2 * NET An implementation of the SOCKET network access protocol.
4 * Version: @(#)socket.c 1.1.93 18/02/95
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
55 * This module is effectively the top level interface to the BSD socket
58 * Based upon Swansea University Computer Society NET3.039
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/wanrouter.h>
73 #include <linux/if_bridge.h>
74 #include <linux/if_frad.h>
75 #include <linux/if_vlan.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
90 #include <asm/uaccess.h>
91 #include <asm/unistd.h>
93 #include <net/compat.h>
97 #include <linux/netfilter.h>
99 static int sock_no_open(struct inode
*irrelevant
, struct file
*dontcare
);
100 static ssize_t
sock_aio_read(struct kiocb
*iocb
, const struct iovec
*iov
,
101 unsigned long nr_segs
, loff_t pos
);
102 static ssize_t
sock_aio_write(struct kiocb
*iocb
, const struct iovec
*iov
,
103 unsigned long nr_segs
, loff_t pos
);
104 static int sock_mmap(struct file
*file
, struct vm_area_struct
*vma
);
106 static int sock_close(struct inode
*inode
, struct file
*file
);
107 static unsigned int sock_poll(struct file
*file
,
108 struct poll_table_struct
*wait
);
109 static long sock_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
);
111 static long compat_sock_ioctl(struct file
*file
,
112 unsigned int cmd
, unsigned long arg
);
114 static int sock_fasync(int fd
, struct file
*filp
, int on
);
115 static ssize_t
sock_sendpage(struct file
*file
, struct page
*page
,
116 int offset
, size_t size
, loff_t
*ppos
, int more
);
117 static ssize_t
sock_splice_read(struct file
*file
, loff_t
*ppos
,
118 struct pipe_inode_info
*pipe
, size_t len
,
122 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
123 * in the operation structures but are done directly via the socketcall() multiplexor.
126 static const struct file_operations socket_file_ops
= {
127 .owner
= THIS_MODULE
,
129 .aio_read
= sock_aio_read
,
130 .aio_write
= sock_aio_write
,
132 .unlocked_ioctl
= sock_ioctl
,
134 .compat_ioctl
= compat_sock_ioctl
,
137 .open
= sock_no_open
, /* special open code to disallow open via /proc */
138 .release
= sock_close
,
139 .fasync
= sock_fasync
,
140 .sendpage
= sock_sendpage
,
141 .splice_write
= generic_splice_sendpage
,
142 .splice_read
= sock_splice_read
,
146 * The protocol list. Each protocol is registered in here.
149 static DEFINE_SPINLOCK(net_family_lock
);
150 static const struct net_proto_family
*net_families
[NPROTO
] __read_mostly
;
153 * Statistics counters of the socket lists
156 static DEFINE_PER_CPU(int, sockets_in_use
) = 0;
160 * Move socket addresses back and forth across the kernel/user
161 * divide and look after the messy bits.
164 #define MAX_SOCK_ADDR 128 /* 108 for Unix domain -
165 16 for IP, 16 for IPX,
168 must be at least one bigger than
169 the AF_UNIX size (see net/unix/af_unix.c
174 * move_addr_to_kernel - copy a socket address into kernel space
175 * @uaddr: Address in user space
176 * @kaddr: Address in kernel space
177 * @ulen: Length in user space
179 * The address is copied into kernel space. If the provided address is
180 * too long an error code of -EINVAL is returned. If the copy gives
181 * invalid addresses -EFAULT is returned. On a success 0 is returned.
184 int move_addr_to_kernel(void __user
*uaddr
, int ulen
, struct sockaddr
*kaddr
)
186 if (ulen
< 0 || ulen
> sizeof(struct sockaddr_storage
))
190 if (copy_from_user(kaddr
, uaddr
, ulen
))
192 return audit_sockaddr(ulen
, kaddr
);
196 * move_addr_to_user - copy an address to user space
197 * @kaddr: kernel space address
198 * @klen: length of address in kernel
199 * @uaddr: user space address
200 * @ulen: pointer to user length field
202 * The value pointed to by ulen on entry is the buffer length available.
203 * This is overwritten with the buffer space used. -EINVAL is returned
204 * if an overlong buffer is specified or a negative buffer size. -EFAULT
205 * is returned if either the buffer or the length field are not
207 * After copying the data up to the limit the user specifies, the true
208 * length of the data is written over the length limit the user
209 * specified. Zero is returned for a success.
212 int move_addr_to_user(struct sockaddr
*kaddr
, int klen
, void __user
*uaddr
,
218 err
= get_user(len
, ulen
);
223 if (len
< 0 || len
> sizeof(struct sockaddr_storage
))
226 if (audit_sockaddr(klen
, kaddr
))
228 if (copy_to_user(uaddr
, kaddr
, len
))
232 * "fromlen shall refer to the value before truncation.."
235 return __put_user(klen
, ulen
);
238 #define SOCKFS_MAGIC 0x534F434B
240 static struct kmem_cache
*sock_inode_cachep __read_mostly
;
242 static struct inode
*sock_alloc_inode(struct super_block
*sb
)
244 struct socket_alloc
*ei
;
246 ei
= kmem_cache_alloc(sock_inode_cachep
, GFP_KERNEL
);
249 init_waitqueue_head(&ei
->socket
.wait
);
251 ei
->socket
.fasync_list
= NULL
;
252 ei
->socket
.state
= SS_UNCONNECTED
;
253 ei
->socket
.flags
= 0;
254 ei
->socket
.ops
= NULL
;
255 ei
->socket
.sk
= NULL
;
256 ei
->socket
.file
= NULL
;
258 return &ei
->vfs_inode
;
261 static void sock_destroy_inode(struct inode
*inode
)
263 kmem_cache_free(sock_inode_cachep
,
264 container_of(inode
, struct socket_alloc
, vfs_inode
));
267 static void init_once(void *foo
)
269 struct socket_alloc
*ei
= (struct socket_alloc
*)foo
;
271 inode_init_once(&ei
->vfs_inode
);
274 static int init_inodecache(void)
276 sock_inode_cachep
= kmem_cache_create("sock_inode_cache",
277 sizeof(struct socket_alloc
),
279 (SLAB_HWCACHE_ALIGN
|
280 SLAB_RECLAIM_ACCOUNT
|
283 if (sock_inode_cachep
== NULL
)
288 static struct super_operations sockfs_ops
= {
289 .alloc_inode
= sock_alloc_inode
,
290 .destroy_inode
=sock_destroy_inode
,
291 .statfs
= simple_statfs
,
294 static int sockfs_get_sb(struct file_system_type
*fs_type
,
295 int flags
, const char *dev_name
, void *data
,
296 struct vfsmount
*mnt
)
298 return get_sb_pseudo(fs_type
, "socket:", &sockfs_ops
, SOCKFS_MAGIC
,
302 static struct vfsmount
*sock_mnt __read_mostly
;
304 static struct file_system_type sock_fs_type
= {
306 .get_sb
= sockfs_get_sb
,
307 .kill_sb
= kill_anon_super
,
310 static int sockfs_delete_dentry(struct dentry
*dentry
)
313 * At creation time, we pretended this dentry was hashed
314 * (by clearing DCACHE_UNHASHED bit in d_flags)
315 * At delete time, we restore the truth : not hashed.
316 * (so that dput() can proceed correctly)
318 dentry
->d_flags
|= DCACHE_UNHASHED
;
323 * sockfs_dname() is called from d_path().
325 static char *sockfs_dname(struct dentry
*dentry
, char *buffer
, int buflen
)
327 return dynamic_dname(dentry
, buffer
, buflen
, "socket:[%lu]",
328 dentry
->d_inode
->i_ino
);
331 static struct dentry_operations sockfs_dentry_operations
= {
332 .d_delete
= sockfs_delete_dentry
,
333 .d_dname
= sockfs_dname
,
337 * Obtains the first available file descriptor and sets it up for use.
339 * These functions create file structures and maps them to fd space
340 * of the current process. On success it returns file descriptor
341 * and file struct implicitly stored in sock->file.
342 * Note that another thread may close file descriptor before we return
343 * from this function. We use the fact that now we do not refer
344 * to socket after mapping. If one day we will need it, this
345 * function will increment ref. count on file by 1.
347 * In any case returned fd MAY BE not valid!
348 * This race condition is unavoidable
349 * with shared fd spaces, we cannot solve it inside kernel,
350 * but we take care of internal coherence yet.
353 static int sock_alloc_fd(struct file
**filep
, int flags
)
357 fd
= get_unused_fd_flags(flags
);
358 if (likely(fd
>= 0)) {
359 struct file
*file
= get_empty_filp();
362 if (unlikely(!file
)) {
371 static int sock_attach_fd(struct socket
*sock
, struct file
*file
, int flags
)
373 struct dentry
*dentry
;
374 struct qstr name
= { .name
= "" };
376 dentry
= d_alloc(sock_mnt
->mnt_sb
->s_root
, &name
);
377 if (unlikely(!dentry
))
380 dentry
->d_op
= &sockfs_dentry_operations
;
382 * We dont want to push this dentry into global dentry hash table.
383 * We pretend dentry is already hashed, by unsetting DCACHE_UNHASHED
384 * This permits a working /proc/$pid/fd/XXX on sockets
386 dentry
->d_flags
&= ~DCACHE_UNHASHED
;
387 d_instantiate(dentry
, SOCK_INODE(sock
));
390 init_file(file
, sock_mnt
, dentry
, FMODE_READ
| FMODE_WRITE
,
392 SOCK_INODE(sock
)->i_fop
= &socket_file_ops
;
393 file
->f_flags
= O_RDWR
| (flags
& O_NONBLOCK
);
395 file
->private_data
= sock
;
400 int sock_map_fd(struct socket
*sock
, int flags
)
402 struct file
*newfile
;
403 int fd
= sock_alloc_fd(&newfile
, flags
);
405 if (likely(fd
>= 0)) {
406 int err
= sock_attach_fd(sock
, newfile
, flags
);
408 if (unlikely(err
< 0)) {
413 fd_install(fd
, newfile
);
418 static struct socket
*sock_from_file(struct file
*file
, int *err
)
420 if (file
->f_op
== &socket_file_ops
)
421 return file
->private_data
; /* set in sock_map_fd */
428 * sockfd_lookup - Go from a file number to its socket slot
430 * @err: pointer to an error code return
432 * The file handle passed in is locked and the socket it is bound
433 * too is returned. If an error occurs the err pointer is overwritten
434 * with a negative errno code and NULL is returned. The function checks
435 * for both invalid handles and passing a handle which is not a socket.
437 * On a success the socket object pointer is returned.
440 struct socket
*sockfd_lookup(int fd
, int *err
)
451 sock
= sock_from_file(file
, err
);
457 static struct socket
*sockfd_lookup_light(int fd
, int *err
, int *fput_needed
)
463 file
= fget_light(fd
, fput_needed
);
465 sock
= sock_from_file(file
, err
);
468 fput_light(file
, *fput_needed
);
474 * sock_alloc - allocate a socket
476 * Allocate a new inode and socket object. The two are bound together
477 * and initialised. The socket is then returned. If we are out of inodes
481 static struct socket
*sock_alloc(void)
486 inode
= new_inode(sock_mnt
->mnt_sb
);
490 sock
= SOCKET_I(inode
);
492 inode
->i_mode
= S_IFSOCK
| S_IRWXUGO
;
493 inode
->i_uid
= current_fsuid();
494 inode
->i_gid
= current_fsgid();
496 get_cpu_var(sockets_in_use
)++;
497 put_cpu_var(sockets_in_use
);
502 * In theory you can't get an open on this inode, but /proc provides
503 * a back door. Remember to keep it shut otherwise you'll let the
504 * creepy crawlies in.
507 static int sock_no_open(struct inode
*irrelevant
, struct file
*dontcare
)
512 const struct file_operations bad_sock_fops
= {
513 .owner
= THIS_MODULE
,
514 .open
= sock_no_open
,
518 * sock_release - close a socket
519 * @sock: socket to close
521 * The socket is released from the protocol stack if it has a release
522 * callback, and the inode is then released if the socket is bound to
523 * an inode not a file.
526 void sock_release(struct socket
*sock
)
529 struct module
*owner
= sock
->ops
->owner
;
531 sock
->ops
->release(sock
);
536 if (sock
->fasync_list
)
537 printk(KERN_ERR
"sock_release: fasync list not empty!\n");
539 get_cpu_var(sockets_in_use
)--;
540 put_cpu_var(sockets_in_use
);
542 iput(SOCK_INODE(sock
));
548 int sock_tx_timestamp(struct msghdr
*msg
, struct sock
*sk
,
549 union skb_shared_tx
*shtx
)
552 if (sock_flag(sk
, SOCK_TIMESTAMPING_TX_HARDWARE
))
554 if (sock_flag(sk
, SOCK_TIMESTAMPING_TX_SOFTWARE
))
558 EXPORT_SYMBOL(sock_tx_timestamp
);
560 static inline int __sock_sendmsg(struct kiocb
*iocb
, struct socket
*sock
,
561 struct msghdr
*msg
, size_t size
)
563 struct sock_iocb
*si
= kiocb_to_siocb(iocb
);
571 err
= security_socket_sendmsg(sock
, msg
, size
);
575 return sock
->ops
->sendmsg(iocb
, sock
, msg
, size
);
578 int sock_sendmsg(struct socket
*sock
, struct msghdr
*msg
, size_t size
)
581 struct sock_iocb siocb
;
584 init_sync_kiocb(&iocb
, NULL
);
585 iocb
.private = &siocb
;
586 ret
= __sock_sendmsg(&iocb
, sock
, msg
, size
);
587 if (-EIOCBQUEUED
== ret
)
588 ret
= wait_on_sync_kiocb(&iocb
);
592 int kernel_sendmsg(struct socket
*sock
, struct msghdr
*msg
,
593 struct kvec
*vec
, size_t num
, size_t size
)
595 mm_segment_t oldfs
= get_fs();
600 * the following is safe, since for compiler definitions of kvec and
601 * iovec are identical, yielding the same in-core layout and alignment
603 msg
->msg_iov
= (struct iovec
*)vec
;
604 msg
->msg_iovlen
= num
;
605 result
= sock_sendmsg(sock
, msg
, size
);
610 static int ktime2ts(ktime_t kt
, struct timespec
*ts
)
613 *ts
= ktime_to_timespec(kt
);
621 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
623 void __sock_recv_timestamp(struct msghdr
*msg
, struct sock
*sk
,
626 int need_software_tstamp
= sock_flag(sk
, SOCK_RCVTSTAMP
);
627 struct timespec ts
[3];
629 struct skb_shared_hwtstamps
*shhwtstamps
=
632 /* Race occurred between timestamp enabling and packet
633 receiving. Fill in the current time for now. */
634 if (need_software_tstamp
&& skb
->tstamp
.tv64
== 0)
635 __net_timestamp(skb
);
637 if (need_software_tstamp
) {
638 if (!sock_flag(sk
, SOCK_RCVTSTAMPNS
)) {
640 skb_get_timestamp(skb
, &tv
);
641 put_cmsg(msg
, SOL_SOCKET
, SCM_TIMESTAMP
,
645 skb_get_timestampns(skb
, &ts
);
646 put_cmsg(msg
, SOL_SOCKET
, SCM_TIMESTAMPNS
,
652 memset(ts
, 0, sizeof(ts
));
653 if (skb
->tstamp
.tv64
&&
654 sock_flag(sk
, SOCK_TIMESTAMPING_SOFTWARE
)) {
655 skb_get_timestampns(skb
, ts
+ 0);
659 if (sock_flag(sk
, SOCK_TIMESTAMPING_SYS_HARDWARE
) &&
660 ktime2ts(shhwtstamps
->syststamp
, ts
+ 1))
662 if (sock_flag(sk
, SOCK_TIMESTAMPING_RAW_HARDWARE
) &&
663 ktime2ts(shhwtstamps
->hwtstamp
, ts
+ 2))
667 put_cmsg(msg
, SOL_SOCKET
,
668 SCM_TIMESTAMPING
, sizeof(ts
), &ts
);
671 EXPORT_SYMBOL_GPL(__sock_recv_timestamp
);
673 static inline int __sock_recvmsg(struct kiocb
*iocb
, struct socket
*sock
,
674 struct msghdr
*msg
, size_t size
, int flags
)
677 struct sock_iocb
*si
= kiocb_to_siocb(iocb
);
685 err
= security_socket_recvmsg(sock
, msg
, size
, flags
);
689 return sock
->ops
->recvmsg(iocb
, sock
, msg
, size
, flags
);
692 int sock_recvmsg(struct socket
*sock
, struct msghdr
*msg
,
693 size_t size
, int flags
)
696 struct sock_iocb siocb
;
699 init_sync_kiocb(&iocb
, NULL
);
700 iocb
.private = &siocb
;
701 ret
= __sock_recvmsg(&iocb
, sock
, msg
, size
, flags
);
702 if (-EIOCBQUEUED
== ret
)
703 ret
= wait_on_sync_kiocb(&iocb
);
707 int kernel_recvmsg(struct socket
*sock
, struct msghdr
*msg
,
708 struct kvec
*vec
, size_t num
, size_t size
, int flags
)
710 mm_segment_t oldfs
= get_fs();
715 * the following is safe, since for compiler definitions of kvec and
716 * iovec are identical, yielding the same in-core layout and alignment
718 msg
->msg_iov
= (struct iovec
*)vec
, msg
->msg_iovlen
= num
;
719 result
= sock_recvmsg(sock
, msg
, size
, flags
);
724 static void sock_aio_dtor(struct kiocb
*iocb
)
726 kfree(iocb
->private);
729 static ssize_t
sock_sendpage(struct file
*file
, struct page
*page
,
730 int offset
, size_t size
, loff_t
*ppos
, int more
)
735 sock
= file
->private_data
;
737 flags
= !(file
->f_flags
& O_NONBLOCK
) ? 0 : MSG_DONTWAIT
;
741 return sock
->ops
->sendpage(sock
, page
, offset
, size
, flags
);
744 static ssize_t
sock_splice_read(struct file
*file
, loff_t
*ppos
,
745 struct pipe_inode_info
*pipe
, size_t len
,
748 struct socket
*sock
= file
->private_data
;
750 if (unlikely(!sock
->ops
->splice_read
))
753 return sock
->ops
->splice_read(sock
, ppos
, pipe
, len
, flags
);
756 static struct sock_iocb
*alloc_sock_iocb(struct kiocb
*iocb
,
757 struct sock_iocb
*siocb
)
759 if (!is_sync_kiocb(iocb
)) {
760 siocb
= kmalloc(sizeof(*siocb
), GFP_KERNEL
);
763 iocb
->ki_dtor
= sock_aio_dtor
;
767 iocb
->private = siocb
;
771 static ssize_t
do_sock_read(struct msghdr
*msg
, struct kiocb
*iocb
,
772 struct file
*file
, const struct iovec
*iov
,
773 unsigned long nr_segs
)
775 struct socket
*sock
= file
->private_data
;
779 for (i
= 0; i
< nr_segs
; i
++)
780 size
+= iov
[i
].iov_len
;
782 msg
->msg_name
= NULL
;
783 msg
->msg_namelen
= 0;
784 msg
->msg_control
= NULL
;
785 msg
->msg_controllen
= 0;
786 msg
->msg_iov
= (struct iovec
*)iov
;
787 msg
->msg_iovlen
= nr_segs
;
788 msg
->msg_flags
= (file
->f_flags
& O_NONBLOCK
) ? MSG_DONTWAIT
: 0;
790 return __sock_recvmsg(iocb
, sock
, msg
, size
, msg
->msg_flags
);
793 static ssize_t
sock_aio_read(struct kiocb
*iocb
, const struct iovec
*iov
,
794 unsigned long nr_segs
, loff_t pos
)
796 struct sock_iocb siocb
, *x
;
801 if (iocb
->ki_left
== 0) /* Match SYS5 behaviour */
805 x
= alloc_sock_iocb(iocb
, &siocb
);
808 return do_sock_read(&x
->async_msg
, iocb
, iocb
->ki_filp
, iov
, nr_segs
);
811 static ssize_t
do_sock_write(struct msghdr
*msg
, struct kiocb
*iocb
,
812 struct file
*file
, const struct iovec
*iov
,
813 unsigned long nr_segs
)
815 struct socket
*sock
= file
->private_data
;
819 for (i
= 0; i
< nr_segs
; i
++)
820 size
+= iov
[i
].iov_len
;
822 msg
->msg_name
= NULL
;
823 msg
->msg_namelen
= 0;
824 msg
->msg_control
= NULL
;
825 msg
->msg_controllen
= 0;
826 msg
->msg_iov
= (struct iovec
*)iov
;
827 msg
->msg_iovlen
= nr_segs
;
828 msg
->msg_flags
= (file
->f_flags
& O_NONBLOCK
) ? MSG_DONTWAIT
: 0;
829 if (sock
->type
== SOCK_SEQPACKET
)
830 msg
->msg_flags
|= MSG_EOR
;
832 return __sock_sendmsg(iocb
, sock
, msg
, size
);
835 static ssize_t
sock_aio_write(struct kiocb
*iocb
, const struct iovec
*iov
,
836 unsigned long nr_segs
, loff_t pos
)
838 struct sock_iocb siocb
, *x
;
843 x
= alloc_sock_iocb(iocb
, &siocb
);
847 return do_sock_write(&x
->async_msg
, iocb
, iocb
->ki_filp
, iov
, nr_segs
);
851 * Atomic setting of ioctl hooks to avoid race
852 * with module unload.
855 static DEFINE_MUTEX(br_ioctl_mutex
);
856 static int (*br_ioctl_hook
) (struct net
*, unsigned int cmd
, void __user
*arg
) = NULL
;
858 void brioctl_set(int (*hook
) (struct net
*, unsigned int, void __user
*))
860 mutex_lock(&br_ioctl_mutex
);
861 br_ioctl_hook
= hook
;
862 mutex_unlock(&br_ioctl_mutex
);
865 EXPORT_SYMBOL(brioctl_set
);
867 static DEFINE_MUTEX(vlan_ioctl_mutex
);
868 static int (*vlan_ioctl_hook
) (struct net
*, void __user
*arg
);
870 void vlan_ioctl_set(int (*hook
) (struct net
*, void __user
*))
872 mutex_lock(&vlan_ioctl_mutex
);
873 vlan_ioctl_hook
= hook
;
874 mutex_unlock(&vlan_ioctl_mutex
);
877 EXPORT_SYMBOL(vlan_ioctl_set
);
879 static DEFINE_MUTEX(dlci_ioctl_mutex
);
880 static int (*dlci_ioctl_hook
) (unsigned int, void __user
*);
882 void dlci_ioctl_set(int (*hook
) (unsigned int, void __user
*))
884 mutex_lock(&dlci_ioctl_mutex
);
885 dlci_ioctl_hook
= hook
;
886 mutex_unlock(&dlci_ioctl_mutex
);
889 EXPORT_SYMBOL(dlci_ioctl_set
);
892 * With an ioctl, arg may well be a user mode pointer, but we don't know
893 * what to do with it - that's up to the protocol still.
896 static long sock_ioctl(struct file
*file
, unsigned cmd
, unsigned long arg
)
900 void __user
*argp
= (void __user
*)arg
;
904 sock
= file
->private_data
;
907 if (cmd
>= SIOCDEVPRIVATE
&& cmd
<= (SIOCDEVPRIVATE
+ 15)) {
908 err
= dev_ioctl(net
, cmd
, argp
);
910 #ifdef CONFIG_WIRELESS_EXT
911 if (cmd
>= SIOCIWFIRST
&& cmd
<= SIOCIWLAST
) {
912 err
= dev_ioctl(net
, cmd
, argp
);
914 #endif /* CONFIG_WIRELESS_EXT */
919 if (get_user(pid
, (int __user
*)argp
))
921 err
= f_setown(sock
->file
, pid
, 1);
925 err
= put_user(f_getown(sock
->file
),
934 request_module("bridge");
936 mutex_lock(&br_ioctl_mutex
);
938 err
= br_ioctl_hook(net
, cmd
, argp
);
939 mutex_unlock(&br_ioctl_mutex
);
944 if (!vlan_ioctl_hook
)
945 request_module("8021q");
947 mutex_lock(&vlan_ioctl_mutex
);
949 err
= vlan_ioctl_hook(net
, argp
);
950 mutex_unlock(&vlan_ioctl_mutex
);
955 if (!dlci_ioctl_hook
)
956 request_module("dlci");
958 mutex_lock(&dlci_ioctl_mutex
);
960 err
= dlci_ioctl_hook(cmd
, argp
);
961 mutex_unlock(&dlci_ioctl_mutex
);
964 err
= sock
->ops
->ioctl(sock
, cmd
, arg
);
967 * If this ioctl is unknown try to hand it down
970 if (err
== -ENOIOCTLCMD
)
971 err
= dev_ioctl(net
, cmd
, argp
);
977 int sock_create_lite(int family
, int type
, int protocol
, struct socket
**res
)
980 struct socket
*sock
= NULL
;
982 err
= security_socket_create(family
, type
, protocol
, 1);
993 err
= security_socket_post_create(sock
, family
, type
, protocol
, 1);
1006 /* No kernel lock held - perfect */
1007 static unsigned int sock_poll(struct file
*file
, poll_table
*wait
)
1009 struct socket
*sock
;
1012 * We can't return errors to poll, so it's either yes or no.
1014 sock
= file
->private_data
;
1015 return sock
->ops
->poll(file
, sock
, wait
);
1018 static int sock_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1020 struct socket
*sock
= file
->private_data
;
1022 return sock
->ops
->mmap(file
, sock
, vma
);
1025 static int sock_close(struct inode
*inode
, struct file
*filp
)
1028 * It was possible the inode is NULL we were
1029 * closing an unfinished socket.
1033 printk(KERN_DEBUG
"sock_close: NULL inode\n");
1036 sock_release(SOCKET_I(inode
));
1041 * Update the socket async list
1043 * Fasync_list locking strategy.
1045 * 1. fasync_list is modified only under process context socket lock
1046 * i.e. under semaphore.
1047 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1048 * or under socket lock.
1049 * 3. fasync_list can be used from softirq context, so that
1050 * modification under socket lock have to be enhanced with
1051 * write_lock_bh(&sk->sk_callback_lock).
1055 static int sock_fasync(int fd
, struct file
*filp
, int on
)
1057 struct fasync_struct
*fa
, *fna
= NULL
, **prev
;
1058 struct socket
*sock
;
1062 fna
= kmalloc(sizeof(struct fasync_struct
), GFP_KERNEL
);
1067 sock
= filp
->private_data
;
1077 spin_lock(&filp
->f_lock
);
1079 filp
->f_flags
|= FASYNC
;
1081 filp
->f_flags
&= ~FASYNC
;
1082 spin_unlock(&filp
->f_lock
);
1084 prev
= &(sock
->fasync_list
);
1086 for (fa
= *prev
; fa
!= NULL
; prev
= &fa
->fa_next
, fa
= *prev
)
1087 if (fa
->fa_file
== filp
)
1092 write_lock_bh(&sk
->sk_callback_lock
);
1094 write_unlock_bh(&sk
->sk_callback_lock
);
1099 fna
->fa_file
= filp
;
1101 fna
->magic
= FASYNC_MAGIC
;
1102 fna
->fa_next
= sock
->fasync_list
;
1103 write_lock_bh(&sk
->sk_callback_lock
);
1104 sock
->fasync_list
= fna
;
1105 write_unlock_bh(&sk
->sk_callback_lock
);
1108 write_lock_bh(&sk
->sk_callback_lock
);
1109 *prev
= fa
->fa_next
;
1110 write_unlock_bh(&sk
->sk_callback_lock
);
1116 release_sock(sock
->sk
);
1120 /* This function may be called only under socket lock or callback_lock */
1122 int sock_wake_async(struct socket
*sock
, int how
, int band
)
1124 if (!sock
|| !sock
->fasync_list
)
1127 case SOCK_WAKE_WAITD
:
1128 if (test_bit(SOCK_ASYNC_WAITDATA
, &sock
->flags
))
1131 case SOCK_WAKE_SPACE
:
1132 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE
, &sock
->flags
))
1137 __kill_fasync(sock
->fasync_list
, SIGIO
, band
);
1140 __kill_fasync(sock
->fasync_list
, SIGURG
, band
);
1145 static int __sock_create(struct net
*net
, int family
, int type
, int protocol
,
1146 struct socket
**res
, int kern
)
1149 struct socket
*sock
;
1150 const struct net_proto_family
*pf
;
1153 * Check protocol is in range
1155 if (family
< 0 || family
>= NPROTO
)
1156 return -EAFNOSUPPORT
;
1157 if (type
< 0 || type
>= SOCK_MAX
)
1162 This uglymoron is moved from INET layer to here to avoid
1163 deadlock in module load.
1165 if (family
== PF_INET
&& type
== SOCK_PACKET
) {
1169 printk(KERN_INFO
"%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1175 err
= security_socket_create(family
, type
, protocol
, kern
);
1180 * Allocate the socket and allow the family to set things up. if
1181 * the protocol is 0, the family is instructed to select an appropriate
1184 sock
= sock_alloc();
1186 if (net_ratelimit())
1187 printk(KERN_WARNING
"socket: no more sockets\n");
1188 return -ENFILE
; /* Not exactly a match, but its the
1189 closest posix thing */
1194 #ifdef CONFIG_MODULES
1195 /* Attempt to load a protocol module if the find failed.
1197 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1198 * requested real, full-featured networking support upon configuration.
1199 * Otherwise module support will break!
1201 if (net_families
[family
] == NULL
)
1202 request_module("net-pf-%d", family
);
1206 pf
= rcu_dereference(net_families
[family
]);
1207 err
= -EAFNOSUPPORT
;
1212 * We will call the ->create function, that possibly is in a loadable
1213 * module, so we have to bump that loadable module refcnt first.
1215 if (!try_module_get(pf
->owner
))
1218 /* Now protected by module ref count */
1221 err
= pf
->create(net
, sock
, protocol
);
1223 goto out_module_put
;
1226 * Now to bump the refcnt of the [loadable] module that owns this
1227 * socket at sock_release time we decrement its refcnt.
1229 if (!try_module_get(sock
->ops
->owner
))
1230 goto out_module_busy
;
1233 * Now that we're done with the ->create function, the [loadable]
1234 * module can have its refcnt decremented
1236 module_put(pf
->owner
);
1237 err
= security_socket_post_create(sock
, family
, type
, protocol
, kern
);
1239 goto out_sock_release
;
1245 err
= -EAFNOSUPPORT
;
1248 module_put(pf
->owner
);
1255 goto out_sock_release
;
1258 int sock_create(int family
, int type
, int protocol
, struct socket
**res
)
1260 return __sock_create(current
->nsproxy
->net_ns
, family
, type
, protocol
, res
, 0);
1263 int sock_create_kern(int family
, int type
, int protocol
, struct socket
**res
)
1265 return __sock_create(&init_net
, family
, type
, protocol
, res
, 1);
1268 SYSCALL_DEFINE3(socket
, int, family
, int, type
, int, protocol
)
1271 struct socket
*sock
;
1274 /* Check the SOCK_* constants for consistency. */
1275 BUILD_BUG_ON(SOCK_CLOEXEC
!= O_CLOEXEC
);
1276 BUILD_BUG_ON((SOCK_MAX
| SOCK_TYPE_MASK
) != SOCK_TYPE_MASK
);
1277 BUILD_BUG_ON(SOCK_CLOEXEC
& SOCK_TYPE_MASK
);
1278 BUILD_BUG_ON(SOCK_NONBLOCK
& SOCK_TYPE_MASK
);
1280 flags
= type
& ~SOCK_TYPE_MASK
;
1281 if (flags
& ~(SOCK_CLOEXEC
| SOCK_NONBLOCK
))
1283 type
&= SOCK_TYPE_MASK
;
1285 if (SOCK_NONBLOCK
!= O_NONBLOCK
&& (flags
& SOCK_NONBLOCK
))
1286 flags
= (flags
& ~SOCK_NONBLOCK
) | O_NONBLOCK
;
1288 retval
= sock_create(family
, type
, protocol
, &sock
);
1292 retval
= sock_map_fd(sock
, flags
& (O_CLOEXEC
| O_NONBLOCK
));
1297 /* It may be already another descriptor 8) Not kernel problem. */
1306 * Create a pair of connected sockets.
1309 SYSCALL_DEFINE4(socketpair
, int, family
, int, type
, int, protocol
,
1310 int __user
*, usockvec
)
1312 struct socket
*sock1
, *sock2
;
1314 struct file
*newfile1
, *newfile2
;
1317 flags
= type
& ~SOCK_TYPE_MASK
;
1318 if (flags
& ~(SOCK_CLOEXEC
| SOCK_NONBLOCK
))
1320 type
&= SOCK_TYPE_MASK
;
1322 if (SOCK_NONBLOCK
!= O_NONBLOCK
&& (flags
& SOCK_NONBLOCK
))
1323 flags
= (flags
& ~SOCK_NONBLOCK
) | O_NONBLOCK
;
1326 * Obtain the first socket and check if the underlying protocol
1327 * supports the socketpair call.
1330 err
= sock_create(family
, type
, protocol
, &sock1
);
1334 err
= sock_create(family
, type
, protocol
, &sock2
);
1338 err
= sock1
->ops
->socketpair(sock1
, sock2
);
1340 goto out_release_both
;
1342 fd1
= sock_alloc_fd(&newfile1
, flags
& O_CLOEXEC
);
1343 if (unlikely(fd1
< 0)) {
1345 goto out_release_both
;
1348 fd2
= sock_alloc_fd(&newfile2
, flags
& O_CLOEXEC
);
1349 if (unlikely(fd2
< 0)) {
1353 goto out_release_both
;
1356 err
= sock_attach_fd(sock1
, newfile1
, flags
& O_NONBLOCK
);
1357 if (unlikely(err
< 0)) {
1361 err
= sock_attach_fd(sock2
, newfile2
, flags
& O_NONBLOCK
);
1362 if (unlikely(err
< 0)) {
1367 audit_fd_pair(fd1
, fd2
);
1368 fd_install(fd1
, newfile1
);
1369 fd_install(fd2
, newfile2
);
1370 /* fd1 and fd2 may be already another descriptors.
1371 * Not kernel problem.
1374 err
= put_user(fd1
, &usockvec
[0]);
1376 err
= put_user(fd2
, &usockvec
[1]);
1385 sock_release(sock2
);
1387 sock_release(sock1
);
1393 sock_release(sock1
);
1396 sock_release(sock2
);
1403 * Bind a name to a socket. Nothing much to do here since it's
1404 * the protocol's responsibility to handle the local address.
1406 * We move the socket address to kernel space before we call
1407 * the protocol layer (having also checked the address is ok).
1410 SYSCALL_DEFINE3(bind
, int, fd
, struct sockaddr __user
*, umyaddr
, int, addrlen
)
1412 struct socket
*sock
;
1413 struct sockaddr_storage address
;
1414 int err
, fput_needed
;
1416 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1418 err
= move_addr_to_kernel(umyaddr
, addrlen
, (struct sockaddr
*)&address
);
1420 err
= security_socket_bind(sock
,
1421 (struct sockaddr
*)&address
,
1424 err
= sock
->ops
->bind(sock
,
1428 fput_light(sock
->file
, fput_needed
);
1434 * Perform a listen. Basically, we allow the protocol to do anything
1435 * necessary for a listen, and if that works, we mark the socket as
1436 * ready for listening.
1439 SYSCALL_DEFINE2(listen
, int, fd
, int, backlog
)
1441 struct socket
*sock
;
1442 int err
, fput_needed
;
1445 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1447 somaxconn
= sock_net(sock
->sk
)->core
.sysctl_somaxconn
;
1448 if ((unsigned)backlog
> somaxconn
)
1449 backlog
= somaxconn
;
1451 err
= security_socket_listen(sock
, backlog
);
1453 err
= sock
->ops
->listen(sock
, backlog
);
1455 fput_light(sock
->file
, fput_needed
);
1461 * For accept, we attempt to create a new socket, set up the link
1462 * with the client, wake up the client, then return the new
1463 * connected fd. We collect the address of the connector in kernel
1464 * space and move it to user at the very end. This is unclean because
1465 * we open the socket then return an error.
1467 * 1003.1g adds the ability to recvmsg() to query connection pending
1468 * status to recvmsg. We need to add that support in a way thats
1469 * clean when we restucture accept also.
1472 SYSCALL_DEFINE4(accept4
, int, fd
, struct sockaddr __user
*, upeer_sockaddr
,
1473 int __user
*, upeer_addrlen
, int, flags
)
1475 struct socket
*sock
, *newsock
;
1476 struct file
*newfile
;
1477 int err
, len
, newfd
, fput_needed
;
1478 struct sockaddr_storage address
;
1480 if (flags
& ~(SOCK_CLOEXEC
| SOCK_NONBLOCK
))
1483 if (SOCK_NONBLOCK
!= O_NONBLOCK
&& (flags
& SOCK_NONBLOCK
))
1484 flags
= (flags
& ~SOCK_NONBLOCK
) | O_NONBLOCK
;
1486 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1491 if (!(newsock
= sock_alloc()))
1494 newsock
->type
= sock
->type
;
1495 newsock
->ops
= sock
->ops
;
1498 * We don't need try_module_get here, as the listening socket (sock)
1499 * has the protocol module (sock->ops->owner) held.
1501 __module_get(newsock
->ops
->owner
);
1503 newfd
= sock_alloc_fd(&newfile
, flags
& O_CLOEXEC
);
1504 if (unlikely(newfd
< 0)) {
1506 sock_release(newsock
);
1510 err
= sock_attach_fd(newsock
, newfile
, flags
& O_NONBLOCK
);
1514 err
= security_socket_accept(sock
, newsock
);
1518 err
= sock
->ops
->accept(sock
, newsock
, sock
->file
->f_flags
);
1522 if (upeer_sockaddr
) {
1523 if (newsock
->ops
->getname(newsock
, (struct sockaddr
*)&address
,
1525 err
= -ECONNABORTED
;
1528 err
= move_addr_to_user((struct sockaddr
*)&address
,
1529 len
, upeer_sockaddr
, upeer_addrlen
);
1534 /* File flags are not inherited via accept() unlike another OSes. */
1536 fd_install(newfd
, newfile
);
1539 security_socket_post_accept(sock
, newsock
);
1542 fput_light(sock
->file
, fput_needed
);
1546 sock_release(newsock
);
1548 put_unused_fd(newfd
);
1552 put_unused_fd(newfd
);
1556 SYSCALL_DEFINE3(accept
, int, fd
, struct sockaddr __user
*, upeer_sockaddr
,
1557 int __user
*, upeer_addrlen
)
1559 return sys_accept4(fd
, upeer_sockaddr
, upeer_addrlen
, 0);
1563 * Attempt to connect to a socket with the server address. The address
1564 * is in user space so we verify it is OK and move it to kernel space.
1566 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1569 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1570 * other SEQPACKET protocols that take time to connect() as it doesn't
1571 * include the -EINPROGRESS status for such sockets.
1574 SYSCALL_DEFINE3(connect
, int, fd
, struct sockaddr __user
*, uservaddr
,
1577 struct socket
*sock
;
1578 struct sockaddr_storage address
;
1579 int err
, fput_needed
;
1581 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1584 err
= move_addr_to_kernel(uservaddr
, addrlen
, (struct sockaddr
*)&address
);
1589 security_socket_connect(sock
, (struct sockaddr
*)&address
, addrlen
);
1593 err
= sock
->ops
->connect(sock
, (struct sockaddr
*)&address
, addrlen
,
1594 sock
->file
->f_flags
);
1596 fput_light(sock
->file
, fput_needed
);
1602 * Get the local address ('name') of a socket object. Move the obtained
1603 * name to user space.
1606 SYSCALL_DEFINE3(getsockname
, int, fd
, struct sockaddr __user
*, usockaddr
,
1607 int __user
*, usockaddr_len
)
1609 struct socket
*sock
;
1610 struct sockaddr_storage address
;
1611 int len
, err
, fput_needed
;
1613 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1617 err
= security_socket_getsockname(sock
);
1621 err
= sock
->ops
->getname(sock
, (struct sockaddr
*)&address
, &len
, 0);
1624 err
= move_addr_to_user((struct sockaddr
*)&address
, len
, usockaddr
, usockaddr_len
);
1627 fput_light(sock
->file
, fput_needed
);
1633 * Get the remote address ('name') of a socket object. Move the obtained
1634 * name to user space.
1637 SYSCALL_DEFINE3(getpeername
, int, fd
, struct sockaddr __user
*, usockaddr
,
1638 int __user
*, usockaddr_len
)
1640 struct socket
*sock
;
1641 struct sockaddr_storage address
;
1642 int len
, err
, fput_needed
;
1644 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1646 err
= security_socket_getpeername(sock
);
1648 fput_light(sock
->file
, fput_needed
);
1653 sock
->ops
->getname(sock
, (struct sockaddr
*)&address
, &len
,
1656 err
= move_addr_to_user((struct sockaddr
*)&address
, len
, usockaddr
,
1658 fput_light(sock
->file
, fput_needed
);
1664 * Send a datagram to a given address. We move the address into kernel
1665 * space and check the user space data area is readable before invoking
1669 SYSCALL_DEFINE6(sendto
, int, fd
, void __user
*, buff
, size_t, len
,
1670 unsigned, flags
, struct sockaddr __user
*, addr
,
1673 struct socket
*sock
;
1674 struct sockaddr_storage address
;
1680 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1684 iov
.iov_base
= buff
;
1686 msg
.msg_name
= NULL
;
1689 msg
.msg_control
= NULL
;
1690 msg
.msg_controllen
= 0;
1691 msg
.msg_namelen
= 0;
1693 err
= move_addr_to_kernel(addr
, addr_len
, (struct sockaddr
*)&address
);
1696 msg
.msg_name
= (struct sockaddr
*)&address
;
1697 msg
.msg_namelen
= addr_len
;
1699 if (sock
->file
->f_flags
& O_NONBLOCK
)
1700 flags
|= MSG_DONTWAIT
;
1701 msg
.msg_flags
= flags
;
1702 err
= sock_sendmsg(sock
, &msg
, len
);
1705 fput_light(sock
->file
, fput_needed
);
1711 * Send a datagram down a socket.
1714 SYSCALL_DEFINE4(send
, int, fd
, void __user
*, buff
, size_t, len
,
1717 return sys_sendto(fd
, buff
, len
, flags
, NULL
, 0);
1721 * Receive a frame from the socket and optionally record the address of the
1722 * sender. We verify the buffers are writable and if needed move the
1723 * sender address from kernel to user space.
1726 SYSCALL_DEFINE6(recvfrom
, int, fd
, void __user
*, ubuf
, size_t, size
,
1727 unsigned, flags
, struct sockaddr __user
*, addr
,
1728 int __user
*, addr_len
)
1730 struct socket
*sock
;
1733 struct sockaddr_storage address
;
1737 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1741 msg
.msg_control
= NULL
;
1742 msg
.msg_controllen
= 0;
1746 iov
.iov_base
= ubuf
;
1747 msg
.msg_name
= (struct sockaddr
*)&address
;
1748 msg
.msg_namelen
= sizeof(address
);
1749 if (sock
->file
->f_flags
& O_NONBLOCK
)
1750 flags
|= MSG_DONTWAIT
;
1751 err
= sock_recvmsg(sock
, &msg
, size
, flags
);
1753 if (err
>= 0 && addr
!= NULL
) {
1754 err2
= move_addr_to_user((struct sockaddr
*)&address
,
1755 msg
.msg_namelen
, addr
, addr_len
);
1760 fput_light(sock
->file
, fput_needed
);
1766 * Receive a datagram from a socket.
1769 asmlinkage
long sys_recv(int fd
, void __user
*ubuf
, size_t size
,
1772 return sys_recvfrom(fd
, ubuf
, size
, flags
, NULL
, NULL
);
1776 * Set a socket option. Because we don't know the option lengths we have
1777 * to pass the user mode parameter for the protocols to sort out.
1780 SYSCALL_DEFINE5(setsockopt
, int, fd
, int, level
, int, optname
,
1781 char __user
*, optval
, int, optlen
)
1783 int err
, fput_needed
;
1784 struct socket
*sock
;
1789 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1791 err
= security_socket_setsockopt(sock
, level
, optname
);
1795 if (level
== SOL_SOCKET
)
1797 sock_setsockopt(sock
, level
, optname
, optval
,
1801 sock
->ops
->setsockopt(sock
, level
, optname
, optval
,
1804 fput_light(sock
->file
, fput_needed
);
1810 * Get a socket option. Because we don't know the option lengths we have
1811 * to pass a user mode parameter for the protocols to sort out.
1814 SYSCALL_DEFINE5(getsockopt
, int, fd
, int, level
, int, optname
,
1815 char __user
*, optval
, int __user
*, optlen
)
1817 int err
, fput_needed
;
1818 struct socket
*sock
;
1820 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1822 err
= security_socket_getsockopt(sock
, level
, optname
);
1826 if (level
== SOL_SOCKET
)
1828 sock_getsockopt(sock
, level
, optname
, optval
,
1832 sock
->ops
->getsockopt(sock
, level
, optname
, optval
,
1835 fput_light(sock
->file
, fput_needed
);
1841 * Shutdown a socket.
1844 SYSCALL_DEFINE2(shutdown
, int, fd
, int, how
)
1846 int err
, fput_needed
;
1847 struct socket
*sock
;
1849 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1851 err
= security_socket_shutdown(sock
, how
);
1853 err
= sock
->ops
->shutdown(sock
, how
);
1854 fput_light(sock
->file
, fput_needed
);
1859 /* A couple of helpful macros for getting the address of the 32/64 bit
1860 * fields which are the same type (int / unsigned) on our platforms.
1862 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1863 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1864 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1867 * BSD sendmsg interface
1870 SYSCALL_DEFINE3(sendmsg
, int, fd
, struct msghdr __user
*, msg
, unsigned, flags
)
1872 struct compat_msghdr __user
*msg_compat
=
1873 (struct compat_msghdr __user
*)msg
;
1874 struct socket
*sock
;
1875 struct sockaddr_storage address
;
1876 struct iovec iovstack
[UIO_FASTIOV
], *iov
= iovstack
;
1877 unsigned char ctl
[sizeof(struct cmsghdr
) + 20]
1878 __attribute__ ((aligned(sizeof(__kernel_size_t
))));
1879 /* 20 is size of ipv6_pktinfo */
1880 unsigned char *ctl_buf
= ctl
;
1881 struct msghdr msg_sys
;
1882 int err
, ctl_len
, iov_size
, total_len
;
1886 if (MSG_CMSG_COMPAT
& flags
) {
1887 if (get_compat_msghdr(&msg_sys
, msg_compat
))
1890 else if (copy_from_user(&msg_sys
, msg
, sizeof(struct msghdr
)))
1893 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1897 /* do not move before msg_sys is valid */
1899 if (msg_sys
.msg_iovlen
> UIO_MAXIOV
)
1902 /* Check whether to allocate the iovec area */
1904 iov_size
= msg_sys
.msg_iovlen
* sizeof(struct iovec
);
1905 if (msg_sys
.msg_iovlen
> UIO_FASTIOV
) {
1906 iov
= sock_kmalloc(sock
->sk
, iov_size
, GFP_KERNEL
);
1911 /* This will also move the address data into kernel space */
1912 if (MSG_CMSG_COMPAT
& flags
) {
1913 err
= verify_compat_iovec(&msg_sys
, iov
,
1914 (struct sockaddr
*)&address
,
1917 err
= verify_iovec(&msg_sys
, iov
,
1918 (struct sockaddr
*)&address
,
1926 if (msg_sys
.msg_controllen
> INT_MAX
)
1928 ctl_len
= msg_sys
.msg_controllen
;
1929 if ((MSG_CMSG_COMPAT
& flags
) && ctl_len
) {
1931 cmsghdr_from_user_compat_to_kern(&msg_sys
, sock
->sk
, ctl
,
1935 ctl_buf
= msg_sys
.msg_control
;
1936 ctl_len
= msg_sys
.msg_controllen
;
1937 } else if (ctl_len
) {
1938 if (ctl_len
> sizeof(ctl
)) {
1939 ctl_buf
= sock_kmalloc(sock
->sk
, ctl_len
, GFP_KERNEL
);
1940 if (ctl_buf
== NULL
)
1945 * Careful! Before this, msg_sys.msg_control contains a user pointer.
1946 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1947 * checking falls down on this.
1949 if (copy_from_user(ctl_buf
, (void __user
*)msg_sys
.msg_control
,
1952 msg_sys
.msg_control
= ctl_buf
;
1954 msg_sys
.msg_flags
= flags
;
1956 if (sock
->file
->f_flags
& O_NONBLOCK
)
1957 msg_sys
.msg_flags
|= MSG_DONTWAIT
;
1958 err
= sock_sendmsg(sock
, &msg_sys
, total_len
);
1962 sock_kfree_s(sock
->sk
, ctl_buf
, ctl_len
);
1964 if (iov
!= iovstack
)
1965 sock_kfree_s(sock
->sk
, iov
, iov_size
);
1967 fput_light(sock
->file
, fput_needed
);
1973 * BSD recvmsg interface
1976 SYSCALL_DEFINE3(recvmsg
, int, fd
, struct msghdr __user
*, msg
,
1977 unsigned int, flags
)
1979 struct compat_msghdr __user
*msg_compat
=
1980 (struct compat_msghdr __user
*)msg
;
1981 struct socket
*sock
;
1982 struct iovec iovstack
[UIO_FASTIOV
];
1983 struct iovec
*iov
= iovstack
;
1984 struct msghdr msg_sys
;
1985 unsigned long cmsg_ptr
;
1986 int err
, iov_size
, total_len
, len
;
1989 /* kernel mode address */
1990 struct sockaddr_storage addr
;
1992 /* user mode address pointers */
1993 struct sockaddr __user
*uaddr
;
1994 int __user
*uaddr_len
;
1996 if (MSG_CMSG_COMPAT
& flags
) {
1997 if (get_compat_msghdr(&msg_sys
, msg_compat
))
2000 else if (copy_from_user(&msg_sys
, msg
, sizeof(struct msghdr
)))
2003 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2008 if (msg_sys
.msg_iovlen
> UIO_MAXIOV
)
2011 /* Check whether to allocate the iovec area */
2013 iov_size
= msg_sys
.msg_iovlen
* sizeof(struct iovec
);
2014 if (msg_sys
.msg_iovlen
> UIO_FASTIOV
) {
2015 iov
= sock_kmalloc(sock
->sk
, iov_size
, GFP_KERNEL
);
2021 * Save the user-mode address (verify_iovec will change the
2022 * kernel msghdr to use the kernel address space)
2025 uaddr
= (__force
void __user
*)msg_sys
.msg_name
;
2026 uaddr_len
= COMPAT_NAMELEN(msg
);
2027 if (MSG_CMSG_COMPAT
& flags
) {
2028 err
= verify_compat_iovec(&msg_sys
, iov
,
2029 (struct sockaddr
*)&addr
,
2032 err
= verify_iovec(&msg_sys
, iov
,
2033 (struct sockaddr
*)&addr
,
2039 cmsg_ptr
= (unsigned long)msg_sys
.msg_control
;
2040 msg_sys
.msg_flags
= flags
& (MSG_CMSG_CLOEXEC
|MSG_CMSG_COMPAT
);
2042 if (sock
->file
->f_flags
& O_NONBLOCK
)
2043 flags
|= MSG_DONTWAIT
;
2044 err
= sock_recvmsg(sock
, &msg_sys
, total_len
, flags
);
2049 if (uaddr
!= NULL
) {
2050 err
= move_addr_to_user((struct sockaddr
*)&addr
,
2051 msg_sys
.msg_namelen
, uaddr
,
2056 err
= __put_user((msg_sys
.msg_flags
& ~MSG_CMSG_COMPAT
),
2060 if (MSG_CMSG_COMPAT
& flags
)
2061 err
= __put_user((unsigned long)msg_sys
.msg_control
- cmsg_ptr
,
2062 &msg_compat
->msg_controllen
);
2064 err
= __put_user((unsigned long)msg_sys
.msg_control
- cmsg_ptr
,
2065 &msg
->msg_controllen
);
2071 if (iov
!= iovstack
)
2072 sock_kfree_s(sock
->sk
, iov
, iov_size
);
2074 fput_light(sock
->file
, fput_needed
);
2079 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2081 /* Argument list sizes for sys_socketcall */
2082 #define AL(x) ((x) * sizeof(unsigned long))
2083 static const unsigned char nargs
[19]={
2084 AL(0),AL(3),AL(3),AL(3),AL(2),AL(3),
2085 AL(3),AL(3),AL(4),AL(4),AL(4),AL(6),
2086 AL(6),AL(2),AL(5),AL(5),AL(3),AL(3),
2093 * System call vectors.
2095 * Argument checking cleaned up. Saved 20% in size.
2096 * This function doesn't need to set the kernel lock because
2097 * it is set by the callees.
2100 SYSCALL_DEFINE2(socketcall
, int, call
, unsigned long __user
*, args
)
2103 unsigned long a0
, a1
;
2106 if (call
< 1 || call
> SYS_ACCEPT4
)
2109 /* copy_from_user should be SMP safe. */
2110 if (copy_from_user(a
, args
, nargs
[call
]))
2113 audit_socketcall(nargs
[call
] / sizeof(unsigned long), a
);
2120 err
= sys_socket(a0
, a1
, a
[2]);
2123 err
= sys_bind(a0
, (struct sockaddr __user
*)a1
, a
[2]);
2126 err
= sys_connect(a0
, (struct sockaddr __user
*)a1
, a
[2]);
2129 err
= sys_listen(a0
, a1
);
2132 err
= sys_accept4(a0
, (struct sockaddr __user
*)a1
,
2133 (int __user
*)a
[2], 0);
2135 case SYS_GETSOCKNAME
:
2137 sys_getsockname(a0
, (struct sockaddr __user
*)a1
,
2138 (int __user
*)a
[2]);
2140 case SYS_GETPEERNAME
:
2142 sys_getpeername(a0
, (struct sockaddr __user
*)a1
,
2143 (int __user
*)a
[2]);
2145 case SYS_SOCKETPAIR
:
2146 err
= sys_socketpair(a0
, a1
, a
[2], (int __user
*)a
[3]);
2149 err
= sys_send(a0
, (void __user
*)a1
, a
[2], a
[3]);
2152 err
= sys_sendto(a0
, (void __user
*)a1
, a
[2], a
[3],
2153 (struct sockaddr __user
*)a
[4], a
[5]);
2156 err
= sys_recv(a0
, (void __user
*)a1
, a
[2], a
[3]);
2159 err
= sys_recvfrom(a0
, (void __user
*)a1
, a
[2], a
[3],
2160 (struct sockaddr __user
*)a
[4],
2161 (int __user
*)a
[5]);
2164 err
= sys_shutdown(a0
, a1
);
2166 case SYS_SETSOCKOPT
:
2167 err
= sys_setsockopt(a0
, a1
, a
[2], (char __user
*)a
[3], a
[4]);
2169 case SYS_GETSOCKOPT
:
2171 sys_getsockopt(a0
, a1
, a
[2], (char __user
*)a
[3],
2172 (int __user
*)a
[4]);
2175 err
= sys_sendmsg(a0
, (struct msghdr __user
*)a1
, a
[2]);
2178 err
= sys_recvmsg(a0
, (struct msghdr __user
*)a1
, a
[2]);
2181 err
= sys_accept4(a0
, (struct sockaddr __user
*)a1
,
2182 (int __user
*)a
[2], a
[3]);
2191 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2194 * sock_register - add a socket protocol handler
2195 * @ops: description of protocol
2197 * This function is called by a protocol handler that wants to
2198 * advertise its address family, and have it linked into the
2199 * socket interface. The value ops->family coresponds to the
2200 * socket system call protocol family.
2202 int sock_register(const struct net_proto_family
*ops
)
2206 if (ops
->family
>= NPROTO
) {
2207 printk(KERN_CRIT
"protocol %d >= NPROTO(%d)\n", ops
->family
,
2212 spin_lock(&net_family_lock
);
2213 if (net_families
[ops
->family
])
2216 net_families
[ops
->family
] = ops
;
2219 spin_unlock(&net_family_lock
);
2221 printk(KERN_INFO
"NET: Registered protocol family %d\n", ops
->family
);
2226 * sock_unregister - remove a protocol handler
2227 * @family: protocol family to remove
2229 * This function is called by a protocol handler that wants to
2230 * remove its address family, and have it unlinked from the
2231 * new socket creation.
2233 * If protocol handler is a module, then it can use module reference
2234 * counts to protect against new references. If protocol handler is not
2235 * a module then it needs to provide its own protection in
2236 * the ops->create routine.
2238 void sock_unregister(int family
)
2240 BUG_ON(family
< 0 || family
>= NPROTO
);
2242 spin_lock(&net_family_lock
);
2243 net_families
[family
] = NULL
;
2244 spin_unlock(&net_family_lock
);
2248 printk(KERN_INFO
"NET: Unregistered protocol family %d\n", family
);
2251 static int __init
sock_init(void)
2254 * Initialize sock SLAB cache.
2260 * Initialize skbuff SLAB cache
2265 * Initialize the protocols module.
2269 register_filesystem(&sock_fs_type
);
2270 sock_mnt
= kern_mount(&sock_fs_type
);
2272 /* The real protocol initialization is performed in later initcalls.
2275 #ifdef CONFIG_NETFILTER
2282 core_initcall(sock_init
); /* early initcall */
2284 #ifdef CONFIG_PROC_FS
2285 void socket_seq_show(struct seq_file
*seq
)
2290 for_each_possible_cpu(cpu
)
2291 counter
+= per_cpu(sockets_in_use
, cpu
);
2293 /* It can be negative, by the way. 8) */
2297 seq_printf(seq
, "sockets: used %d\n", counter
);
2299 #endif /* CONFIG_PROC_FS */
2301 #ifdef CONFIG_COMPAT
2302 static long compat_sock_ioctl(struct file
*file
, unsigned cmd
,
2305 struct socket
*sock
= file
->private_data
;
2306 int ret
= -ENOIOCTLCMD
;
2313 if (sock
->ops
->compat_ioctl
)
2314 ret
= sock
->ops
->compat_ioctl(sock
, cmd
, arg
);
2316 if (ret
== -ENOIOCTLCMD
&&
2317 (cmd
>= SIOCIWFIRST
&& cmd
<= SIOCIWLAST
))
2318 ret
= compat_wext_handle_ioctl(net
, cmd
, arg
);
2324 int kernel_bind(struct socket
*sock
, struct sockaddr
*addr
, int addrlen
)
2326 return sock
->ops
->bind(sock
, addr
, addrlen
);
2329 int kernel_listen(struct socket
*sock
, int backlog
)
2331 return sock
->ops
->listen(sock
, backlog
);
2334 int kernel_accept(struct socket
*sock
, struct socket
**newsock
, int flags
)
2336 struct sock
*sk
= sock
->sk
;
2339 err
= sock_create_lite(sk
->sk_family
, sk
->sk_type
, sk
->sk_protocol
,
2344 err
= sock
->ops
->accept(sock
, *newsock
, flags
);
2346 sock_release(*newsock
);
2351 (*newsock
)->ops
= sock
->ops
;
2352 __module_get((*newsock
)->ops
->owner
);
2358 int kernel_connect(struct socket
*sock
, struct sockaddr
*addr
, int addrlen
,
2361 return sock
->ops
->connect(sock
, addr
, addrlen
, flags
);
2364 int kernel_getsockname(struct socket
*sock
, struct sockaddr
*addr
,
2367 return sock
->ops
->getname(sock
, addr
, addrlen
, 0);
2370 int kernel_getpeername(struct socket
*sock
, struct sockaddr
*addr
,
2373 return sock
->ops
->getname(sock
, addr
, addrlen
, 1);
2376 int kernel_getsockopt(struct socket
*sock
, int level
, int optname
,
2377 char *optval
, int *optlen
)
2379 mm_segment_t oldfs
= get_fs();
2383 if (level
== SOL_SOCKET
)
2384 err
= sock_getsockopt(sock
, level
, optname
, optval
, optlen
);
2386 err
= sock
->ops
->getsockopt(sock
, level
, optname
, optval
,
2392 int kernel_setsockopt(struct socket
*sock
, int level
, int optname
,
2393 char *optval
, int optlen
)
2395 mm_segment_t oldfs
= get_fs();
2399 if (level
== SOL_SOCKET
)
2400 err
= sock_setsockopt(sock
, level
, optname
, optval
, optlen
);
2402 err
= sock
->ops
->setsockopt(sock
, level
, optname
, optval
,
2408 int kernel_sendpage(struct socket
*sock
, struct page
*page
, int offset
,
2409 size_t size
, int flags
)
2411 if (sock
->ops
->sendpage
)
2412 return sock
->ops
->sendpage(sock
, page
, offset
, size
, flags
);
2414 return sock_no_sendpage(sock
, page
, offset
, size
, flags
);
2417 int kernel_sock_ioctl(struct socket
*sock
, int cmd
, unsigned long arg
)
2419 mm_segment_t oldfs
= get_fs();
2423 err
= sock
->ops
->ioctl(sock
, cmd
, arg
);
2429 int kernel_sock_shutdown(struct socket
*sock
, enum sock_shutdown_cmd how
)
2431 return sock
->ops
->shutdown(sock
, how
);
2434 EXPORT_SYMBOL(sock_create
);
2435 EXPORT_SYMBOL(sock_create_kern
);
2436 EXPORT_SYMBOL(sock_create_lite
);
2437 EXPORT_SYMBOL(sock_map_fd
);
2438 EXPORT_SYMBOL(sock_recvmsg
);
2439 EXPORT_SYMBOL(sock_register
);
2440 EXPORT_SYMBOL(sock_release
);
2441 EXPORT_SYMBOL(sock_sendmsg
);
2442 EXPORT_SYMBOL(sock_unregister
);
2443 EXPORT_SYMBOL(sock_wake_async
);
2444 EXPORT_SYMBOL(sockfd_lookup
);
2445 EXPORT_SYMBOL(kernel_sendmsg
);
2446 EXPORT_SYMBOL(kernel_recvmsg
);
2447 EXPORT_SYMBOL(kernel_bind
);
2448 EXPORT_SYMBOL(kernel_listen
);
2449 EXPORT_SYMBOL(kernel_accept
);
2450 EXPORT_SYMBOL(kernel_connect
);
2451 EXPORT_SYMBOL(kernel_getsockname
);
2452 EXPORT_SYMBOL(kernel_getpeername
);
2453 EXPORT_SYMBOL(kernel_getsockopt
);
2454 EXPORT_SYMBOL(kernel_setsockopt
);
2455 EXPORT_SYMBOL(kernel_sendpage
);
2456 EXPORT_SYMBOL(kernel_sock_ioctl
);
2457 EXPORT_SYMBOL(kernel_sock_shutdown
);