struct tty_struct *tty)
769 struct channel *ch;
771 * verifyChannel returns the channel from the tty struct if it is
772 * valid. This serves as a sanity check.
774 ch = verifyChannel(tty);
775 if (ch != NULL) {
776 unsigned long flags;
777 spin_lock_irqsave(&epca_lock, flags);
779 * If not already set and the transmitter is busy setup an
780 * event to indicate when the transmit empties.
782 if ((ch->statusflags & TXBUSY) &&
783 !(ch->statusflags & EMPTYWAIT))
784 setup_empty_event(tty, ch);
785 spin_unlock_irqrestore(&epca_lock, flags);
789 static int block_til_ready(struct tty_struct *tty,
790 struct file *filp, struct channel *ch)
792 DECLARE_WAITQUEUE(wait, current);
793 int retval, do_clocal = 0;
794 unsigned long flags;
796 if (tty_hung_up_p(filp)) {
797 if (ch->port.flags & ASYNC_HUP_NOTIFY)
798 retval = -EAGAIN;
799 else
800 retval = -ERESTARTSYS;
801 return retval;
805 * If the device is in the middle of being closed, then block until
806 * it's done, and then try again.
808 if (ch->port.flags & ASYNC_CLOSING) {
809 interruptible_sleep_on(&ch->port.close_wait);
811 if (ch->port.flags & ASYNC_HUP_NOTIFY)
812 return -EAGAIN;
813 else
814 return -ERESTARTSYS;
817 if (filp->f_flags & O_NONBLOCK) {
819 * If non-blocking mode is set, then make the check up front
820 * and then exit.
822 ch->port.flags |= ASYNC_NORMAL_ACTIVE;
823 return 0;
825 if (tty->termios->c_cflag & CLOCAL)
826 do_clocal = 1;
827 /* Block waiting for the carrier detect and the line to become free */
829 retval = 0;
830 add_wait_queue(&ch->port.open_wait, &wait);
832 spin_lock_irqsave(&epca_lock, flags);
833 /* We dec count so that pc_close will know when to free things */
834 if (!tty_hung_up_p(filp))
835 ch->port.count--;
836 ch->port.blocked_open++;
837 while (1) {
838 set_current_state(TASK_INTERRUPTIBLE);
839 if (tty_hung_up_p(filp) ||
840 !(ch->port.flags & ASYNC_INITIALIZED)) {
841 if (ch->port.flags & ASYNC_HUP_NOTIFY)
842 retval = -EAGAIN;
843 else
844 retval = -ERESTARTSYS;
845 break;
847 if (!(ch->port.flags & ASYNC_CLOSING) &&
848 (do_clocal || (ch->imodem & ch->dcd)))
849 break;
850 if (signal_pending(current)) {
851 retval = -ERESTARTSYS;
852 break;
854 spin_unlock_irqrestore(&epca_lock, flags);
856 * Allow someone else to be scheduled. We will occasionally go
857 * through this loop until one of the above conditions change.
858 * The below schedule call will allow other processes to enter
859 * and prevent this loop from hogging the cpu.
861 schedule();
862 spin_lock_irqsave(&epca_lock, flags);
865 __set_current_state(TASK_RUNNING);
866 remove_wait_queue(&ch->port.open_wait, &wait);
867 if (!tty_hung_up_p(filp))
868 ch->port.count++;
869 ch->port.blocked_open--;
871 spin_unlock_irqrestore(&epca_lock, flags);
873 if (retval)
874 return retval;
876 ch->port.flags |= ASYNC_NORMAL_ACTIVE;
877 return 0;
880 static int pc_open(struct tty_struct *tty, struct file *filp)
882 struct channel *ch;
883 unsigned long flags;
884 int line, retval, boardnum;
885 struct board_chan __iomem *bc;
886 unsigned int head;
888 line = tty->index;
889 if (line < 0 || line >= nbdevs)
890 return -ENODEV;
892 ch = &digi_channels[line];
893 boardnum = ch->boardnum;
895 /* Check status of board configured in system. */
898 * I check to see if the epca_setup routine detected an user error. It
899 * might be better to put this in pc_init, but for the moment it goes
900 * here.
902 if (invalid_lilo_config) {
903 if (setup_error_code & INVALID_BOARD_TYPE)
904 printk(KERN_ERR "epca: pc_open: Invalid board type specified in kernel options.\n");
905 if (setup_error_code & INVALID_NUM_PORTS)
906 printk(KERN_ERR "epca: pc_open: Invalid number of ports specified in kernel options.\n");
907 if (setup_error_code & INVALID_MEM_BASE)
908 printk(KERN_ERR "epca: pc_open: Invalid board memory address specified in kernel options.\n");
909 if (setup_error_code & INVALID_PORT_BASE)
910 printk(KERN_ERR "epca; pc_open: Invalid board port address specified in kernel options.\n");
911 if (setup_error_code & INVALID_BOARD_STATUS)
912 printk(KERN_ERR "epca: pc_open: Invalid board status specified in kernel options.\n");
913 if (setup_error_code & INVALID_ALTPIN)
914 printk(KERN_ERR "epca: pc_open: Invalid board altpin specified in kernel options;\n");
915 tty->driver_data = NULL; /* Mark this device as 'down' */
916 return -ENODEV;
918 if (boardnum >= num_cards || boards[boardnum].status == DISABLED) {
919 tty->driver_data = NULL; /* Mark this device as 'down' */
920 return(-ENODEV);
923 bc = ch->brdchan;
924 if (bc == NULL) {
925 tty->driver_data = NULL;
926 return -ENODEV;
929 spin_lock_irqsave(&epca_lock, flags);
931 * Every time a channel is opened, increment a counter. This is
932 * necessary because we do not wish to flush and shutdown the channel
933 * until the last app holding the channel open, closes it.
935 ch->port.count++;
937 * Set a kernel structures pointer to our local channel structure. This
938 * way we can get to it when passed only a tty struct.
940 tty->driver_data = ch;
942 * If this is the first time the channel has been opened, initialize
943 * the tty->termios struct otherwise let pc_close handle it.
945 globalwinon(ch);
946 ch->statusflags = 0;
948 /* Save boards current modem status */
949 ch->imodem = readb(&bc->mstat);
952 * Set receive head and tail ptrs to each other. This indicates no data
953 * available to read.
955 head = readw(&bc->rin);
956 writew(head, &bc->rout);
958 /* Set the channels associated tty structure */
959 ch->port.tty = tty;
962 * The below routine generally sets up parity, baud, flow control
963 * issues, etc.... It effect both control flags and input flags.
965 epcaparam(tty, ch);
966 ch->port.flags |= ASYNC_INITIALIZED;
967 memoff(ch);
968 spin_unlock_irqrestore(&epca_lock, flags);
970 retval = block_til_ready(tty, filp, ch);
971 if (retval)
972 return retval;
974 * Set this again in case a hangup set it to zero while this open() was
975 * waiting for the line...
977 spin_lock_irqsave(&epca_lock, flags);
978 ch->port.tty = tty;
979 globalwinon(ch);
980 /* Enable Digi Data events */
981 writeb(1, &bc->idata);
982 memoff(ch);
983 spin_unlock_irqrestore(&epca_lock, flags);
984 return 0;
987 static int __init epca_module_init(void)
989 return pc_init();
991 module_init(epca_module_init);
993 static struct pci_driver epca_driver;
995 static void __exit epca_module_exit(void)
997 int count, crd;
998 struct board_info *bd;
999 struct channel *ch;
1001 del_timer_sync(&epca_timer);
1003 if (tty_unregister_driver(pc_driver) ||
1004 tty_unregister_driver(pc_info)) {
1005 printk(KERN_WARNING "epca: cleanup_module failed to un-register tty driver\n");
1006 return;
1008 put_tty_driver(pc_driver);
1009 put_tty_driver(pc_info);
1011 for (crd = 0; crd < num_cards; crd++) {
1012 bd = &boards[crd];
1013 if (!bd) { /* sanity check */
1014 printk(KERN_ERR "<Error> - Digi : cleanup_module failed\n");
1015 return;
1017 ch = card_ptr[crd];
1018 for (count = 0; count < bd->numports; count++, ch++) {
1019 if (ch && ch->port.tty)
1020 tty_hangup(ch->port.tty);
1023 pci_unregister_driver(&epca_driver);
1025 module_exit(epca_module_exit);
1027 static const struct tty_operations pc_ops = {
1028 .open = pc_open,
1029 .close = pc_close,
1030 .write = pc_write,
1031 .write_room = pc_write_room,
1032 .flush_buffer = pc_flush_buffer,
1033 .chars_in_buffer = pc_chars_in_buffer,
1034 .flush_chars = pc_flush_chars,
1035 .ioctl = pc_ioctl,
1036 .set_termios = pc_set_termios,
1037 .stop = pc_stop,
1038 .start = pc_start,
1039 .throttle = pc_throttle,
1040 .unthrottle = pc_unthrottle,
1041 .hangup = pc_hangup,
1042 .break_ctl = pc_send_break
1045 static int info_open(struct tty_struct *tty, struct file *filp)
1047 return 0;
1050 static struct tty_operations info_ops = {
1051 .open = info_open,
1052 .ioctl = info_ioctl,
1055 static int __init pc_init(void)
1057 int crd;
1058 struct board_info *bd;
1059 unsigned char board_id = 0;
1060 int err = -ENOMEM;
1062 int pci_boards_found, pci_count;
1064 pci_count = 0;
1066 pc_driver = alloc_tty_driver(MAX_ALLOC);
1067 if (!pc_driver)
1068 goto out1;
1070 pc_info = alloc_tty_driver(MAX_ALLOC);
1071 if (!pc_info)
1072 goto out2;
1075 * If epca_setup has not been ran by LILO set num_cards to defaults;
1076 * copy board structure defined by digiConfig into drivers board
1077 * structure. Note : If LILO has ran epca_setup then epca_setup will
1078 * handle defining num_cards as well as copying the data into the board
1079 * structure.
1081 if (!liloconfig) {
1082 /* driver has been configured via. epcaconfig */
1083 nbdevs = NBDEVS;
1084 num_cards = NUMCARDS;
1085 memcpy(&boards, &static_boards,
1086 sizeof(struct board_info) * NUMCARDS);
1090 * Note : If lilo was used to configure the driver and the ignore
1091 * epcaconfig option was choosen (digiepca=2) then nbdevs and num_cards
1092 * will equal 0 at this point. This is okay; PCI cards will still be
1093 * picked up if detected.
1097 * Set up interrupt, we will worry about memory allocation in
1098 * post_fep_init.
1100 printk(KERN_INFO "DIGI epca driver version %s loaded.\n", VERSION);
1103 * NOTE : This code assumes that the number of ports found in the
1104 * boards array is correct. This could be wrong if the card in question
1105 * is PCI (And therefore has no ports entry in the boards structure.)
1106 * The rest of the information will be valid for PCI because the
1107 * beginning of pc_init scans for PCI and determines i/o and base
1108 * memory addresses. I am not sure if it is possible to read the number
1109 * of ports supported by the card prior to it being booted (Since that
1110 * is the state it is in when pc_init is run). Because it is not
1111 * possible to query the number of supported ports until after the card
1112 * has booted; we are required to calculate the card_ptrs as the card
1113 * is initialized (Inside post_fep_init). The negative thing about this
1114 * approach is that digiDload's call to GET_INFO will have a bad port
1115 * value. (Since this is called prior to post_fep_init.)
1117 pci_boards_found = 0;
1118 if (num_cards < MAXBOARDS)
1119 pci_boards_found += init_PCI();
1120 num_cards += pci_boards_found;
1122 pc_driver->owner = THIS_MODULE;
1123 pc_driver->name = "ttyD";
1124 pc_driver->major = DIGI_MAJOR;
1125 pc_driver->minor_start = 0;
1126 pc_driver->type = TTY_DRIVER_TYPE_SERIAL;
1127 pc_driver->subtype = SERIAL_TYPE_NORMAL;
1128 pc_driver->init_termios = tty_std_termios;
1129 pc_driver->init_termios.c_iflag = 0;
1130 pc_driver->init_termios.c_oflag = 0;
1131 pc_driver->init_termios.c_cflag = B9600 | CS8 | CREAD | CLOCAL | HUPCL;
1132 pc_driver->init_termios.c_lflag = 0;
1133 pc_driver->init_termios.c_ispeed = 9600;
1134 pc_driver->init_termios.c_ospeed = 9600;
1135 pc_driver->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_HARDWARE_BREAK;
1136 tty_set_operations(pc_driver, &pc_ops);
1138 pc_info->owner = THIS_MODULE;
1139 pc_info->name = "digi_ctl";
1140 pc_info->major = DIGIINFOMAJOR;
1141 pc_info->minor_start = 0;
1142 pc_info->type = TTY_DRIVER_TYPE_SERIAL;
1143 pc_info->subtype = SERIAL_TYPE_INFO;
1144 pc_info->init_termios = tty_std_termios;
1145 pc_info->init_termios.c_iflag = 0;
1146 pc_info->init_termios.c_oflag = 0;
1147 pc_info->init_termios.c_lflag = 0;
1148 pc_info->init_termios.c_cflag = B9600 | CS8 | CREAD | HUPCL;
1149 pc_info->init_termios.c_ispeed = 9600;
1150 pc_info->init_termios.c_ospeed = 9600;
1151 pc_info->flags = TTY_DRIVER_REAL_RAW;
1152 tty_set_operations(pc_info, &info_ops);
1155 for (crd = 0; crd < num_cards; crd++) {
1157 * This is where the appropriate memory handlers for the
1158 * hardware is set. Everything at runtime blindly jumps through
1159 * these vectors.
1162 /* defined in epcaconfig.h */
1163 bd = &boards[crd];
1165 switch (bd->type) {
1166 case PCXEM:
1167 case EISAXEM:
1168 bd->memwinon = pcxem_memwinon;
1169 bd->memwinoff = pcxem_memwinoff;
1170 bd->globalwinon = pcxem_globalwinon;
1171 bd->txwinon = pcxem_txwinon;
1172 bd->rxwinon = pcxem_rxwinon;
1173 bd->memoff = pcxem_memoff;
1174 bd->assertgwinon = dummy_assertgwinon;
1175 bd->assertmemoff = dummy_assertmemoff;
1176 break;
1178 case PCIXEM:
1179 case PCIXRJ:
1180 case PCIXR:
1181 bd->memwinon = dummy_memwinon;
1182 bd->memwinoff = dummy_memwinoff;
1183 bd->globalwinon = dummy_globalwinon;
1184 bd->txwinon = dummy_txwinon;
1185 bd->rxwinon = dummy_rxwinon;
1186 bd->memoff = dummy_memoff;
1187 bd->assertgwinon = dummy_assertgwinon;
1188 bd->assertmemoff = dummy_assertmemoff;
1189 break;
1191 case PCXE:
1192 case PCXEVE:
1193 bd->memwinon = pcxe_memwinon;
1194 bd->memwinoff = pcxe_memwinoff;
1195 bd->globalwinon = pcxe_globalwinon;
1196 bd->txwinon = pcxe_txwinon;
1197 bd->rxwinon = pcxe_rxwinon;
1198 bd->memoff = pcxe_memoff;
1199 bd->assertgwinon = dummy_assertgwinon;
1200 bd->assertmemoff = dummy_assertmemoff;
1201 break;
1203 case PCXI:
1204 case PC64XE:
1205 bd->memwinon = pcxi_memwinon;
1206 bd->memwinoff = pcxi_memwinoff;
1207 bd->globalwinon = pcxi_globalwinon;
1208 bd->txwinon = pcxi_txwinon;
1209 bd->rxwinon = pcxi_rxwinon;
1210 bd->memoff = pcxi_memoff;
1211 bd->assertgwinon = pcxi_assertgwinon;
1212 bd->assertmemoff = pcxi_assertmemoff;
1213 break;
1215 default:
1216 break;
1220 * Some cards need a memory segment to be defined for use in
1221 * transmit and receive windowing operations. These boards are
1222 * listed in the below switch. In the case of the XI the amount
1223 * of memory on the board is variable so the memory_seg is also
1224 * variable. This code determines what they segment should be.
1226 switch (bd->type) {
1227 case PCXE:
1228 case PCXEVE:
1229 case PC64XE:
1230 bd->memory_seg = 0xf000;
1231 break;
1233 case PCXI:
1234 board_id = inb((int)bd->port);
1235 if ((board_id & 0x1) == 0x1) {
1236 /* it's an XI card */
1237 /* Is it a 64K board */
1238 if ((board_id & 0x30) == 0)
1239 bd->memory_seg = 0xf000;
1241 /* Is it a 128K board */
1242 if ((board_id & 0x30) == 0x10)
1243 bd->memory_seg = 0xe000;
1245 /* Is is a 256K board */
1246 if ((board_id & 0x30) == 0x20)
1247 bd->memory_seg = 0xc000;
1249 /* Is it a 512K board */
1250 if ((board_id & 0x30) == 0x30)
1251 bd->memory_seg = 0x8000;
1252 } else
1253 printk(KERN_ERR "epca: Board at 0x%x doesn't appear to be an XI\n", (int)bd->port);
1254 break;
1258 err = tty_register_driver(pc_driver);
1259 if (err) {
1260 printk(KERN_ERR "Couldn't register Digi PC/ driver");
1261 goto out3;
1264 err = tty_register_driver(pc_info);
1265 if (err) {
1266 printk(KERN_ERR "Couldn't register Digi PC/ info ");
1267 goto out4;
1270 /* Start up the poller to check for events on all enabled boards */
1271 init_timer(&epca_timer);
1272 epca_timer.function = epcapoll;
1273 mod_timer(&epca_timer, jiffies + HZ/25);
1274 return 0;
1276 out4:
1277 tty_unregister_driver(pc_driver);
1278 out3:
1279 put_tty_driver(pc_info);
1280 out2:
1281 put_tty_driver(pc_driver);
1282 out1:
1283 return err;
1286 static void post_fep_init(unsigned int crd)
1288 int i;
1289 void __iomem *memaddr;
1290 struct global_data __iomem *gd;
1291 struct board_info *bd;
1292 struct board_chan __iomem *bc;
1293 struct channel *ch;
1294 int shrinkmem = 0, lowwater;
1297 * This call is made by the user via. the ioctl call DIGI_INIT. It is
1298 * responsible for setting up all the card specific stuff.
1300 bd = &boards[crd];
1303 * If this is a PCI board, get the port info. Remember PCI cards do not
1304 * have entries into the epcaconfig.h file, so we can't get the number
1305 * of ports from it. Unfortunetly, this means that anyone doing a
1306 * DIGI_GETINFO before the board has booted will get an invalid number
1307 * of ports returned (It should return 0). Calls to DIGI_GETINFO after
1308 * DIGI_INIT has been called will return the proper values.
1310 if (bd->type >= PCIXEM) { /* Begin get PCI number of ports */
1312 * Below we use XEMPORTS as a memory offset regardless of which
1313 * PCI card it is. This is because all of the supported PCI
1314 * cards have the same memory offset for the channel data. This
1315 * will have to be changed if we ever develop a PCI/XE card.
1316 * NOTE : The FEP manual states that the port offset is 0xC22
1317 * as opposed to 0xC02. This is only true for PC/XE, and PC/XI
1318 * cards; not for the XEM, or CX series. On the PCI cards the
1319 * number of ports is determined by reading a ID PROM located
1320 * in the box attached to the card. The card can then determine
1321 * the index the id to determine the number of ports available.
1322 * (FYI - The id should be located at 0x1ac (And may use up to
1323 * 4 bytes if the box in question is a XEM or CX)).
1325 /* PCI cards are already remapped at this point ISA are not */
1326 bd->numports = readw(bd->re_map_membase + XEMPORTS);
1327 epcaassert(bd->numports <= 64, "PCI returned a invalid number of ports");
1328 nbdevs += (bd->numports);
1329 } else {
1330 /* Fix up the mappings for ISA/EISA etc */
1331 /* FIXME: 64K - can we be smarter ? */
1332 bd->re_map_membase = ioremap_nocache(bd->membase, 0x10000);
1335 if (crd != 0)
1336 card_ptr[crd] = card_ptr[crd-1] + boards[crd-1].numports;
1337 else
1338 card_ptr[crd] = &digi_channels[crd]; /* <- For card 0 only */
1340 ch = card_ptr[crd];
1341 epcaassert(ch <= &digi_channels[nbdevs - 1], "ch out of range");
1343 memaddr = bd->re_map_membase;
1346 * The below assignment will set bc to point at the BEGINING of the
1347 * cards channel structures. For 1 card there will be between 8 and 64
1348 * of these structures.
1350 bc = memaddr + CHANSTRUCT;
1353 * The below assignment will set gd to point at the BEGINING of global
1354 * memory address 0xc00. The first data in that global memory actually
1355 * starts at address 0xc1a. The command in pointer begins at 0xd10.
1357 gd = memaddr + GLOBAL;
1360 * XEPORTS (address 0xc22) points at the number of channels the card
1361 * supports. (For 64XE, XI, XEM, and XR use 0xc02)
1363 if ((bd->type == PCXEVE || bd->type == PCXE) &&
1364 (readw(memaddr + XEPORTS) < 3))
1365 shrinkmem = 1;
1366 if (bd->type < PCIXEM)
1367 if (!request_region((int)bd->port, 4, board_desc[bd->type]))
1368 return;
1369 memwinon(bd, 0);
1372 * Remember ch is the main drivers channels structure, while bc is the
1373 * cards channel structure.
1375 for (i = 0; i < bd->numports; i++, ch++, bc++) {
1376 unsigned long flags;
1377 u16 tseg, rseg;
1379 tty_port_init(&ch->port);
1380 ch->brdchan = bc;
1381 ch->mailbox = gd;
1382 INIT_WORK(&ch->tqueue, do_softint);
1383 ch->board = &boards[crd];
1385 spin_lock_irqsave(&epca_lock, flags);
1386 switch (bd->type) {
1388 * Since some of the boards use different bitmaps for
1389 * their control signals we cannot hard code these
1390 * values and retain portability. We virtualize this
1391 * data here.
1393 case EISAXEM:
1394 case PCXEM:
1395 case PCIXEM:
1396 case PCIXRJ:
1397 case PCIXR:
1398 ch->m_rts = 0x02;
1399 ch->m_dcd = 0x80;
1400 ch->m_dsr = 0x20;
1401 ch->m_cts = 0x10;
1402 ch->m_ri = 0x40;
1403 ch->m_dtr = 0x01;
1404 break;
1406 case PCXE:
1407 case PCXEVE:
1408 case PCXI:
1409 case PC64XE:
1410 ch->m_rts = 0x02;
1411 ch->m_dcd = 0x08;
1412 ch->m_dsr = 0x10;
1413 ch->m_cts = 0x20;
1414 ch->m_ri = 0x40;
1415 ch->m_dtr = 0x80;
1416 break;
1419 if (boards[crd].altpin) {
1420 ch->dsr = ch->m_dcd;
1421 ch->dcd = ch->m_dsr;
1422 ch->digiext.digi_flags |= DIGI_ALTPIN;
1423 } else {
1424 ch->dcd = ch->m_dcd;
1425 ch->dsr = ch->m_dsr;
1428 ch->boardnum = crd;
1429 ch->channelnum = i;
1430 ch->magic = EPCA_MAGIC;
1431 ch->port.tty = NULL;
1433 if (shrinkmem) {
1434 fepcmd(ch, SETBUFFER, 32, 0, 0, 0);
1435 shrinkmem = 0;
1438 tseg = readw(&bc->tseg);
1439 rseg = readw(&bc->rseg);
1441 switch (bd->type) {
1442 case PCIXEM:
1443 case PCIXRJ:
1444 case PCIXR:
1445 /* Cover all the 2MEG cards */
1446 ch->txptr = memaddr + ((tseg << 4) & 0x1fffff);
1447 ch->rxptr = memaddr + ((rseg << 4) & 0x1fffff);
1448 ch->txwin = FEPWIN | (tseg >> 11);
1449 ch->rxwin = FEPWIN | (rseg >> 11);
1450 break;
1452 case PCXEM:
1453 case EISAXEM:
1454 /* Cover all the 32K windowed cards */
1455 /* Mask equal to window size - 1 */
1456 ch->txptr = memaddr + ((tseg << 4) & 0x7fff);
1457 ch->rxptr = memaddr + ((rseg << 4) & 0x7fff);
1458 ch->txwin = FEPWIN | (tseg >> 11);
1459 ch->rxwin = FEPWIN | (rseg >> 11);
1460 break;
1462 case PCXEVE:
1463 case PCXE:
1464 ch->txptr = memaddr + (((tseg - bd->memory_seg) << 4)
1465 & 0x1fff);
1466 ch->txwin = FEPWIN | ((tseg - bd->memory_seg) >> 9);
1467 ch->rxptr = memaddr + (((rseg - bd->memory_seg) << 4)
1468 & 0x1fff);
1469 ch->rxwin = FEPWIN | ((rseg - bd->memory_seg) >> 9);
1470 break;
1472 case PCXI:
1473 case PC64XE:
1474 ch->txptr = memaddr + ((tseg - bd->memory_seg) << 4);
1475 ch->rxptr = memaddr + ((rseg - bd->memory_seg) << 4);
1476 ch->txwin = ch->rxwin = 0;
1477 break;
1480 ch->txbufhead = 0;
1481 ch->txbufsize = readw(&bc->tmax) + 1;
1483 ch->rxbufhead = 0;
1484 ch->rxbufsize = readw(&bc->rmax) + 1;
1486 lowwater = ch->txbufsize >= 2000 ? 1024 : (ch->txbufsize / 2);
1488 /* Set transmitter low water mark */
1489 fepcmd(ch, STXLWATER, lowwater, 0, 10, 0);
1491 /* Set receiver low water mark */
1492 fepcmd(ch, SRXLWATER, (ch->rxbufsize / 4), 0, 10, 0);
1494 /* Set receiver high water mark */
1495 fepcmd(ch, SRXHWATER, (3 * ch->rxbufsize / 4), 0, 10, 0);
1497 writew(100, &bc->edelay);
1498 writeb(1, &bc->idata);
1500 ch->startc = readb(&bc->startc);
1501 ch->stopc = readb(&bc->stopc);
1502 ch->startca = readb(&bc->startca);
1503 ch->stopca = readb(&bc->stopca);
1505 ch->fepcflag = 0;
1506 ch->fepiflag = 0;
1507 ch->fepoflag = 0;
1508 ch->fepstartc = 0;
1509 ch->fepstopc = 0;
1510 ch->fepstartca = 0;
1511 ch->fepstopca = 0;
1513 ch->close_delay = 50;
1515 spin_unlock_irqrestore(&epca_lock, flags);
1518 printk(KERN_INFO
1519 "Digi PC/Xx Driver V%s: %s I/O = 0x%lx Mem = 0x%lx Ports = %d\n",
1520 VERSION, board_desc[bd->type], (long)bd->port,
1521 (long)bd->membase, bd->numports);
1522 memwinoff(bd, 0);
1525 static void epcapoll(unsigned long ignored)
1527 unsigned long flags;
1528 int crd;
1529 unsigned int head, tail;
1530 struct channel *ch;
1531 struct board_info *bd;
1534 * This routine is called upon every timer interrupt. Even though the
1535 * Digi series cards are capable of generating interrupts this method
1536 * of non-looping polling is more efficient. This routine checks for
1537 * card generated events (Such as receive data, are transmit buffer
1538 * empty) and acts on those events.
1540 for (crd = 0; crd < num_cards; crd++) {
1541 bd = &boards[crd];
1542 ch = card_ptr[crd];
1544 if ((bd->status == DISABLED) || digi_poller_inhibited)
1545 continue;
1548 * assertmemoff is not needed here; indeed it is an empty
1549 * subroutine. It is being kept because future boards may need
1550 * this as well as some legacy boards.
1552 spin_lock_irqsave(&epca_lock, flags);
1554 assertmemoff(ch);
1556 globalwinon(ch);
1559 * In this case head and tail actually refer to the event queue
1560 * not the transmit or receive queue.
1562 head = readw(&ch->mailbox->ein);
1563 tail = readw(&ch->mailbox->eout);
1565 /* If head isn't equal to tail we have an event */
1566 if (head != tail)
1567 doevent(crd);
1568 memoff(ch);
1570 spin_unlock_irqrestore(&epca_lock, flags);
1571 } /* End for each card */
1572 mod_timer(&epca_timer, jiffies + (HZ / 25));
1575 static void doevent(int crd)
1577 void __iomem *eventbuf;
1578 struct channel *ch, *chan0;
1579 static struct tty_struct *tty;
1580 struct board_info *bd;
1581 struct board_chan __iomem *bc;
1582 unsigned int tail, head;
1583 int event, channel;
1584 int mstat, lstat;
1587 * This subroutine is called by epcapoll when an event is detected
1588 * in the event queue. This routine responds to those events.
1590 bd = &boards[crd];
1592 chan0 = card_ptr[crd];
1593 epcaassert(chan0 <= &digi_channels[nbdevs - 1], "ch out of range");
1594 assertgwinon(chan0);
1595 while ((tail = readw(&chan0->mailbox->eout)) !=
1596 (head = readw(&chan0->mailbox->ein))) {
1597 /* Begin while something in event queue */
1598 assertgwinon(chan0);
1599 eventbuf = bd->re_map_membase + tail + ISTART;
1600 /* Get the channel the event occurred on */
1601 channel = readb(eventbuf);
1602 /* Get the actual event code that occurred */
1603 event = readb(eventbuf + 1);
1605 * The two assignments below get the current modem status
1606 * (mstat) and the previous modem status (lstat). These are
1607 * useful becuase an event could signal a change in modem
1608 * signals itself.
1610 mstat = readb(eventbuf + 2);
1611 lstat = readb(eventbuf + 3);
1613 ch = chan0 + channel;
1614 if ((unsigned)channel >= bd->numports || !ch) {
1615 if (channel >= bd->numports)
1616 ch = chan0;
1617 bc = ch->brdchan;
1618 goto next;
1621 bc = ch->brdchan;
1622 if (bc == NULL)
1623 goto next;
1625 if (event & DATA_IND) { /* Begin DATA_IND */
1626 receive_data(ch);
1627 assertgwinon(ch);
1628 } /* End DATA_IND */
1629 /* else *//* Fix for DCD transition missed bug */
1630 if (event & MODEMCHG_IND) {
1631 /* A modem signal change has been indicated */
1632 ch->imodem = mstat;
1633 if (ch->port.flags & ASYNC_CHECK_CD) {
1634 /* We are now receiving dcd */
1635 if (mstat & ch->dcd)
1636 wake_up_interruptible(&ch->port.open_wait);
1637 else /* No dcd; hangup */
1638 pc_sched_event(ch, EPCA_EVENT_HANGUP);
1641 tty = ch->port.tty;
1642 if (tty) {
1643 if (event & BREAK_IND) {
1644 /* A break has been indicated */
1645 tty_insert_flip_char(tty, 0, TTY_BREAK);
1646 tty_schedule_flip(tty);
1647 } else if (event & LOWTX_IND) {
1648 if (ch->statusflags & LOWWAIT) {
1649 ch->statusflags &= ~LOWWAIT;
1650 tty_wakeup(tty);
1652 } else if (event & EMPTYTX_IND) {
1653 /* This event is generated by
1654 setup_empty_event */
1655 ch->statusflags &= ~TXBUSY;
1656 if (ch->statusflags & EMPTYWAIT) {
1657 ch->statusflags &= ~EMPTYWAIT;
1658 tty_wakeup(tty);
1662 next:
1663 globalwinon(ch);
1664 BUG_ON(!bc);
1665 writew(1, &bc->idata);
1666 writew((tail + 4) & (IMAX - ISTART - 4), &chan0->mailbox->eout);
1667 globalwinon(chan0);
1668 } /* End while something in event queue */
1671 static void fepcmd(struct channel *ch, int cmd, int word_or_byte,
1672 int byte2, int ncmds, int bytecmd)
1674 unchar __iomem *memaddr;
1675 unsigned int head, cmdTail, cmdStart, cmdMax;
1676 long count;
1677 int n;
1679 /* This is the routine in which commands may be passed to the card. */
1681 if (ch->board->status == DISABLED)
1682 return;
1683 assertgwinon(ch);
1684 /* Remember head (As well as max) is just an offset not a base addr */
1685 head = readw(&ch->mailbox->cin);
1686 /* cmdStart is a base address */
1687 cmdStart = readw(&ch->mailbox->cstart);
1689 * We do the addition below because we do not want a max pointer
1690 * relative to cmdStart. We want a max pointer that points at the
1691 * physical end of the command queue.
1693 cmdMax = (cmdStart + 4 + readw(&ch->mailbox->cmax));
1694 memaddr = ch->board->re_map_membase;
1696 if (head >= (cmdMax - cmdStart) || (head & 03)) {
1697 printk(KERN_ERR "line %d: Out of range, cmd = %x, head = %x\n",
1698 __LINE__, cmd, head);
1699 printk(KERN_ERR "line %d: Out of range, cmdMax = %x, cmdStart = %x\n",
1700 __LINE__, cmdMax, cmdStart);
1701 return;
1703 if (bytecmd) {
1704 writeb(cmd, memaddr + head + cmdStart + 0);
1705 writeb(ch->channelnum, memaddr + head + cmdStart + 1);
1706 /* Below word_or_byte is bits to set */
1707 writeb(word_or_byte, memaddr + head + cmdStart + 2);
1708 /* Below byte2 is bits to reset */
1709 writeb(byte2, memaddr + head + cmdStart + 3);
1710 } else {
1711 writeb(cmd, memaddr + head + cmdStart + 0);
1712 writeb(ch->channelnum, memaddr + head + cmdStart + 1);
1713 writeb(word_or_byte, memaddr + head + cmdStart + 2);
1715 head = (head + 4) & (cmdMax - cmdStart - 4);
1716 writew(head, &ch->mailbox->cin);
1717 count = FEPTIMEOUT;
1719 for (;;) {
1720 count--;
1721 if (count == 0) {
1722 printk(KERN_ERR "<Error> - Fep not responding in fepcmd()\n");
1723 return;
1725 head = readw(&ch->mailbox->cin);
1726 cmdTail = readw(&ch->mailbox->cout);
1727 n = (head - cmdTail) & (cmdMax - cmdStart - 4);
1729 * Basically this will break when the FEP acknowledges the
1730 * command by incrementing cmdTail (Making it equal to head).
1732 if (n <= ncmds * (sizeof(short) * 4))
1733 break;
1738 * Digi products use fields in their channels structures that are very similar
1739 * to the c_cflag and c_iflag fields typically found in UNIX termios
1740 * structures. The below three routines allow mappings between these hardware
1741 * "flags" and their respective Linux flags.
1743 static unsigned termios2digi_h(struct channel *ch, unsigned cflag)
1745 unsigned res = 0;
1747 if (cflag & CRTSCTS) {
1748 ch->digiext.digi_flags |= (RTSPACE | CTSPACE);
1749 res |= ((ch->m_cts) | (ch->m_rts));
1752 if (ch->digiext.digi_flags & RTSPACE)
1753 res |= ch->m_rts;
1755 if (ch->digiext.digi_flags & DTRPACE)
1756 res |= ch->m_dtr;
1758 if (ch->digiext.digi_flags & CTSPACE)
1759 res |= ch->m_cts;
1761 if (ch->digiext.digi_flags & DSRPACE)
1762 res |= ch->dsr;
1764 if (ch->digiext.digi_flags & DCDPACE)
1765 res |= ch->dcd;
1767 if (res & (ch->m_rts))
1768 ch->digiext.digi_flags |= RTSPACE;
1770 if (res & (ch->m_cts))
1771 ch->digiext.digi_flags |= CTSPACE;
1773 return res;
1776 static unsigned termios2digi_i(struct channel *ch, unsigned iflag)
1778 unsigned res = iflag & (IGNBRK | BRKINT | IGNPAR | PARMRK |
1779 INPCK | ISTRIP | IXON | IXANY | IXOFF);
1780 if (ch->digiext.digi_flags & DIGI_AIXON)
1781 res |= IAIXON;
1782 return res;
1785 static unsigned termios2digi_c(struct channel *ch, unsigned cflag)
1787 unsigned res = 0;
1788 if (cflag & CBAUDEX) {
1789 ch->digiext.digi_flags |= DIGI_FAST;
1791 * HUPCL bit is used by FEP to indicate fast baud table is to
1792 * be used.
1794 res |= FEP_HUPCL;
1795 } else
1796 ch->digiext.digi_flags &= ~DIGI_FAST;
1798 * CBAUD has bit position 0x1000 set these days to indicate Linux
1799 * baud rate remap. Digi hardware can't handle the bit assignment.
1800 * (We use a different bit assignment for high speed.). Clear this
1801 * bit out.
1803 res |= cflag & ((CBAUD ^ CBAUDEX) | PARODD | PARENB | CSTOPB | CSIZE);
1805 * This gets a little confusing. The Digi cards have their own
1806 * representation of c_cflags controlling baud rate. For the most part
1807 * this is identical to the Linux implementation. However; Digi
1808 * supports one rate (76800) that Linux doesn't. This means that the
1809 * c_cflag entry that would normally mean 76800 for Digi actually means
1810 * 115200 under Linux. Without the below mapping, a stty 115200 would
1811 * only drive the board at 76800. Since the rate 230400 is also found
1812 * after 76800, the same problem afflicts us when we choose a rate of
1813 * 230400. Without the below modificiation stty 230400 would actually
1814 * give us 115200.
1816 * There are two additional differences. The Linux value for CLOCAL
1817 * (0x800; 0004000) has no meaning to the Digi hardware. Also in later
1818 * releases of Linux; the CBAUD define has CBAUDEX (0x1000; 0010000)
1819 * ored into it (CBAUD = 0x100f as opposed to 0xf). CBAUDEX should be
1820 * checked for a screened out prior to termios2digi_c returning. Since
1821 * CLOCAL isn't used by the board this can be ignored as long as the
1822 * returned value is used only by Digi hardware.
1824 if (cflag & CBAUDEX) {
1826 * The below code is trying to guarantee that only baud rates
1827 * 115200 and 230400 are remapped. We use exclusive or because
1828 * the various baud rates share common bit positions and
1829 * therefore can't be tested for easily.
1831 if ((!((cflag & 0x7) ^ (B115200 & ~CBAUDEX))) ||
1832 (!((cflag & 0x7) ^ (B230400 & ~CBAUDEX))))
1833 res += 1;
1835 return res;
1838 /* Caller must hold the locks */
1839 static void epcaparam(struct tty_struct *tty, struct channel *ch)
1841 unsigned int cmdHead;
1842 struct ktermios *ts;
1843 struct board_chan __iomem *bc;
1844 unsigned mval, hflow, cflag, iflag;
1846 bc = ch->brdchan;
1847 epcaassert(bc != NULL, "bc out of range");
1849 assertgwinon(ch);
1850 ts = tty->termios;
1851 if ((ts->c_cflag & CBAUD) == 0) { /* Begin CBAUD detected */
1852 cmdHead = readw(&bc->rin);
1853 writew(cmdHead, &bc->rout);
1854 cmdHead = readw(&bc->tin);
1855 /* Changing baud in mid-stream transmission can be wonderful */
1857 * Flush current transmit buffer by setting cmdTail pointer
1858 * (tout) to cmdHead pointer (tin). Hopefully the transmit
1859 * buffer is empty.
1861 fepcmd(ch, STOUT, (unsigned) cmdHead, 0, 0, 0);
1862 mval = 0;
1863 } else { /* Begin CBAUD not detected */
1865 * c_cflags have changed but that change had nothing to do with
1866 * BAUD. Propagate the change to the card.
1868 cflag = termios2digi_c(ch, ts->c_cflag);
1869 if (cflag != ch->fepcflag) {
1870 ch->fepcflag = cflag;
1871 /* Set baud rate, char size, stop bits, parity */
1872 fepcmd(ch, SETCTRLFLAGS, (unsigned) cflag, 0, 0, 0);
1875 * If the user has not forced CLOCAL and if the device is not a
1876 * CALLOUT device (Which is always CLOCAL) we set flags such
1877 * that the driver will wait on carrier detect.
1879 if (ts->c_cflag & CLOCAL)
1880 ch->port.flags &= ~ASYNC_CHECK_CD;
1881 else
1882 ch->port.flags |= ASYNC_CHECK_CD;
1883 mval = ch->m_dtr | ch->m_rts;
1884 } /* End CBAUD not detected */
1885 iflag = termios2digi_i(ch, ts->c_iflag);
1886 /* Check input mode flags */
1887 if (iflag != ch->fepiflag) {
1888 ch->fepiflag = iflag;
1890 * Command sets channels iflag structure on the board. Such
1891 * things as input soft flow control, handling of parity
1892 * errors, and break handling are all set here.
1894 * break handling, parity handling, input stripping,
1895 * flow control chars
1897 fepcmd(ch, SETIFLAGS, (unsigned int) ch->fepiflag, 0, 0, 0);
1900 * Set the board mint value for this channel. This will cause hardware
1901 * events to be generated each time the DCD signal (Described in mint)
1902 * changes.
1904 writeb(ch->dcd, &bc->mint);
1905 if ((ts->c_cflag & CLOCAL) || (ch->digiext.digi_flags & DIGI_FORCEDCD))
1906 if (ch->digiext.digi_flags & DIGI_FORCEDCD)
1907 writeb(0, &bc->mint);
1908 ch->imodem = readb(&bc->mstat);
1909 hflow = termios2digi_h(ch, ts->c_cflag);
1910 if (hflow != ch->hflow) {
1911 ch->hflow = hflow;
1913 * Hard flow control has been selected but the board is not
1914 * using it. Activate hard flow control now.
1916 fepcmd(ch, SETHFLOW, hflow, 0xff, 0, 1);
1918 mval ^= ch->modemfake & (mval ^ ch->modem);
1920 if (ch->omodem ^ mval) {
1921 ch->omodem = mval;
1923 * The below command sets the DTR and RTS mstat structure. If
1924 * hard flow control is NOT active these changes will drive the
1925 * output of the actual DTR and RTS lines. If hard flow control
1926 * is active, the changes will be saved in the mstat structure
1927 * and only asserted when hard flow control is turned off.
1930 /* First reset DTR & RTS; then set them */
1931 fepcmd(ch, SETMODEM, 0, ((ch->m_dtr)|(ch->m_rts)), 0, 1);
1932 fepcmd(ch, SETMODEM, mval, 0, 0, 1);
1934 if (ch->startc != ch->fepstartc || ch->stopc != ch->fepstopc) {
1935 ch->fepstartc = ch->startc;
1936 ch->fepstopc = ch->stopc;
1938 * The XON / XOFF characters have changed; propagate these
1939 * changes to the card.
1941 fepcmd(ch, SONOFFC, ch->fepstartc, ch->fepstopc, 0, 1);
1943 if (ch->startca != ch->fepstartca || ch->stopca != ch->fepstopca) {
1944 ch->fepstartca = ch->startca;
1945 ch->fepstopca = ch->stopca;
1947 * Similar to the above, this time the auxilarly XON / XOFF
1948 * characters have changed; propagate these changes to the card.
1950 fepcmd(ch, SAUXONOFFC, ch->fepstartca, ch->fepstopca, 0, 1);
1954 /* Caller holds lock */
1955 static void receive_data(struct channel *ch)
1957 unchar *rptr;
1958 struct ktermios *ts = NULL;
1959 struct tty_struct *tty;
1960 struct board_chan __iomem *bc;
1961 int dataToRead, wrapgap, bytesAvailable;
1962 unsigned int tail, head;
1963 unsigned int wrapmask;
1966 * This routine is called by doint when a receive data event has taken
1967 * place.
1969 globalwinon(ch);
1970 if (ch->statusflags & RXSTOPPED)
1971 return;
1972 tty = ch->port.tty;
1973 if (tty)
1974 ts = tty->termios;
1975 bc = ch->brdchan;
1976 BUG_ON(!bc);
1977 wrapmask = ch->rxbufsize - 1;
1980 * Get the head and tail pointers to the receiver queue. Wrap the head
1981 * pointer if it has reached the end of the buffer.
1983 head = readw(&bc->rin);
1984 head &= wrapmask;
1985 tail = readw(&bc->rout) & wrapmask;
1987 bytesAvailable = (head - tail) & wrapmask;
1988 if (bytesAvailable == 0)
1989 return;
1991 /* If CREAD bit is off or device not open, set TX tail to head */
1992 if (!tty || !ts || !(ts->c_cflag & CREAD)) {
1993 writew(head, &bc->rout);
1994 return;
1997 if (tty_buffer_request_room(tty, bytesAvailable + 1) == 0)
1998 return;
2000 if (readb(&bc->orun)) {
2001 writeb(0, &bc->orun);
2002 printk(KERN_WARNING "epca; overrun! DigiBoard device %s\n",
2003 tty->name);
2004 tty_insert_flip_char(tty, 0, TTY_OVERRUN);
2006 rxwinon(ch);
2007 while (bytesAvailable > 0) {
2008 /* Begin while there is data on the card */
2009 wrapgap = (head >= tail) ? head - tail : ch->rxbufsize - tail;
2011 * Even if head has wrapped around only report the amount of
2012 * data to be equal to the size - tail. Remember memcpy can't
2013 * automaticly wrap around the receive buffer.
2015 dataToRead = (wrapgap < bytesAvailable) ? wrapgap
2016 : bytesAvailable;
2017 /* Make sure we don't overflow the buffer */
2018 dataToRead = tty_prepare_flip_string(tty, &rptr, dataToRead);
2019 if (dataToRead == 0)
2020 break;
2022 * Move data read from our card into the line disciplines
2023 * buffer for translation if necessary.
2025 memcpy_fromio(rptr, ch->rxptr + tail, dataToRead);
2026 tail = (tail + dataToRead) & wrapmask;
2027 bytesAvailable -= dataToRead;
2028 } /* End while there is data on the card */
2029 globalwinon(ch);
2030 writew(tail, &bc->rout);
2031 /* Must be called with global data */
2032 tty_schedule_flip(ch->port.tty);
2035 static int info_ioctl(struct tty_struct *tty, struct file *file,
2036 unsigned int cmd, unsigned long arg)
2038 switch (cmd) {
2039 case DIGI_GETINFO:
2041 struct digi_info di;
2042 int brd;
2044 if (get_user(brd, (unsigned int __user *)arg))
2045 return -EFAULT;
2046 if (brd < 0 || brd >= num_cards || num_cards == 0)
2047 return -ENODEV;
2049 memset(&di, 0, sizeof(di));
2051 di.board = brd;
2052 di.status = boards[brd].status;
2053 di.type = boards[brd].type ;
2054 di.numports = boards[brd].numports ;
2055 /* Legacy fixups - just move along nothing to see */
2056 di.port = (unsigned char *)boards[brd].port ;
2057 di.membase = (unsigned char *)boards[brd].membase ;
2059 if (copy_to_user((void __user *)arg, &di, sizeof(di)))
2060 return -EFAULT;
2061 break;
2065 case DIGI_POLLER:
2067 int brd = arg & 0xff000000 >> 16;
2068 unsigned char state = arg & 0xff;
2070 if (brd < 0 || brd >= num_cards) {
2071 printk(KERN_ERR "epca: DIGI POLLER : brd not valid!\n");
2072 return -ENODEV;
2074 digi_poller_inhibited = state;
2075 break;
2078 case DIGI_INIT:
2081 * This call is made by the apps to complete the
2082 * initialization of the board(s). This routine is
2083 * responsible for setting the card to its initial
2084 * state and setting the drivers control fields to the
2085 * sutianle settings for the card in question.
2087 int crd;
2088 for (crd = 0; crd < num_cards; crd++)
2089 post_fep_init(crd);
2090 break;
2092 default:
2093 return -ENOTTY;
2095 return 0;
2098 static int pc_tiocmget(struct tty_struct *tty, struct file *file)
2100 struct channel *ch = (struct channel *) tty->driver_data;
2101 struct board_chan __iomem *bc;
2102 unsigned int mstat, mflag = 0;
2103 unsigned long flags;
2105 if (ch)
2106 bc = ch->brdchan;
2107 else
2108 return -EINVAL;
2110 spin_lock_irqsave(&epca_lock, flags);
2111 globalwinon(ch);
2112 mstat = readb(&bc->mstat);
2113 memoff(ch);
2114 spin_unlock_irqrestore(&epca_lock, flags);
2116 if (mstat & ch->m_dtr)
2117 mflag |= TIOCM_DTR;
2118 if (mstat & ch->m_rts)
2119 mflag |= TIOCM_RTS;
2120 if (mstat & ch->m_cts)
2121 mflag |= TIOCM_CTS;
2122 if (mstat & ch->dsr)
2123 mflag |= TIOCM_DSR;
2124 if (mstat & ch->m_ri)
2125 mflag |= TIOCM_RI;
2126 if (mstat & ch->dcd)
2127 mflag |= TIOCM_CD;
2128 return mflag;
2131 static int pc_tiocmset(struct tty_struct *tty, struct file *file,
2132 unsigned int set, unsigned int clear)
2134 struct channel *ch = (struct channel *) tty->driver_data;
2135 unsigned long flags;
2137 if (!ch)
2138 return -EINVAL;
2140 spin_lock_irqsave(&epca_lock, flags);
2142 * I think this modemfake stuff is broken. It doesn't correctly reflect
2143 * the behaviour desired by the TIOCM* ioctls. Therefore this is
2144 * probably broken.
2146 if (set & TIOCM_RTS) {
2147 ch->modemfake |= ch->m_rts;
2148 ch->modem |= ch->m_rts;
2150 if (set & TIOCM_DTR) {
2151 ch->modemfake |= ch->m_dtr;
2152 ch->modem |= ch->m_dtr;
2154 if (clear & TIOCM_RTS) {
2155 ch->modemfake |= ch->m_rts;
2156 ch->modem &= ~ch->m_rts;
2158 if (clear & TIOCM_DTR) {
2159 ch->modemfake |= ch->m_dtr;
2160 ch->modem &= ~ch->m_dtr;
2162 globalwinon(ch);
2164 * The below routine generally sets up parity, baud, flow control
2165 * issues, etc.... It effect both control flags and input flags.
2167 epcaparam(tty, ch);
2168 memoff(ch);
2169 spin_unlock_irqrestore(&epca_lock, flags);
2170 return 0;
2173 static int pc_ioctl(struct tty_struct *tty, struct file *file,
2174 unsigned int cmd, unsigned long arg)
2176 digiflow_t dflow;
2177 unsigned long flags;
2178 unsigned int mflag, mstat;
2179 unsigned char startc, stopc;
2180 struct board_chan __iomem *bc;
2181 struct channel *ch = (struct channel *) tty->driver_data;
2182 void __user *argp = (void __user *)arg;
2184 if (ch)
2185 bc = ch->brdchan;
2186 else
2187 return -EINVAL;
2188 switch (cmd) {
2189 case TIOCMODG:
2190 mflag = pc_tiocmget(tty, file);
2191 if (put_user(mflag, (unsigned long __user *)argp))
2192 return -EFAULT;
2193 break;
2194 case TIOCMODS:
2195 if (get_user(mstat, (unsigned __user *)argp))
2196 return -EFAULT;
2197 return pc_tiocmset(tty, file, mstat, ~mstat);
2198 case TIOCSDTR:
2199 spin_lock_irqsave(&epca_lock, flags);
2200 ch->omodem |= ch->m_dtr;
2201 globalwinon(ch);
2202 fepcmd(ch, SETMODEM, ch->m_dtr, 0, 10, 1);
2203 memoff(ch);
2204 spin_unlock_irqrestore(&epca_lock, flags);
2205 break;
2207 case TIOCCDTR:
2208 spin_lock_irqsave(&epca_lock, flags);
2209 ch->omodem &= ~ch->m_dtr;
2210 globalwinon(ch);
2211 fepcmd(ch, SETMODEM, 0, ch->m_dtr, 10, 1);
2212 memoff(ch);
2213 spin_unlock_irqrestore(&epca_lock, flags);
2214 break;
2215 case DIGI_GETA:
2216 if (copy_to_user(argp, &ch->digiext, sizeof(digi_t)))
2217 return -EFAULT;
2218 break;
2219 case DIGI_SETAW:
2220 case DIGI_SETAF:
2221 lock_kernel();
2222 if (cmd == DIGI_SETAW) {
2223 /* Setup an event to indicate when the transmit
2224 buffer empties */
2225 spin_lock_irqsave(&epca_lock, flags);
2226 setup_empty_event(tty, ch);
2227 spin_unlock_irqrestore(&epca_lock, flags);
2228 tty_wait_until_sent(tty, 0);
2229 } else {
2230 /* ldisc lock already held in ioctl */
2231 if (tty->ldisc.ops->flush_buffer)
2232 tty->ldisc.ops->flush_buffer(tty);
2234 unlock_kernel();
2235 /* Fall Thru */
2236 case DIGI_SETA:
2237 if (copy_from_user(&ch->digiext, argp, sizeof(digi_t)))
2238 return -EFAULT;
2240 if (ch->digiext.digi_flags & DIGI_ALTPIN) {
2241 ch->dcd = ch->m_dsr;
2242 ch->dsr = ch->m_dcd;
2243 } else {
2244 ch->dcd = ch->m_dcd;
2245 ch->dsr = ch->m_dsr;
2248 spin_lock_irqsave(&epca_lock, flags);
2249 globalwinon(ch);
2252 * The below routine generally sets up parity, baud, flow
2253 * control issues, etc.... It effect both control flags and
2254 * input flags.
2256 epcaparam(tty, ch);
2257 memoff(ch);
2258 spin_unlock_irqrestore(&epca_lock, flags);
2259 break;
2261 case DIGI_GETFLOW:
2262 case DIGI_GETAFLOW:
2263 spin_lock_irqsave(&epca_lock, flags);
2264 globalwinon(ch);
2265 if (cmd == DIGI_GETFLOW) {
2266 dflow.startc = readb(&bc->startc);
2267 dflow.stopc = readb(&bc->stopc);
2268 } else {
2269 dflow.startc = readb(&bc->startca);
2270 dflow.stopc = readb(&bc->stopca);
2272 memoff(ch);
2273 spin_unlock_irqrestore(&epca_lock, flags);
2275 if (copy_to_user(argp, &dflow, sizeof(dflow)))
2276 return -EFAULT;
2277 break;
2279 case DIGI_SETAFLOW:
2280 case DIGI_SETFLOW:
2281 if (cmd == DIGI_SETFLOW) {
2282 startc = ch->startc;
2283 stopc = ch->stopc;
2284 } else {
2285 startc = ch->startca;
2286 stopc = ch->stopca;
2289 if (copy_from_user(&dflow, argp, sizeof(dflow)))
2290 return -EFAULT;
2292 if (dflow.startc != startc || dflow.stopc != stopc) {
2293 /* Begin if setflow toggled */
2294 spin_lock_irqsave(&epca_lock, flags);
2295 globalwinon(ch);
2297 if (cmd == DIGI_SETFLOW) {
2298 ch->fepstartc = ch->startc = dflow.startc;
2299 ch->fepstopc = ch->stopc = dflow.stopc;
2300 fepcmd(ch, SONOFFC, ch->fepstartc,
2301 ch->fepstopc, 0, 1);
2302 } else {
2303 ch->fepstartca = ch->startca = dflow.startc;
2304 ch->fepstopca = ch->stopca = dflow.stopc;
2305 fepcmd(ch, SAUXONOFFC, ch->fepstartca,
2306 ch->fepstopca, 0, 1);
2309 if (ch->statusflags & TXSTOPPED)
2310 pc_start(tty);
2312 memoff(ch);
2313 spin_unlock_irqrestore(&epca_lock, flags);
2314 } /* End if setflow toggled */
2315 break;
2316 default:
2317 return -ENOIOCTLCMD;
2319 return 0;
2322 static void pc_set_termios(struct tty_struct *tty, struct ktermios *old_termios)
2324 struct channel *ch;
2325 unsigned long flags;
2327 * verifyChannel returns the channel from the tty struct if it is
2328 * valid. This serves as a sanity check.
2330 ch = verifyChannel(tty);
2332 if (ch != NULL) { /* Begin if channel valid */
2333 spin_lock_irqsave(&epca_lock, flags);
2334 globalwinon(ch);
2335 epcaparam(tty, ch);
2336 memoff(ch);
2337 spin_unlock_irqrestore(&epca_lock, flags);
2339 if ((old_termios->c_cflag & CRTSCTS) &&
2340 ((tty->termios->c_cflag & CRTSCTS) == 0))
2341 tty->hw_stopped = 0;
2343 if (!(old_termios->c_cflag & CLOCAL) &&
2344 (tty->termios->c_cflag & CLOCAL))
2345 wake_up_interruptible(&ch->port.open_wait);
2347 } /* End if channel valid */
2350 static void do_softint(struct work_struct *work)
2352 struct channel *ch = container_of(work, struct channel, tqueue);
2353 /* Called in response to a modem change event */
2354 if (ch && ch->magic == EPCA_MAGIC) {
2355 struct tty_struct *tty = ch->port.tty;
2357 if (tty && tty->driver_data) {
2358 if (test_and_clear_bit(EPCA_EVENT_HANGUP, &ch->event)) {
2359 tty_hangup(tty);
2360 wake_up_interruptible(&ch->port.open_wait);
2361 ch->port.flags &= ~ASYNC_NORMAL_ACTIVE;
2368 * pc_stop and pc_start provide software flow control to the routine and the
2369 * pc_ioctl routine.
2371 static void pc_stop(struct tty_struct *tty)
2373 struct channel *ch;
2374 unsigned long flags;
2376 * verifyChannel returns the channel from the tty struct if it is
2377 * valid. This serves as a sanity check.
2379 ch = verifyChannel(tty);
2380 if (ch != NULL) {
2381 spin_lock_irqsave(&epca_lock, flags);
2382 if ((ch->statusflags & TXSTOPPED) == 0) {
2383 /* Begin if transmit stop requested */
2384 globalwinon(ch);
2385 /* STOP transmitting now !! */
2386 fepcmd(ch, PAUSETX, 0, 0, 0, 0);
2387 ch->statusflags |= TXSTOPPED;
2388 memoff(ch);
2389 } /* End if transmit stop requested */
2390 spin_unlock_irqrestore(&epca_lock, flags);
2394 static void pc_start(struct tty_struct *tty)
2396 struct channel *ch;
2398 * verifyChannel returns the channel from the tty struct if it is
2399 * valid. This serves as a sanity check.
2401 ch = verifyChannel(tty);
2402 if (ch != NULL) {
2403 unsigned long flags;
2404 spin_lock_irqsave(&epca_lock, flags);
2405 /* Just in case output was resumed because of a change
2406 in Digi-flow */
2407 if (ch->statusflags & TXSTOPPED) {
2408 /* Begin transmit resume requested */
2409 struct board_chan __iomem *bc;
2410 globalwinon(ch);
2411 bc = ch->brdchan;
2412 if (ch->statusflags & LOWWAIT)
2413 writeb(1, &bc->ilow);
2414 /* Okay, you can start transmitting again... */
2415 fepcmd(ch, RESUMETX, 0, 0, 0, 0);
2416 ch->statusflags &= ~TXSTOPPED;
2417 memoff(ch);
2418 } /* End transmit resume requested */
2419 spin_unlock_irqrestore(&epca_lock, flags);
2424 * The below routines pc_throttle and pc_unthrottle are used to slow (And
2425 * resume) the receipt of data into the kernels receive buffers. The exact
2426 * occurrence of this depends on the size of the kernels receive buffer and
2427 * what the 'watermarks' are set to for that buffer. See the n_ttys.c file for
2428 * more details.
2430 static void pc_throttle(struct tty_struct *tty)
2432 struct channel *ch;
2433 unsigned long flags;
2435 * verifyChannel returns the channel from the tty struct if it is
2436 * valid. This serves as a sanity check.
2438 ch = verifyChannel(tty);
2439 if (ch != NULL) {
2440 spin_lock_irqsave(&epca_lock, flags);
2441 if ((ch->statusflags & RXSTOPPED) == 0) {
2442 globalwinon(ch);
2443 fepcmd(ch, PAUSERX, 0, 0, 0, 0);
2444 ch->statusflags |= RXSTOPPED;
2445 memoff(ch);
2447 spin_unlock_irqrestore(&epca_lock, flags);
2451 static void pc_unthrottle(struct tty_struct *tty)
2453 struct channel *ch;
2454 unsigned long flags;
2456 * verifyChannel returns the channel from the tty struct if it is
2457 * valid. This serves as a sanity check.
2459 ch = verifyChannel(tty);
2460 if (ch != NULL) {
2461 /* Just in case output was resumed because of a change
2462 in Digi-flow */
2463 spin_lock_irqsave(&epca_lock, flags);
2464 if (ch->statusflags & RXSTOPPED) {
2465 globalwinon(ch);
2466 fepcmd(ch, RESUMERX, 0, 0, 0, 0);
2467 ch->statusflags &= ~RXSTOPPED;
2468 memoff(ch);
2470 spin_unlock_irqrestore(&epca_lock, flags);
2474 static int pc_send_break(struct tty_struct *tty, int msec)
2476 struct channel *ch = (struct channel *) tty->driver_data;
2477 unsigned long flags;
2479 if (msec == -1)
2480 msec = 0xFFFF;
2481 else if (msec > 0xFFFE)
2482 msec = 0xFFFE;
2483 else if (msec < 1)
2484 msec = 1;
2486 spin_lock_irqsave(&epca_lock, flags);
2487 globalwinon(ch);
2489 * Maybe I should send an infinite break here, schedule() for msec
2490 * amount of time, and then stop the break. This way, the user can't
2491 * screw up the FEP by causing digi_send_break() to be called (i.e. via
2492 * an ioctl()) more than once in msec amount of time.
2493 * Try this for now...
2495 fepcmd(ch, SENDBREAK, msec, 0, 10, 0);
2496 memoff(ch);
2497 spin_unlock_irqrestore(&epca_lock, flags);
2498 return 0;
2501 /* Caller MUST hold the lock */
2502 static void setup_empty_event(struct tty_struct *tty, struct channel *ch)
2504 struct board_chan __iomem *bc = ch->brdchan;
2506 globalwinon(ch);
2507 ch->statusflags |= EMPTYWAIT;
2509 * When set the iempty flag request a event to be generated when the
2510 * transmit buffer is empty (If there is no BREAK in progress).
2512 writeb(1, &bc->iempty);
2513 memoff(ch);
2516 #ifndef MODULE
2517 static void __init epca_setup(char *str, int *ints)
2519 struct board_info board;
2520 int index, loop, last;
2521 char *temp, *t2;
2522 unsigned len;
2525 * If this routine looks a little strange it is because it is only
2526 * called if a LILO append command is given to boot the kernel with
2527 * parameters. In this way, we can provide the user a method of
2528 * changing his board configuration without rebuilding the kernel.
2530 if (!liloconfig)
2531 liloconfig = 1;
2533 memset(&board, 0, sizeof(board));
2535 /* Assume the data is int first, later we can change it */
2536 /* I think that array position 0 of ints holds the number of args */
2537 for (last = 0, index = 1; index <= ints[0]; index++)
2538 switch (index) { /* Begin parse switch */
2539 case 1:
2540 board.status = ints[index];
2542 * We check for 2 (As opposed to 1; because 2 is a flag
2543 * instructing the driver to ignore epcaconfig.) For
2544 * this reason we check for 2.
2546 if (board.status == 2) {
2547 /* Begin ignore epcaconfig as well as lilo cmd line */
2548 nbdevs = 0;
2549 num_cards = 0;
2550 return;
2551 } /* End ignore epcaconfig as well as lilo cmd line */
2553 if (board.status > 2) {
2554 printk(KERN_ERR "epca_setup: Invalid board status 0x%x\n",
2555 board.status);
2556 invalid_lilo_config = 1;
2557 setup_error_code |= INVALID_BOARD_STATUS;
2558 return;
2560 last = index;
2561 break;
2562 case 2:
2563 board.type = ints[index];
2564 if (board.type >= PCIXEM) {
2565 printk(KERN_ERR "epca_setup: Invalid board type 0x%x\n", board.type);
2566 invalid_lilo_config = 1;
2567 setup_error_code |= INVALID_BOARD_TYPE;
2568 return;
2570 last = index;
2571 break;
2572 case 3:
2573 board.altpin = ints[index];
2574 if (board.altpin > 1) {
2575 printk(KERN_ERR "epca_setup: Invalid board altpin 0x%x\n", board.altpin);
2576 invalid_lilo_config = 1;
2577 setup_error_code |= INVALID_ALTPIN;
2578 return;
2580 last = index;
2581 break;
2583 case 4:
2584 board.numports = ints[index];
2585 if (board.numports < 2 || board.numports > 256) {
2586 printk(KERN_ERR "epca_setup: Invalid board numports 0x%x\n", board.numports);
2587 invalid_lilo_config = 1;
2588 setup_error_code |= INVALID_NUM_PORTS;
2589 return;
2591 nbdevs += board.numports;
2592 last = index;
2593 break;
2595 case 5:
2596 board.port = ints[index];
2597 if (ints[index] <= 0) {
2598 printk(KERN_ERR "epca_setup: Invalid io port 0x%x\n", (unsigned int)board.port);
2599 invalid_lilo_config = 1;
2600 setup_error_code |= INVALID_PORT_BASE;
2601 return;
2603 last = index;
2604 break;
2606 case 6:
2607 board.membase = ints[index];
2608 if (ints[index] <= 0) {
2609 printk(KERN_ERR "epca_setup: Invalid memory base 0x%x\n",
2610 (unsigned int)board.membase);
2611 invalid_lilo_config = 1;
2612 setup_error_code |= INVALID_MEM_BASE;
2613 return;
2615 last = index;
2616 break;
2618 default:
2619 printk(KERN_ERR "<Error> - epca_setup: Too many integer parms\n");
2620 return;
2622 } /* End parse switch */
2624 while (str && *str) { /* Begin while there is a string arg */
2625 /* find the next comma or terminator */
2626 temp = str;
2627 /* While string is not null, and a comma hasn't been found */
2628 while (*temp && (*temp != ','))
2629 temp++;
2630 if (!*temp)
2631 temp = NULL;
2632 else
2633 *temp++ = 0;
2634 /* Set index to the number of args + 1 */
2635 index = last + 1;
2637 switch (index) {
2638 case 1:
2639 len = strlen(str);
2640 if (strncmp("Disable", str, len) == 0)
2641 board.status = 0;
2642 else if (strncmp("Enable", str, len) == 0)
2643 board.status = 1;
2644 else {
2645 printk(KERN_ERR "epca_setup: Invalid status %s\n", str);
2646 invalid_lilo_config = 1;
2647 setup_error_code |= INVALID_BOARD_STATUS;
2648 return;
2650 last = index;
2651 break;
2653 case 2:
2654 for (loop = 0; loop < EPCA_NUM_TYPES; loop++)
2655 if (strcmp(board_desc[loop], str) == 0)
2656 break;
2658 * If the index incremented above refers to a
2659 * legitamate board type set it here.
2661 if (index < EPCA_NUM_TYPES)
2662 board.type = loop;
2663 else {
2664 printk(KERN_ERR "epca_setup: Invalid board type: %s\n", str);
2665 invalid_lilo_config = 1;
2666 setup_error_code |= INVALID_BOARD_TYPE;
2667 return;
2669 last = index;
2670 break;
2672 case 3:
2673 len = strlen(str);
2674 if (strncmp("Disable", str, len) == 0)
2675 board.altpin = 0;
2676 else if (strncmp("Enable", str, len) == 0)
2677 board.altpin = 1;
2678 else {
2679 printk(KERN_ERR "epca_setup: Invalid altpin %s\n", str);
2680 invalid_lilo_config = 1;
2681 setup_error_code |= INVALID_ALTPIN;
2682 return;
2684 last = index;
2685 break;
2687 case 4:
2688 t2 = str;
2689 while (isdigit(*t2))
2690 t2++;
2692 if (*t2) {
2693 printk(KERN_ERR "epca_setup: Invalid port count %s\n", str);
2694 invalid_lilo_config = 1;
2695 setup_error_code |= INVALID_NUM_PORTS;
2696 return;
2700 * There is not a man page for simple_strtoul but the
2701 * code can be found in vsprintf.c. The first argument
2702 * is the string to translate (To an unsigned long
2703 * obviously), the second argument can be the address
2704 * of any character variable or a NULL. If a variable
2705 * is given, the end pointer of the string will be
2706 * stored in that variable; if a NULL is given the end
2707 * pointer will not be returned. The last argument is
2708 * the base to use. If a 0 is indicated, the routine
2709 * will attempt to determine the proper base by looking
2710 * at the values prefix (A '0' for octal, a 'x' for
2711 * hex, etc ... If a value is given it will use that
2712 * value as the base.
2714 board.numports = simple_strtoul(str, NULL, 0);
2715 nbdevs += board.numports;
2716 last = index;
2717 break;
2719 case 5:
2720 t2 = str;
2721 while (isxdigit(*t2))
2722 t2++;
2724 if (*t2) {
2725 printk(KERN_ERR "epca_setup: Invalid i/o address %s\n", str);
2726 invalid_lilo_config = 1;
2727 setup_error_code |= INVALID_PORT_BASE;
2728 return;
2731 board.port = simple_strtoul(str, NULL, 16);
2732 last = index;
2733 break;
2735 case 6:
2736 t2 = str;
2737 while (isxdigit(*t2))
2738 t2++;
2740 if (*t2) {
2741 printk(KERN_ERR "epca_setup: Invalid memory base %s\n", str);
2742 invalid_lilo_config = 1;
2743 setup_error_code |= INVALID_MEM_BASE;
2744 return;
2746 board.membase = simple_strtoul(str, NULL, 16);
2747 last = index;
2748 break;
2749 default:
2750 printk(KERN_ERR "epca: Too many string parms\n");
2751 return;
2753 str = temp;
2754 } /* End while there is a string arg */
2756 if (last < 6) {
2757 printk(KERN_ERR "epca: Insufficient parms specified\n");
2758 return;
2761 /* I should REALLY validate the stuff here */
2762 /* Copies our local copy of board into boards */
2763 memcpy((void *)&boards[num_cards], (void *)&board, sizeof(board));
2764 /* Does this get called once per lilo arg are what ? */
2765 printk(KERN_INFO "PC/Xx: Added board %i, %s %i ports at 0x%4.4X base 0x%6.6X\n",
2766 num_cards, board_desc[board.type],
2767 board.numports, (int)board.port, (unsigned int) board.membase);
2768 num_cards++;
2771 static int __init epca_real_setup(char *str)
2773 int ints[11];
2775 epca_setup(get_options(str, 11, ints), ints);
2776 return 1;
2779 __setup("digiepca", epca_real_setup);
2780 #endif
2782 enum epic_board_types {
2783 brd_xr = 0,
2784 brd_xem,
2785 brd_cx,
2786 brd_xrj,
2789 /* indexed directly by epic_board_types enum */
2790 static struct {
2791 unsigned char board_type;
2792 unsigned bar_idx; /* PCI base address region */
2793 } epca_info_tbl[] = {
2794 { PCIXR, 0, },
2795 { PCIXEM, 0, },
2796 { PCICX, 0, },
2797 { PCIXRJ, 2, },
2800 static int __devinit epca_init_one(struct pci_dev *pdev,
2801 const struct pci_device_id *ent)
2803 static int board_num = -1;
2804 int board_idx, info_idx = ent->driver_data;
2805 unsigned long addr;
2807 if (pci_enable_device(pdev))
2808 return -EIO;
2810 board_num++;
2811 board_idx = board_num + num_cards;
2812 if (board_idx >= MAXBOARDS)
2813 goto err_out;
2815 addr = pci_resource_start(pdev, epca_info_tbl[info_idx].bar_idx);
2816 if (!addr) {
2817 printk(KERN_ERR PFX "PCI region #%d not available (size 0)\n",
2818 epca_info_tbl[info_idx].bar_idx);
2819 goto err_out;
2822 boards[board_idx].status = ENABLED;
2823 boards[board_idx].type = epca_info_tbl[info_idx].board_type;
2824 boards[board_idx].numports = 0x0;
2825 boards[board_idx].port = addr + PCI_IO_OFFSET;
2826 boards[board_idx].membase = addr;
2828 if (!request_mem_region(addr + PCI_IO_OFFSET, 0x200000, "epca")) {
2829 printk(KERN_ERR PFX "resource 0x%x @ 0x%lx unavailable\n",
2830 0x200000, addr + PCI_IO_OFFSET);
2831 goto err_out;
2834 boards[board_idx].re_map_port = ioremap_nocache(addr + PCI_IO_OFFSET,
2835 0x200000);
2836 if (!boards[board_idx].re_map_port) {
2837 printk(KERN_ERR PFX "cannot map 0x%x @ 0x%lx\n",
2838 0x200000, addr + PCI_IO_OFFSET);
2839 goto err_out_free_pciio;
2842 if (!request_mem_region(addr, 0x200000, "epca")) {
2843 printk(KERN_ERR PFX "resource 0x%x @ 0x%lx unavailable\n",
2844 0x200000, addr);
2845 goto err_out_free_iounmap;
2848 boards[board_idx].re_map_membase = ioremap_nocache(addr, 0x200000);
2849 if (!boards[board_idx].re_map_membase) {
2850 printk(KERN_ERR PFX "cannot map 0x%x @ 0x%lx\n",
2851 0x200000, addr + PCI_IO_OFFSET);
2852 goto err_out_free_memregion;
2856 * I don't know what the below does, but the hardware guys say its
2857 * required on everything except PLX (In this case XRJ).
2859 if (info_idx != brd_xrj) {
2860 pci_write_config_byte(pdev, 0x40, 0);
2861 pci_write_config_byte(pdev, 0x46, 0);
2864 return 0;
2866 err_out_free_memregion:
2867 release_mem_region(addr, 0x200000);
2868 err_out_free_iounmap:
2869 iounmap(boards[board_idx].re_map_port);
2870 err_out_free_pciio:
2871 release_mem_region(addr + PCI_IO_OFFSET, 0x200000);
2872 err_out:
2873 return -ENODEV;
2877 static struct pci_device_id epca_pci_tbl[] = {
2878 { PCI_VENDOR_DIGI, PCI_DEVICE_XR, PCI_ANY_ID, PCI_ANY_ID, 0, 0, brd_xr },
2879 { PCI_VENDOR_DIGI, PCI_DEVICE_XEM, PCI_ANY_ID, PCI_ANY_ID, 0, 0, brd_xem },
2880 { PCI_VENDOR_DIGI, PCI_DEVICE_CX, PCI_ANY_ID, PCI_ANY_ID, 0, 0, brd_cx },
2881 { PCI_VENDOR_DIGI, PCI_DEVICE_XRJ, PCI_ANY_ID, PCI_ANY_ID, 0, 0, brd_xrj },
2882 { 0, }
2885 MODULE_DEVICE_TABLE(pci, epca_pci_tbl);
2887 static int __init init_PCI(void)
2889 memset(&epca_driver, 0, sizeof(epca_driver));
2890 epca_driver.name = "epca";
2891 epca_driver.id_table = epca_pci_tbl;
2892 epca_driver.probe = epca_init_one;
2894 return pci_register_driver(&epca_driver);
2897 MODULE_LICENSE("GPL");