hwmon: (lm85) Support different PWM frequency tables
[linux-2.6/mini2440.git] / mm / oom_kill.c
blob64e5b4bcd964cd912b5a5f6b22dc392621269d84
1 /*
2 * linux/mm/oom_kill.c
3 *
4 * Copyright (C) 1998,2000 Rik van Riel
5 * Thanks go out to Claus Fischer for some serious inspiration and
6 * for goading me into coding this file...
8 * The routines in this file are used to kill a process when
9 * we're seriously out of memory. This gets called from __alloc_pages()
10 * in mm/page_alloc.c when we really run out of memory.
12 * Since we won't call these routines often (on a well-configured
13 * machine) this file will double as a 'coding guide' and a signpost
14 * for newbie kernel hackers. It features several pointers to major
15 * kernel subsystems and hints as to where to find out what things do.
18 #include <linux/oom.h>
19 #include <linux/mm.h>
20 #include <linux/err.h>
21 #include <linux/sched.h>
22 #include <linux/swap.h>
23 #include <linux/timex.h>
24 #include <linux/jiffies.h>
25 #include <linux/cpuset.h>
26 #include <linux/module.h>
27 #include <linux/notifier.h>
28 #include <linux/memcontrol.h>
29 #include <linux/security.h>
31 int sysctl_panic_on_oom;
32 int sysctl_oom_kill_allocating_task;
33 int sysctl_oom_dump_tasks;
34 static DEFINE_SPINLOCK(zone_scan_mutex);
35 /* #define DEBUG */
37 /**
38 * badness - calculate a numeric value for how bad this task has been
39 * @p: task struct of which task we should calculate
40 * @uptime: current uptime in seconds
41 * @mem: target memory controller
43 * The formula used is relatively simple and documented inline in the
44 * function. The main rationale is that we want to select a good task
45 * to kill when we run out of memory.
47 * Good in this context means that:
48 * 1) we lose the minimum amount of work done
49 * 2) we recover a large amount of memory
50 * 3) we don't kill anything innocent of eating tons of memory
51 * 4) we want to kill the minimum amount of processes (one)
52 * 5) we try to kill the process the user expects us to kill, this
53 * algorithm has been meticulously tuned to meet the principle
54 * of least surprise ... (be careful when you change it)
57 unsigned long badness(struct task_struct *p, unsigned long uptime)
59 unsigned long points, cpu_time, run_time, s;
60 struct mm_struct *mm;
61 struct task_struct *child;
63 task_lock(p);
64 mm = p->mm;
65 if (!mm) {
66 task_unlock(p);
67 return 0;
71 * The memory size of the process is the basis for the badness.
73 points = mm->total_vm;
76 * After this unlock we can no longer dereference local variable `mm'
78 task_unlock(p);
81 * swapoff can easily use up all memory, so kill those first.
83 if (p->flags & PF_SWAPOFF)
84 return ULONG_MAX;
87 * Processes which fork a lot of child processes are likely
88 * a good choice. We add half the vmsize of the children if they
89 * have an own mm. This prevents forking servers to flood the
90 * machine with an endless amount of children. In case a single
91 * child is eating the vast majority of memory, adding only half
92 * to the parents will make the child our kill candidate of choice.
94 list_for_each_entry(child, &p->children, sibling) {
95 task_lock(child);
96 if (child->mm != mm && child->mm)
97 points += child->mm->total_vm/2 + 1;
98 task_unlock(child);
102 * CPU time is in tens of seconds and run time is in thousands
103 * of seconds. There is no particular reason for this other than
104 * that it turned out to work very well in practice.
106 cpu_time = (cputime_to_jiffies(p->utime) + cputime_to_jiffies(p->stime))
107 >> (SHIFT_HZ + 3);
109 if (uptime >= p->start_time.tv_sec)
110 run_time = (uptime - p->start_time.tv_sec) >> 10;
111 else
112 run_time = 0;
114 s = int_sqrt(cpu_time);
115 if (s)
116 points /= s;
117 s = int_sqrt(int_sqrt(run_time));
118 if (s)
119 points /= s;
122 * Niced processes are most likely less important, so double
123 * their badness points.
125 if (task_nice(p) > 0)
126 points *= 2;
129 * Superuser processes are usually more important, so we make it
130 * less likely that we kill those.
132 if (has_capability(p, CAP_SYS_ADMIN) ||
133 has_capability(p, CAP_SYS_RESOURCE))
134 points /= 4;
137 * We don't want to kill a process with direct hardware access.
138 * Not only could that mess up the hardware, but usually users
139 * tend to only have this flag set on applications they think
140 * of as important.
142 if (has_capability(p, CAP_SYS_RAWIO))
143 points /= 4;
146 * If p's nodes don't overlap ours, it may still help to kill p
147 * because p may have allocated or otherwise mapped memory on
148 * this node before. However it will be less likely.
150 if (!cpuset_mems_allowed_intersects(current, p))
151 points /= 8;
154 * Adjust the score by oomkilladj.
156 if (p->oomkilladj) {
157 if (p->oomkilladj > 0) {
158 if (!points)
159 points = 1;
160 points <<= p->oomkilladj;
161 } else
162 points >>= -(p->oomkilladj);
165 #ifdef DEBUG
166 printk(KERN_DEBUG "OOMkill: task %d (%s) got %lu points\n",
167 p->pid, p->comm, points);
168 #endif
169 return points;
173 * Determine the type of allocation constraint.
175 static inline enum oom_constraint constrained_alloc(struct zonelist *zonelist,
176 gfp_t gfp_mask)
178 #ifdef CONFIG_NUMA
179 struct zone *zone;
180 struct zoneref *z;
181 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
182 nodemask_t nodes = node_states[N_HIGH_MEMORY];
184 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
185 if (cpuset_zone_allowed_softwall(zone, gfp_mask))
186 node_clear(zone_to_nid(zone), nodes);
187 else
188 return CONSTRAINT_CPUSET;
190 if (!nodes_empty(nodes))
191 return CONSTRAINT_MEMORY_POLICY;
192 #endif
194 return CONSTRAINT_NONE;
198 * Simple selection loop. We chose the process with the highest
199 * number of 'points'. We expect the caller will lock the tasklist.
201 * (not docbooked, we don't want this one cluttering up the manual)
203 static struct task_struct *select_bad_process(unsigned long *ppoints,
204 struct mem_cgroup *mem)
206 struct task_struct *g, *p;
207 struct task_struct *chosen = NULL;
208 struct timespec uptime;
209 *ppoints = 0;
211 do_posix_clock_monotonic_gettime(&uptime);
212 do_each_thread(g, p) {
213 unsigned long points;
216 * skip kernel threads and tasks which have already released
217 * their mm.
219 if (!p->mm)
220 continue;
221 /* skip the init task */
222 if (is_global_init(p))
223 continue;
224 if (mem && !task_in_mem_cgroup(p, mem))
225 continue;
228 * This task already has access to memory reserves and is
229 * being killed. Don't allow any other task access to the
230 * memory reserve.
232 * Note: this may have a chance of deadlock if it gets
233 * blocked waiting for another task which itself is waiting
234 * for memory. Is there a better alternative?
236 if (test_tsk_thread_flag(p, TIF_MEMDIE))
237 return ERR_PTR(-1UL);
240 * This is in the process of releasing memory so wait for it
241 * to finish before killing some other task by mistake.
243 * However, if p is the current task, we allow the 'kill' to
244 * go ahead if it is exiting: this will simply set TIF_MEMDIE,
245 * which will allow it to gain access to memory reserves in
246 * the process of exiting and releasing its resources.
247 * Otherwise we could get an easy OOM deadlock.
249 if (p->flags & PF_EXITING) {
250 if (p != current)
251 return ERR_PTR(-1UL);
253 chosen = p;
254 *ppoints = ULONG_MAX;
257 if (p->oomkilladj == OOM_DISABLE)
258 continue;
260 points = badness(p, uptime.tv_sec);
261 if (points > *ppoints || !chosen) {
262 chosen = p;
263 *ppoints = points;
265 } while_each_thread(g, p);
267 return chosen;
271 * dump_tasks - dump current memory state of all system tasks
272 * @mem: target memory controller
274 * Dumps the current memory state of all system tasks, excluding kernel threads.
275 * State information includes task's pid, uid, tgid, vm size, rss, cpu, oom_adj
276 * score, and name.
278 * If the actual is non-NULL, only tasks that are a member of the mem_cgroup are
279 * shown.
281 * Call with tasklist_lock read-locked.
283 static void dump_tasks(const struct mem_cgroup *mem)
285 struct task_struct *g, *p;
287 printk(KERN_INFO "[ pid ] uid tgid total_vm rss cpu oom_adj "
288 "name\n");
289 do_each_thread(g, p) {
291 * total_vm and rss sizes do not exist for tasks with a
292 * detached mm so there's no need to report them.
294 if (!p->mm)
295 continue;
296 if (mem && !task_in_mem_cgroup(p, mem))
297 continue;
299 task_lock(p);
300 printk(KERN_INFO "[%5d] %5d %5d %8lu %8lu %3d %3d %s\n",
301 p->pid, p->uid, p->tgid, p->mm->total_vm,
302 get_mm_rss(p->mm), (int)task_cpu(p), p->oomkilladj,
303 p->comm);
304 task_unlock(p);
305 } while_each_thread(g, p);
309 * Send SIGKILL to the selected process irrespective of CAP_SYS_RAW_IO
310 * flag though it's unlikely that we select a process with CAP_SYS_RAW_IO
311 * set.
313 static void __oom_kill_task(struct task_struct *p, int verbose)
315 if (is_global_init(p)) {
316 WARN_ON(1);
317 printk(KERN_WARNING "tried to kill init!\n");
318 return;
321 if (!p->mm) {
322 WARN_ON(1);
323 printk(KERN_WARNING "tried to kill an mm-less task!\n");
324 return;
327 if (verbose)
328 printk(KERN_ERR "Killed process %d (%s)\n",
329 task_pid_nr(p), p->comm);
332 * We give our sacrificial lamb high priority and access to
333 * all the memory it needs. That way it should be able to
334 * exit() and clear out its resources quickly...
336 p->rt.time_slice = HZ;
337 set_tsk_thread_flag(p, TIF_MEMDIE);
339 force_sig(SIGKILL, p);
342 static int oom_kill_task(struct task_struct *p)
344 struct mm_struct *mm;
345 struct task_struct *g, *q;
347 mm = p->mm;
349 /* WARNING: mm may not be dereferenced since we did not obtain its
350 * value from get_task_mm(p). This is OK since all we need to do is
351 * compare mm to q->mm below.
353 * Furthermore, even if mm contains a non-NULL value, p->mm may
354 * change to NULL at any time since we do not hold task_lock(p).
355 * However, this is of no concern to us.
358 if (mm == NULL)
359 return 1;
362 * Don't kill the process if any threads are set to OOM_DISABLE
364 do_each_thread(g, q) {
365 if (q->mm == mm && q->oomkilladj == OOM_DISABLE)
366 return 1;
367 } while_each_thread(g, q);
369 __oom_kill_task(p, 1);
372 * kill all processes that share the ->mm (i.e. all threads),
373 * but are in a different thread group. Don't let them have access
374 * to memory reserves though, otherwise we might deplete all memory.
376 do_each_thread(g, q) {
377 if (q->mm == mm && !same_thread_group(q, p))
378 force_sig(SIGKILL, q);
379 } while_each_thread(g, q);
381 return 0;
384 static int oom_kill_process(struct task_struct *p, gfp_t gfp_mask, int order,
385 unsigned long points, struct mem_cgroup *mem,
386 const char *message)
388 struct task_struct *c;
390 if (printk_ratelimit()) {
391 printk(KERN_WARNING "%s invoked oom-killer: "
392 "gfp_mask=0x%x, order=%d, oomkilladj=%d\n",
393 current->comm, gfp_mask, order, current->oomkilladj);
394 dump_stack();
395 show_mem();
396 if (sysctl_oom_dump_tasks)
397 dump_tasks(mem);
401 * If the task is already exiting, don't alarm the sysadmin or kill
402 * its children or threads, just set TIF_MEMDIE so it can die quickly
404 if (p->flags & PF_EXITING) {
405 __oom_kill_task(p, 0);
406 return 0;
409 printk(KERN_ERR "%s: kill process %d (%s) score %li or a child\n",
410 message, task_pid_nr(p), p->comm, points);
412 /* Try to kill a child first */
413 list_for_each_entry(c, &p->children, sibling) {
414 if (c->mm == p->mm)
415 continue;
416 if (!oom_kill_task(c))
417 return 0;
419 return oom_kill_task(p);
422 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
423 void mem_cgroup_out_of_memory(struct mem_cgroup *mem, gfp_t gfp_mask)
425 unsigned long points = 0;
426 struct task_struct *p;
428 cgroup_lock();
429 read_lock(&tasklist_lock);
430 retry:
431 p = select_bad_process(&points, mem);
432 if (PTR_ERR(p) == -1UL)
433 goto out;
435 if (!p)
436 p = current;
438 if (oom_kill_process(p, gfp_mask, 0, points, mem,
439 "Memory cgroup out of memory"))
440 goto retry;
441 out:
442 read_unlock(&tasklist_lock);
443 cgroup_unlock();
445 #endif
447 static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
449 int register_oom_notifier(struct notifier_block *nb)
451 return blocking_notifier_chain_register(&oom_notify_list, nb);
453 EXPORT_SYMBOL_GPL(register_oom_notifier);
455 int unregister_oom_notifier(struct notifier_block *nb)
457 return blocking_notifier_chain_unregister(&oom_notify_list, nb);
459 EXPORT_SYMBOL_GPL(unregister_oom_notifier);
462 * Try to acquire the OOM killer lock for the zones in zonelist. Returns zero
463 * if a parallel OOM killing is already taking place that includes a zone in
464 * the zonelist. Otherwise, locks all zones in the zonelist and returns 1.
466 int try_set_zone_oom(struct zonelist *zonelist, gfp_t gfp_mask)
468 struct zoneref *z;
469 struct zone *zone;
470 int ret = 1;
472 spin_lock(&zone_scan_mutex);
473 for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) {
474 if (zone_is_oom_locked(zone)) {
475 ret = 0;
476 goto out;
480 for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) {
482 * Lock each zone in the zonelist under zone_scan_mutex so a
483 * parallel invocation of try_set_zone_oom() doesn't succeed
484 * when it shouldn't.
486 zone_set_flag(zone, ZONE_OOM_LOCKED);
489 out:
490 spin_unlock(&zone_scan_mutex);
491 return ret;
495 * Clears the ZONE_OOM_LOCKED flag for all zones in the zonelist so that failed
496 * allocation attempts with zonelists containing them may now recall the OOM
497 * killer, if necessary.
499 void clear_zonelist_oom(struct zonelist *zonelist, gfp_t gfp_mask)
501 struct zoneref *z;
502 struct zone *zone;
504 spin_lock(&zone_scan_mutex);
505 for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) {
506 zone_clear_flag(zone, ZONE_OOM_LOCKED);
508 spin_unlock(&zone_scan_mutex);
512 * out_of_memory - kill the "best" process when we run out of memory
513 * @zonelist: zonelist pointer
514 * @gfp_mask: memory allocation flags
515 * @order: amount of memory being requested as a power of 2
517 * If we run out of memory, we have the choice between either
518 * killing a random task (bad), letting the system crash (worse)
519 * OR try to be smart about which process to kill. Note that we
520 * don't have to be perfect here, we just have to be good.
522 void out_of_memory(struct zonelist *zonelist, gfp_t gfp_mask, int order)
524 struct task_struct *p;
525 unsigned long points = 0;
526 unsigned long freed = 0;
527 enum oom_constraint constraint;
529 blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
530 if (freed > 0)
531 /* Got some memory back in the last second. */
532 return;
534 if (sysctl_panic_on_oom == 2)
535 panic("out of memory. Compulsory panic_on_oom is selected.\n");
538 * Check if there were limitations on the allocation (only relevant for
539 * NUMA) that may require different handling.
541 constraint = constrained_alloc(zonelist, gfp_mask);
542 read_lock(&tasklist_lock);
544 switch (constraint) {
545 case CONSTRAINT_MEMORY_POLICY:
546 oom_kill_process(current, gfp_mask, order, points, NULL,
547 "No available memory (MPOL_BIND)");
548 break;
550 case CONSTRAINT_NONE:
551 if (sysctl_panic_on_oom)
552 panic("out of memory. panic_on_oom is selected\n");
553 /* Fall-through */
554 case CONSTRAINT_CPUSET:
555 if (sysctl_oom_kill_allocating_task) {
556 oom_kill_process(current, gfp_mask, order, points, NULL,
557 "Out of memory (oom_kill_allocating_task)");
558 break;
560 retry:
562 * Rambo mode: Shoot down a process and hope it solves whatever
563 * issues we may have.
565 p = select_bad_process(&points, NULL);
567 if (PTR_ERR(p) == -1UL)
568 goto out;
570 /* Found nothing?!?! Either we hang forever, or we panic. */
571 if (!p) {
572 read_unlock(&tasklist_lock);
573 panic("Out of memory and no killable processes...\n");
576 if (oom_kill_process(p, gfp_mask, order, points, NULL,
577 "Out of memory"))
578 goto retry;
580 break;
583 out:
584 read_unlock(&tasklist_lock);
587 * Give "p" a good chance of killing itself before we
588 * retry to allocate memory unless "p" is current
590 if (!test_thread_flag(TIF_MEMDIE))
591 schedule_timeout_uninterruptible(1);