2 * Routines having to do with the 'struct sk_buff' memory handlers.
4 * Authors: Alan Cox <iiitac@pyr.swan.ac.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
7 * Version: $Id: skbuff.c,v 1.90 2001/11/07 05:56:19 davem Exp $
10 * Alan Cox : Fixed the worst of the load
12 * Dave Platt : Interrupt stacking fix.
13 * Richard Kooijman : Timestamp fixes.
14 * Alan Cox : Changed buffer format.
15 * Alan Cox : destructor hook for AF_UNIX etc.
16 * Linus Torvalds : Better skb_clone.
17 * Alan Cox : Added skb_copy.
18 * Alan Cox : Added all the changed routines Linus
19 * only put in the headers
20 * Ray VanTassle : Fixed --skb->lock in free
21 * Alan Cox : skb_copy copy arp field
22 * Andi Kleen : slabified it.
23 * Robert Olsson : Removed skb_head_pool
26 * The __skb_ routines should be called with interrupts
27 * disabled, or you better be *real* sure that the operation is atomic
28 * with respect to whatever list is being frobbed (e.g. via lock_sock()
29 * or via disabling bottom half handlers, etc).
31 * This program is free software; you can redistribute it and/or
32 * modify it under the terms of the GNU General Public License
33 * as published by the Free Software Foundation; either version
34 * 2 of the License, or (at your option) any later version.
38 * The functions in this file will not compile correctly with gcc 2.4.x
41 #include <linux/config.h>
42 #include <linux/module.h>
43 #include <linux/types.h>
44 #include <linux/kernel.h>
45 #include <linux/sched.h>
47 #include <linux/interrupt.h>
49 #include <linux/inet.h>
50 #include <linux/slab.h>
51 #include <linux/netdevice.h>
52 #ifdef CONFIG_NET_CLS_ACT
53 #include <net/pkt_sched.h>
55 #include <linux/string.h>
56 #include <linux/skbuff.h>
57 #include <linux/cache.h>
58 #include <linux/rtnetlink.h>
59 #include <linux/init.h>
60 #include <linux/highmem.h>
62 #include <net/protocol.h>
65 #include <net/checksum.h>
68 #include <asm/uaccess.h>
69 #include <asm/system.h>
71 static kmem_cache_t
*skbuff_head_cache __read_mostly
;
72 static kmem_cache_t
*skbuff_fclone_cache __read_mostly
;
75 * Keep out-of-line to prevent kernel bloat.
76 * __builtin_return_address is not used because it is not always
81 * skb_over_panic - private function
86 * Out of line support code for skb_put(). Not user callable.
88 void skb_over_panic(struct sk_buff
*skb
, int sz
, void *here
)
90 printk(KERN_EMERG
"skb_over_panic: text:%p len:%d put:%d head:%p "
91 "data:%p tail:%p end:%p dev:%s\n",
92 here
, skb
->len
, sz
, skb
->head
, skb
->data
, skb
->tail
, skb
->end
,
93 skb
->dev
? skb
->dev
->name
: "<NULL>");
98 * skb_under_panic - private function
103 * Out of line support code for skb_push(). Not user callable.
106 void skb_under_panic(struct sk_buff
*skb
, int sz
, void *here
)
108 printk(KERN_EMERG
"skb_under_panic: text:%p len:%d put:%d head:%p "
109 "data:%p tail:%p end:%p dev:%s\n",
110 here
, skb
->len
, sz
, skb
->head
, skb
->data
, skb
->tail
, skb
->end
,
111 skb
->dev
? skb
->dev
->name
: "<NULL>");
115 void skb_truesize_bug(struct sk_buff
*skb
)
117 printk(KERN_ERR
"SKB BUG: Invalid truesize (%u) "
118 "len=%u, sizeof(sk_buff)=%Zd\n",
119 skb
->truesize
, skb
->len
, sizeof(struct sk_buff
));
121 EXPORT_SYMBOL(skb_truesize_bug
);
123 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
124 * 'private' fields and also do memory statistics to find all the
130 * __alloc_skb - allocate a network buffer
131 * @size: size to allocate
132 * @gfp_mask: allocation mask
133 * @fclone: allocate from fclone cache instead of head cache
134 * and allocate a cloned (child) skb
136 * Allocate a new &sk_buff. The returned buffer has no headroom and a
137 * tail room of size bytes. The object has a reference count of one.
138 * The return is the buffer. On a failure the return is %NULL.
140 * Buffers may only be allocated from interrupts using a @gfp_mask of
143 struct sk_buff
*__alloc_skb(unsigned int size
, gfp_t gfp_mask
,
147 struct skb_shared_info
*shinfo
;
151 cache
= fclone
? skbuff_fclone_cache
: skbuff_head_cache
;
154 skb
= kmem_cache_alloc(cache
, gfp_mask
& ~__GFP_DMA
);
158 /* Get the DATA. Size must match skb_add_mtu(). */
159 size
= SKB_DATA_ALIGN(size
);
160 data
= ____kmalloc(size
+ sizeof(struct skb_shared_info
), gfp_mask
);
164 memset(skb
, 0, offsetof(struct sk_buff
, truesize
));
165 skb
->truesize
= size
+ sizeof(struct sk_buff
);
166 atomic_set(&skb
->users
, 1);
170 skb
->end
= data
+ size
;
171 /* make sure we initialize shinfo sequentially */
172 shinfo
= skb_shinfo(skb
);
173 atomic_set(&shinfo
->dataref
, 1);
174 shinfo
->nr_frags
= 0;
175 shinfo
->tso_size
= 0;
176 shinfo
->tso_segs
= 0;
177 shinfo
->ufo_size
= 0;
178 shinfo
->ip6_frag_id
= 0;
179 shinfo
->frag_list
= NULL
;
182 struct sk_buff
*child
= skb
+ 1;
183 atomic_t
*fclone_ref
= (atomic_t
*) (child
+ 1);
185 skb
->fclone
= SKB_FCLONE_ORIG
;
186 atomic_set(fclone_ref
, 1);
188 child
->fclone
= SKB_FCLONE_UNAVAILABLE
;
193 kmem_cache_free(cache
, skb
);
199 * alloc_skb_from_cache - allocate a network buffer
200 * @cp: kmem_cache from which to allocate the data area
201 * (object size must be big enough for @size bytes + skb overheads)
202 * @size: size to allocate
203 * @gfp_mask: allocation mask
205 * Allocate a new &sk_buff. The returned buffer has no headroom and
206 * tail room of size bytes. The object has a reference count of one.
207 * The return is the buffer. On a failure the return is %NULL.
209 * Buffers may only be allocated from interrupts using a @gfp_mask of
212 struct sk_buff
*alloc_skb_from_cache(kmem_cache_t
*cp
,
220 skb
= kmem_cache_alloc(skbuff_head_cache
,
221 gfp_mask
& ~__GFP_DMA
);
226 size
= SKB_DATA_ALIGN(size
);
227 data
= kmem_cache_alloc(cp
, gfp_mask
);
231 memset(skb
, 0, offsetof(struct sk_buff
, truesize
));
232 skb
->truesize
= size
+ sizeof(struct sk_buff
);
233 atomic_set(&skb
->users
, 1);
237 skb
->end
= data
+ size
;
239 atomic_set(&(skb_shinfo(skb
)->dataref
), 1);
240 skb_shinfo(skb
)->nr_frags
= 0;
241 skb_shinfo(skb
)->tso_size
= 0;
242 skb_shinfo(skb
)->tso_segs
= 0;
243 skb_shinfo(skb
)->frag_list
= NULL
;
247 kmem_cache_free(skbuff_head_cache
, skb
);
253 static void skb_drop_fraglist(struct sk_buff
*skb
)
255 struct sk_buff
*list
= skb_shinfo(skb
)->frag_list
;
257 skb_shinfo(skb
)->frag_list
= NULL
;
260 struct sk_buff
*this = list
;
266 static void skb_clone_fraglist(struct sk_buff
*skb
)
268 struct sk_buff
*list
;
270 for (list
= skb_shinfo(skb
)->frag_list
; list
; list
= list
->next
)
274 void skb_release_data(struct sk_buff
*skb
)
277 !atomic_sub_return(skb
->nohdr
? (1 << SKB_DATAREF_SHIFT
) + 1 : 1,
278 &skb_shinfo(skb
)->dataref
)) {
279 if (skb_shinfo(skb
)->nr_frags
) {
281 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++)
282 put_page(skb_shinfo(skb
)->frags
[i
].page
);
285 if (skb_shinfo(skb
)->frag_list
)
286 skb_drop_fraglist(skb
);
293 * Free an skbuff by memory without cleaning the state.
295 void kfree_skbmem(struct sk_buff
*skb
)
297 struct sk_buff
*other
;
298 atomic_t
*fclone_ref
;
300 skb_release_data(skb
);
301 switch (skb
->fclone
) {
302 case SKB_FCLONE_UNAVAILABLE
:
303 kmem_cache_free(skbuff_head_cache
, skb
);
306 case SKB_FCLONE_ORIG
:
307 fclone_ref
= (atomic_t
*) (skb
+ 2);
308 if (atomic_dec_and_test(fclone_ref
))
309 kmem_cache_free(skbuff_fclone_cache
, skb
);
312 case SKB_FCLONE_CLONE
:
313 fclone_ref
= (atomic_t
*) (skb
+ 1);
316 /* The clone portion is available for
317 * fast-cloning again.
319 skb
->fclone
= SKB_FCLONE_UNAVAILABLE
;
321 if (atomic_dec_and_test(fclone_ref
))
322 kmem_cache_free(skbuff_fclone_cache
, other
);
328 * __kfree_skb - private function
331 * Free an sk_buff. Release anything attached to the buffer.
332 * Clean the state. This is an internal helper function. Users should
333 * always call kfree_skb
336 void __kfree_skb(struct sk_buff
*skb
)
338 dst_release(skb
->dst
);
340 secpath_put(skb
->sp
);
342 if (skb
->destructor
) {
344 skb
->destructor(skb
);
346 #ifdef CONFIG_NETFILTER
347 nf_conntrack_put(skb
->nfct
);
348 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
349 nf_conntrack_put_reasm(skb
->nfct_reasm
);
351 #ifdef CONFIG_BRIDGE_NETFILTER
352 nf_bridge_put(skb
->nf_bridge
);
355 /* XXX: IS this still necessary? - JHS */
356 #ifdef CONFIG_NET_SCHED
358 #ifdef CONFIG_NET_CLS_ACT
367 * kfree_skb - free an sk_buff
368 * @skb: buffer to free
370 * Drop a reference to the buffer and free it if the usage count has
373 void kfree_skb(struct sk_buff
*skb
)
377 if (likely(atomic_read(&skb
->users
) == 1))
379 else if (likely(!atomic_dec_and_test(&skb
->users
)))
385 * skb_clone - duplicate an sk_buff
386 * @skb: buffer to clone
387 * @gfp_mask: allocation priority
389 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
390 * copies share the same packet data but not structure. The new
391 * buffer has a reference count of 1. If the allocation fails the
392 * function returns %NULL otherwise the new buffer is returned.
394 * If this function is called from an interrupt gfp_mask() must be
398 struct sk_buff
*skb_clone(struct sk_buff
*skb
, gfp_t gfp_mask
)
403 if (skb
->fclone
== SKB_FCLONE_ORIG
&&
404 n
->fclone
== SKB_FCLONE_UNAVAILABLE
) {
405 atomic_t
*fclone_ref
= (atomic_t
*) (n
+ 1);
406 n
->fclone
= SKB_FCLONE_CLONE
;
407 atomic_inc(fclone_ref
);
409 n
= kmem_cache_alloc(skbuff_head_cache
, gfp_mask
);
412 n
->fclone
= SKB_FCLONE_UNAVAILABLE
;
415 #define C(x) n->x = skb->x
417 n
->next
= n
->prev
= NULL
;
428 secpath_get(skb
->sp
);
430 memcpy(n
->cb
, skb
->cb
, sizeof(skb
->cb
));
440 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
444 n
->destructor
= NULL
;
445 #ifdef CONFIG_NETFILTER
448 nf_conntrack_get(skb
->nfct
);
450 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
452 nf_conntrack_get_reasm(skb
->nfct_reasm
);
454 #ifdef CONFIG_BRIDGE_NETFILTER
456 nf_bridge_get(skb
->nf_bridge
);
458 #endif /*CONFIG_NETFILTER*/
459 #ifdef CONFIG_NET_SCHED
461 #ifdef CONFIG_NET_CLS_ACT
462 n
->tc_verd
= SET_TC_VERD(skb
->tc_verd
,0);
463 n
->tc_verd
= CLR_TC_OK2MUNGE(n
->tc_verd
);
464 n
->tc_verd
= CLR_TC_MUNGED(n
->tc_verd
);
470 atomic_set(&n
->users
, 1);
476 atomic_inc(&(skb_shinfo(skb
)->dataref
));
482 static void copy_skb_header(struct sk_buff
*new, const struct sk_buff
*old
)
485 * Shift between the two data areas in bytes
487 unsigned long offset
= new->data
- old
->data
;
491 new->priority
= old
->priority
;
492 new->protocol
= old
->protocol
;
493 new->dst
= dst_clone(old
->dst
);
495 new->sp
= secpath_get(old
->sp
);
497 new->h
.raw
= old
->h
.raw
+ offset
;
498 new->nh
.raw
= old
->nh
.raw
+ offset
;
499 new->mac
.raw
= old
->mac
.raw
+ offset
;
500 memcpy(new->cb
, old
->cb
, sizeof(old
->cb
));
501 new->local_df
= old
->local_df
;
502 new->fclone
= SKB_FCLONE_UNAVAILABLE
;
503 new->pkt_type
= old
->pkt_type
;
504 new->tstamp
= old
->tstamp
;
505 new->destructor
= NULL
;
506 #ifdef CONFIG_NETFILTER
507 new->nfmark
= old
->nfmark
;
508 new->nfct
= old
->nfct
;
509 nf_conntrack_get(old
->nfct
);
510 new->nfctinfo
= old
->nfctinfo
;
511 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
512 new->nfct_reasm
= old
->nfct_reasm
;
513 nf_conntrack_get_reasm(old
->nfct_reasm
);
515 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
516 new->ipvs_property
= old
->ipvs_property
;
518 #ifdef CONFIG_BRIDGE_NETFILTER
519 new->nf_bridge
= old
->nf_bridge
;
520 nf_bridge_get(old
->nf_bridge
);
523 #ifdef CONFIG_NET_SCHED
524 #ifdef CONFIG_NET_CLS_ACT
525 new->tc_verd
= old
->tc_verd
;
527 new->tc_index
= old
->tc_index
;
529 atomic_set(&new->users
, 1);
530 skb_shinfo(new)->tso_size
= skb_shinfo(old
)->tso_size
;
531 skb_shinfo(new)->tso_segs
= skb_shinfo(old
)->tso_segs
;
535 * skb_copy - create private copy of an sk_buff
536 * @skb: buffer to copy
537 * @gfp_mask: allocation priority
539 * Make a copy of both an &sk_buff and its data. This is used when the
540 * caller wishes to modify the data and needs a private copy of the
541 * data to alter. Returns %NULL on failure or the pointer to the buffer
542 * on success. The returned buffer has a reference count of 1.
544 * As by-product this function converts non-linear &sk_buff to linear
545 * one, so that &sk_buff becomes completely private and caller is allowed
546 * to modify all the data of returned buffer. This means that this
547 * function is not recommended for use in circumstances when only
548 * header is going to be modified. Use pskb_copy() instead.
551 struct sk_buff
*skb_copy(const struct sk_buff
*skb
, gfp_t gfp_mask
)
553 int headerlen
= skb
->data
- skb
->head
;
555 * Allocate the copy buffer
557 struct sk_buff
*n
= alloc_skb(skb
->end
- skb
->head
+ skb
->data_len
,
562 /* Set the data pointer */
563 skb_reserve(n
, headerlen
);
564 /* Set the tail pointer and length */
565 skb_put(n
, skb
->len
);
567 n
->ip_summed
= skb
->ip_summed
;
569 if (skb_copy_bits(skb
, -headerlen
, n
->head
, headerlen
+ skb
->len
))
572 copy_skb_header(n
, skb
);
578 * pskb_copy - create copy of an sk_buff with private head.
579 * @skb: buffer to copy
580 * @gfp_mask: allocation priority
582 * Make a copy of both an &sk_buff and part of its data, located
583 * in header. Fragmented data remain shared. This is used when
584 * the caller wishes to modify only header of &sk_buff and needs
585 * private copy of the header to alter. Returns %NULL on failure
586 * or the pointer to the buffer on success.
587 * The returned buffer has a reference count of 1.
590 struct sk_buff
*pskb_copy(struct sk_buff
*skb
, gfp_t gfp_mask
)
593 * Allocate the copy buffer
595 struct sk_buff
*n
= alloc_skb(skb
->end
- skb
->head
, gfp_mask
);
600 /* Set the data pointer */
601 skb_reserve(n
, skb
->data
- skb
->head
);
602 /* Set the tail pointer and length */
603 skb_put(n
, skb_headlen(skb
));
605 memcpy(n
->data
, skb
->data
, n
->len
);
607 n
->ip_summed
= skb
->ip_summed
;
609 n
->data_len
= skb
->data_len
;
612 if (skb_shinfo(skb
)->nr_frags
) {
615 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
616 skb_shinfo(n
)->frags
[i
] = skb_shinfo(skb
)->frags
[i
];
617 get_page(skb_shinfo(n
)->frags
[i
].page
);
619 skb_shinfo(n
)->nr_frags
= i
;
622 if (skb_shinfo(skb
)->frag_list
) {
623 skb_shinfo(n
)->frag_list
= skb_shinfo(skb
)->frag_list
;
624 skb_clone_fraglist(n
);
627 copy_skb_header(n
, skb
);
633 * pskb_expand_head - reallocate header of &sk_buff
634 * @skb: buffer to reallocate
635 * @nhead: room to add at head
636 * @ntail: room to add at tail
637 * @gfp_mask: allocation priority
639 * Expands (or creates identical copy, if &nhead and &ntail are zero)
640 * header of skb. &sk_buff itself is not changed. &sk_buff MUST have
641 * reference count of 1. Returns zero in the case of success or error,
642 * if expansion failed. In the last case, &sk_buff is not changed.
644 * All the pointers pointing into skb header may change and must be
645 * reloaded after call to this function.
648 int pskb_expand_head(struct sk_buff
*skb
, int nhead
, int ntail
,
653 int size
= nhead
+ (skb
->end
- skb
->head
) + ntail
;
659 size
= SKB_DATA_ALIGN(size
);
661 data
= kmalloc(size
+ sizeof(struct skb_shared_info
), gfp_mask
);
665 /* Copy only real data... and, alas, header. This should be
666 * optimized for the cases when header is void. */
667 memcpy(data
+ nhead
, skb
->head
, skb
->tail
- skb
->head
);
668 memcpy(data
+ size
, skb
->end
, sizeof(struct skb_shared_info
));
670 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++)
671 get_page(skb_shinfo(skb
)->frags
[i
].page
);
673 if (skb_shinfo(skb
)->frag_list
)
674 skb_clone_fraglist(skb
);
676 skb_release_data(skb
);
678 off
= (data
+ nhead
) - skb
->head
;
681 skb
->end
= data
+ size
;
689 atomic_set(&skb_shinfo(skb
)->dataref
, 1);
696 /* Make private copy of skb with writable head and some headroom */
698 struct sk_buff
*skb_realloc_headroom(struct sk_buff
*skb
, unsigned int headroom
)
700 struct sk_buff
*skb2
;
701 int delta
= headroom
- skb_headroom(skb
);
704 skb2
= pskb_copy(skb
, GFP_ATOMIC
);
706 skb2
= skb_clone(skb
, GFP_ATOMIC
);
707 if (skb2
&& pskb_expand_head(skb2
, SKB_DATA_ALIGN(delta
), 0,
718 * skb_copy_expand - copy and expand sk_buff
719 * @skb: buffer to copy
720 * @newheadroom: new free bytes at head
721 * @newtailroom: new free bytes at tail
722 * @gfp_mask: allocation priority
724 * Make a copy of both an &sk_buff and its data and while doing so
725 * allocate additional space.
727 * This is used when the caller wishes to modify the data and needs a
728 * private copy of the data to alter as well as more space for new fields.
729 * Returns %NULL on failure or the pointer to the buffer
730 * on success. The returned buffer has a reference count of 1.
732 * You must pass %GFP_ATOMIC as the allocation priority if this function
733 * is called from an interrupt.
735 * BUG ALERT: ip_summed is not copied. Why does this work? Is it used
736 * only by netfilter in the cases when checksum is recalculated? --ANK
738 struct sk_buff
*skb_copy_expand(const struct sk_buff
*skb
,
739 int newheadroom
, int newtailroom
,
743 * Allocate the copy buffer
745 struct sk_buff
*n
= alloc_skb(newheadroom
+ skb
->len
+ newtailroom
,
747 int head_copy_len
, head_copy_off
;
752 skb_reserve(n
, newheadroom
);
754 /* Set the tail pointer and length */
755 skb_put(n
, skb
->len
);
757 head_copy_len
= skb_headroom(skb
);
759 if (newheadroom
<= head_copy_len
)
760 head_copy_len
= newheadroom
;
762 head_copy_off
= newheadroom
- head_copy_len
;
764 /* Copy the linear header and data. */
765 if (skb_copy_bits(skb
, -head_copy_len
, n
->head
+ head_copy_off
,
766 skb
->len
+ head_copy_len
))
769 copy_skb_header(n
, skb
);
775 * skb_pad - zero pad the tail of an skb
776 * @skb: buffer to pad
779 * Ensure that a buffer is followed by a padding area that is zero
780 * filled. Used by network drivers which may DMA or transfer data
781 * beyond the buffer end onto the wire.
783 * May return NULL in out of memory cases.
786 struct sk_buff
*skb_pad(struct sk_buff
*skb
, int pad
)
788 struct sk_buff
*nskb
;
790 /* If the skbuff is non linear tailroom is always zero.. */
791 if (skb_tailroom(skb
) >= pad
) {
792 memset(skb
->data
+skb
->len
, 0, pad
);
796 nskb
= skb_copy_expand(skb
, skb_headroom(skb
), skb_tailroom(skb
) + pad
, GFP_ATOMIC
);
799 memset(nskb
->data
+nskb
->len
, 0, pad
);
803 /* Trims skb to length len. It can change skb pointers, if "realloc" is 1.
804 * If realloc==0 and trimming is impossible without change of data,
808 int ___pskb_trim(struct sk_buff
*skb
, unsigned int len
, int realloc
)
810 int offset
= skb_headlen(skb
);
811 int nfrags
= skb_shinfo(skb
)->nr_frags
;
814 for (i
= 0; i
< nfrags
; i
++) {
815 int end
= offset
+ skb_shinfo(skb
)->frags
[i
].size
;
817 if (skb_cloned(skb
)) {
819 if (pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
))
823 put_page(skb_shinfo(skb
)->frags
[i
].page
);
824 skb_shinfo(skb
)->nr_frags
--;
826 skb_shinfo(skb
)->frags
[i
].size
= len
- offset
;
833 skb
->data_len
-= skb
->len
- len
;
836 if (len
<= skb_headlen(skb
)) {
839 skb
->tail
= skb
->data
+ len
;
840 if (skb_shinfo(skb
)->frag_list
&& !skb_cloned(skb
))
841 skb_drop_fraglist(skb
);
843 skb
->data_len
-= skb
->len
- len
;
852 * __pskb_pull_tail - advance tail of skb header
853 * @skb: buffer to reallocate
854 * @delta: number of bytes to advance tail
856 * The function makes a sense only on a fragmented &sk_buff,
857 * it expands header moving its tail forward and copying necessary
858 * data from fragmented part.
860 * &sk_buff MUST have reference count of 1.
862 * Returns %NULL (and &sk_buff does not change) if pull failed
863 * or value of new tail of skb in the case of success.
865 * All the pointers pointing into skb header may change and must be
866 * reloaded after call to this function.
869 /* Moves tail of skb head forward, copying data from fragmented part,
870 * when it is necessary.
871 * 1. It may fail due to malloc failure.
872 * 2. It may change skb pointers.
874 * It is pretty complicated. Luckily, it is called only in exceptional cases.
876 unsigned char *__pskb_pull_tail(struct sk_buff
*skb
, int delta
)
878 /* If skb has not enough free space at tail, get new one
879 * plus 128 bytes for future expansions. If we have enough
880 * room at tail, reallocate without expansion only if skb is cloned.
882 int i
, k
, eat
= (skb
->tail
+ delta
) - skb
->end
;
884 if (eat
> 0 || skb_cloned(skb
)) {
885 if (pskb_expand_head(skb
, 0, eat
> 0 ? eat
+ 128 : 0,
890 if (skb_copy_bits(skb
, skb_headlen(skb
), skb
->tail
, delta
))
893 /* Optimization: no fragments, no reasons to preestimate
894 * size of pulled pages. Superb.
896 if (!skb_shinfo(skb
)->frag_list
)
899 /* Estimate size of pulled pages. */
901 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
902 if (skb_shinfo(skb
)->frags
[i
].size
>= eat
)
904 eat
-= skb_shinfo(skb
)->frags
[i
].size
;
907 /* If we need update frag list, we are in troubles.
908 * Certainly, it possible to add an offset to skb data,
909 * but taking into account that pulling is expected to
910 * be very rare operation, it is worth to fight against
911 * further bloating skb head and crucify ourselves here instead.
912 * Pure masohism, indeed. 8)8)
915 struct sk_buff
*list
= skb_shinfo(skb
)->frag_list
;
916 struct sk_buff
*clone
= NULL
;
917 struct sk_buff
*insp
= NULL
;
922 if (list
->len
<= eat
) {
923 /* Eaten as whole. */
928 /* Eaten partially. */
930 if (skb_shared(list
)) {
931 /* Sucks! We need to fork list. :-( */
932 clone
= skb_clone(list
, GFP_ATOMIC
);
938 /* This may be pulled without
942 if (!pskb_pull(list
, eat
)) {
951 /* Free pulled out fragments. */
952 while ((list
= skb_shinfo(skb
)->frag_list
) != insp
) {
953 skb_shinfo(skb
)->frag_list
= list
->next
;
956 /* And insert new clone at head. */
959 skb_shinfo(skb
)->frag_list
= clone
;
962 /* Success! Now we may commit changes to skb data. */
967 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
968 if (skb_shinfo(skb
)->frags
[i
].size
<= eat
) {
969 put_page(skb_shinfo(skb
)->frags
[i
].page
);
970 eat
-= skb_shinfo(skb
)->frags
[i
].size
;
972 skb_shinfo(skb
)->frags
[k
] = skb_shinfo(skb
)->frags
[i
];
974 skb_shinfo(skb
)->frags
[k
].page_offset
+= eat
;
975 skb_shinfo(skb
)->frags
[k
].size
-= eat
;
981 skb_shinfo(skb
)->nr_frags
= k
;
984 skb
->data_len
-= delta
;
989 /* Copy some data bits from skb to kernel buffer. */
991 int skb_copy_bits(const struct sk_buff
*skb
, int offset
, void *to
, int len
)
994 int start
= skb_headlen(skb
);
996 if (offset
> (int)skb
->len
- len
)
1000 if ((copy
= start
- offset
) > 0) {
1003 memcpy(to
, skb
->data
+ offset
, copy
);
1004 if ((len
-= copy
) == 0)
1010 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1013 BUG_TRAP(start
<= offset
+ len
);
1015 end
= start
+ skb_shinfo(skb
)->frags
[i
].size
;
1016 if ((copy
= end
- offset
) > 0) {
1022 vaddr
= kmap_skb_frag(&skb_shinfo(skb
)->frags
[i
]);
1024 vaddr
+ skb_shinfo(skb
)->frags
[i
].page_offset
+
1025 offset
- start
, copy
);
1026 kunmap_skb_frag(vaddr
);
1028 if ((len
-= copy
) == 0)
1036 if (skb_shinfo(skb
)->frag_list
) {
1037 struct sk_buff
*list
= skb_shinfo(skb
)->frag_list
;
1039 for (; list
; list
= list
->next
) {
1042 BUG_TRAP(start
<= offset
+ len
);
1044 end
= start
+ list
->len
;
1045 if ((copy
= end
- offset
) > 0) {
1048 if (skb_copy_bits(list
, offset
- start
,
1051 if ((len
-= copy
) == 0)
1067 * skb_store_bits - store bits from kernel buffer to skb
1068 * @skb: destination buffer
1069 * @offset: offset in destination
1070 * @from: source buffer
1071 * @len: number of bytes to copy
1073 * Copy the specified number of bytes from the source buffer to the
1074 * destination skb. This function handles all the messy bits of
1075 * traversing fragment lists and such.
1078 int skb_store_bits(const struct sk_buff
*skb
, int offset
, void *from
, int len
)
1081 int start
= skb_headlen(skb
);
1083 if (offset
> (int)skb
->len
- len
)
1086 if ((copy
= start
- offset
) > 0) {
1089 memcpy(skb
->data
+ offset
, from
, copy
);
1090 if ((len
-= copy
) == 0)
1096 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1097 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
1100 BUG_TRAP(start
<= offset
+ len
);
1102 end
= start
+ frag
->size
;
1103 if ((copy
= end
- offset
) > 0) {
1109 vaddr
= kmap_skb_frag(frag
);
1110 memcpy(vaddr
+ frag
->page_offset
+ offset
- start
,
1112 kunmap_skb_frag(vaddr
);
1114 if ((len
-= copy
) == 0)
1122 if (skb_shinfo(skb
)->frag_list
) {
1123 struct sk_buff
*list
= skb_shinfo(skb
)->frag_list
;
1125 for (; list
; list
= list
->next
) {
1128 BUG_TRAP(start
<= offset
+ len
);
1130 end
= start
+ list
->len
;
1131 if ((copy
= end
- offset
) > 0) {
1134 if (skb_store_bits(list
, offset
- start
,
1137 if ((len
-= copy
) == 0)
1152 EXPORT_SYMBOL(skb_store_bits
);
1154 /* Checksum skb data. */
1156 unsigned int skb_checksum(const struct sk_buff
*skb
, int offset
,
1157 int len
, unsigned int csum
)
1159 int start
= skb_headlen(skb
);
1160 int i
, copy
= start
- offset
;
1163 /* Checksum header. */
1167 csum
= csum_partial(skb
->data
+ offset
, copy
, csum
);
1168 if ((len
-= copy
) == 0)
1174 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1177 BUG_TRAP(start
<= offset
+ len
);
1179 end
= start
+ skb_shinfo(skb
)->frags
[i
].size
;
1180 if ((copy
= end
- offset
) > 0) {
1183 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
1187 vaddr
= kmap_skb_frag(frag
);
1188 csum2
= csum_partial(vaddr
+ frag
->page_offset
+
1189 offset
- start
, copy
, 0);
1190 kunmap_skb_frag(vaddr
);
1191 csum
= csum_block_add(csum
, csum2
, pos
);
1200 if (skb_shinfo(skb
)->frag_list
) {
1201 struct sk_buff
*list
= skb_shinfo(skb
)->frag_list
;
1203 for (; list
; list
= list
->next
) {
1206 BUG_TRAP(start
<= offset
+ len
);
1208 end
= start
+ list
->len
;
1209 if ((copy
= end
- offset
) > 0) {
1213 csum2
= skb_checksum(list
, offset
- start
,
1215 csum
= csum_block_add(csum
, csum2
, pos
);
1216 if ((len
-= copy
) == 0)
1229 /* Both of above in one bottle. */
1231 unsigned int skb_copy_and_csum_bits(const struct sk_buff
*skb
, int offset
,
1232 u8
*to
, int len
, unsigned int csum
)
1234 int start
= skb_headlen(skb
);
1235 int i
, copy
= start
- offset
;
1242 csum
= csum_partial_copy_nocheck(skb
->data
+ offset
, to
,
1244 if ((len
-= copy
) == 0)
1251 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1254 BUG_TRAP(start
<= offset
+ len
);
1256 end
= start
+ skb_shinfo(skb
)->frags
[i
].size
;
1257 if ((copy
= end
- offset
) > 0) {
1260 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
1264 vaddr
= kmap_skb_frag(frag
);
1265 csum2
= csum_partial_copy_nocheck(vaddr
+
1269 kunmap_skb_frag(vaddr
);
1270 csum
= csum_block_add(csum
, csum2
, pos
);
1280 if (skb_shinfo(skb
)->frag_list
) {
1281 struct sk_buff
*list
= skb_shinfo(skb
)->frag_list
;
1283 for (; list
; list
= list
->next
) {
1287 BUG_TRAP(start
<= offset
+ len
);
1289 end
= start
+ list
->len
;
1290 if ((copy
= end
- offset
) > 0) {
1293 csum2
= skb_copy_and_csum_bits(list
,
1296 csum
= csum_block_add(csum
, csum2
, pos
);
1297 if ((len
-= copy
) == 0)
1310 void skb_copy_and_csum_dev(const struct sk_buff
*skb
, u8
*to
)
1315 if (skb
->ip_summed
== CHECKSUM_HW
)
1316 csstart
= skb
->h
.raw
- skb
->data
;
1318 csstart
= skb_headlen(skb
);
1320 BUG_ON(csstart
> skb_headlen(skb
));
1322 memcpy(to
, skb
->data
, csstart
);
1325 if (csstart
!= skb
->len
)
1326 csum
= skb_copy_and_csum_bits(skb
, csstart
, to
+ csstart
,
1327 skb
->len
- csstart
, 0);
1329 if (skb
->ip_summed
== CHECKSUM_HW
) {
1330 long csstuff
= csstart
+ skb
->csum
;
1332 *((unsigned short *)(to
+ csstuff
)) = csum_fold(csum
);
1337 * skb_dequeue - remove from the head of the queue
1338 * @list: list to dequeue from
1340 * Remove the head of the list. The list lock is taken so the function
1341 * may be used safely with other locking list functions. The head item is
1342 * returned or %NULL if the list is empty.
1345 struct sk_buff
*skb_dequeue(struct sk_buff_head
*list
)
1347 unsigned long flags
;
1348 struct sk_buff
*result
;
1350 spin_lock_irqsave(&list
->lock
, flags
);
1351 result
= __skb_dequeue(list
);
1352 spin_unlock_irqrestore(&list
->lock
, flags
);
1357 * skb_dequeue_tail - remove from the tail of the queue
1358 * @list: list to dequeue from
1360 * Remove the tail of the list. The list lock is taken so the function
1361 * may be used safely with other locking list functions. The tail item is
1362 * returned or %NULL if the list is empty.
1364 struct sk_buff
*skb_dequeue_tail(struct sk_buff_head
*list
)
1366 unsigned long flags
;
1367 struct sk_buff
*result
;
1369 spin_lock_irqsave(&list
->lock
, flags
);
1370 result
= __skb_dequeue_tail(list
);
1371 spin_unlock_irqrestore(&list
->lock
, flags
);
1376 * skb_queue_purge - empty a list
1377 * @list: list to empty
1379 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1380 * the list and one reference dropped. This function takes the list
1381 * lock and is atomic with respect to other list locking functions.
1383 void skb_queue_purge(struct sk_buff_head
*list
)
1385 struct sk_buff
*skb
;
1386 while ((skb
= skb_dequeue(list
)) != NULL
)
1391 * skb_queue_head - queue a buffer at the list head
1392 * @list: list to use
1393 * @newsk: buffer to queue
1395 * Queue a buffer at the start of the list. This function takes the
1396 * list lock and can be used safely with other locking &sk_buff functions
1399 * A buffer cannot be placed on two lists at the same time.
1401 void skb_queue_head(struct sk_buff_head
*list
, struct sk_buff
*newsk
)
1403 unsigned long flags
;
1405 spin_lock_irqsave(&list
->lock
, flags
);
1406 __skb_queue_head(list
, newsk
);
1407 spin_unlock_irqrestore(&list
->lock
, flags
);
1411 * skb_queue_tail - queue a buffer at the list tail
1412 * @list: list to use
1413 * @newsk: buffer to queue
1415 * Queue a buffer at the tail of the list. This function takes the
1416 * list lock and can be used safely with other locking &sk_buff functions
1419 * A buffer cannot be placed on two lists at the same time.
1421 void skb_queue_tail(struct sk_buff_head
*list
, struct sk_buff
*newsk
)
1423 unsigned long flags
;
1425 spin_lock_irqsave(&list
->lock
, flags
);
1426 __skb_queue_tail(list
, newsk
);
1427 spin_unlock_irqrestore(&list
->lock
, flags
);
1431 * skb_unlink - remove a buffer from a list
1432 * @skb: buffer to remove
1433 * @list: list to use
1435 * Remove a packet from a list. The list locks are taken and this
1436 * function is atomic with respect to other list locked calls
1438 * You must know what list the SKB is on.
1440 void skb_unlink(struct sk_buff
*skb
, struct sk_buff_head
*list
)
1442 unsigned long flags
;
1444 spin_lock_irqsave(&list
->lock
, flags
);
1445 __skb_unlink(skb
, list
);
1446 spin_unlock_irqrestore(&list
->lock
, flags
);
1450 * skb_append - append a buffer
1451 * @old: buffer to insert after
1452 * @newsk: buffer to insert
1453 * @list: list to use
1455 * Place a packet after a given packet in a list. The list locks are taken
1456 * and this function is atomic with respect to other list locked calls.
1457 * A buffer cannot be placed on two lists at the same time.
1459 void skb_append(struct sk_buff
*old
, struct sk_buff
*newsk
, struct sk_buff_head
*list
)
1461 unsigned long flags
;
1463 spin_lock_irqsave(&list
->lock
, flags
);
1464 __skb_append(old
, newsk
, list
);
1465 spin_unlock_irqrestore(&list
->lock
, flags
);
1470 * skb_insert - insert a buffer
1471 * @old: buffer to insert before
1472 * @newsk: buffer to insert
1473 * @list: list to use
1475 * Place a packet before a given packet in a list. The list locks are
1476 * taken and this function is atomic with respect to other list locked
1479 * A buffer cannot be placed on two lists at the same time.
1481 void skb_insert(struct sk_buff
*old
, struct sk_buff
*newsk
, struct sk_buff_head
*list
)
1483 unsigned long flags
;
1485 spin_lock_irqsave(&list
->lock
, flags
);
1486 __skb_insert(newsk
, old
->prev
, old
, list
);
1487 spin_unlock_irqrestore(&list
->lock
, flags
);
1492 * Tune the memory allocator for a new MTU size.
1494 void skb_add_mtu(int mtu
)
1496 /* Must match allocation in alloc_skb */
1497 mtu
= SKB_DATA_ALIGN(mtu
) + sizeof(struct skb_shared_info
);
1499 kmem_add_cache_size(mtu
);
1503 static inline void skb_split_inside_header(struct sk_buff
*skb
,
1504 struct sk_buff
* skb1
,
1505 const u32 len
, const int pos
)
1509 memcpy(skb_put(skb1
, pos
- len
), skb
->data
+ len
, pos
- len
);
1511 /* And move data appendix as is. */
1512 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++)
1513 skb_shinfo(skb1
)->frags
[i
] = skb_shinfo(skb
)->frags
[i
];
1515 skb_shinfo(skb1
)->nr_frags
= skb_shinfo(skb
)->nr_frags
;
1516 skb_shinfo(skb
)->nr_frags
= 0;
1517 skb1
->data_len
= skb
->data_len
;
1518 skb1
->len
+= skb1
->data_len
;
1521 skb
->tail
= skb
->data
+ len
;
1524 static inline void skb_split_no_header(struct sk_buff
*skb
,
1525 struct sk_buff
* skb1
,
1526 const u32 len
, int pos
)
1529 const int nfrags
= skb_shinfo(skb
)->nr_frags
;
1531 skb_shinfo(skb
)->nr_frags
= 0;
1532 skb1
->len
= skb1
->data_len
= skb
->len
- len
;
1534 skb
->data_len
= len
- pos
;
1536 for (i
= 0; i
< nfrags
; i
++) {
1537 int size
= skb_shinfo(skb
)->frags
[i
].size
;
1539 if (pos
+ size
> len
) {
1540 skb_shinfo(skb1
)->frags
[k
] = skb_shinfo(skb
)->frags
[i
];
1544 * We have two variants in this case:
1545 * 1. Move all the frag to the second
1546 * part, if it is possible. F.e.
1547 * this approach is mandatory for TUX,
1548 * where splitting is expensive.
1549 * 2. Split is accurately. We make this.
1551 get_page(skb_shinfo(skb
)->frags
[i
].page
);
1552 skb_shinfo(skb1
)->frags
[0].page_offset
+= len
- pos
;
1553 skb_shinfo(skb1
)->frags
[0].size
-= len
- pos
;
1554 skb_shinfo(skb
)->frags
[i
].size
= len
- pos
;
1555 skb_shinfo(skb
)->nr_frags
++;
1559 skb_shinfo(skb
)->nr_frags
++;
1562 skb_shinfo(skb1
)->nr_frags
= k
;
1566 * skb_split - Split fragmented skb to two parts at length len.
1567 * @skb: the buffer to split
1568 * @skb1: the buffer to receive the second part
1569 * @len: new length for skb
1571 void skb_split(struct sk_buff
*skb
, struct sk_buff
*skb1
, const u32 len
)
1573 int pos
= skb_headlen(skb
);
1575 if (len
< pos
) /* Split line is inside header. */
1576 skb_split_inside_header(skb
, skb1
, len
, pos
);
1577 else /* Second chunk has no header, nothing to copy. */
1578 skb_split_no_header(skb
, skb1
, len
, pos
);
1582 * skb_prepare_seq_read - Prepare a sequential read of skb data
1583 * @skb: the buffer to read
1584 * @from: lower offset of data to be read
1585 * @to: upper offset of data to be read
1586 * @st: state variable
1588 * Initializes the specified state variable. Must be called before
1589 * invoking skb_seq_read() for the first time.
1591 void skb_prepare_seq_read(struct sk_buff
*skb
, unsigned int from
,
1592 unsigned int to
, struct skb_seq_state
*st
)
1594 st
->lower_offset
= from
;
1595 st
->upper_offset
= to
;
1596 st
->root_skb
= st
->cur_skb
= skb
;
1597 st
->frag_idx
= st
->stepped_offset
= 0;
1598 st
->frag_data
= NULL
;
1602 * skb_seq_read - Sequentially read skb data
1603 * @consumed: number of bytes consumed by the caller so far
1604 * @data: destination pointer for data to be returned
1605 * @st: state variable
1607 * Reads a block of skb data at &consumed relative to the
1608 * lower offset specified to skb_prepare_seq_read(). Assigns
1609 * the head of the data block to &data and returns the length
1610 * of the block or 0 if the end of the skb data or the upper
1611 * offset has been reached.
1613 * The caller is not required to consume all of the data
1614 * returned, i.e. &consumed is typically set to the number
1615 * of bytes already consumed and the next call to
1616 * skb_seq_read() will return the remaining part of the block.
1618 * Note: The size of each block of data returned can be arbitary,
1619 * this limitation is the cost for zerocopy seqeuental
1620 * reads of potentially non linear data.
1622 * Note: Fragment lists within fragments are not implemented
1623 * at the moment, state->root_skb could be replaced with
1624 * a stack for this purpose.
1626 unsigned int skb_seq_read(unsigned int consumed
, const u8
**data
,
1627 struct skb_seq_state
*st
)
1629 unsigned int block_limit
, abs_offset
= consumed
+ st
->lower_offset
;
1632 if (unlikely(abs_offset
>= st
->upper_offset
))
1636 block_limit
= skb_headlen(st
->cur_skb
);
1638 if (abs_offset
< block_limit
) {
1639 *data
= st
->cur_skb
->data
+ abs_offset
;
1640 return block_limit
- abs_offset
;
1643 if (st
->frag_idx
== 0 && !st
->frag_data
)
1644 st
->stepped_offset
+= skb_headlen(st
->cur_skb
);
1646 while (st
->frag_idx
< skb_shinfo(st
->cur_skb
)->nr_frags
) {
1647 frag
= &skb_shinfo(st
->cur_skb
)->frags
[st
->frag_idx
];
1648 block_limit
= frag
->size
+ st
->stepped_offset
;
1650 if (abs_offset
< block_limit
) {
1652 st
->frag_data
= kmap_skb_frag(frag
);
1654 *data
= (u8
*) st
->frag_data
+ frag
->page_offset
+
1655 (abs_offset
- st
->stepped_offset
);
1657 return block_limit
- abs_offset
;
1660 if (st
->frag_data
) {
1661 kunmap_skb_frag(st
->frag_data
);
1662 st
->frag_data
= NULL
;
1666 st
->stepped_offset
+= frag
->size
;
1669 if (st
->cur_skb
->next
) {
1670 st
->cur_skb
= st
->cur_skb
->next
;
1673 } else if (st
->root_skb
== st
->cur_skb
&&
1674 skb_shinfo(st
->root_skb
)->frag_list
) {
1675 st
->cur_skb
= skb_shinfo(st
->root_skb
)->frag_list
;
1683 * skb_abort_seq_read - Abort a sequential read of skb data
1684 * @st: state variable
1686 * Must be called if skb_seq_read() was not called until it
1689 void skb_abort_seq_read(struct skb_seq_state
*st
)
1692 kunmap_skb_frag(st
->frag_data
);
1695 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
1697 static unsigned int skb_ts_get_next_block(unsigned int offset
, const u8
**text
,
1698 struct ts_config
*conf
,
1699 struct ts_state
*state
)
1701 return skb_seq_read(offset
, text
, TS_SKB_CB(state
));
1704 static void skb_ts_finish(struct ts_config
*conf
, struct ts_state
*state
)
1706 skb_abort_seq_read(TS_SKB_CB(state
));
1710 * skb_find_text - Find a text pattern in skb data
1711 * @skb: the buffer to look in
1712 * @from: search offset
1714 * @config: textsearch configuration
1715 * @state: uninitialized textsearch state variable
1717 * Finds a pattern in the skb data according to the specified
1718 * textsearch configuration. Use textsearch_next() to retrieve
1719 * subsequent occurrences of the pattern. Returns the offset
1720 * to the first occurrence or UINT_MAX if no match was found.
1722 unsigned int skb_find_text(struct sk_buff
*skb
, unsigned int from
,
1723 unsigned int to
, struct ts_config
*config
,
1724 struct ts_state
*state
)
1726 config
->get_next_block
= skb_ts_get_next_block
;
1727 config
->finish
= skb_ts_finish
;
1729 skb_prepare_seq_read(skb
, from
, to
, TS_SKB_CB(state
));
1731 return textsearch_find(config
, state
);
1735 * skb_append_datato_frags: - append the user data to a skb
1736 * @sk: sock structure
1737 * @skb: skb structure to be appened with user data.
1738 * @getfrag: call back function to be used for getting the user data
1739 * @from: pointer to user message iov
1740 * @length: length of the iov message
1742 * Description: This procedure append the user data in the fragment part
1743 * of the skb if any page alloc fails user this procedure returns -ENOMEM
1745 int skb_append_datato_frags(struct sock
*sk
, struct sk_buff
*skb
,
1746 int (*getfrag
)(void *from
, char *to
, int offset
,
1747 int len
, int odd
, struct sk_buff
*skb
),
1748 void *from
, int length
)
1751 skb_frag_t
*frag
= NULL
;
1752 struct page
*page
= NULL
;
1758 /* Return error if we don't have space for new frag */
1759 frg_cnt
= skb_shinfo(skb
)->nr_frags
;
1760 if (frg_cnt
>= MAX_SKB_FRAGS
)
1763 /* allocate a new page for next frag */
1764 page
= alloc_pages(sk
->sk_allocation
, 0);
1766 /* If alloc_page fails just return failure and caller will
1767 * free previous allocated pages by doing kfree_skb()
1772 /* initialize the next frag */
1773 sk
->sk_sndmsg_page
= page
;
1774 sk
->sk_sndmsg_off
= 0;
1775 skb_fill_page_desc(skb
, frg_cnt
, page
, 0, 0);
1776 skb
->truesize
+= PAGE_SIZE
;
1777 atomic_add(PAGE_SIZE
, &sk
->sk_wmem_alloc
);
1779 /* get the new initialized frag */
1780 frg_cnt
= skb_shinfo(skb
)->nr_frags
;
1781 frag
= &skb_shinfo(skb
)->frags
[frg_cnt
- 1];
1783 /* copy the user data to page */
1784 left
= PAGE_SIZE
- frag
->page_offset
;
1785 copy
= (length
> left
)? left
: length
;
1787 ret
= getfrag(from
, (page_address(frag
->page
) +
1788 frag
->page_offset
+ frag
->size
),
1789 offset
, copy
, 0, skb
);
1793 /* copy was successful so update the size parameters */
1794 sk
->sk_sndmsg_off
+= copy
;
1797 skb
->data_len
+= copy
;
1801 } while (length
> 0);
1807 * skb_pull_rcsum - pull skb and update receive checksum
1808 * @skb: buffer to update
1809 * @start: start of data before pull
1810 * @len: length of data pulled
1812 * This function performs an skb_pull on the packet and updates
1813 * update the CHECKSUM_HW checksum. It should be used on receive
1814 * path processing instead of skb_pull unless you know that the
1815 * checksum difference is zero (e.g., a valid IP header) or you
1816 * are setting ip_summed to CHECKSUM_NONE.
1818 unsigned char *skb_pull_rcsum(struct sk_buff
*skb
, unsigned int len
)
1820 BUG_ON(len
> skb
->len
);
1822 BUG_ON(skb
->len
< skb
->data_len
);
1823 skb_postpull_rcsum(skb
, skb
->data
, len
);
1824 return skb
->data
+= len
;
1827 EXPORT_SYMBOL_GPL(skb_pull_rcsum
);
1829 void __init
skb_init(void)
1831 skbuff_head_cache
= kmem_cache_create("skbuff_head_cache",
1832 sizeof(struct sk_buff
),
1836 if (!skbuff_head_cache
)
1837 panic("cannot create skbuff cache");
1839 skbuff_fclone_cache
= kmem_cache_create("skbuff_fclone_cache",
1840 (2*sizeof(struct sk_buff
)) +
1845 if (!skbuff_fclone_cache
)
1846 panic("cannot create skbuff cache");
1849 EXPORT_SYMBOL(___pskb_trim
);
1850 EXPORT_SYMBOL(__kfree_skb
);
1851 EXPORT_SYMBOL(kfree_skb
);
1852 EXPORT_SYMBOL(__pskb_pull_tail
);
1853 EXPORT_SYMBOL(__alloc_skb
);
1854 EXPORT_SYMBOL(pskb_copy
);
1855 EXPORT_SYMBOL(pskb_expand_head
);
1856 EXPORT_SYMBOL(skb_checksum
);
1857 EXPORT_SYMBOL(skb_clone
);
1858 EXPORT_SYMBOL(skb_clone_fraglist
);
1859 EXPORT_SYMBOL(skb_copy
);
1860 EXPORT_SYMBOL(skb_copy_and_csum_bits
);
1861 EXPORT_SYMBOL(skb_copy_and_csum_dev
);
1862 EXPORT_SYMBOL(skb_copy_bits
);
1863 EXPORT_SYMBOL(skb_copy_expand
);
1864 EXPORT_SYMBOL(skb_over_panic
);
1865 EXPORT_SYMBOL(skb_pad
);
1866 EXPORT_SYMBOL(skb_realloc_headroom
);
1867 EXPORT_SYMBOL(skb_under_panic
);
1868 EXPORT_SYMBOL(skb_dequeue
);
1869 EXPORT_SYMBOL(skb_dequeue_tail
);
1870 EXPORT_SYMBOL(skb_insert
);
1871 EXPORT_SYMBOL(skb_queue_purge
);
1872 EXPORT_SYMBOL(skb_queue_head
);
1873 EXPORT_SYMBOL(skb_queue_tail
);
1874 EXPORT_SYMBOL(skb_unlink
);
1875 EXPORT_SYMBOL(skb_append
);
1876 EXPORT_SYMBOL(skb_split
);
1877 EXPORT_SYMBOL(skb_prepare_seq_read
);
1878 EXPORT_SYMBOL(skb_seq_read
);
1879 EXPORT_SYMBOL(skb_abort_seq_read
);
1880 EXPORT_SYMBOL(skb_find_text
);
1881 EXPORT_SYMBOL(skb_append_datato_frags
);