2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
21 #include <linux/kvm_host.h>
22 #include <linux/module.h>
23 #include <linux/kernel.h>
25 #include <linux/highmem.h>
26 #include <linux/sched.h>
27 #include <linux/moduleparam.h>
28 #include "kvm_cache_regs.h"
34 #include <asm/virtext.h>
36 #define __ex(x) __kvm_handle_fault_on_reboot(x)
38 MODULE_AUTHOR("Qumranet");
39 MODULE_LICENSE("GPL");
41 static int bypass_guest_pf
= 1;
42 module_param(bypass_guest_pf
, bool, 0);
44 static int enable_vpid
= 1;
45 module_param(enable_vpid
, bool, 0);
47 static int flexpriority_enabled
= 1;
48 module_param(flexpriority_enabled
, bool, 0);
50 static int enable_ept
= 1;
51 module_param(enable_ept
, bool, 0);
53 static int emulate_invalid_guest_state
= 0;
54 module_param(emulate_invalid_guest_state
, bool, 0);
64 struct list_head local_vcpus_link
;
65 unsigned long host_rsp
;
68 u32 idt_vectoring_info
;
69 struct kvm_msr_entry
*guest_msrs
;
70 struct kvm_msr_entry
*host_msrs
;
75 int msr_offset_kernel_gs_base
;
80 u16 fs_sel
, gs_sel
, ldt_sel
;
81 int gs_ldt_reload_needed
;
83 int guest_efer_loaded
;
93 bool emulation_required
;
95 /* Support for vnmi-less CPUs */
96 int soft_vnmi_blocked
;
98 s64 vnmi_blocked_time
;
101 static inline struct vcpu_vmx
*to_vmx(struct kvm_vcpu
*vcpu
)
103 return container_of(vcpu
, struct vcpu_vmx
, vcpu
);
106 static int init_rmode(struct kvm
*kvm
);
107 static u64
construct_eptp(unsigned long root_hpa
);
109 static DEFINE_PER_CPU(struct vmcs
*, vmxarea
);
110 static DEFINE_PER_CPU(struct vmcs
*, current_vmcs
);
111 static DEFINE_PER_CPU(struct list_head
, vcpus_on_cpu
);
113 static struct page
*vmx_io_bitmap_a
;
114 static struct page
*vmx_io_bitmap_b
;
115 static struct page
*vmx_msr_bitmap
;
117 static DECLARE_BITMAP(vmx_vpid_bitmap
, VMX_NR_VPIDS
);
118 static DEFINE_SPINLOCK(vmx_vpid_lock
);
120 static struct vmcs_config
{
124 u32 pin_based_exec_ctrl
;
125 u32 cpu_based_exec_ctrl
;
126 u32 cpu_based_2nd_exec_ctrl
;
131 static struct vmx_capability
{
136 #define VMX_SEGMENT_FIELD(seg) \
137 [VCPU_SREG_##seg] = { \
138 .selector = GUEST_##seg##_SELECTOR, \
139 .base = GUEST_##seg##_BASE, \
140 .limit = GUEST_##seg##_LIMIT, \
141 .ar_bytes = GUEST_##seg##_AR_BYTES, \
144 static struct kvm_vmx_segment_field
{
149 } kvm_vmx_segment_fields
[] = {
150 VMX_SEGMENT_FIELD(CS
),
151 VMX_SEGMENT_FIELD(DS
),
152 VMX_SEGMENT_FIELD(ES
),
153 VMX_SEGMENT_FIELD(FS
),
154 VMX_SEGMENT_FIELD(GS
),
155 VMX_SEGMENT_FIELD(SS
),
156 VMX_SEGMENT_FIELD(TR
),
157 VMX_SEGMENT_FIELD(LDTR
),
161 * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
162 * away by decrementing the array size.
164 static const u32 vmx_msr_index
[] = {
166 MSR_SYSCALL_MASK
, MSR_LSTAR
, MSR_CSTAR
, MSR_KERNEL_GS_BASE
,
168 MSR_EFER
, MSR_K6_STAR
,
170 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
172 static void load_msrs(struct kvm_msr_entry
*e
, int n
)
176 for (i
= 0; i
< n
; ++i
)
177 wrmsrl(e
[i
].index
, e
[i
].data
);
180 static void save_msrs(struct kvm_msr_entry
*e
, int n
)
184 for (i
= 0; i
< n
; ++i
)
185 rdmsrl(e
[i
].index
, e
[i
].data
);
188 static inline int is_page_fault(u32 intr_info
)
190 return (intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VECTOR_MASK
|
191 INTR_INFO_VALID_MASK
)) ==
192 (INTR_TYPE_HARD_EXCEPTION
| PF_VECTOR
| INTR_INFO_VALID_MASK
);
195 static inline int is_no_device(u32 intr_info
)
197 return (intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VECTOR_MASK
|
198 INTR_INFO_VALID_MASK
)) ==
199 (INTR_TYPE_HARD_EXCEPTION
| NM_VECTOR
| INTR_INFO_VALID_MASK
);
202 static inline int is_invalid_opcode(u32 intr_info
)
204 return (intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VECTOR_MASK
|
205 INTR_INFO_VALID_MASK
)) ==
206 (INTR_TYPE_HARD_EXCEPTION
| UD_VECTOR
| INTR_INFO_VALID_MASK
);
209 static inline int is_external_interrupt(u32 intr_info
)
211 return (intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VALID_MASK
))
212 == (INTR_TYPE_EXT_INTR
| INTR_INFO_VALID_MASK
);
215 static inline int cpu_has_vmx_msr_bitmap(void)
217 return (vmcs_config
.cpu_based_exec_ctrl
& CPU_BASED_USE_MSR_BITMAPS
);
220 static inline int cpu_has_vmx_tpr_shadow(void)
222 return (vmcs_config
.cpu_based_exec_ctrl
& CPU_BASED_TPR_SHADOW
);
225 static inline int vm_need_tpr_shadow(struct kvm
*kvm
)
227 return ((cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm
)));
230 static inline int cpu_has_secondary_exec_ctrls(void)
232 return (vmcs_config
.cpu_based_exec_ctrl
&
233 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS
);
236 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
238 return flexpriority_enabled
239 && (vmcs_config
.cpu_based_2nd_exec_ctrl
&
240 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
);
243 static inline int cpu_has_vmx_invept_individual_addr(void)
245 return (!!(vmx_capability
.ept
& VMX_EPT_EXTENT_INDIVIDUAL_BIT
));
248 static inline int cpu_has_vmx_invept_context(void)
250 return (!!(vmx_capability
.ept
& VMX_EPT_EXTENT_CONTEXT_BIT
));
253 static inline int cpu_has_vmx_invept_global(void)
255 return (!!(vmx_capability
.ept
& VMX_EPT_EXTENT_GLOBAL_BIT
));
258 static inline int cpu_has_vmx_ept(void)
260 return (vmcs_config
.cpu_based_2nd_exec_ctrl
&
261 SECONDARY_EXEC_ENABLE_EPT
);
264 static inline int vm_need_ept(void)
266 return (cpu_has_vmx_ept() && enable_ept
);
269 static inline int vm_need_virtualize_apic_accesses(struct kvm
*kvm
)
271 return ((cpu_has_vmx_virtualize_apic_accesses()) &&
272 (irqchip_in_kernel(kvm
)));
275 static inline int cpu_has_vmx_vpid(void)
277 return (vmcs_config
.cpu_based_2nd_exec_ctrl
&
278 SECONDARY_EXEC_ENABLE_VPID
);
281 static inline int cpu_has_virtual_nmis(void)
283 return vmcs_config
.pin_based_exec_ctrl
& PIN_BASED_VIRTUAL_NMIS
;
286 static int __find_msr_index(struct vcpu_vmx
*vmx
, u32 msr
)
290 for (i
= 0; i
< vmx
->nmsrs
; ++i
)
291 if (vmx
->guest_msrs
[i
].index
== msr
)
296 static inline void __invvpid(int ext
, u16 vpid
, gva_t gva
)
302 } operand
= { vpid
, 0, gva
};
304 asm volatile (__ex(ASM_VMX_INVVPID
)
305 /* CF==1 or ZF==1 --> rc = -1 */
307 : : "a"(&operand
), "c"(ext
) : "cc", "memory");
310 static inline void __invept(int ext
, u64 eptp
, gpa_t gpa
)
314 } operand
= {eptp
, gpa
};
316 asm volatile (__ex(ASM_VMX_INVEPT
)
317 /* CF==1 or ZF==1 --> rc = -1 */
318 "; ja 1f ; ud2 ; 1:\n"
319 : : "a" (&operand
), "c" (ext
) : "cc", "memory");
322 static struct kvm_msr_entry
*find_msr_entry(struct vcpu_vmx
*vmx
, u32 msr
)
326 i
= __find_msr_index(vmx
, msr
);
328 return &vmx
->guest_msrs
[i
];
332 static void vmcs_clear(struct vmcs
*vmcs
)
334 u64 phys_addr
= __pa(vmcs
);
337 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX
) "; setna %0"
338 : "=g"(error
) : "a"(&phys_addr
), "m"(phys_addr
)
341 printk(KERN_ERR
"kvm: vmclear fail: %p/%llx\n",
345 static void __vcpu_clear(void *arg
)
347 struct vcpu_vmx
*vmx
= arg
;
348 int cpu
= raw_smp_processor_id();
350 if (vmx
->vcpu
.cpu
== cpu
)
351 vmcs_clear(vmx
->vmcs
);
352 if (per_cpu(current_vmcs
, cpu
) == vmx
->vmcs
)
353 per_cpu(current_vmcs
, cpu
) = NULL
;
354 rdtscll(vmx
->vcpu
.arch
.host_tsc
);
355 list_del(&vmx
->local_vcpus_link
);
360 static void vcpu_clear(struct vcpu_vmx
*vmx
)
362 if (vmx
->vcpu
.cpu
== -1)
364 smp_call_function_single(vmx
->vcpu
.cpu
, __vcpu_clear
, vmx
, 1);
367 static inline void vpid_sync_vcpu_all(struct vcpu_vmx
*vmx
)
372 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT
, vmx
->vpid
, 0);
375 static inline void ept_sync_global(void)
377 if (cpu_has_vmx_invept_global())
378 __invept(VMX_EPT_EXTENT_GLOBAL
, 0, 0);
381 static inline void ept_sync_context(u64 eptp
)
384 if (cpu_has_vmx_invept_context())
385 __invept(VMX_EPT_EXTENT_CONTEXT
, eptp
, 0);
391 static inline void ept_sync_individual_addr(u64 eptp
, gpa_t gpa
)
394 if (cpu_has_vmx_invept_individual_addr())
395 __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR
,
398 ept_sync_context(eptp
);
402 static unsigned long vmcs_readl(unsigned long field
)
406 asm volatile (__ex(ASM_VMX_VMREAD_RDX_RAX
)
407 : "=a"(value
) : "d"(field
) : "cc");
411 static u16
vmcs_read16(unsigned long field
)
413 return vmcs_readl(field
);
416 static u32
vmcs_read32(unsigned long field
)
418 return vmcs_readl(field
);
421 static u64
vmcs_read64(unsigned long field
)
424 return vmcs_readl(field
);
426 return vmcs_readl(field
) | ((u64
)vmcs_readl(field
+1) << 32);
430 static noinline
void vmwrite_error(unsigned long field
, unsigned long value
)
432 printk(KERN_ERR
"vmwrite error: reg %lx value %lx (err %d)\n",
433 field
, value
, vmcs_read32(VM_INSTRUCTION_ERROR
));
437 static void vmcs_writel(unsigned long field
, unsigned long value
)
441 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX
) "; setna %0"
442 : "=q"(error
) : "a"(value
), "d"(field
) : "cc");
444 vmwrite_error(field
, value
);
447 static void vmcs_write16(unsigned long field
, u16 value
)
449 vmcs_writel(field
, value
);
452 static void vmcs_write32(unsigned long field
, u32 value
)
454 vmcs_writel(field
, value
);
457 static void vmcs_write64(unsigned long field
, u64 value
)
459 vmcs_writel(field
, value
);
460 #ifndef CONFIG_X86_64
462 vmcs_writel(field
+1, value
>> 32);
466 static void vmcs_clear_bits(unsigned long field
, u32 mask
)
468 vmcs_writel(field
, vmcs_readl(field
) & ~mask
);
471 static void vmcs_set_bits(unsigned long field
, u32 mask
)
473 vmcs_writel(field
, vmcs_readl(field
) | mask
);
476 static void update_exception_bitmap(struct kvm_vcpu
*vcpu
)
480 eb
= (1u << PF_VECTOR
) | (1u << UD_VECTOR
);
481 if (!vcpu
->fpu_active
)
482 eb
|= 1u << NM_VECTOR
;
483 if (vcpu
->guest_debug
.enabled
)
484 eb
|= 1u << DB_VECTOR
;
485 if (vcpu
->arch
.rmode
.active
)
488 eb
&= ~(1u << PF_VECTOR
); /* bypass_guest_pf = 0 */
489 vmcs_write32(EXCEPTION_BITMAP
, eb
);
492 static void reload_tss(void)
495 * VT restores TR but not its size. Useless.
497 struct descriptor_table gdt
;
498 struct desc_struct
*descs
;
501 descs
= (void *)gdt
.base
;
502 descs
[GDT_ENTRY_TSS
].type
= 9; /* available TSS */
506 static void load_transition_efer(struct vcpu_vmx
*vmx
)
508 int efer_offset
= vmx
->msr_offset_efer
;
509 u64 host_efer
= vmx
->host_msrs
[efer_offset
].data
;
510 u64 guest_efer
= vmx
->guest_msrs
[efer_offset
].data
;
516 * NX is emulated; LMA and LME handled by hardware; SCE meaninless
519 ignore_bits
= EFER_NX
| EFER_SCE
;
521 ignore_bits
|= EFER_LMA
| EFER_LME
;
522 /* SCE is meaningful only in long mode on Intel */
523 if (guest_efer
& EFER_LMA
)
524 ignore_bits
&= ~(u64
)EFER_SCE
;
526 if ((guest_efer
& ~ignore_bits
) == (host_efer
& ~ignore_bits
))
529 vmx
->host_state
.guest_efer_loaded
= 1;
530 guest_efer
&= ~ignore_bits
;
531 guest_efer
|= host_efer
& ignore_bits
;
532 wrmsrl(MSR_EFER
, guest_efer
);
533 vmx
->vcpu
.stat
.efer_reload
++;
536 static void reload_host_efer(struct vcpu_vmx
*vmx
)
538 if (vmx
->host_state
.guest_efer_loaded
) {
539 vmx
->host_state
.guest_efer_loaded
= 0;
540 load_msrs(vmx
->host_msrs
+ vmx
->msr_offset_efer
, 1);
544 static void vmx_save_host_state(struct kvm_vcpu
*vcpu
)
546 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
548 if (vmx
->host_state
.loaded
)
551 vmx
->host_state
.loaded
= 1;
553 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
554 * allow segment selectors with cpl > 0 or ti == 1.
556 vmx
->host_state
.ldt_sel
= kvm_read_ldt();
557 vmx
->host_state
.gs_ldt_reload_needed
= vmx
->host_state
.ldt_sel
;
558 vmx
->host_state
.fs_sel
= kvm_read_fs();
559 if (!(vmx
->host_state
.fs_sel
& 7)) {
560 vmcs_write16(HOST_FS_SELECTOR
, vmx
->host_state
.fs_sel
);
561 vmx
->host_state
.fs_reload_needed
= 0;
563 vmcs_write16(HOST_FS_SELECTOR
, 0);
564 vmx
->host_state
.fs_reload_needed
= 1;
566 vmx
->host_state
.gs_sel
= kvm_read_gs();
567 if (!(vmx
->host_state
.gs_sel
& 7))
568 vmcs_write16(HOST_GS_SELECTOR
, vmx
->host_state
.gs_sel
);
570 vmcs_write16(HOST_GS_SELECTOR
, 0);
571 vmx
->host_state
.gs_ldt_reload_needed
= 1;
575 vmcs_writel(HOST_FS_BASE
, read_msr(MSR_FS_BASE
));
576 vmcs_writel(HOST_GS_BASE
, read_msr(MSR_GS_BASE
));
578 vmcs_writel(HOST_FS_BASE
, segment_base(vmx
->host_state
.fs_sel
));
579 vmcs_writel(HOST_GS_BASE
, segment_base(vmx
->host_state
.gs_sel
));
583 if (is_long_mode(&vmx
->vcpu
))
584 save_msrs(vmx
->host_msrs
+
585 vmx
->msr_offset_kernel_gs_base
, 1);
588 load_msrs(vmx
->guest_msrs
, vmx
->save_nmsrs
);
589 load_transition_efer(vmx
);
592 static void __vmx_load_host_state(struct vcpu_vmx
*vmx
)
596 if (!vmx
->host_state
.loaded
)
599 ++vmx
->vcpu
.stat
.host_state_reload
;
600 vmx
->host_state
.loaded
= 0;
601 if (vmx
->host_state
.fs_reload_needed
)
602 kvm_load_fs(vmx
->host_state
.fs_sel
);
603 if (vmx
->host_state
.gs_ldt_reload_needed
) {
604 kvm_load_ldt(vmx
->host_state
.ldt_sel
);
606 * If we have to reload gs, we must take care to
607 * preserve our gs base.
609 local_irq_save(flags
);
610 kvm_load_gs(vmx
->host_state
.gs_sel
);
612 wrmsrl(MSR_GS_BASE
, vmcs_readl(HOST_GS_BASE
));
614 local_irq_restore(flags
);
617 save_msrs(vmx
->guest_msrs
, vmx
->save_nmsrs
);
618 load_msrs(vmx
->host_msrs
, vmx
->save_nmsrs
);
619 reload_host_efer(vmx
);
622 static void vmx_load_host_state(struct vcpu_vmx
*vmx
)
625 __vmx_load_host_state(vmx
);
630 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
631 * vcpu mutex is already taken.
633 static void vmx_vcpu_load(struct kvm_vcpu
*vcpu
, int cpu
)
635 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
636 u64 phys_addr
= __pa(vmx
->vmcs
);
637 u64 tsc_this
, delta
, new_offset
;
639 if (vcpu
->cpu
!= cpu
) {
641 kvm_migrate_timers(vcpu
);
642 vpid_sync_vcpu_all(vmx
);
644 list_add(&vmx
->local_vcpus_link
,
645 &per_cpu(vcpus_on_cpu
, cpu
));
649 if (per_cpu(current_vmcs
, cpu
) != vmx
->vmcs
) {
652 per_cpu(current_vmcs
, cpu
) = vmx
->vmcs
;
653 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX
) "; setna %0"
654 : "=g"(error
) : "a"(&phys_addr
), "m"(phys_addr
)
657 printk(KERN_ERR
"kvm: vmptrld %p/%llx fail\n",
658 vmx
->vmcs
, phys_addr
);
661 if (vcpu
->cpu
!= cpu
) {
662 struct descriptor_table dt
;
663 unsigned long sysenter_esp
;
667 * Linux uses per-cpu TSS and GDT, so set these when switching
670 vmcs_writel(HOST_TR_BASE
, kvm_read_tr_base()); /* 22.2.4 */
672 vmcs_writel(HOST_GDTR_BASE
, dt
.base
); /* 22.2.4 */
674 rdmsrl(MSR_IA32_SYSENTER_ESP
, sysenter_esp
);
675 vmcs_writel(HOST_IA32_SYSENTER_ESP
, sysenter_esp
); /* 22.2.3 */
678 * Make sure the time stamp counter is monotonous.
681 if (tsc_this
< vcpu
->arch
.host_tsc
) {
682 delta
= vcpu
->arch
.host_tsc
- tsc_this
;
683 new_offset
= vmcs_read64(TSC_OFFSET
) + delta
;
684 vmcs_write64(TSC_OFFSET
, new_offset
);
689 static void vmx_vcpu_put(struct kvm_vcpu
*vcpu
)
691 __vmx_load_host_state(to_vmx(vcpu
));
694 static void vmx_fpu_activate(struct kvm_vcpu
*vcpu
)
696 if (vcpu
->fpu_active
)
698 vcpu
->fpu_active
= 1;
699 vmcs_clear_bits(GUEST_CR0
, X86_CR0_TS
);
700 if (vcpu
->arch
.cr0
& X86_CR0_TS
)
701 vmcs_set_bits(GUEST_CR0
, X86_CR0_TS
);
702 update_exception_bitmap(vcpu
);
705 static void vmx_fpu_deactivate(struct kvm_vcpu
*vcpu
)
707 if (!vcpu
->fpu_active
)
709 vcpu
->fpu_active
= 0;
710 vmcs_set_bits(GUEST_CR0
, X86_CR0_TS
);
711 update_exception_bitmap(vcpu
);
714 static unsigned long vmx_get_rflags(struct kvm_vcpu
*vcpu
)
716 return vmcs_readl(GUEST_RFLAGS
);
719 static void vmx_set_rflags(struct kvm_vcpu
*vcpu
, unsigned long rflags
)
721 if (vcpu
->arch
.rmode
.active
)
722 rflags
|= X86_EFLAGS_IOPL
| X86_EFLAGS_VM
;
723 vmcs_writel(GUEST_RFLAGS
, rflags
);
726 static void skip_emulated_instruction(struct kvm_vcpu
*vcpu
)
729 u32 interruptibility
;
731 rip
= kvm_rip_read(vcpu
);
732 rip
+= vmcs_read32(VM_EXIT_INSTRUCTION_LEN
);
733 kvm_rip_write(vcpu
, rip
);
736 * We emulated an instruction, so temporary interrupt blocking
737 * should be removed, if set.
739 interruptibility
= vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
);
740 if (interruptibility
& 3)
741 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO
,
742 interruptibility
& ~3);
743 vcpu
->arch
.interrupt_window_open
= 1;
746 static void vmx_queue_exception(struct kvm_vcpu
*vcpu
, unsigned nr
,
747 bool has_error_code
, u32 error_code
)
749 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
750 u32 intr_info
= nr
| INTR_INFO_VALID_MASK
;
752 if (has_error_code
) {
753 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE
, error_code
);
754 intr_info
|= INTR_INFO_DELIVER_CODE_MASK
;
757 if (vcpu
->arch
.rmode
.active
) {
758 vmx
->rmode
.irq
.pending
= true;
759 vmx
->rmode
.irq
.vector
= nr
;
760 vmx
->rmode
.irq
.rip
= kvm_rip_read(vcpu
);
761 if (nr
== BP_VECTOR
|| nr
== OF_VECTOR
)
762 vmx
->rmode
.irq
.rip
++;
763 intr_info
|= INTR_TYPE_SOFT_INTR
;
764 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
, intr_info
);
765 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN
, 1);
766 kvm_rip_write(vcpu
, vmx
->rmode
.irq
.rip
- 1);
770 if (nr
== BP_VECTOR
|| nr
== OF_VECTOR
) {
771 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN
, 1);
772 intr_info
|= INTR_TYPE_SOFT_EXCEPTION
;
774 intr_info
|= INTR_TYPE_HARD_EXCEPTION
;
776 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
, intr_info
);
779 static bool vmx_exception_injected(struct kvm_vcpu
*vcpu
)
785 * Swap MSR entry in host/guest MSR entry array.
788 static void move_msr_up(struct vcpu_vmx
*vmx
, int from
, int to
)
790 struct kvm_msr_entry tmp
;
792 tmp
= vmx
->guest_msrs
[to
];
793 vmx
->guest_msrs
[to
] = vmx
->guest_msrs
[from
];
794 vmx
->guest_msrs
[from
] = tmp
;
795 tmp
= vmx
->host_msrs
[to
];
796 vmx
->host_msrs
[to
] = vmx
->host_msrs
[from
];
797 vmx
->host_msrs
[from
] = tmp
;
802 * Set up the vmcs to automatically save and restore system
803 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
804 * mode, as fiddling with msrs is very expensive.
806 static void setup_msrs(struct vcpu_vmx
*vmx
)
810 vmx_load_host_state(vmx
);
813 if (is_long_mode(&vmx
->vcpu
)) {
816 index
= __find_msr_index(vmx
, MSR_SYSCALL_MASK
);
818 move_msr_up(vmx
, index
, save_nmsrs
++);
819 index
= __find_msr_index(vmx
, MSR_LSTAR
);
821 move_msr_up(vmx
, index
, save_nmsrs
++);
822 index
= __find_msr_index(vmx
, MSR_CSTAR
);
824 move_msr_up(vmx
, index
, save_nmsrs
++);
825 index
= __find_msr_index(vmx
, MSR_KERNEL_GS_BASE
);
827 move_msr_up(vmx
, index
, save_nmsrs
++);
829 * MSR_K6_STAR is only needed on long mode guests, and only
830 * if efer.sce is enabled.
832 index
= __find_msr_index(vmx
, MSR_K6_STAR
);
833 if ((index
>= 0) && (vmx
->vcpu
.arch
.shadow_efer
& EFER_SCE
))
834 move_msr_up(vmx
, index
, save_nmsrs
++);
837 vmx
->save_nmsrs
= save_nmsrs
;
840 vmx
->msr_offset_kernel_gs_base
=
841 __find_msr_index(vmx
, MSR_KERNEL_GS_BASE
);
843 vmx
->msr_offset_efer
= __find_msr_index(vmx
, MSR_EFER
);
847 * reads and returns guest's timestamp counter "register"
848 * guest_tsc = host_tsc + tsc_offset -- 21.3
850 static u64
guest_read_tsc(void)
852 u64 host_tsc
, tsc_offset
;
855 tsc_offset
= vmcs_read64(TSC_OFFSET
);
856 return host_tsc
+ tsc_offset
;
860 * writes 'guest_tsc' into guest's timestamp counter "register"
861 * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
863 static void guest_write_tsc(u64 guest_tsc
)
868 vmcs_write64(TSC_OFFSET
, guest_tsc
- host_tsc
);
872 * Reads an msr value (of 'msr_index') into 'pdata'.
873 * Returns 0 on success, non-0 otherwise.
874 * Assumes vcpu_load() was already called.
876 static int vmx_get_msr(struct kvm_vcpu
*vcpu
, u32 msr_index
, u64
*pdata
)
879 struct kvm_msr_entry
*msr
;
882 printk(KERN_ERR
"BUG: get_msr called with NULL pdata\n");
889 data
= vmcs_readl(GUEST_FS_BASE
);
892 data
= vmcs_readl(GUEST_GS_BASE
);
895 return kvm_get_msr_common(vcpu
, msr_index
, pdata
);
897 case MSR_IA32_TIME_STAMP_COUNTER
:
898 data
= guest_read_tsc();
900 case MSR_IA32_SYSENTER_CS
:
901 data
= vmcs_read32(GUEST_SYSENTER_CS
);
903 case MSR_IA32_SYSENTER_EIP
:
904 data
= vmcs_readl(GUEST_SYSENTER_EIP
);
906 case MSR_IA32_SYSENTER_ESP
:
907 data
= vmcs_readl(GUEST_SYSENTER_ESP
);
910 vmx_load_host_state(to_vmx(vcpu
));
911 msr
= find_msr_entry(to_vmx(vcpu
), msr_index
);
916 return kvm_get_msr_common(vcpu
, msr_index
, pdata
);
924 * Writes msr value into into the appropriate "register".
925 * Returns 0 on success, non-0 otherwise.
926 * Assumes vcpu_load() was already called.
928 static int vmx_set_msr(struct kvm_vcpu
*vcpu
, u32 msr_index
, u64 data
)
930 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
931 struct kvm_msr_entry
*msr
;
937 vmx_load_host_state(vmx
);
938 ret
= kvm_set_msr_common(vcpu
, msr_index
, data
);
941 vmcs_writel(GUEST_FS_BASE
, data
);
944 vmcs_writel(GUEST_GS_BASE
, data
);
947 case MSR_IA32_SYSENTER_CS
:
948 vmcs_write32(GUEST_SYSENTER_CS
, data
);
950 case MSR_IA32_SYSENTER_EIP
:
951 vmcs_writel(GUEST_SYSENTER_EIP
, data
);
953 case MSR_IA32_SYSENTER_ESP
:
954 vmcs_writel(GUEST_SYSENTER_ESP
, data
);
956 case MSR_IA32_TIME_STAMP_COUNTER
:
957 guest_write_tsc(data
);
959 case MSR_P6_PERFCTR0
:
960 case MSR_P6_PERFCTR1
:
961 case MSR_P6_EVNTSEL0
:
962 case MSR_P6_EVNTSEL1
:
964 * Just discard all writes to the performance counters; this
965 * should keep both older linux and windows 64-bit guests
968 pr_unimpl(vcpu
, "unimplemented perfctr wrmsr: 0x%x data 0x%llx\n", msr_index
, data
);
971 case MSR_IA32_CR_PAT
:
972 if (vmcs_config
.vmentry_ctrl
& VM_ENTRY_LOAD_IA32_PAT
) {
973 vmcs_write64(GUEST_IA32_PAT
, data
);
974 vcpu
->arch
.pat
= data
;
977 /* Otherwise falls through to kvm_set_msr_common */
979 vmx_load_host_state(vmx
);
980 msr
= find_msr_entry(vmx
, msr_index
);
985 ret
= kvm_set_msr_common(vcpu
, msr_index
, data
);
991 static void vmx_cache_reg(struct kvm_vcpu
*vcpu
, enum kvm_reg reg
)
993 __set_bit(reg
, (unsigned long *)&vcpu
->arch
.regs_avail
);
996 vcpu
->arch
.regs
[VCPU_REGS_RSP
] = vmcs_readl(GUEST_RSP
);
999 vcpu
->arch
.regs
[VCPU_REGS_RIP
] = vmcs_readl(GUEST_RIP
);
1006 static int set_guest_debug(struct kvm_vcpu
*vcpu
, struct kvm_debug_guest
*dbg
)
1008 unsigned long dr7
= 0x400;
1011 old_singlestep
= vcpu
->guest_debug
.singlestep
;
1013 vcpu
->guest_debug
.enabled
= dbg
->enabled
;
1014 if (vcpu
->guest_debug
.enabled
) {
1017 dr7
|= 0x200; /* exact */
1018 for (i
= 0; i
< 4; ++i
) {
1019 if (!dbg
->breakpoints
[i
].enabled
)
1021 vcpu
->guest_debug
.bp
[i
] = dbg
->breakpoints
[i
].address
;
1022 dr7
|= 2 << (i
*2); /* global enable */
1023 dr7
|= 0 << (i
*4+16); /* execution breakpoint */
1026 vcpu
->guest_debug
.singlestep
= dbg
->singlestep
;
1028 vcpu
->guest_debug
.singlestep
= 0;
1030 if (old_singlestep
&& !vcpu
->guest_debug
.singlestep
) {
1031 unsigned long flags
;
1033 flags
= vmcs_readl(GUEST_RFLAGS
);
1034 flags
&= ~(X86_EFLAGS_TF
| X86_EFLAGS_RF
);
1035 vmcs_writel(GUEST_RFLAGS
, flags
);
1038 update_exception_bitmap(vcpu
);
1039 vmcs_writel(GUEST_DR7
, dr7
);
1044 static int vmx_get_irq(struct kvm_vcpu
*vcpu
)
1046 if (!vcpu
->arch
.interrupt
.pending
)
1048 return vcpu
->arch
.interrupt
.nr
;
1051 static __init
int cpu_has_kvm_support(void)
1053 return cpu_has_vmx();
1056 static __init
int vmx_disabled_by_bios(void)
1060 rdmsrl(MSR_IA32_FEATURE_CONTROL
, msr
);
1061 return (msr
& (FEATURE_CONTROL_LOCKED
|
1062 FEATURE_CONTROL_VMXON_ENABLED
))
1063 == FEATURE_CONTROL_LOCKED
;
1064 /* locked but not enabled */
1067 static void hardware_enable(void *garbage
)
1069 int cpu
= raw_smp_processor_id();
1070 u64 phys_addr
= __pa(per_cpu(vmxarea
, cpu
));
1073 INIT_LIST_HEAD(&per_cpu(vcpus_on_cpu
, cpu
));
1074 rdmsrl(MSR_IA32_FEATURE_CONTROL
, old
);
1075 if ((old
& (FEATURE_CONTROL_LOCKED
|
1076 FEATURE_CONTROL_VMXON_ENABLED
))
1077 != (FEATURE_CONTROL_LOCKED
|
1078 FEATURE_CONTROL_VMXON_ENABLED
))
1079 /* enable and lock */
1080 wrmsrl(MSR_IA32_FEATURE_CONTROL
, old
|
1081 FEATURE_CONTROL_LOCKED
|
1082 FEATURE_CONTROL_VMXON_ENABLED
);
1083 write_cr4(read_cr4() | X86_CR4_VMXE
); /* FIXME: not cpu hotplug safe */
1084 asm volatile (ASM_VMX_VMXON_RAX
1085 : : "a"(&phys_addr
), "m"(phys_addr
)
1089 static void vmclear_local_vcpus(void)
1091 int cpu
= raw_smp_processor_id();
1092 struct vcpu_vmx
*vmx
, *n
;
1094 list_for_each_entry_safe(vmx
, n
, &per_cpu(vcpus_on_cpu
, cpu
),
1100 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
1103 static void kvm_cpu_vmxoff(void)
1105 asm volatile (__ex(ASM_VMX_VMXOFF
) : : : "cc");
1106 write_cr4(read_cr4() & ~X86_CR4_VMXE
);
1109 static void hardware_disable(void *garbage
)
1111 vmclear_local_vcpus();
1115 static __init
int adjust_vmx_controls(u32 ctl_min
, u32 ctl_opt
,
1116 u32 msr
, u32
*result
)
1118 u32 vmx_msr_low
, vmx_msr_high
;
1119 u32 ctl
= ctl_min
| ctl_opt
;
1121 rdmsr(msr
, vmx_msr_low
, vmx_msr_high
);
1123 ctl
&= vmx_msr_high
; /* bit == 0 in high word ==> must be zero */
1124 ctl
|= vmx_msr_low
; /* bit == 1 in low word ==> must be one */
1126 /* Ensure minimum (required) set of control bits are supported. */
1134 static __init
int setup_vmcs_config(struct vmcs_config
*vmcs_conf
)
1136 u32 vmx_msr_low
, vmx_msr_high
;
1137 u32 min
, opt
, min2
, opt2
;
1138 u32 _pin_based_exec_control
= 0;
1139 u32 _cpu_based_exec_control
= 0;
1140 u32 _cpu_based_2nd_exec_control
= 0;
1141 u32 _vmexit_control
= 0;
1142 u32 _vmentry_control
= 0;
1144 min
= PIN_BASED_EXT_INTR_MASK
| PIN_BASED_NMI_EXITING
;
1145 opt
= PIN_BASED_VIRTUAL_NMIS
;
1146 if (adjust_vmx_controls(min
, opt
, MSR_IA32_VMX_PINBASED_CTLS
,
1147 &_pin_based_exec_control
) < 0)
1150 min
= CPU_BASED_HLT_EXITING
|
1151 #ifdef CONFIG_X86_64
1152 CPU_BASED_CR8_LOAD_EXITING
|
1153 CPU_BASED_CR8_STORE_EXITING
|
1155 CPU_BASED_CR3_LOAD_EXITING
|
1156 CPU_BASED_CR3_STORE_EXITING
|
1157 CPU_BASED_USE_IO_BITMAPS
|
1158 CPU_BASED_MOV_DR_EXITING
|
1159 CPU_BASED_USE_TSC_OFFSETING
|
1160 CPU_BASED_INVLPG_EXITING
;
1161 opt
= CPU_BASED_TPR_SHADOW
|
1162 CPU_BASED_USE_MSR_BITMAPS
|
1163 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS
;
1164 if (adjust_vmx_controls(min
, opt
, MSR_IA32_VMX_PROCBASED_CTLS
,
1165 &_cpu_based_exec_control
) < 0)
1167 #ifdef CONFIG_X86_64
1168 if ((_cpu_based_exec_control
& CPU_BASED_TPR_SHADOW
))
1169 _cpu_based_exec_control
&= ~CPU_BASED_CR8_LOAD_EXITING
&
1170 ~CPU_BASED_CR8_STORE_EXITING
;
1172 if (_cpu_based_exec_control
& CPU_BASED_ACTIVATE_SECONDARY_CONTROLS
) {
1174 opt2
= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
|
1175 SECONDARY_EXEC_WBINVD_EXITING
|
1176 SECONDARY_EXEC_ENABLE_VPID
|
1177 SECONDARY_EXEC_ENABLE_EPT
;
1178 if (adjust_vmx_controls(min2
, opt2
,
1179 MSR_IA32_VMX_PROCBASED_CTLS2
,
1180 &_cpu_based_2nd_exec_control
) < 0)
1183 #ifndef CONFIG_X86_64
1184 if (!(_cpu_based_2nd_exec_control
&
1185 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
))
1186 _cpu_based_exec_control
&= ~CPU_BASED_TPR_SHADOW
;
1188 if (_cpu_based_2nd_exec_control
& SECONDARY_EXEC_ENABLE_EPT
) {
1189 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
1191 min
&= ~(CPU_BASED_CR3_LOAD_EXITING
|
1192 CPU_BASED_CR3_STORE_EXITING
|
1193 CPU_BASED_INVLPG_EXITING
);
1194 if (adjust_vmx_controls(min
, opt
, MSR_IA32_VMX_PROCBASED_CTLS
,
1195 &_cpu_based_exec_control
) < 0)
1197 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP
,
1198 vmx_capability
.ept
, vmx_capability
.vpid
);
1202 #ifdef CONFIG_X86_64
1203 min
|= VM_EXIT_HOST_ADDR_SPACE_SIZE
;
1205 opt
= VM_EXIT_SAVE_IA32_PAT
| VM_EXIT_LOAD_IA32_PAT
;
1206 if (adjust_vmx_controls(min
, opt
, MSR_IA32_VMX_EXIT_CTLS
,
1207 &_vmexit_control
) < 0)
1211 opt
= VM_ENTRY_LOAD_IA32_PAT
;
1212 if (adjust_vmx_controls(min
, opt
, MSR_IA32_VMX_ENTRY_CTLS
,
1213 &_vmentry_control
) < 0)
1216 rdmsr(MSR_IA32_VMX_BASIC
, vmx_msr_low
, vmx_msr_high
);
1218 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
1219 if ((vmx_msr_high
& 0x1fff) > PAGE_SIZE
)
1222 #ifdef CONFIG_X86_64
1223 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
1224 if (vmx_msr_high
& (1u<<16))
1228 /* Require Write-Back (WB) memory type for VMCS accesses. */
1229 if (((vmx_msr_high
>> 18) & 15) != 6)
1232 vmcs_conf
->size
= vmx_msr_high
& 0x1fff;
1233 vmcs_conf
->order
= get_order(vmcs_config
.size
);
1234 vmcs_conf
->revision_id
= vmx_msr_low
;
1236 vmcs_conf
->pin_based_exec_ctrl
= _pin_based_exec_control
;
1237 vmcs_conf
->cpu_based_exec_ctrl
= _cpu_based_exec_control
;
1238 vmcs_conf
->cpu_based_2nd_exec_ctrl
= _cpu_based_2nd_exec_control
;
1239 vmcs_conf
->vmexit_ctrl
= _vmexit_control
;
1240 vmcs_conf
->vmentry_ctrl
= _vmentry_control
;
1245 static struct vmcs
*alloc_vmcs_cpu(int cpu
)
1247 int node
= cpu_to_node(cpu
);
1251 pages
= alloc_pages_node(node
, GFP_KERNEL
, vmcs_config
.order
);
1254 vmcs
= page_address(pages
);
1255 memset(vmcs
, 0, vmcs_config
.size
);
1256 vmcs
->revision_id
= vmcs_config
.revision_id
; /* vmcs revision id */
1260 static struct vmcs
*alloc_vmcs(void)
1262 return alloc_vmcs_cpu(raw_smp_processor_id());
1265 static void free_vmcs(struct vmcs
*vmcs
)
1267 free_pages((unsigned long)vmcs
, vmcs_config
.order
);
1270 static void free_kvm_area(void)
1274 for_each_online_cpu(cpu
)
1275 free_vmcs(per_cpu(vmxarea
, cpu
));
1278 static __init
int alloc_kvm_area(void)
1282 for_each_online_cpu(cpu
) {
1285 vmcs
= alloc_vmcs_cpu(cpu
);
1291 per_cpu(vmxarea
, cpu
) = vmcs
;
1296 static __init
int hardware_setup(void)
1298 if (setup_vmcs_config(&vmcs_config
) < 0)
1301 if (boot_cpu_has(X86_FEATURE_NX
))
1302 kvm_enable_efer_bits(EFER_NX
);
1304 return alloc_kvm_area();
1307 static __exit
void hardware_unsetup(void)
1312 static void fix_pmode_dataseg(int seg
, struct kvm_save_segment
*save
)
1314 struct kvm_vmx_segment_field
*sf
= &kvm_vmx_segment_fields
[seg
];
1316 if (vmcs_readl(sf
->base
) == save
->base
&& (save
->base
& AR_S_MASK
)) {
1317 vmcs_write16(sf
->selector
, save
->selector
);
1318 vmcs_writel(sf
->base
, save
->base
);
1319 vmcs_write32(sf
->limit
, save
->limit
);
1320 vmcs_write32(sf
->ar_bytes
, save
->ar
);
1322 u32 dpl
= (vmcs_read16(sf
->selector
) & SELECTOR_RPL_MASK
)
1324 vmcs_write32(sf
->ar_bytes
, 0x93 | dpl
);
1328 static void enter_pmode(struct kvm_vcpu
*vcpu
)
1330 unsigned long flags
;
1331 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
1333 vmx
->emulation_required
= 1;
1334 vcpu
->arch
.rmode
.active
= 0;
1336 vmcs_writel(GUEST_TR_BASE
, vcpu
->arch
.rmode
.tr
.base
);
1337 vmcs_write32(GUEST_TR_LIMIT
, vcpu
->arch
.rmode
.tr
.limit
);
1338 vmcs_write32(GUEST_TR_AR_BYTES
, vcpu
->arch
.rmode
.tr
.ar
);
1340 flags
= vmcs_readl(GUEST_RFLAGS
);
1341 flags
&= ~(X86_EFLAGS_IOPL
| X86_EFLAGS_VM
);
1342 flags
|= (vcpu
->arch
.rmode
.save_iopl
<< IOPL_SHIFT
);
1343 vmcs_writel(GUEST_RFLAGS
, flags
);
1345 vmcs_writel(GUEST_CR4
, (vmcs_readl(GUEST_CR4
) & ~X86_CR4_VME
) |
1346 (vmcs_readl(CR4_READ_SHADOW
) & X86_CR4_VME
));
1348 update_exception_bitmap(vcpu
);
1350 if (emulate_invalid_guest_state
)
1353 fix_pmode_dataseg(VCPU_SREG_ES
, &vcpu
->arch
.rmode
.es
);
1354 fix_pmode_dataseg(VCPU_SREG_DS
, &vcpu
->arch
.rmode
.ds
);
1355 fix_pmode_dataseg(VCPU_SREG_GS
, &vcpu
->arch
.rmode
.gs
);
1356 fix_pmode_dataseg(VCPU_SREG_FS
, &vcpu
->arch
.rmode
.fs
);
1358 vmcs_write16(GUEST_SS_SELECTOR
, 0);
1359 vmcs_write32(GUEST_SS_AR_BYTES
, 0x93);
1361 vmcs_write16(GUEST_CS_SELECTOR
,
1362 vmcs_read16(GUEST_CS_SELECTOR
) & ~SELECTOR_RPL_MASK
);
1363 vmcs_write32(GUEST_CS_AR_BYTES
, 0x9b);
1366 static gva_t
rmode_tss_base(struct kvm
*kvm
)
1368 if (!kvm
->arch
.tss_addr
) {
1369 gfn_t base_gfn
= kvm
->memslots
[0].base_gfn
+
1370 kvm
->memslots
[0].npages
- 3;
1371 return base_gfn
<< PAGE_SHIFT
;
1373 return kvm
->arch
.tss_addr
;
1376 static void fix_rmode_seg(int seg
, struct kvm_save_segment
*save
)
1378 struct kvm_vmx_segment_field
*sf
= &kvm_vmx_segment_fields
[seg
];
1380 save
->selector
= vmcs_read16(sf
->selector
);
1381 save
->base
= vmcs_readl(sf
->base
);
1382 save
->limit
= vmcs_read32(sf
->limit
);
1383 save
->ar
= vmcs_read32(sf
->ar_bytes
);
1384 vmcs_write16(sf
->selector
, save
->base
>> 4);
1385 vmcs_write32(sf
->base
, save
->base
& 0xfffff);
1386 vmcs_write32(sf
->limit
, 0xffff);
1387 vmcs_write32(sf
->ar_bytes
, 0xf3);
1390 static void enter_rmode(struct kvm_vcpu
*vcpu
)
1392 unsigned long flags
;
1393 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
1395 vmx
->emulation_required
= 1;
1396 vcpu
->arch
.rmode
.active
= 1;
1398 vcpu
->arch
.rmode
.tr
.base
= vmcs_readl(GUEST_TR_BASE
);
1399 vmcs_writel(GUEST_TR_BASE
, rmode_tss_base(vcpu
->kvm
));
1401 vcpu
->arch
.rmode
.tr
.limit
= vmcs_read32(GUEST_TR_LIMIT
);
1402 vmcs_write32(GUEST_TR_LIMIT
, RMODE_TSS_SIZE
- 1);
1404 vcpu
->arch
.rmode
.tr
.ar
= vmcs_read32(GUEST_TR_AR_BYTES
);
1405 vmcs_write32(GUEST_TR_AR_BYTES
, 0x008b);
1407 flags
= vmcs_readl(GUEST_RFLAGS
);
1408 vcpu
->arch
.rmode
.save_iopl
1409 = (flags
& X86_EFLAGS_IOPL
) >> IOPL_SHIFT
;
1411 flags
|= X86_EFLAGS_IOPL
| X86_EFLAGS_VM
;
1413 vmcs_writel(GUEST_RFLAGS
, flags
);
1414 vmcs_writel(GUEST_CR4
, vmcs_readl(GUEST_CR4
) | X86_CR4_VME
);
1415 update_exception_bitmap(vcpu
);
1417 if (emulate_invalid_guest_state
)
1418 goto continue_rmode
;
1420 vmcs_write16(GUEST_SS_SELECTOR
, vmcs_readl(GUEST_SS_BASE
) >> 4);
1421 vmcs_write32(GUEST_SS_LIMIT
, 0xffff);
1422 vmcs_write32(GUEST_SS_AR_BYTES
, 0xf3);
1424 vmcs_write32(GUEST_CS_AR_BYTES
, 0xf3);
1425 vmcs_write32(GUEST_CS_LIMIT
, 0xffff);
1426 if (vmcs_readl(GUEST_CS_BASE
) == 0xffff0000)
1427 vmcs_writel(GUEST_CS_BASE
, 0xf0000);
1428 vmcs_write16(GUEST_CS_SELECTOR
, vmcs_readl(GUEST_CS_BASE
) >> 4);
1430 fix_rmode_seg(VCPU_SREG_ES
, &vcpu
->arch
.rmode
.es
);
1431 fix_rmode_seg(VCPU_SREG_DS
, &vcpu
->arch
.rmode
.ds
);
1432 fix_rmode_seg(VCPU_SREG_GS
, &vcpu
->arch
.rmode
.gs
);
1433 fix_rmode_seg(VCPU_SREG_FS
, &vcpu
->arch
.rmode
.fs
);
1436 kvm_mmu_reset_context(vcpu
);
1437 init_rmode(vcpu
->kvm
);
1440 #ifdef CONFIG_X86_64
1442 static void enter_lmode(struct kvm_vcpu
*vcpu
)
1446 guest_tr_ar
= vmcs_read32(GUEST_TR_AR_BYTES
);
1447 if ((guest_tr_ar
& AR_TYPE_MASK
) != AR_TYPE_BUSY_64_TSS
) {
1448 printk(KERN_DEBUG
"%s: tss fixup for long mode. \n",
1450 vmcs_write32(GUEST_TR_AR_BYTES
,
1451 (guest_tr_ar
& ~AR_TYPE_MASK
)
1452 | AR_TYPE_BUSY_64_TSS
);
1455 vcpu
->arch
.shadow_efer
|= EFER_LMA
;
1457 find_msr_entry(to_vmx(vcpu
), MSR_EFER
)->data
|= EFER_LMA
| EFER_LME
;
1458 vmcs_write32(VM_ENTRY_CONTROLS
,
1459 vmcs_read32(VM_ENTRY_CONTROLS
)
1460 | VM_ENTRY_IA32E_MODE
);
1463 static void exit_lmode(struct kvm_vcpu
*vcpu
)
1465 vcpu
->arch
.shadow_efer
&= ~EFER_LMA
;
1467 vmcs_write32(VM_ENTRY_CONTROLS
,
1468 vmcs_read32(VM_ENTRY_CONTROLS
)
1469 & ~VM_ENTRY_IA32E_MODE
);
1474 static void vmx_flush_tlb(struct kvm_vcpu
*vcpu
)
1476 vpid_sync_vcpu_all(to_vmx(vcpu
));
1478 ept_sync_context(construct_eptp(vcpu
->arch
.mmu
.root_hpa
));
1481 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu
*vcpu
)
1483 vcpu
->arch
.cr4
&= KVM_GUEST_CR4_MASK
;
1484 vcpu
->arch
.cr4
|= vmcs_readl(GUEST_CR4
) & ~KVM_GUEST_CR4_MASK
;
1487 static void ept_load_pdptrs(struct kvm_vcpu
*vcpu
)
1489 if (is_paging(vcpu
) && is_pae(vcpu
) && !is_long_mode(vcpu
)) {
1490 if (!load_pdptrs(vcpu
, vcpu
->arch
.cr3
)) {
1491 printk(KERN_ERR
"EPT: Fail to load pdptrs!\n");
1494 vmcs_write64(GUEST_PDPTR0
, vcpu
->arch
.pdptrs
[0]);
1495 vmcs_write64(GUEST_PDPTR1
, vcpu
->arch
.pdptrs
[1]);
1496 vmcs_write64(GUEST_PDPTR2
, vcpu
->arch
.pdptrs
[2]);
1497 vmcs_write64(GUEST_PDPTR3
, vcpu
->arch
.pdptrs
[3]);
1501 static void vmx_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long cr4
);
1503 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0
,
1505 struct kvm_vcpu
*vcpu
)
1507 if (!(cr0
& X86_CR0_PG
)) {
1508 /* From paging/starting to nonpaging */
1509 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
,
1510 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
) |
1511 (CPU_BASED_CR3_LOAD_EXITING
|
1512 CPU_BASED_CR3_STORE_EXITING
));
1513 vcpu
->arch
.cr0
= cr0
;
1514 vmx_set_cr4(vcpu
, vcpu
->arch
.cr4
);
1515 *hw_cr0
|= X86_CR0_PE
| X86_CR0_PG
;
1516 *hw_cr0
&= ~X86_CR0_WP
;
1517 } else if (!is_paging(vcpu
)) {
1518 /* From nonpaging to paging */
1519 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
,
1520 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
) &
1521 ~(CPU_BASED_CR3_LOAD_EXITING
|
1522 CPU_BASED_CR3_STORE_EXITING
));
1523 vcpu
->arch
.cr0
= cr0
;
1524 vmx_set_cr4(vcpu
, vcpu
->arch
.cr4
);
1525 if (!(vcpu
->arch
.cr0
& X86_CR0_WP
))
1526 *hw_cr0
&= ~X86_CR0_WP
;
1530 static void ept_update_paging_mode_cr4(unsigned long *hw_cr4
,
1531 struct kvm_vcpu
*vcpu
)
1533 if (!is_paging(vcpu
)) {
1534 *hw_cr4
&= ~X86_CR4_PAE
;
1535 *hw_cr4
|= X86_CR4_PSE
;
1536 } else if (!(vcpu
->arch
.cr4
& X86_CR4_PAE
))
1537 *hw_cr4
&= ~X86_CR4_PAE
;
1540 static void vmx_set_cr0(struct kvm_vcpu
*vcpu
, unsigned long cr0
)
1542 unsigned long hw_cr0
= (cr0
& ~KVM_GUEST_CR0_MASK
) |
1543 KVM_VM_CR0_ALWAYS_ON
;
1545 vmx_fpu_deactivate(vcpu
);
1547 if (vcpu
->arch
.rmode
.active
&& (cr0
& X86_CR0_PE
))
1550 if (!vcpu
->arch
.rmode
.active
&& !(cr0
& X86_CR0_PE
))
1553 #ifdef CONFIG_X86_64
1554 if (vcpu
->arch
.shadow_efer
& EFER_LME
) {
1555 if (!is_paging(vcpu
) && (cr0
& X86_CR0_PG
))
1557 if (is_paging(vcpu
) && !(cr0
& X86_CR0_PG
))
1563 ept_update_paging_mode_cr0(&hw_cr0
, cr0
, vcpu
);
1565 vmcs_writel(CR0_READ_SHADOW
, cr0
);
1566 vmcs_writel(GUEST_CR0
, hw_cr0
);
1567 vcpu
->arch
.cr0
= cr0
;
1569 if (!(cr0
& X86_CR0_TS
) || !(cr0
& X86_CR0_PE
))
1570 vmx_fpu_activate(vcpu
);
1573 static u64
construct_eptp(unsigned long root_hpa
)
1577 /* TODO write the value reading from MSR */
1578 eptp
= VMX_EPT_DEFAULT_MT
|
1579 VMX_EPT_DEFAULT_GAW
<< VMX_EPT_GAW_EPTP_SHIFT
;
1580 eptp
|= (root_hpa
& PAGE_MASK
);
1585 static void vmx_set_cr3(struct kvm_vcpu
*vcpu
, unsigned long cr3
)
1587 unsigned long guest_cr3
;
1591 if (vm_need_ept()) {
1592 eptp
= construct_eptp(cr3
);
1593 vmcs_write64(EPT_POINTER
, eptp
);
1594 ept_sync_context(eptp
);
1595 ept_load_pdptrs(vcpu
);
1596 guest_cr3
= is_paging(vcpu
) ? vcpu
->arch
.cr3
:
1597 VMX_EPT_IDENTITY_PAGETABLE_ADDR
;
1600 vmx_flush_tlb(vcpu
);
1601 vmcs_writel(GUEST_CR3
, guest_cr3
);
1602 if (vcpu
->arch
.cr0
& X86_CR0_PE
)
1603 vmx_fpu_deactivate(vcpu
);
1606 static void vmx_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long cr4
)
1608 unsigned long hw_cr4
= cr4
| (vcpu
->arch
.rmode
.active
?
1609 KVM_RMODE_VM_CR4_ALWAYS_ON
: KVM_PMODE_VM_CR4_ALWAYS_ON
);
1611 vcpu
->arch
.cr4
= cr4
;
1613 ept_update_paging_mode_cr4(&hw_cr4
, vcpu
);
1615 vmcs_writel(CR4_READ_SHADOW
, cr4
);
1616 vmcs_writel(GUEST_CR4
, hw_cr4
);
1619 static void vmx_set_efer(struct kvm_vcpu
*vcpu
, u64 efer
)
1621 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
1622 struct kvm_msr_entry
*msr
= find_msr_entry(vmx
, MSR_EFER
);
1624 vcpu
->arch
.shadow_efer
= efer
;
1627 if (efer
& EFER_LMA
) {
1628 vmcs_write32(VM_ENTRY_CONTROLS
,
1629 vmcs_read32(VM_ENTRY_CONTROLS
) |
1630 VM_ENTRY_IA32E_MODE
);
1634 vmcs_write32(VM_ENTRY_CONTROLS
,
1635 vmcs_read32(VM_ENTRY_CONTROLS
) &
1636 ~VM_ENTRY_IA32E_MODE
);
1638 msr
->data
= efer
& ~EFER_LME
;
1643 static u64
vmx_get_segment_base(struct kvm_vcpu
*vcpu
, int seg
)
1645 struct kvm_vmx_segment_field
*sf
= &kvm_vmx_segment_fields
[seg
];
1647 return vmcs_readl(sf
->base
);
1650 static void vmx_get_segment(struct kvm_vcpu
*vcpu
,
1651 struct kvm_segment
*var
, int seg
)
1653 struct kvm_vmx_segment_field
*sf
= &kvm_vmx_segment_fields
[seg
];
1656 var
->base
= vmcs_readl(sf
->base
);
1657 var
->limit
= vmcs_read32(sf
->limit
);
1658 var
->selector
= vmcs_read16(sf
->selector
);
1659 ar
= vmcs_read32(sf
->ar_bytes
);
1660 if (ar
& AR_UNUSABLE_MASK
)
1662 var
->type
= ar
& 15;
1663 var
->s
= (ar
>> 4) & 1;
1664 var
->dpl
= (ar
>> 5) & 3;
1665 var
->present
= (ar
>> 7) & 1;
1666 var
->avl
= (ar
>> 12) & 1;
1667 var
->l
= (ar
>> 13) & 1;
1668 var
->db
= (ar
>> 14) & 1;
1669 var
->g
= (ar
>> 15) & 1;
1670 var
->unusable
= (ar
>> 16) & 1;
1673 static int vmx_get_cpl(struct kvm_vcpu
*vcpu
)
1675 struct kvm_segment kvm_seg
;
1677 if (!(vcpu
->arch
.cr0
& X86_CR0_PE
)) /* if real mode */
1680 if (vmx_get_rflags(vcpu
) & X86_EFLAGS_VM
) /* if virtual 8086 */
1683 vmx_get_segment(vcpu
, &kvm_seg
, VCPU_SREG_CS
);
1684 return kvm_seg
.selector
& 3;
1687 static u32
vmx_segment_access_rights(struct kvm_segment
*var
)
1694 ar
= var
->type
& 15;
1695 ar
|= (var
->s
& 1) << 4;
1696 ar
|= (var
->dpl
& 3) << 5;
1697 ar
|= (var
->present
& 1) << 7;
1698 ar
|= (var
->avl
& 1) << 12;
1699 ar
|= (var
->l
& 1) << 13;
1700 ar
|= (var
->db
& 1) << 14;
1701 ar
|= (var
->g
& 1) << 15;
1703 if (ar
== 0) /* a 0 value means unusable */
1704 ar
= AR_UNUSABLE_MASK
;
1709 static void vmx_set_segment(struct kvm_vcpu
*vcpu
,
1710 struct kvm_segment
*var
, int seg
)
1712 struct kvm_vmx_segment_field
*sf
= &kvm_vmx_segment_fields
[seg
];
1715 if (vcpu
->arch
.rmode
.active
&& seg
== VCPU_SREG_TR
) {
1716 vcpu
->arch
.rmode
.tr
.selector
= var
->selector
;
1717 vcpu
->arch
.rmode
.tr
.base
= var
->base
;
1718 vcpu
->arch
.rmode
.tr
.limit
= var
->limit
;
1719 vcpu
->arch
.rmode
.tr
.ar
= vmx_segment_access_rights(var
);
1722 vmcs_writel(sf
->base
, var
->base
);
1723 vmcs_write32(sf
->limit
, var
->limit
);
1724 vmcs_write16(sf
->selector
, var
->selector
);
1725 if (vcpu
->arch
.rmode
.active
&& var
->s
) {
1727 * Hack real-mode segments into vm86 compatibility.
1729 if (var
->base
== 0xffff0000 && var
->selector
== 0xf000)
1730 vmcs_writel(sf
->base
, 0xf0000);
1733 ar
= vmx_segment_access_rights(var
);
1734 vmcs_write32(sf
->ar_bytes
, ar
);
1737 static void vmx_get_cs_db_l_bits(struct kvm_vcpu
*vcpu
, int *db
, int *l
)
1739 u32 ar
= vmcs_read32(GUEST_CS_AR_BYTES
);
1741 *db
= (ar
>> 14) & 1;
1742 *l
= (ar
>> 13) & 1;
1745 static void vmx_get_idt(struct kvm_vcpu
*vcpu
, struct descriptor_table
*dt
)
1747 dt
->limit
= vmcs_read32(GUEST_IDTR_LIMIT
);
1748 dt
->base
= vmcs_readl(GUEST_IDTR_BASE
);
1751 static void vmx_set_idt(struct kvm_vcpu
*vcpu
, struct descriptor_table
*dt
)
1753 vmcs_write32(GUEST_IDTR_LIMIT
, dt
->limit
);
1754 vmcs_writel(GUEST_IDTR_BASE
, dt
->base
);
1757 static void vmx_get_gdt(struct kvm_vcpu
*vcpu
, struct descriptor_table
*dt
)
1759 dt
->limit
= vmcs_read32(GUEST_GDTR_LIMIT
);
1760 dt
->base
= vmcs_readl(GUEST_GDTR_BASE
);
1763 static void vmx_set_gdt(struct kvm_vcpu
*vcpu
, struct descriptor_table
*dt
)
1765 vmcs_write32(GUEST_GDTR_LIMIT
, dt
->limit
);
1766 vmcs_writel(GUEST_GDTR_BASE
, dt
->base
);
1769 static bool rmode_segment_valid(struct kvm_vcpu
*vcpu
, int seg
)
1771 struct kvm_segment var
;
1774 vmx_get_segment(vcpu
, &var
, seg
);
1775 ar
= vmx_segment_access_rights(&var
);
1777 if (var
.base
!= (var
.selector
<< 4))
1779 if (var
.limit
!= 0xffff)
1787 static bool code_segment_valid(struct kvm_vcpu
*vcpu
)
1789 struct kvm_segment cs
;
1790 unsigned int cs_rpl
;
1792 vmx_get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
1793 cs_rpl
= cs
.selector
& SELECTOR_RPL_MASK
;
1795 if (~cs
.type
& (AR_TYPE_CODE_MASK
|AR_TYPE_ACCESSES_MASK
))
1799 if (!(~cs
.type
& (AR_TYPE_CODE_MASK
|AR_TYPE_WRITEABLE_MASK
))) {
1800 if (cs
.dpl
> cs_rpl
)
1802 } else if (cs
.type
& AR_TYPE_CODE_MASK
) {
1803 if (cs
.dpl
!= cs_rpl
)
1809 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
1813 static bool stack_segment_valid(struct kvm_vcpu
*vcpu
)
1815 struct kvm_segment ss
;
1816 unsigned int ss_rpl
;
1818 vmx_get_segment(vcpu
, &ss
, VCPU_SREG_SS
);
1819 ss_rpl
= ss
.selector
& SELECTOR_RPL_MASK
;
1821 if ((ss
.type
!= 3) || (ss
.type
!= 7))
1825 if (ss
.dpl
!= ss_rpl
) /* DPL != RPL */
1833 static bool data_segment_valid(struct kvm_vcpu
*vcpu
, int seg
)
1835 struct kvm_segment var
;
1838 vmx_get_segment(vcpu
, &var
, seg
);
1839 rpl
= var
.selector
& SELECTOR_RPL_MASK
;
1845 if (~var
.type
& (AR_TYPE_CODE_MASK
|AR_TYPE_WRITEABLE_MASK
)) {
1846 if (var
.dpl
< rpl
) /* DPL < RPL */
1850 /* TODO: Add other members to kvm_segment_field to allow checking for other access
1856 static bool tr_valid(struct kvm_vcpu
*vcpu
)
1858 struct kvm_segment tr
;
1860 vmx_get_segment(vcpu
, &tr
, VCPU_SREG_TR
);
1862 if (tr
.selector
& SELECTOR_TI_MASK
) /* TI = 1 */
1864 if ((tr
.type
!= 3) || (tr
.type
!= 11)) /* TODO: Check if guest is in IA32e mode */
1872 static bool ldtr_valid(struct kvm_vcpu
*vcpu
)
1874 struct kvm_segment ldtr
;
1876 vmx_get_segment(vcpu
, &ldtr
, VCPU_SREG_LDTR
);
1878 if (ldtr
.selector
& SELECTOR_TI_MASK
) /* TI = 1 */
1888 static bool cs_ss_rpl_check(struct kvm_vcpu
*vcpu
)
1890 struct kvm_segment cs
, ss
;
1892 vmx_get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
1893 vmx_get_segment(vcpu
, &ss
, VCPU_SREG_SS
);
1895 return ((cs
.selector
& SELECTOR_RPL_MASK
) ==
1896 (ss
.selector
& SELECTOR_RPL_MASK
));
1900 * Check if guest state is valid. Returns true if valid, false if
1902 * We assume that registers are always usable
1904 static bool guest_state_valid(struct kvm_vcpu
*vcpu
)
1906 /* real mode guest state checks */
1907 if (!(vcpu
->arch
.cr0
& X86_CR0_PE
)) {
1908 if (!rmode_segment_valid(vcpu
, VCPU_SREG_CS
))
1910 if (!rmode_segment_valid(vcpu
, VCPU_SREG_SS
))
1912 if (!rmode_segment_valid(vcpu
, VCPU_SREG_DS
))
1914 if (!rmode_segment_valid(vcpu
, VCPU_SREG_ES
))
1916 if (!rmode_segment_valid(vcpu
, VCPU_SREG_FS
))
1918 if (!rmode_segment_valid(vcpu
, VCPU_SREG_GS
))
1921 /* protected mode guest state checks */
1922 if (!cs_ss_rpl_check(vcpu
))
1924 if (!code_segment_valid(vcpu
))
1926 if (!stack_segment_valid(vcpu
))
1928 if (!data_segment_valid(vcpu
, VCPU_SREG_DS
))
1930 if (!data_segment_valid(vcpu
, VCPU_SREG_ES
))
1932 if (!data_segment_valid(vcpu
, VCPU_SREG_FS
))
1934 if (!data_segment_valid(vcpu
, VCPU_SREG_GS
))
1936 if (!tr_valid(vcpu
))
1938 if (!ldtr_valid(vcpu
))
1942 * - Add checks on RIP
1943 * - Add checks on RFLAGS
1949 static int init_rmode_tss(struct kvm
*kvm
)
1951 gfn_t fn
= rmode_tss_base(kvm
) >> PAGE_SHIFT
;
1956 r
= kvm_clear_guest_page(kvm
, fn
, 0, PAGE_SIZE
);
1959 data
= TSS_BASE_SIZE
+ TSS_REDIRECTION_SIZE
;
1960 r
= kvm_write_guest_page(kvm
, fn
++, &data
,
1961 TSS_IOPB_BASE_OFFSET
, sizeof(u16
));
1964 r
= kvm_clear_guest_page(kvm
, fn
++, 0, PAGE_SIZE
);
1967 r
= kvm_clear_guest_page(kvm
, fn
, 0, PAGE_SIZE
);
1971 r
= kvm_write_guest_page(kvm
, fn
, &data
,
1972 RMODE_TSS_SIZE
- 2 * PAGE_SIZE
- 1,
1982 static int init_rmode_identity_map(struct kvm
*kvm
)
1985 pfn_t identity_map_pfn
;
1990 if (unlikely(!kvm
->arch
.ept_identity_pagetable
)) {
1991 printk(KERN_ERR
"EPT: identity-mapping pagetable "
1992 "haven't been allocated!\n");
1995 if (likely(kvm
->arch
.ept_identity_pagetable_done
))
1998 identity_map_pfn
= VMX_EPT_IDENTITY_PAGETABLE_ADDR
>> PAGE_SHIFT
;
1999 r
= kvm_clear_guest_page(kvm
, identity_map_pfn
, 0, PAGE_SIZE
);
2002 /* Set up identity-mapping pagetable for EPT in real mode */
2003 for (i
= 0; i
< PT32_ENT_PER_PAGE
; i
++) {
2004 tmp
= (i
<< 22) + (_PAGE_PRESENT
| _PAGE_RW
| _PAGE_USER
|
2005 _PAGE_ACCESSED
| _PAGE_DIRTY
| _PAGE_PSE
);
2006 r
= kvm_write_guest_page(kvm
, identity_map_pfn
,
2007 &tmp
, i
* sizeof(tmp
), sizeof(tmp
));
2011 kvm
->arch
.ept_identity_pagetable_done
= true;
2017 static void seg_setup(int seg
)
2019 struct kvm_vmx_segment_field
*sf
= &kvm_vmx_segment_fields
[seg
];
2021 vmcs_write16(sf
->selector
, 0);
2022 vmcs_writel(sf
->base
, 0);
2023 vmcs_write32(sf
->limit
, 0xffff);
2024 vmcs_write32(sf
->ar_bytes
, 0xf3);
2027 static int alloc_apic_access_page(struct kvm
*kvm
)
2029 struct kvm_userspace_memory_region kvm_userspace_mem
;
2032 down_write(&kvm
->slots_lock
);
2033 if (kvm
->arch
.apic_access_page
)
2035 kvm_userspace_mem
.slot
= APIC_ACCESS_PAGE_PRIVATE_MEMSLOT
;
2036 kvm_userspace_mem
.flags
= 0;
2037 kvm_userspace_mem
.guest_phys_addr
= 0xfee00000ULL
;
2038 kvm_userspace_mem
.memory_size
= PAGE_SIZE
;
2039 r
= __kvm_set_memory_region(kvm
, &kvm_userspace_mem
, 0);
2043 kvm
->arch
.apic_access_page
= gfn_to_page(kvm
, 0xfee00);
2045 up_write(&kvm
->slots_lock
);
2049 static int alloc_identity_pagetable(struct kvm
*kvm
)
2051 struct kvm_userspace_memory_region kvm_userspace_mem
;
2054 down_write(&kvm
->slots_lock
);
2055 if (kvm
->arch
.ept_identity_pagetable
)
2057 kvm_userspace_mem
.slot
= IDENTITY_PAGETABLE_PRIVATE_MEMSLOT
;
2058 kvm_userspace_mem
.flags
= 0;
2059 kvm_userspace_mem
.guest_phys_addr
= VMX_EPT_IDENTITY_PAGETABLE_ADDR
;
2060 kvm_userspace_mem
.memory_size
= PAGE_SIZE
;
2061 r
= __kvm_set_memory_region(kvm
, &kvm_userspace_mem
, 0);
2065 kvm
->arch
.ept_identity_pagetable
= gfn_to_page(kvm
,
2066 VMX_EPT_IDENTITY_PAGETABLE_ADDR
>> PAGE_SHIFT
);
2068 up_write(&kvm
->slots_lock
);
2072 static void allocate_vpid(struct vcpu_vmx
*vmx
)
2077 if (!enable_vpid
|| !cpu_has_vmx_vpid())
2079 spin_lock(&vmx_vpid_lock
);
2080 vpid
= find_first_zero_bit(vmx_vpid_bitmap
, VMX_NR_VPIDS
);
2081 if (vpid
< VMX_NR_VPIDS
) {
2083 __set_bit(vpid
, vmx_vpid_bitmap
);
2085 spin_unlock(&vmx_vpid_lock
);
2088 static void vmx_disable_intercept_for_msr(struct page
*msr_bitmap
, u32 msr
)
2092 if (!cpu_has_vmx_msr_bitmap())
2096 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
2097 * have the write-low and read-high bitmap offsets the wrong way round.
2098 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
2100 va
= kmap(msr_bitmap
);
2101 if (msr
<= 0x1fff) {
2102 __clear_bit(msr
, va
+ 0x000); /* read-low */
2103 __clear_bit(msr
, va
+ 0x800); /* write-low */
2104 } else if ((msr
>= 0xc0000000) && (msr
<= 0xc0001fff)) {
2106 __clear_bit(msr
, va
+ 0x400); /* read-high */
2107 __clear_bit(msr
, va
+ 0xc00); /* write-high */
2113 * Sets up the vmcs for emulated real mode.
2115 static int vmx_vcpu_setup(struct vcpu_vmx
*vmx
)
2117 u32 host_sysenter_cs
, msr_low
, msr_high
;
2121 struct descriptor_table dt
;
2123 unsigned long kvm_vmx_return
;
2127 vmcs_write64(IO_BITMAP_A
, page_to_phys(vmx_io_bitmap_a
));
2128 vmcs_write64(IO_BITMAP_B
, page_to_phys(vmx_io_bitmap_b
));
2130 if (cpu_has_vmx_msr_bitmap())
2131 vmcs_write64(MSR_BITMAP
, page_to_phys(vmx_msr_bitmap
));
2133 vmcs_write64(VMCS_LINK_POINTER
, -1ull); /* 22.3.1.5 */
2136 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL
,
2137 vmcs_config
.pin_based_exec_ctrl
);
2139 exec_control
= vmcs_config
.cpu_based_exec_ctrl
;
2140 if (!vm_need_tpr_shadow(vmx
->vcpu
.kvm
)) {
2141 exec_control
&= ~CPU_BASED_TPR_SHADOW
;
2142 #ifdef CONFIG_X86_64
2143 exec_control
|= CPU_BASED_CR8_STORE_EXITING
|
2144 CPU_BASED_CR8_LOAD_EXITING
;
2148 exec_control
|= CPU_BASED_CR3_STORE_EXITING
|
2149 CPU_BASED_CR3_LOAD_EXITING
|
2150 CPU_BASED_INVLPG_EXITING
;
2151 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
, exec_control
);
2153 if (cpu_has_secondary_exec_ctrls()) {
2154 exec_control
= vmcs_config
.cpu_based_2nd_exec_ctrl
;
2155 if (!vm_need_virtualize_apic_accesses(vmx
->vcpu
.kvm
))
2157 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
;
2159 exec_control
&= ~SECONDARY_EXEC_ENABLE_VPID
;
2161 exec_control
&= ~SECONDARY_EXEC_ENABLE_EPT
;
2162 vmcs_write32(SECONDARY_VM_EXEC_CONTROL
, exec_control
);
2165 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK
, !!bypass_guest_pf
);
2166 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH
, !!bypass_guest_pf
);
2167 vmcs_write32(CR3_TARGET_COUNT
, 0); /* 22.2.1 */
2169 vmcs_writel(HOST_CR0
, read_cr0()); /* 22.2.3 */
2170 vmcs_writel(HOST_CR4
, read_cr4()); /* 22.2.3, 22.2.5 */
2171 vmcs_writel(HOST_CR3
, read_cr3()); /* 22.2.3 FIXME: shadow tables */
2173 vmcs_write16(HOST_CS_SELECTOR
, __KERNEL_CS
); /* 22.2.4 */
2174 vmcs_write16(HOST_DS_SELECTOR
, __KERNEL_DS
); /* 22.2.4 */
2175 vmcs_write16(HOST_ES_SELECTOR
, __KERNEL_DS
); /* 22.2.4 */
2176 vmcs_write16(HOST_FS_SELECTOR
, kvm_read_fs()); /* 22.2.4 */
2177 vmcs_write16(HOST_GS_SELECTOR
, kvm_read_gs()); /* 22.2.4 */
2178 vmcs_write16(HOST_SS_SELECTOR
, __KERNEL_DS
); /* 22.2.4 */
2179 #ifdef CONFIG_X86_64
2180 rdmsrl(MSR_FS_BASE
, a
);
2181 vmcs_writel(HOST_FS_BASE
, a
); /* 22.2.4 */
2182 rdmsrl(MSR_GS_BASE
, a
);
2183 vmcs_writel(HOST_GS_BASE
, a
); /* 22.2.4 */
2185 vmcs_writel(HOST_FS_BASE
, 0); /* 22.2.4 */
2186 vmcs_writel(HOST_GS_BASE
, 0); /* 22.2.4 */
2189 vmcs_write16(HOST_TR_SELECTOR
, GDT_ENTRY_TSS
*8); /* 22.2.4 */
2192 vmcs_writel(HOST_IDTR_BASE
, dt
.base
); /* 22.2.4 */
2194 asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return
));
2195 vmcs_writel(HOST_RIP
, kvm_vmx_return
); /* 22.2.5 */
2196 vmcs_write32(VM_EXIT_MSR_STORE_COUNT
, 0);
2197 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT
, 0);
2198 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT
, 0);
2200 rdmsr(MSR_IA32_SYSENTER_CS
, host_sysenter_cs
, junk
);
2201 vmcs_write32(HOST_IA32_SYSENTER_CS
, host_sysenter_cs
);
2202 rdmsrl(MSR_IA32_SYSENTER_ESP
, a
);
2203 vmcs_writel(HOST_IA32_SYSENTER_ESP
, a
); /* 22.2.3 */
2204 rdmsrl(MSR_IA32_SYSENTER_EIP
, a
);
2205 vmcs_writel(HOST_IA32_SYSENTER_EIP
, a
); /* 22.2.3 */
2207 if (vmcs_config
.vmexit_ctrl
& VM_EXIT_LOAD_IA32_PAT
) {
2208 rdmsr(MSR_IA32_CR_PAT
, msr_low
, msr_high
);
2209 host_pat
= msr_low
| ((u64
) msr_high
<< 32);
2210 vmcs_write64(HOST_IA32_PAT
, host_pat
);
2212 if (vmcs_config
.vmentry_ctrl
& VM_ENTRY_LOAD_IA32_PAT
) {
2213 rdmsr(MSR_IA32_CR_PAT
, msr_low
, msr_high
);
2214 host_pat
= msr_low
| ((u64
) msr_high
<< 32);
2215 /* Write the default value follow host pat */
2216 vmcs_write64(GUEST_IA32_PAT
, host_pat
);
2217 /* Keep arch.pat sync with GUEST_IA32_PAT */
2218 vmx
->vcpu
.arch
.pat
= host_pat
;
2221 for (i
= 0; i
< NR_VMX_MSR
; ++i
) {
2222 u32 index
= vmx_msr_index
[i
];
2223 u32 data_low
, data_high
;
2227 if (rdmsr_safe(index
, &data_low
, &data_high
) < 0)
2229 if (wrmsr_safe(index
, data_low
, data_high
) < 0)
2231 data
= data_low
| ((u64
)data_high
<< 32);
2232 vmx
->host_msrs
[j
].index
= index
;
2233 vmx
->host_msrs
[j
].reserved
= 0;
2234 vmx
->host_msrs
[j
].data
= data
;
2235 vmx
->guest_msrs
[j
] = vmx
->host_msrs
[j
];
2239 vmcs_write32(VM_EXIT_CONTROLS
, vmcs_config
.vmexit_ctrl
);
2241 /* 22.2.1, 20.8.1 */
2242 vmcs_write32(VM_ENTRY_CONTROLS
, vmcs_config
.vmentry_ctrl
);
2244 vmcs_writel(CR0_GUEST_HOST_MASK
, ~0UL);
2245 vmcs_writel(CR4_GUEST_HOST_MASK
, KVM_GUEST_CR4_MASK
);
2251 static int init_rmode(struct kvm
*kvm
)
2253 if (!init_rmode_tss(kvm
))
2255 if (!init_rmode_identity_map(kvm
))
2260 static int vmx_vcpu_reset(struct kvm_vcpu
*vcpu
)
2262 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
2266 vcpu
->arch
.regs_avail
= ~((1 << VCPU_REGS_RIP
) | (1 << VCPU_REGS_RSP
));
2267 down_read(&vcpu
->kvm
->slots_lock
);
2268 if (!init_rmode(vmx
->vcpu
.kvm
)) {
2273 vmx
->vcpu
.arch
.rmode
.active
= 0;
2275 vmx
->soft_vnmi_blocked
= 0;
2277 vmx
->vcpu
.arch
.regs
[VCPU_REGS_RDX
] = get_rdx_init_val();
2278 kvm_set_cr8(&vmx
->vcpu
, 0);
2279 msr
= 0xfee00000 | MSR_IA32_APICBASE_ENABLE
;
2280 if (vmx
->vcpu
.vcpu_id
== 0)
2281 msr
|= MSR_IA32_APICBASE_BSP
;
2282 kvm_set_apic_base(&vmx
->vcpu
, msr
);
2284 fx_init(&vmx
->vcpu
);
2286 seg_setup(VCPU_SREG_CS
);
2288 * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
2289 * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
2291 if (vmx
->vcpu
.vcpu_id
== 0) {
2292 vmcs_write16(GUEST_CS_SELECTOR
, 0xf000);
2293 vmcs_writel(GUEST_CS_BASE
, 0x000f0000);
2295 vmcs_write16(GUEST_CS_SELECTOR
, vmx
->vcpu
.arch
.sipi_vector
<< 8);
2296 vmcs_writel(GUEST_CS_BASE
, vmx
->vcpu
.arch
.sipi_vector
<< 12);
2299 seg_setup(VCPU_SREG_DS
);
2300 seg_setup(VCPU_SREG_ES
);
2301 seg_setup(VCPU_SREG_FS
);
2302 seg_setup(VCPU_SREG_GS
);
2303 seg_setup(VCPU_SREG_SS
);
2305 vmcs_write16(GUEST_TR_SELECTOR
, 0);
2306 vmcs_writel(GUEST_TR_BASE
, 0);
2307 vmcs_write32(GUEST_TR_LIMIT
, 0xffff);
2308 vmcs_write32(GUEST_TR_AR_BYTES
, 0x008b);
2310 vmcs_write16(GUEST_LDTR_SELECTOR
, 0);
2311 vmcs_writel(GUEST_LDTR_BASE
, 0);
2312 vmcs_write32(GUEST_LDTR_LIMIT
, 0xffff);
2313 vmcs_write32(GUEST_LDTR_AR_BYTES
, 0x00082);
2315 vmcs_write32(GUEST_SYSENTER_CS
, 0);
2316 vmcs_writel(GUEST_SYSENTER_ESP
, 0);
2317 vmcs_writel(GUEST_SYSENTER_EIP
, 0);
2319 vmcs_writel(GUEST_RFLAGS
, 0x02);
2320 if (vmx
->vcpu
.vcpu_id
== 0)
2321 kvm_rip_write(vcpu
, 0xfff0);
2323 kvm_rip_write(vcpu
, 0);
2324 kvm_register_write(vcpu
, VCPU_REGS_RSP
, 0);
2326 /* todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0 */
2327 vmcs_writel(GUEST_DR7
, 0x400);
2329 vmcs_writel(GUEST_GDTR_BASE
, 0);
2330 vmcs_write32(GUEST_GDTR_LIMIT
, 0xffff);
2332 vmcs_writel(GUEST_IDTR_BASE
, 0);
2333 vmcs_write32(GUEST_IDTR_LIMIT
, 0xffff);
2335 vmcs_write32(GUEST_ACTIVITY_STATE
, 0);
2336 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO
, 0);
2337 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS
, 0);
2341 /* Special registers */
2342 vmcs_write64(GUEST_IA32_DEBUGCTL
, 0);
2346 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
, 0); /* 22.2.1 */
2348 if (cpu_has_vmx_tpr_shadow()) {
2349 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR
, 0);
2350 if (vm_need_tpr_shadow(vmx
->vcpu
.kvm
))
2351 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR
,
2352 page_to_phys(vmx
->vcpu
.arch
.apic
->regs_page
));
2353 vmcs_write32(TPR_THRESHOLD
, 0);
2356 if (vm_need_virtualize_apic_accesses(vmx
->vcpu
.kvm
))
2357 vmcs_write64(APIC_ACCESS_ADDR
,
2358 page_to_phys(vmx
->vcpu
.kvm
->arch
.apic_access_page
));
2361 vmcs_write16(VIRTUAL_PROCESSOR_ID
, vmx
->vpid
);
2363 vmx
->vcpu
.arch
.cr0
= 0x60000010;
2364 vmx_set_cr0(&vmx
->vcpu
, vmx
->vcpu
.arch
.cr0
); /* enter rmode */
2365 vmx_set_cr4(&vmx
->vcpu
, 0);
2366 vmx_set_efer(&vmx
->vcpu
, 0);
2367 vmx_fpu_activate(&vmx
->vcpu
);
2368 update_exception_bitmap(&vmx
->vcpu
);
2370 vpid_sync_vcpu_all(vmx
);
2374 /* HACK: Don't enable emulation on guest boot/reset */
2375 vmx
->emulation_required
= 0;
2378 up_read(&vcpu
->kvm
->slots_lock
);
2382 static void enable_irq_window(struct kvm_vcpu
*vcpu
)
2384 u32 cpu_based_vm_exec_control
;
2386 cpu_based_vm_exec_control
= vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
);
2387 cpu_based_vm_exec_control
|= CPU_BASED_VIRTUAL_INTR_PENDING
;
2388 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
, cpu_based_vm_exec_control
);
2391 static void enable_nmi_window(struct kvm_vcpu
*vcpu
)
2393 u32 cpu_based_vm_exec_control
;
2395 if (!cpu_has_virtual_nmis()) {
2396 enable_irq_window(vcpu
);
2400 cpu_based_vm_exec_control
= vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
);
2401 cpu_based_vm_exec_control
|= CPU_BASED_VIRTUAL_NMI_PENDING
;
2402 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
, cpu_based_vm_exec_control
);
2405 static void vmx_inject_irq(struct kvm_vcpu
*vcpu
, int irq
)
2407 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
2409 KVMTRACE_1D(INJ_VIRQ
, vcpu
, (u32
)irq
, handler
);
2411 ++vcpu
->stat
.irq_injections
;
2412 if (vcpu
->arch
.rmode
.active
) {
2413 vmx
->rmode
.irq
.pending
= true;
2414 vmx
->rmode
.irq
.vector
= irq
;
2415 vmx
->rmode
.irq
.rip
= kvm_rip_read(vcpu
);
2416 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
,
2417 irq
| INTR_TYPE_SOFT_INTR
| INTR_INFO_VALID_MASK
);
2418 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN
, 1);
2419 kvm_rip_write(vcpu
, vmx
->rmode
.irq
.rip
- 1);
2422 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
,
2423 irq
| INTR_TYPE_EXT_INTR
| INTR_INFO_VALID_MASK
);
2426 static void vmx_inject_nmi(struct kvm_vcpu
*vcpu
)
2428 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
2430 if (!cpu_has_virtual_nmis()) {
2432 * Tracking the NMI-blocked state in software is built upon
2433 * finding the next open IRQ window. This, in turn, depends on
2434 * well-behaving guests: They have to keep IRQs disabled at
2435 * least as long as the NMI handler runs. Otherwise we may
2436 * cause NMI nesting, maybe breaking the guest. But as this is
2437 * highly unlikely, we can live with the residual risk.
2439 vmx
->soft_vnmi_blocked
= 1;
2440 vmx
->vnmi_blocked_time
= 0;
2443 ++vcpu
->stat
.nmi_injections
;
2444 if (vcpu
->arch
.rmode
.active
) {
2445 vmx
->rmode
.irq
.pending
= true;
2446 vmx
->rmode
.irq
.vector
= NMI_VECTOR
;
2447 vmx
->rmode
.irq
.rip
= kvm_rip_read(vcpu
);
2448 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
,
2449 NMI_VECTOR
| INTR_TYPE_SOFT_INTR
|
2450 INTR_INFO_VALID_MASK
);
2451 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN
, 1);
2452 kvm_rip_write(vcpu
, vmx
->rmode
.irq
.rip
- 1);
2455 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
,
2456 INTR_TYPE_NMI_INTR
| INTR_INFO_VALID_MASK
| NMI_VECTOR
);
2459 static void vmx_update_window_states(struct kvm_vcpu
*vcpu
)
2461 u32 guest_intr
= vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
);
2463 vcpu
->arch
.nmi_window_open
=
2464 !(guest_intr
& (GUEST_INTR_STATE_STI
|
2465 GUEST_INTR_STATE_MOV_SS
|
2466 GUEST_INTR_STATE_NMI
));
2467 if (!cpu_has_virtual_nmis() && to_vmx(vcpu
)->soft_vnmi_blocked
)
2468 vcpu
->arch
.nmi_window_open
= 0;
2470 vcpu
->arch
.interrupt_window_open
=
2471 ((vmcs_readl(GUEST_RFLAGS
) & X86_EFLAGS_IF
) &&
2472 !(guest_intr
& (GUEST_INTR_STATE_STI
|
2473 GUEST_INTR_STATE_MOV_SS
)));
2476 static void kvm_do_inject_irq(struct kvm_vcpu
*vcpu
)
2478 int word_index
= __ffs(vcpu
->arch
.irq_summary
);
2479 int bit_index
= __ffs(vcpu
->arch
.irq_pending
[word_index
]);
2480 int irq
= word_index
* BITS_PER_LONG
+ bit_index
;
2482 clear_bit(bit_index
, &vcpu
->arch
.irq_pending
[word_index
]);
2483 if (!vcpu
->arch
.irq_pending
[word_index
])
2484 clear_bit(word_index
, &vcpu
->arch
.irq_summary
);
2485 kvm_queue_interrupt(vcpu
, irq
);
2488 static void do_interrupt_requests(struct kvm_vcpu
*vcpu
,
2489 struct kvm_run
*kvm_run
)
2491 vmx_update_window_states(vcpu
);
2493 if (vcpu
->arch
.nmi_pending
&& !vcpu
->arch
.nmi_injected
) {
2494 if (vcpu
->arch
.interrupt
.pending
) {
2495 enable_nmi_window(vcpu
);
2496 } else if (vcpu
->arch
.nmi_window_open
) {
2497 vcpu
->arch
.nmi_pending
= false;
2498 vcpu
->arch
.nmi_injected
= true;
2500 enable_nmi_window(vcpu
);
2504 if (vcpu
->arch
.nmi_injected
) {
2505 vmx_inject_nmi(vcpu
);
2506 if (vcpu
->arch
.nmi_pending
)
2507 enable_nmi_window(vcpu
);
2508 else if (vcpu
->arch
.irq_summary
2509 || kvm_run
->request_interrupt_window
)
2510 enable_irq_window(vcpu
);
2514 if (vcpu
->arch
.interrupt_window_open
) {
2515 if (vcpu
->arch
.irq_summary
&& !vcpu
->arch
.interrupt
.pending
)
2516 kvm_do_inject_irq(vcpu
);
2518 if (vcpu
->arch
.interrupt
.pending
)
2519 vmx_inject_irq(vcpu
, vcpu
->arch
.interrupt
.nr
);
2521 if (!vcpu
->arch
.interrupt_window_open
&&
2522 (vcpu
->arch
.irq_summary
|| kvm_run
->request_interrupt_window
))
2523 enable_irq_window(vcpu
);
2526 static int vmx_set_tss_addr(struct kvm
*kvm
, unsigned int addr
)
2529 struct kvm_userspace_memory_region tss_mem
= {
2530 .slot
= TSS_PRIVATE_MEMSLOT
,
2531 .guest_phys_addr
= addr
,
2532 .memory_size
= PAGE_SIZE
* 3,
2536 ret
= kvm_set_memory_region(kvm
, &tss_mem
, 0);
2539 kvm
->arch
.tss_addr
= addr
;
2543 static void kvm_guest_debug_pre(struct kvm_vcpu
*vcpu
)
2545 struct kvm_guest_debug
*dbg
= &vcpu
->guest_debug
;
2547 set_debugreg(dbg
->bp
[0], 0);
2548 set_debugreg(dbg
->bp
[1], 1);
2549 set_debugreg(dbg
->bp
[2], 2);
2550 set_debugreg(dbg
->bp
[3], 3);
2552 if (dbg
->singlestep
) {
2553 unsigned long flags
;
2555 flags
= vmcs_readl(GUEST_RFLAGS
);
2556 flags
|= X86_EFLAGS_TF
| X86_EFLAGS_RF
;
2557 vmcs_writel(GUEST_RFLAGS
, flags
);
2561 static int handle_rmode_exception(struct kvm_vcpu
*vcpu
,
2562 int vec
, u32 err_code
)
2565 * Instruction with address size override prefix opcode 0x67
2566 * Cause the #SS fault with 0 error code in VM86 mode.
2568 if (((vec
== GP_VECTOR
) || (vec
== SS_VECTOR
)) && err_code
== 0)
2569 if (emulate_instruction(vcpu
, NULL
, 0, 0, 0) == EMULATE_DONE
)
2572 * Forward all other exceptions that are valid in real mode.
2573 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
2574 * the required debugging infrastructure rework.
2587 kvm_queue_exception(vcpu
, vec
);
2593 static int handle_exception(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
2595 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
2596 u32 intr_info
, error_code
;
2597 unsigned long cr2
, rip
;
2599 enum emulation_result er
;
2601 vect_info
= vmx
->idt_vectoring_info
;
2602 intr_info
= vmcs_read32(VM_EXIT_INTR_INFO
);
2604 if ((vect_info
& VECTORING_INFO_VALID_MASK
) &&
2605 !is_page_fault(intr_info
))
2606 printk(KERN_ERR
"%s: unexpected, vectoring info 0x%x "
2607 "intr info 0x%x\n", __func__
, vect_info
, intr_info
);
2609 if (!irqchip_in_kernel(vcpu
->kvm
) && is_external_interrupt(vect_info
)) {
2610 int irq
= vect_info
& VECTORING_INFO_VECTOR_MASK
;
2611 set_bit(irq
, vcpu
->arch
.irq_pending
);
2612 set_bit(irq
/ BITS_PER_LONG
, &vcpu
->arch
.irq_summary
);
2615 if ((intr_info
& INTR_INFO_INTR_TYPE_MASK
) == INTR_TYPE_NMI_INTR
)
2616 return 1; /* already handled by vmx_vcpu_run() */
2618 if (is_no_device(intr_info
)) {
2619 vmx_fpu_activate(vcpu
);
2623 if (is_invalid_opcode(intr_info
)) {
2624 er
= emulate_instruction(vcpu
, kvm_run
, 0, 0, EMULTYPE_TRAP_UD
);
2625 if (er
!= EMULATE_DONE
)
2626 kvm_queue_exception(vcpu
, UD_VECTOR
);
2631 rip
= kvm_rip_read(vcpu
);
2632 if (intr_info
& INTR_INFO_DELIVER_CODE_MASK
)
2633 error_code
= vmcs_read32(VM_EXIT_INTR_ERROR_CODE
);
2634 if (is_page_fault(intr_info
)) {
2635 /* EPT won't cause page fault directly */
2638 cr2
= vmcs_readl(EXIT_QUALIFICATION
);
2639 KVMTRACE_3D(PAGE_FAULT
, vcpu
, error_code
, (u32
)cr2
,
2640 (u32
)((u64
)cr2
>> 32), handler
);
2641 if (vcpu
->arch
.interrupt
.pending
|| vcpu
->arch
.exception
.pending
)
2642 kvm_mmu_unprotect_page_virt(vcpu
, cr2
);
2643 return kvm_mmu_page_fault(vcpu
, cr2
, error_code
);
2646 if (vcpu
->arch
.rmode
.active
&&
2647 handle_rmode_exception(vcpu
, intr_info
& INTR_INFO_VECTOR_MASK
,
2649 if (vcpu
->arch
.halt_request
) {
2650 vcpu
->arch
.halt_request
= 0;
2651 return kvm_emulate_halt(vcpu
);
2656 if ((intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VECTOR_MASK
)) ==
2657 (INTR_TYPE_HARD_EXCEPTION
| 1)) {
2658 kvm_run
->exit_reason
= KVM_EXIT_DEBUG
;
2661 kvm_run
->exit_reason
= KVM_EXIT_EXCEPTION
;
2662 kvm_run
->ex
.exception
= intr_info
& INTR_INFO_VECTOR_MASK
;
2663 kvm_run
->ex
.error_code
= error_code
;
2667 static int handle_external_interrupt(struct kvm_vcpu
*vcpu
,
2668 struct kvm_run
*kvm_run
)
2670 ++vcpu
->stat
.irq_exits
;
2671 KVMTRACE_1D(INTR
, vcpu
, vmcs_read32(VM_EXIT_INTR_INFO
), handler
);
2675 static int handle_triple_fault(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
2677 kvm_run
->exit_reason
= KVM_EXIT_SHUTDOWN
;
2681 static int handle_io(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
2683 unsigned long exit_qualification
;
2684 int size
, down
, in
, string
, rep
;
2687 ++vcpu
->stat
.io_exits
;
2688 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
2689 string
= (exit_qualification
& 16) != 0;
2692 if (emulate_instruction(vcpu
,
2693 kvm_run
, 0, 0, 0) == EMULATE_DO_MMIO
)
2698 size
= (exit_qualification
& 7) + 1;
2699 in
= (exit_qualification
& 8) != 0;
2700 down
= (vmcs_readl(GUEST_RFLAGS
) & X86_EFLAGS_DF
) != 0;
2701 rep
= (exit_qualification
& 32) != 0;
2702 port
= exit_qualification
>> 16;
2704 skip_emulated_instruction(vcpu
);
2705 return kvm_emulate_pio(vcpu
, kvm_run
, in
, size
, port
);
2709 vmx_patch_hypercall(struct kvm_vcpu
*vcpu
, unsigned char *hypercall
)
2712 * Patch in the VMCALL instruction:
2714 hypercall
[0] = 0x0f;
2715 hypercall
[1] = 0x01;
2716 hypercall
[2] = 0xc1;
2719 static int handle_cr(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
2721 unsigned long exit_qualification
;
2725 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
2726 cr
= exit_qualification
& 15;
2727 reg
= (exit_qualification
>> 8) & 15;
2728 switch ((exit_qualification
>> 4) & 3) {
2729 case 0: /* mov to cr */
2730 KVMTRACE_3D(CR_WRITE
, vcpu
, (u32
)cr
,
2731 (u32
)kvm_register_read(vcpu
, reg
),
2732 (u32
)((u64
)kvm_register_read(vcpu
, reg
) >> 32),
2736 kvm_set_cr0(vcpu
, kvm_register_read(vcpu
, reg
));
2737 skip_emulated_instruction(vcpu
);
2740 kvm_set_cr3(vcpu
, kvm_register_read(vcpu
, reg
));
2741 skip_emulated_instruction(vcpu
);
2744 kvm_set_cr4(vcpu
, kvm_register_read(vcpu
, reg
));
2745 skip_emulated_instruction(vcpu
);
2748 kvm_set_cr8(vcpu
, kvm_register_read(vcpu
, reg
));
2749 skip_emulated_instruction(vcpu
);
2750 if (irqchip_in_kernel(vcpu
->kvm
))
2752 kvm_run
->exit_reason
= KVM_EXIT_SET_TPR
;
2757 vmx_fpu_deactivate(vcpu
);
2758 vcpu
->arch
.cr0
&= ~X86_CR0_TS
;
2759 vmcs_writel(CR0_READ_SHADOW
, vcpu
->arch
.cr0
);
2760 vmx_fpu_activate(vcpu
);
2761 KVMTRACE_0D(CLTS
, vcpu
, handler
);
2762 skip_emulated_instruction(vcpu
);
2764 case 1: /*mov from cr*/
2767 kvm_register_write(vcpu
, reg
, vcpu
->arch
.cr3
);
2768 KVMTRACE_3D(CR_READ
, vcpu
, (u32
)cr
,
2769 (u32
)kvm_register_read(vcpu
, reg
),
2770 (u32
)((u64
)kvm_register_read(vcpu
, reg
) >> 32),
2772 skip_emulated_instruction(vcpu
);
2775 kvm_register_write(vcpu
, reg
, kvm_get_cr8(vcpu
));
2776 KVMTRACE_2D(CR_READ
, vcpu
, (u32
)cr
,
2777 (u32
)kvm_register_read(vcpu
, reg
), handler
);
2778 skip_emulated_instruction(vcpu
);
2783 kvm_lmsw(vcpu
, (exit_qualification
>> LMSW_SOURCE_DATA_SHIFT
) & 0x0f);
2785 skip_emulated_instruction(vcpu
);
2790 kvm_run
->exit_reason
= 0;
2791 pr_unimpl(vcpu
, "unhandled control register: op %d cr %d\n",
2792 (int)(exit_qualification
>> 4) & 3, cr
);
2796 static int handle_dr(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
2798 unsigned long exit_qualification
;
2803 * FIXME: this code assumes the host is debugging the guest.
2804 * need to deal with guest debugging itself too.
2806 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
2807 dr
= exit_qualification
& 7;
2808 reg
= (exit_qualification
>> 8) & 15;
2809 if (exit_qualification
& 16) {
2821 kvm_register_write(vcpu
, reg
, val
);
2822 KVMTRACE_2D(DR_READ
, vcpu
, (u32
)dr
, (u32
)val
, handler
);
2826 skip_emulated_instruction(vcpu
);
2830 static int handle_cpuid(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
2832 kvm_emulate_cpuid(vcpu
);
2836 static int handle_rdmsr(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
2838 u32 ecx
= vcpu
->arch
.regs
[VCPU_REGS_RCX
];
2841 if (vmx_get_msr(vcpu
, ecx
, &data
)) {
2842 kvm_inject_gp(vcpu
, 0);
2846 KVMTRACE_3D(MSR_READ
, vcpu
, ecx
, (u32
)data
, (u32
)(data
>> 32),
2849 /* FIXME: handling of bits 32:63 of rax, rdx */
2850 vcpu
->arch
.regs
[VCPU_REGS_RAX
] = data
& -1u;
2851 vcpu
->arch
.regs
[VCPU_REGS_RDX
] = (data
>> 32) & -1u;
2852 skip_emulated_instruction(vcpu
);
2856 static int handle_wrmsr(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
2858 u32 ecx
= vcpu
->arch
.regs
[VCPU_REGS_RCX
];
2859 u64 data
= (vcpu
->arch
.regs
[VCPU_REGS_RAX
] & -1u)
2860 | ((u64
)(vcpu
->arch
.regs
[VCPU_REGS_RDX
] & -1u) << 32);
2862 KVMTRACE_3D(MSR_WRITE
, vcpu
, ecx
, (u32
)data
, (u32
)(data
>> 32),
2865 if (vmx_set_msr(vcpu
, ecx
, data
) != 0) {
2866 kvm_inject_gp(vcpu
, 0);
2870 skip_emulated_instruction(vcpu
);
2874 static int handle_tpr_below_threshold(struct kvm_vcpu
*vcpu
,
2875 struct kvm_run
*kvm_run
)
2880 static int handle_interrupt_window(struct kvm_vcpu
*vcpu
,
2881 struct kvm_run
*kvm_run
)
2883 u32 cpu_based_vm_exec_control
;
2885 /* clear pending irq */
2886 cpu_based_vm_exec_control
= vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
);
2887 cpu_based_vm_exec_control
&= ~CPU_BASED_VIRTUAL_INTR_PENDING
;
2888 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
, cpu_based_vm_exec_control
);
2890 KVMTRACE_0D(PEND_INTR
, vcpu
, handler
);
2891 ++vcpu
->stat
.irq_window_exits
;
2894 * If the user space waits to inject interrupts, exit as soon as
2897 if (kvm_run
->request_interrupt_window
&&
2898 !vcpu
->arch
.irq_summary
) {
2899 kvm_run
->exit_reason
= KVM_EXIT_IRQ_WINDOW_OPEN
;
2905 static int handle_halt(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
2907 skip_emulated_instruction(vcpu
);
2908 return kvm_emulate_halt(vcpu
);
2911 static int handle_vmcall(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
2913 skip_emulated_instruction(vcpu
);
2914 kvm_emulate_hypercall(vcpu
);
2918 static int handle_invlpg(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
2920 u64 exit_qualification
= vmcs_read64(EXIT_QUALIFICATION
);
2922 kvm_mmu_invlpg(vcpu
, exit_qualification
);
2923 skip_emulated_instruction(vcpu
);
2927 static int handle_wbinvd(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
2929 skip_emulated_instruction(vcpu
);
2930 /* TODO: Add support for VT-d/pass-through device */
2934 static int handle_apic_access(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
2936 u64 exit_qualification
;
2937 enum emulation_result er
;
2938 unsigned long offset
;
2940 exit_qualification
= vmcs_read64(EXIT_QUALIFICATION
);
2941 offset
= exit_qualification
& 0xffful
;
2943 er
= emulate_instruction(vcpu
, kvm_run
, 0, 0, 0);
2945 if (er
!= EMULATE_DONE
) {
2947 "Fail to handle apic access vmexit! Offset is 0x%lx\n",
2954 static int handle_task_switch(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
2956 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
2957 unsigned long exit_qualification
;
2961 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
2963 reason
= (u32
)exit_qualification
>> 30;
2964 if (reason
== TASK_SWITCH_GATE
&& vmx
->vcpu
.arch
.nmi_injected
&&
2965 (vmx
->idt_vectoring_info
& VECTORING_INFO_VALID_MASK
) &&
2966 (vmx
->idt_vectoring_info
& VECTORING_INFO_TYPE_MASK
)
2967 == INTR_TYPE_NMI_INTR
) {
2968 vcpu
->arch
.nmi_injected
= false;
2969 if (cpu_has_virtual_nmis())
2970 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO
,
2971 GUEST_INTR_STATE_NMI
);
2973 tss_selector
= exit_qualification
;
2975 return kvm_task_switch(vcpu
, tss_selector
, reason
);
2978 static int handle_ept_violation(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
2980 u64 exit_qualification
;
2981 enum emulation_result er
;
2987 exit_qualification
= vmcs_read64(EXIT_QUALIFICATION
);
2989 if (exit_qualification
& (1 << 6)) {
2990 printk(KERN_ERR
"EPT: GPA exceeds GAW!\n");
2994 gla_validity
= (exit_qualification
>> 7) & 0x3;
2995 if (gla_validity
!= 0x3 && gla_validity
!= 0x1 && gla_validity
!= 0) {
2996 printk(KERN_ERR
"EPT: Handling EPT violation failed!\n");
2997 printk(KERN_ERR
"EPT: GPA: 0x%lx, GVA: 0x%lx\n",
2998 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS
),
2999 (long unsigned int)vmcs_read64(GUEST_LINEAR_ADDRESS
));
3000 printk(KERN_ERR
"EPT: Exit qualification is 0x%lx\n",
3001 (long unsigned int)exit_qualification
);
3002 kvm_run
->exit_reason
= KVM_EXIT_UNKNOWN
;
3003 kvm_run
->hw
.hardware_exit_reason
= 0;
3007 gpa
= vmcs_read64(GUEST_PHYSICAL_ADDRESS
);
3008 hva
= gfn_to_hva(vcpu
->kvm
, gpa
>> PAGE_SHIFT
);
3009 if (!kvm_is_error_hva(hva
)) {
3010 r
= kvm_mmu_page_fault(vcpu
, gpa
& PAGE_MASK
, 0);
3012 printk(KERN_ERR
"EPT: Not enough memory!\n");
3018 er
= emulate_instruction(vcpu
, kvm_run
, 0, 0, 0);
3020 if (er
== EMULATE_FAIL
) {
3022 "EPT: Fail to handle EPT violation vmexit!er is %d\n",
3024 printk(KERN_ERR
"EPT: GPA: 0x%lx, GVA: 0x%lx\n",
3025 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS
),
3026 (long unsigned int)vmcs_read64(GUEST_LINEAR_ADDRESS
));
3027 printk(KERN_ERR
"EPT: Exit qualification is 0x%lx\n",
3028 (long unsigned int)exit_qualification
);
3030 } else if (er
== EMULATE_DO_MMIO
)
3036 static int handle_nmi_window(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
3038 u32 cpu_based_vm_exec_control
;
3040 /* clear pending NMI */
3041 cpu_based_vm_exec_control
= vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
);
3042 cpu_based_vm_exec_control
&= ~CPU_BASED_VIRTUAL_NMI_PENDING
;
3043 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
, cpu_based_vm_exec_control
);
3044 ++vcpu
->stat
.nmi_window_exits
;
3049 static void handle_invalid_guest_state(struct kvm_vcpu
*vcpu
,
3050 struct kvm_run
*kvm_run
)
3052 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3058 while (!guest_state_valid(vcpu
)) {
3059 err
= emulate_instruction(vcpu
, kvm_run
, 0, 0, 0);
3061 if (err
== EMULATE_DO_MMIO
)
3064 if (err
!= EMULATE_DONE
) {
3065 kvm_report_emulation_failure(vcpu
, "emulation failure");
3069 if (signal_pending(current
))
3075 local_irq_disable();
3078 /* Guest state should be valid now except if we need to
3079 * emulate an MMIO */
3080 if (guest_state_valid(vcpu
))
3081 vmx
->emulation_required
= 0;
3085 * The exit handlers return 1 if the exit was handled fully and guest execution
3086 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
3087 * to be done to userspace and return 0.
3089 static int (*kvm_vmx_exit_handlers
[])(struct kvm_vcpu
*vcpu
,
3090 struct kvm_run
*kvm_run
) = {
3091 [EXIT_REASON_EXCEPTION_NMI
] = handle_exception
,
3092 [EXIT_REASON_EXTERNAL_INTERRUPT
] = handle_external_interrupt
,
3093 [EXIT_REASON_TRIPLE_FAULT
] = handle_triple_fault
,
3094 [EXIT_REASON_NMI_WINDOW
] = handle_nmi_window
,
3095 [EXIT_REASON_IO_INSTRUCTION
] = handle_io
,
3096 [EXIT_REASON_CR_ACCESS
] = handle_cr
,
3097 [EXIT_REASON_DR_ACCESS
] = handle_dr
,
3098 [EXIT_REASON_CPUID
] = handle_cpuid
,
3099 [EXIT_REASON_MSR_READ
] = handle_rdmsr
,
3100 [EXIT_REASON_MSR_WRITE
] = handle_wrmsr
,
3101 [EXIT_REASON_PENDING_INTERRUPT
] = handle_interrupt_window
,
3102 [EXIT_REASON_HLT
] = handle_halt
,
3103 [EXIT_REASON_INVLPG
] = handle_invlpg
,
3104 [EXIT_REASON_VMCALL
] = handle_vmcall
,
3105 [EXIT_REASON_TPR_BELOW_THRESHOLD
] = handle_tpr_below_threshold
,
3106 [EXIT_REASON_APIC_ACCESS
] = handle_apic_access
,
3107 [EXIT_REASON_WBINVD
] = handle_wbinvd
,
3108 [EXIT_REASON_TASK_SWITCH
] = handle_task_switch
,
3109 [EXIT_REASON_EPT_VIOLATION
] = handle_ept_violation
,
3112 static const int kvm_vmx_max_exit_handlers
=
3113 ARRAY_SIZE(kvm_vmx_exit_handlers
);
3116 * The guest has exited. See if we can fix it or if we need userspace
3119 static int kvm_handle_exit(struct kvm_run
*kvm_run
, struct kvm_vcpu
*vcpu
)
3121 u32 exit_reason
= vmcs_read32(VM_EXIT_REASON
);
3122 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3123 u32 vectoring_info
= vmx
->idt_vectoring_info
;
3125 KVMTRACE_3D(VMEXIT
, vcpu
, exit_reason
, (u32
)kvm_rip_read(vcpu
),
3126 (u32
)((u64
)kvm_rip_read(vcpu
) >> 32), entryexit
);
3128 /* If we need to emulate an MMIO from handle_invalid_guest_state
3129 * we just return 0 */
3130 if (vmx
->emulation_required
&& emulate_invalid_guest_state
)
3133 /* Access CR3 don't cause VMExit in paging mode, so we need
3134 * to sync with guest real CR3. */
3135 if (vm_need_ept() && is_paging(vcpu
)) {
3136 vcpu
->arch
.cr3
= vmcs_readl(GUEST_CR3
);
3137 ept_load_pdptrs(vcpu
);
3140 if (unlikely(vmx
->fail
)) {
3141 kvm_run
->exit_reason
= KVM_EXIT_FAIL_ENTRY
;
3142 kvm_run
->fail_entry
.hardware_entry_failure_reason
3143 = vmcs_read32(VM_INSTRUCTION_ERROR
);
3147 if ((vectoring_info
& VECTORING_INFO_VALID_MASK
) &&
3148 (exit_reason
!= EXIT_REASON_EXCEPTION_NMI
&&
3149 exit_reason
!= EXIT_REASON_EPT_VIOLATION
&&
3150 exit_reason
!= EXIT_REASON_TASK_SWITCH
))
3151 printk(KERN_WARNING
"%s: unexpected, valid vectoring info "
3152 "(0x%x) and exit reason is 0x%x\n",
3153 __func__
, vectoring_info
, exit_reason
);
3155 if (unlikely(!cpu_has_virtual_nmis() && vmx
->soft_vnmi_blocked
)) {
3156 if (vcpu
->arch
.interrupt_window_open
) {
3157 vmx
->soft_vnmi_blocked
= 0;
3158 vcpu
->arch
.nmi_window_open
= 1;
3159 } else if (vmx
->vnmi_blocked_time
> 1000000000LL &&
3160 vcpu
->arch
.nmi_pending
) {
3162 * This CPU don't support us in finding the end of an
3163 * NMI-blocked window if the guest runs with IRQs
3164 * disabled. So we pull the trigger after 1 s of
3165 * futile waiting, but inform the user about this.
3167 printk(KERN_WARNING
"%s: Breaking out of NMI-blocked "
3168 "state on VCPU %d after 1 s timeout\n",
3169 __func__
, vcpu
->vcpu_id
);
3170 vmx
->soft_vnmi_blocked
= 0;
3171 vmx
->vcpu
.arch
.nmi_window_open
= 1;
3175 if (exit_reason
< kvm_vmx_max_exit_handlers
3176 && kvm_vmx_exit_handlers
[exit_reason
])
3177 return kvm_vmx_exit_handlers
[exit_reason
](vcpu
, kvm_run
);
3179 kvm_run
->exit_reason
= KVM_EXIT_UNKNOWN
;
3180 kvm_run
->hw
.hardware_exit_reason
= exit_reason
;
3185 static void update_tpr_threshold(struct kvm_vcpu
*vcpu
)
3189 if (!vm_need_tpr_shadow(vcpu
->kvm
))
3192 if (!kvm_lapic_enabled(vcpu
) ||
3193 ((max_irr
= kvm_lapic_find_highest_irr(vcpu
)) == -1)) {
3194 vmcs_write32(TPR_THRESHOLD
, 0);
3198 tpr
= (kvm_lapic_get_cr8(vcpu
) & 0x0f) << 4;
3199 vmcs_write32(TPR_THRESHOLD
, (max_irr
> tpr
) ? tpr
>> 4 : max_irr
>> 4);
3202 static void vmx_complete_interrupts(struct vcpu_vmx
*vmx
)
3205 u32 idt_vectoring_info
;
3209 bool idtv_info_valid
;
3212 exit_intr_info
= vmcs_read32(VM_EXIT_INTR_INFO
);
3213 if (cpu_has_virtual_nmis()) {
3214 unblock_nmi
= (exit_intr_info
& INTR_INFO_UNBLOCK_NMI
) != 0;
3215 vector
= exit_intr_info
& INTR_INFO_VECTOR_MASK
;
3218 * Re-set bit "block by NMI" before VM entry if vmexit caused by
3219 * a guest IRET fault.
3221 if (unblock_nmi
&& vector
!= DF_VECTOR
)
3222 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO
,
3223 GUEST_INTR_STATE_NMI
);
3224 } else if (unlikely(vmx
->soft_vnmi_blocked
))
3225 vmx
->vnmi_blocked_time
+=
3226 ktime_to_ns(ktime_sub(ktime_get(), vmx
->entry_time
));
3228 idt_vectoring_info
= vmx
->idt_vectoring_info
;
3229 idtv_info_valid
= idt_vectoring_info
& VECTORING_INFO_VALID_MASK
;
3230 vector
= idt_vectoring_info
& VECTORING_INFO_VECTOR_MASK
;
3231 type
= idt_vectoring_info
& VECTORING_INFO_TYPE_MASK
;
3232 if (vmx
->vcpu
.arch
.nmi_injected
) {
3235 * Clear bit "block by NMI" before VM entry if a NMI delivery
3238 if (idtv_info_valid
&& type
== INTR_TYPE_NMI_INTR
)
3239 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO
,
3240 GUEST_INTR_STATE_NMI
);
3242 vmx
->vcpu
.arch
.nmi_injected
= false;
3244 kvm_clear_exception_queue(&vmx
->vcpu
);
3245 if (idtv_info_valid
&& (type
== INTR_TYPE_HARD_EXCEPTION
||
3246 type
== INTR_TYPE_SOFT_EXCEPTION
)) {
3247 if (idt_vectoring_info
& VECTORING_INFO_DELIVER_CODE_MASK
) {
3248 error
= vmcs_read32(IDT_VECTORING_ERROR_CODE
);
3249 kvm_queue_exception_e(&vmx
->vcpu
, vector
, error
);
3251 kvm_queue_exception(&vmx
->vcpu
, vector
);
3252 vmx
->idt_vectoring_info
= 0;
3254 kvm_clear_interrupt_queue(&vmx
->vcpu
);
3255 if (idtv_info_valid
&& type
== INTR_TYPE_EXT_INTR
) {
3256 kvm_queue_interrupt(&vmx
->vcpu
, vector
);
3257 vmx
->idt_vectoring_info
= 0;
3261 static void vmx_intr_assist(struct kvm_vcpu
*vcpu
)
3263 update_tpr_threshold(vcpu
);
3265 vmx_update_window_states(vcpu
);
3267 if (vcpu
->arch
.nmi_pending
&& !vcpu
->arch
.nmi_injected
) {
3268 if (vcpu
->arch
.interrupt
.pending
) {
3269 enable_nmi_window(vcpu
);
3270 } else if (vcpu
->arch
.nmi_window_open
) {
3271 vcpu
->arch
.nmi_pending
= false;
3272 vcpu
->arch
.nmi_injected
= true;
3274 enable_nmi_window(vcpu
);
3278 if (vcpu
->arch
.nmi_injected
) {
3279 vmx_inject_nmi(vcpu
);
3280 if (vcpu
->arch
.nmi_pending
)
3281 enable_nmi_window(vcpu
);
3282 else if (kvm_cpu_has_interrupt(vcpu
))
3283 enable_irq_window(vcpu
);
3286 if (!vcpu
->arch
.interrupt
.pending
&& kvm_cpu_has_interrupt(vcpu
)) {
3287 if (vcpu
->arch
.interrupt_window_open
)
3288 kvm_queue_interrupt(vcpu
, kvm_cpu_get_interrupt(vcpu
));
3290 enable_irq_window(vcpu
);
3292 if (vcpu
->arch
.interrupt
.pending
) {
3293 vmx_inject_irq(vcpu
, vcpu
->arch
.interrupt
.nr
);
3294 if (kvm_cpu_has_interrupt(vcpu
))
3295 enable_irq_window(vcpu
);
3300 * Failure to inject an interrupt should give us the information
3301 * in IDT_VECTORING_INFO_FIELD. However, if the failure occurs
3302 * when fetching the interrupt redirection bitmap in the real-mode
3303 * tss, this doesn't happen. So we do it ourselves.
3305 static void fixup_rmode_irq(struct vcpu_vmx
*vmx
)
3307 vmx
->rmode
.irq
.pending
= 0;
3308 if (kvm_rip_read(&vmx
->vcpu
) + 1 != vmx
->rmode
.irq
.rip
)
3310 kvm_rip_write(&vmx
->vcpu
, vmx
->rmode
.irq
.rip
);
3311 if (vmx
->idt_vectoring_info
& VECTORING_INFO_VALID_MASK
) {
3312 vmx
->idt_vectoring_info
&= ~VECTORING_INFO_TYPE_MASK
;
3313 vmx
->idt_vectoring_info
|= INTR_TYPE_EXT_INTR
;
3316 vmx
->idt_vectoring_info
=
3317 VECTORING_INFO_VALID_MASK
3318 | INTR_TYPE_EXT_INTR
3319 | vmx
->rmode
.irq
.vector
;
3322 #ifdef CONFIG_X86_64
3330 static void vmx_vcpu_run(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
3332 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3335 /* Record the guest's net vcpu time for enforced NMI injections. */
3336 if (unlikely(!cpu_has_virtual_nmis() && vmx
->soft_vnmi_blocked
))
3337 vmx
->entry_time
= ktime_get();
3339 /* Handle invalid guest state instead of entering VMX */
3340 if (vmx
->emulation_required
&& emulate_invalid_guest_state
) {
3341 handle_invalid_guest_state(vcpu
, kvm_run
);
3345 if (test_bit(VCPU_REGS_RSP
, (unsigned long *)&vcpu
->arch
.regs_dirty
))
3346 vmcs_writel(GUEST_RSP
, vcpu
->arch
.regs
[VCPU_REGS_RSP
]);
3347 if (test_bit(VCPU_REGS_RIP
, (unsigned long *)&vcpu
->arch
.regs_dirty
))
3348 vmcs_writel(GUEST_RIP
, vcpu
->arch
.regs
[VCPU_REGS_RIP
]);
3351 * Loading guest fpu may have cleared host cr0.ts
3353 vmcs_writel(HOST_CR0
, read_cr0());
3356 /* Store host registers */
3357 "push %%"R
"dx; push %%"R
"bp;"
3359 "cmp %%"R
"sp, %c[host_rsp](%0) \n\t"
3361 "mov %%"R
"sp, %c[host_rsp](%0) \n\t"
3362 __ex(ASM_VMX_VMWRITE_RSP_RDX
) "\n\t"
3364 /* Check if vmlaunch of vmresume is needed */
3365 "cmpl $0, %c[launched](%0) \n\t"
3366 /* Load guest registers. Don't clobber flags. */
3367 "mov %c[cr2](%0), %%"R
"ax \n\t"
3368 "mov %%"R
"ax, %%cr2 \n\t"
3369 "mov %c[rax](%0), %%"R
"ax \n\t"
3370 "mov %c[rbx](%0), %%"R
"bx \n\t"
3371 "mov %c[rdx](%0), %%"R
"dx \n\t"
3372 "mov %c[rsi](%0), %%"R
"si \n\t"
3373 "mov %c[rdi](%0), %%"R
"di \n\t"
3374 "mov %c[rbp](%0), %%"R
"bp \n\t"
3375 #ifdef CONFIG_X86_64
3376 "mov %c[r8](%0), %%r8 \n\t"
3377 "mov %c[r9](%0), %%r9 \n\t"
3378 "mov %c[r10](%0), %%r10 \n\t"
3379 "mov %c[r11](%0), %%r11 \n\t"
3380 "mov %c[r12](%0), %%r12 \n\t"
3381 "mov %c[r13](%0), %%r13 \n\t"
3382 "mov %c[r14](%0), %%r14 \n\t"
3383 "mov %c[r15](%0), %%r15 \n\t"
3385 "mov %c[rcx](%0), %%"R
"cx \n\t" /* kills %0 (ecx) */
3387 /* Enter guest mode */
3388 "jne .Llaunched \n\t"
3389 __ex(ASM_VMX_VMLAUNCH
) "\n\t"
3390 "jmp .Lkvm_vmx_return \n\t"
3391 ".Llaunched: " __ex(ASM_VMX_VMRESUME
) "\n\t"
3392 ".Lkvm_vmx_return: "
3393 /* Save guest registers, load host registers, keep flags */
3394 "xchg %0, (%%"R
"sp) \n\t"
3395 "mov %%"R
"ax, %c[rax](%0) \n\t"
3396 "mov %%"R
"bx, %c[rbx](%0) \n\t"
3397 "push"Q
" (%%"R
"sp); pop"Q
" %c[rcx](%0) \n\t"
3398 "mov %%"R
"dx, %c[rdx](%0) \n\t"
3399 "mov %%"R
"si, %c[rsi](%0) \n\t"
3400 "mov %%"R
"di, %c[rdi](%0) \n\t"
3401 "mov %%"R
"bp, %c[rbp](%0) \n\t"
3402 #ifdef CONFIG_X86_64
3403 "mov %%r8, %c[r8](%0) \n\t"
3404 "mov %%r9, %c[r9](%0) \n\t"
3405 "mov %%r10, %c[r10](%0) \n\t"
3406 "mov %%r11, %c[r11](%0) \n\t"
3407 "mov %%r12, %c[r12](%0) \n\t"
3408 "mov %%r13, %c[r13](%0) \n\t"
3409 "mov %%r14, %c[r14](%0) \n\t"
3410 "mov %%r15, %c[r15](%0) \n\t"
3412 "mov %%cr2, %%"R
"ax \n\t"
3413 "mov %%"R
"ax, %c[cr2](%0) \n\t"
3415 "pop %%"R
"bp; pop %%"R
"bp; pop %%"R
"dx \n\t"
3416 "setbe %c[fail](%0) \n\t"
3417 : : "c"(vmx
), "d"((unsigned long)HOST_RSP
),
3418 [launched
]"i"(offsetof(struct vcpu_vmx
, launched
)),
3419 [fail
]"i"(offsetof(struct vcpu_vmx
, fail
)),
3420 [host_rsp
]"i"(offsetof(struct vcpu_vmx
, host_rsp
)),
3421 [rax
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RAX
])),
3422 [rbx
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RBX
])),
3423 [rcx
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RCX
])),
3424 [rdx
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RDX
])),
3425 [rsi
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RSI
])),
3426 [rdi
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RDI
])),
3427 [rbp
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RBP
])),
3428 #ifdef CONFIG_X86_64
3429 [r8
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R8
])),
3430 [r9
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R9
])),
3431 [r10
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R10
])),
3432 [r11
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R11
])),
3433 [r12
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R12
])),
3434 [r13
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R13
])),
3435 [r14
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R14
])),
3436 [r15
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R15
])),
3438 [cr2
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.cr2
))
3440 , R
"bx", R
"di", R
"si"
3441 #ifdef CONFIG_X86_64
3442 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
3446 vcpu
->arch
.regs_avail
= ~((1 << VCPU_REGS_RIP
) | (1 << VCPU_REGS_RSP
));
3447 vcpu
->arch
.regs_dirty
= 0;
3449 vmx
->idt_vectoring_info
= vmcs_read32(IDT_VECTORING_INFO_FIELD
);
3450 if (vmx
->rmode
.irq
.pending
)
3451 fixup_rmode_irq(vmx
);
3453 vmx_update_window_states(vcpu
);
3455 asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS
));
3458 intr_info
= vmcs_read32(VM_EXIT_INTR_INFO
);
3460 /* We need to handle NMIs before interrupts are enabled */
3461 if ((intr_info
& INTR_INFO_INTR_TYPE_MASK
) == INTR_TYPE_NMI_INTR
&&
3462 (intr_info
& INTR_INFO_VALID_MASK
)) {
3463 KVMTRACE_0D(NMI
, vcpu
, handler
);
3467 vmx_complete_interrupts(vmx
);
3473 static void vmx_free_vmcs(struct kvm_vcpu
*vcpu
)
3475 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3479 free_vmcs(vmx
->vmcs
);
3484 static void vmx_free_vcpu(struct kvm_vcpu
*vcpu
)
3486 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3488 spin_lock(&vmx_vpid_lock
);
3490 __clear_bit(vmx
->vpid
, vmx_vpid_bitmap
);
3491 spin_unlock(&vmx_vpid_lock
);
3492 vmx_free_vmcs(vcpu
);
3493 kfree(vmx
->host_msrs
);
3494 kfree(vmx
->guest_msrs
);
3495 kvm_vcpu_uninit(vcpu
);
3496 kmem_cache_free(kvm_vcpu_cache
, vmx
);
3499 static struct kvm_vcpu
*vmx_create_vcpu(struct kvm
*kvm
, unsigned int id
)
3502 struct vcpu_vmx
*vmx
= kmem_cache_zalloc(kvm_vcpu_cache
, GFP_KERNEL
);
3506 return ERR_PTR(-ENOMEM
);
3510 err
= kvm_vcpu_init(&vmx
->vcpu
, kvm
, id
);
3514 vmx
->guest_msrs
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
3515 if (!vmx
->guest_msrs
) {
3520 vmx
->host_msrs
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
3521 if (!vmx
->host_msrs
)
3522 goto free_guest_msrs
;
3524 vmx
->vmcs
= alloc_vmcs();
3528 vmcs_clear(vmx
->vmcs
);
3531 vmx_vcpu_load(&vmx
->vcpu
, cpu
);
3532 err
= vmx_vcpu_setup(vmx
);
3533 vmx_vcpu_put(&vmx
->vcpu
);
3537 if (vm_need_virtualize_apic_accesses(kvm
))
3538 if (alloc_apic_access_page(kvm
) != 0)
3542 if (alloc_identity_pagetable(kvm
) != 0)
3548 free_vmcs(vmx
->vmcs
);
3550 kfree(vmx
->host_msrs
);
3552 kfree(vmx
->guest_msrs
);
3554 kvm_vcpu_uninit(&vmx
->vcpu
);
3556 kmem_cache_free(kvm_vcpu_cache
, vmx
);
3557 return ERR_PTR(err
);
3560 static void __init
vmx_check_processor_compat(void *rtn
)
3562 struct vmcs_config vmcs_conf
;
3565 if (setup_vmcs_config(&vmcs_conf
) < 0)
3567 if (memcmp(&vmcs_config
, &vmcs_conf
, sizeof(struct vmcs_config
)) != 0) {
3568 printk(KERN_ERR
"kvm: CPU %d feature inconsistency!\n",
3569 smp_processor_id());
3574 static int get_ept_level(void)
3576 return VMX_EPT_DEFAULT_GAW
+ 1;
3579 static int vmx_get_mt_mask_shift(void)
3581 return VMX_EPT_MT_EPTE_SHIFT
;
3584 static struct kvm_x86_ops vmx_x86_ops
= {
3585 .cpu_has_kvm_support
= cpu_has_kvm_support
,
3586 .disabled_by_bios
= vmx_disabled_by_bios
,
3587 .hardware_setup
= hardware_setup
,
3588 .hardware_unsetup
= hardware_unsetup
,
3589 .check_processor_compatibility
= vmx_check_processor_compat
,
3590 .hardware_enable
= hardware_enable
,
3591 .hardware_disable
= hardware_disable
,
3592 .cpu_has_accelerated_tpr
= cpu_has_vmx_virtualize_apic_accesses
,
3594 .vcpu_create
= vmx_create_vcpu
,
3595 .vcpu_free
= vmx_free_vcpu
,
3596 .vcpu_reset
= vmx_vcpu_reset
,
3598 .prepare_guest_switch
= vmx_save_host_state
,
3599 .vcpu_load
= vmx_vcpu_load
,
3600 .vcpu_put
= vmx_vcpu_put
,
3602 .set_guest_debug
= set_guest_debug
,
3603 .guest_debug_pre
= kvm_guest_debug_pre
,
3604 .get_msr
= vmx_get_msr
,
3605 .set_msr
= vmx_set_msr
,
3606 .get_segment_base
= vmx_get_segment_base
,
3607 .get_segment
= vmx_get_segment
,
3608 .set_segment
= vmx_set_segment
,
3609 .get_cpl
= vmx_get_cpl
,
3610 .get_cs_db_l_bits
= vmx_get_cs_db_l_bits
,
3611 .decache_cr4_guest_bits
= vmx_decache_cr4_guest_bits
,
3612 .set_cr0
= vmx_set_cr0
,
3613 .set_cr3
= vmx_set_cr3
,
3614 .set_cr4
= vmx_set_cr4
,
3615 .set_efer
= vmx_set_efer
,
3616 .get_idt
= vmx_get_idt
,
3617 .set_idt
= vmx_set_idt
,
3618 .get_gdt
= vmx_get_gdt
,
3619 .set_gdt
= vmx_set_gdt
,
3620 .cache_reg
= vmx_cache_reg
,
3621 .get_rflags
= vmx_get_rflags
,
3622 .set_rflags
= vmx_set_rflags
,
3624 .tlb_flush
= vmx_flush_tlb
,
3626 .run
= vmx_vcpu_run
,
3627 .handle_exit
= kvm_handle_exit
,
3628 .skip_emulated_instruction
= skip_emulated_instruction
,
3629 .patch_hypercall
= vmx_patch_hypercall
,
3630 .get_irq
= vmx_get_irq
,
3631 .set_irq
= vmx_inject_irq
,
3632 .queue_exception
= vmx_queue_exception
,
3633 .exception_injected
= vmx_exception_injected
,
3634 .inject_pending_irq
= vmx_intr_assist
,
3635 .inject_pending_vectors
= do_interrupt_requests
,
3637 .set_tss_addr
= vmx_set_tss_addr
,
3638 .get_tdp_level
= get_ept_level
,
3639 .get_mt_mask_shift
= vmx_get_mt_mask_shift
,
3642 static int __init
vmx_init(void)
3647 vmx_io_bitmap_a
= alloc_page(GFP_KERNEL
| __GFP_HIGHMEM
);
3648 if (!vmx_io_bitmap_a
)
3651 vmx_io_bitmap_b
= alloc_page(GFP_KERNEL
| __GFP_HIGHMEM
);
3652 if (!vmx_io_bitmap_b
) {
3657 vmx_msr_bitmap
= alloc_page(GFP_KERNEL
| __GFP_HIGHMEM
);
3658 if (!vmx_msr_bitmap
) {
3664 * Allow direct access to the PC debug port (it is often used for I/O
3665 * delays, but the vmexits simply slow things down).
3667 va
= kmap(vmx_io_bitmap_a
);
3668 memset(va
, 0xff, PAGE_SIZE
);
3669 clear_bit(0x80, va
);
3670 kunmap(vmx_io_bitmap_a
);
3672 va
= kmap(vmx_io_bitmap_b
);
3673 memset(va
, 0xff, PAGE_SIZE
);
3674 kunmap(vmx_io_bitmap_b
);
3676 va
= kmap(vmx_msr_bitmap
);
3677 memset(va
, 0xff, PAGE_SIZE
);
3678 kunmap(vmx_msr_bitmap
);
3680 set_bit(0, vmx_vpid_bitmap
); /* 0 is reserved for host */
3682 r
= kvm_init(&vmx_x86_ops
, sizeof(struct vcpu_vmx
), THIS_MODULE
);
3686 vmx_disable_intercept_for_msr(vmx_msr_bitmap
, MSR_FS_BASE
);
3687 vmx_disable_intercept_for_msr(vmx_msr_bitmap
, MSR_GS_BASE
);
3688 vmx_disable_intercept_for_msr(vmx_msr_bitmap
, MSR_IA32_SYSENTER_CS
);
3689 vmx_disable_intercept_for_msr(vmx_msr_bitmap
, MSR_IA32_SYSENTER_ESP
);
3690 vmx_disable_intercept_for_msr(vmx_msr_bitmap
, MSR_IA32_SYSENTER_EIP
);
3692 if (vm_need_ept()) {
3693 bypass_guest_pf
= 0;
3694 kvm_mmu_set_base_ptes(VMX_EPT_READABLE_MASK
|
3695 VMX_EPT_WRITABLE_MASK
);
3696 kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
3697 VMX_EPT_EXECUTABLE_MASK
,
3698 VMX_EPT_DEFAULT_MT
<< VMX_EPT_MT_EPTE_SHIFT
);
3703 if (bypass_guest_pf
)
3704 kvm_mmu_set_nonpresent_ptes(~0xffeull
, 0ull);
3711 __free_page(vmx_msr_bitmap
);
3713 __free_page(vmx_io_bitmap_b
);
3715 __free_page(vmx_io_bitmap_a
);
3719 static void __exit
vmx_exit(void)
3721 __free_page(vmx_msr_bitmap
);
3722 __free_page(vmx_io_bitmap_b
);
3723 __free_page(vmx_io_bitmap_a
);
3728 module_init(vmx_init
)
3729 module_exit(vmx_exit
)