HID: use GFP_KERNEL in hid_alloc_buffers
[linux-2.6/mini2440.git] / fs / namespace.c
bloba40685d800a84395db6c585bc55bb01b3e20ce0e
1 /*
2 * linux/fs/namespace.c
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
11 #include <linux/syscalls.h>
12 #include <linux/slab.h>
13 #include <linux/sched.h>
14 #include <linux/smp_lock.h>
15 #include <linux/init.h>
16 #include <linux/kernel.h>
17 #include <linux/acct.h>
18 #include <linux/capability.h>
19 #include <linux/cpumask.h>
20 #include <linux/module.h>
21 #include <linux/sysfs.h>
22 #include <linux/seq_file.h>
23 #include <linux/mnt_namespace.h>
24 #include <linux/namei.h>
25 #include <linux/security.h>
26 #include <linux/mount.h>
27 #include <linux/ramfs.h>
28 #include <linux/log2.h>
29 #include <linux/idr.h>
30 #include <asm/uaccess.h>
31 #include <asm/unistd.h>
32 #include "pnode.h"
33 #include "internal.h"
35 #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
36 #define HASH_SIZE (1UL << HASH_SHIFT)
38 /* spinlock for vfsmount related operations, inplace of dcache_lock */
39 __cacheline_aligned_in_smp DEFINE_SPINLOCK(vfsmount_lock);
41 static int event;
42 static DEFINE_IDA(mnt_id_ida);
43 static DEFINE_IDA(mnt_group_ida);
45 static struct list_head *mount_hashtable __read_mostly;
46 static struct kmem_cache *mnt_cache __read_mostly;
47 static struct rw_semaphore namespace_sem;
49 /* /sys/fs */
50 struct kobject *fs_kobj;
51 EXPORT_SYMBOL_GPL(fs_kobj);
53 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
55 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
56 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
57 tmp = tmp + (tmp >> HASH_SHIFT);
58 return tmp & (HASH_SIZE - 1);
61 #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
63 /* allocation is serialized by namespace_sem */
64 static int mnt_alloc_id(struct vfsmount *mnt)
66 int res;
68 retry:
69 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
70 spin_lock(&vfsmount_lock);
71 res = ida_get_new(&mnt_id_ida, &mnt->mnt_id);
72 spin_unlock(&vfsmount_lock);
73 if (res == -EAGAIN)
74 goto retry;
76 return res;
79 static void mnt_free_id(struct vfsmount *mnt)
81 spin_lock(&vfsmount_lock);
82 ida_remove(&mnt_id_ida, mnt->mnt_id);
83 spin_unlock(&vfsmount_lock);
87 * Allocate a new peer group ID
89 * mnt_group_ida is protected by namespace_sem
91 static int mnt_alloc_group_id(struct vfsmount *mnt)
93 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
94 return -ENOMEM;
96 return ida_get_new_above(&mnt_group_ida, 1, &mnt->mnt_group_id);
100 * Release a peer group ID
102 void mnt_release_group_id(struct vfsmount *mnt)
104 ida_remove(&mnt_group_ida, mnt->mnt_group_id);
105 mnt->mnt_group_id = 0;
108 struct vfsmount *alloc_vfsmnt(const char *name)
110 struct vfsmount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
111 if (mnt) {
112 int err;
114 err = mnt_alloc_id(mnt);
115 if (err)
116 goto out_free_cache;
118 if (name) {
119 mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
120 if (!mnt->mnt_devname)
121 goto out_free_id;
124 atomic_set(&mnt->mnt_count, 1);
125 INIT_LIST_HEAD(&mnt->mnt_hash);
126 INIT_LIST_HEAD(&mnt->mnt_child);
127 INIT_LIST_HEAD(&mnt->mnt_mounts);
128 INIT_LIST_HEAD(&mnt->mnt_list);
129 INIT_LIST_HEAD(&mnt->mnt_expire);
130 INIT_LIST_HEAD(&mnt->mnt_share);
131 INIT_LIST_HEAD(&mnt->mnt_slave_list);
132 INIT_LIST_HEAD(&mnt->mnt_slave);
133 atomic_set(&mnt->__mnt_writers, 0);
135 return mnt;
137 out_free_id:
138 mnt_free_id(mnt);
139 out_free_cache:
140 kmem_cache_free(mnt_cache, mnt);
141 return NULL;
145 * Most r/o checks on a fs are for operations that take
146 * discrete amounts of time, like a write() or unlink().
147 * We must keep track of when those operations start
148 * (for permission checks) and when they end, so that
149 * we can determine when writes are able to occur to
150 * a filesystem.
153 * __mnt_is_readonly: check whether a mount is read-only
154 * @mnt: the mount to check for its write status
156 * This shouldn't be used directly ouside of the VFS.
157 * It does not guarantee that the filesystem will stay
158 * r/w, just that it is right *now*. This can not and
159 * should not be used in place of IS_RDONLY(inode).
160 * mnt_want/drop_write() will _keep_ the filesystem
161 * r/w.
163 int __mnt_is_readonly(struct vfsmount *mnt)
165 if (mnt->mnt_flags & MNT_READONLY)
166 return 1;
167 if (mnt->mnt_sb->s_flags & MS_RDONLY)
168 return 1;
169 return 0;
171 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
173 struct mnt_writer {
175 * If holding multiple instances of this lock, they
176 * must be ordered by cpu number.
178 spinlock_t lock;
179 struct lock_class_key lock_class; /* compiles out with !lockdep */
180 unsigned long count;
181 struct vfsmount *mnt;
182 } ____cacheline_aligned_in_smp;
183 static DEFINE_PER_CPU(struct mnt_writer, mnt_writers);
185 static int __init init_mnt_writers(void)
187 int cpu;
188 for_each_possible_cpu(cpu) {
189 struct mnt_writer *writer = &per_cpu(mnt_writers, cpu);
190 spin_lock_init(&writer->lock);
191 lockdep_set_class(&writer->lock, &writer->lock_class);
192 writer->count = 0;
194 return 0;
196 fs_initcall(init_mnt_writers);
198 static void unlock_mnt_writers(void)
200 int cpu;
201 struct mnt_writer *cpu_writer;
203 for_each_possible_cpu(cpu) {
204 cpu_writer = &per_cpu(mnt_writers, cpu);
205 spin_unlock(&cpu_writer->lock);
209 static inline void __clear_mnt_count(struct mnt_writer *cpu_writer)
211 if (!cpu_writer->mnt)
212 return;
214 * This is in case anyone ever leaves an invalid,
215 * old ->mnt and a count of 0.
217 if (!cpu_writer->count)
218 return;
219 atomic_add(cpu_writer->count, &cpu_writer->mnt->__mnt_writers);
220 cpu_writer->count = 0;
223 * must hold cpu_writer->lock
225 static inline void use_cpu_writer_for_mount(struct mnt_writer *cpu_writer,
226 struct vfsmount *mnt)
228 if (cpu_writer->mnt == mnt)
229 return;
230 __clear_mnt_count(cpu_writer);
231 cpu_writer->mnt = mnt;
235 * Most r/o checks on a fs are for operations that take
236 * discrete amounts of time, like a write() or unlink().
237 * We must keep track of when those operations start
238 * (for permission checks) and when they end, so that
239 * we can determine when writes are able to occur to
240 * a filesystem.
243 * mnt_want_write - get write access to a mount
244 * @mnt: the mount on which to take a write
246 * This tells the low-level filesystem that a write is
247 * about to be performed to it, and makes sure that
248 * writes are allowed before returning success. When
249 * the write operation is finished, mnt_drop_write()
250 * must be called. This is effectively a refcount.
252 int mnt_want_write(struct vfsmount *mnt)
254 int ret = 0;
255 struct mnt_writer *cpu_writer;
257 cpu_writer = &get_cpu_var(mnt_writers);
258 spin_lock(&cpu_writer->lock);
259 if (__mnt_is_readonly(mnt)) {
260 ret = -EROFS;
261 goto out;
263 use_cpu_writer_for_mount(cpu_writer, mnt);
264 cpu_writer->count++;
265 out:
266 spin_unlock(&cpu_writer->lock);
267 put_cpu_var(mnt_writers);
268 return ret;
270 EXPORT_SYMBOL_GPL(mnt_want_write);
272 static void lock_mnt_writers(void)
274 int cpu;
275 struct mnt_writer *cpu_writer;
277 for_each_possible_cpu(cpu) {
278 cpu_writer = &per_cpu(mnt_writers, cpu);
279 spin_lock(&cpu_writer->lock);
280 __clear_mnt_count(cpu_writer);
281 cpu_writer->mnt = NULL;
286 * These per-cpu write counts are not guaranteed to have
287 * matched increments and decrements on any given cpu.
288 * A file open()ed for write on one cpu and close()d on
289 * another cpu will imbalance this count. Make sure it
290 * does not get too far out of whack.
292 static void handle_write_count_underflow(struct vfsmount *mnt)
294 if (atomic_read(&mnt->__mnt_writers) >=
295 MNT_WRITER_UNDERFLOW_LIMIT)
296 return;
298 * It isn't necessary to hold all of the locks
299 * at the same time, but doing it this way makes
300 * us share a lot more code.
302 lock_mnt_writers();
304 * vfsmount_lock is for mnt_flags.
306 spin_lock(&vfsmount_lock);
308 * If coalescing the per-cpu writer counts did not
309 * get us back to a positive writer count, we have
310 * a bug.
312 if ((atomic_read(&mnt->__mnt_writers) < 0) &&
313 !(mnt->mnt_flags & MNT_IMBALANCED_WRITE_COUNT)) {
314 WARN(1, KERN_DEBUG "leak detected on mount(%p) writers "
315 "count: %d\n",
316 mnt, atomic_read(&mnt->__mnt_writers));
317 /* use the flag to keep the dmesg spam down */
318 mnt->mnt_flags |= MNT_IMBALANCED_WRITE_COUNT;
320 spin_unlock(&vfsmount_lock);
321 unlock_mnt_writers();
325 * mnt_drop_write - give up write access to a mount
326 * @mnt: the mount on which to give up write access
328 * Tells the low-level filesystem that we are done
329 * performing writes to it. Must be matched with
330 * mnt_want_write() call above.
332 void mnt_drop_write(struct vfsmount *mnt)
334 int must_check_underflow = 0;
335 struct mnt_writer *cpu_writer;
337 cpu_writer = &get_cpu_var(mnt_writers);
338 spin_lock(&cpu_writer->lock);
340 use_cpu_writer_for_mount(cpu_writer, mnt);
341 if (cpu_writer->count > 0) {
342 cpu_writer->count--;
343 } else {
344 must_check_underflow = 1;
345 atomic_dec(&mnt->__mnt_writers);
348 spin_unlock(&cpu_writer->lock);
350 * Logically, we could call this each time,
351 * but the __mnt_writers cacheline tends to
352 * be cold, and makes this expensive.
354 if (must_check_underflow)
355 handle_write_count_underflow(mnt);
357 * This could be done right after the spinlock
358 * is taken because the spinlock keeps us on
359 * the cpu, and disables preemption. However,
360 * putting it here bounds the amount that
361 * __mnt_writers can underflow. Without it,
362 * we could theoretically wrap __mnt_writers.
364 put_cpu_var(mnt_writers);
366 EXPORT_SYMBOL_GPL(mnt_drop_write);
368 static int mnt_make_readonly(struct vfsmount *mnt)
370 int ret = 0;
372 lock_mnt_writers();
374 * With all the locks held, this value is stable
376 if (atomic_read(&mnt->__mnt_writers) > 0) {
377 ret = -EBUSY;
378 goto out;
381 * nobody can do a successful mnt_want_write() with all
382 * of the counts in MNT_DENIED_WRITE and the locks held.
384 spin_lock(&vfsmount_lock);
385 if (!ret)
386 mnt->mnt_flags |= MNT_READONLY;
387 spin_unlock(&vfsmount_lock);
388 out:
389 unlock_mnt_writers();
390 return ret;
393 static void __mnt_unmake_readonly(struct vfsmount *mnt)
395 spin_lock(&vfsmount_lock);
396 mnt->mnt_flags &= ~MNT_READONLY;
397 spin_unlock(&vfsmount_lock);
400 int simple_set_mnt(struct vfsmount *mnt, struct super_block *sb)
402 mnt->mnt_sb = sb;
403 mnt->mnt_root = dget(sb->s_root);
404 return 0;
407 EXPORT_SYMBOL(simple_set_mnt);
409 void free_vfsmnt(struct vfsmount *mnt)
411 kfree(mnt->mnt_devname);
412 mnt_free_id(mnt);
413 kmem_cache_free(mnt_cache, mnt);
417 * find the first or last mount at @dentry on vfsmount @mnt depending on
418 * @dir. If @dir is set return the first mount else return the last mount.
420 struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
421 int dir)
423 struct list_head *head = mount_hashtable + hash(mnt, dentry);
424 struct list_head *tmp = head;
425 struct vfsmount *p, *found = NULL;
427 for (;;) {
428 tmp = dir ? tmp->next : tmp->prev;
429 p = NULL;
430 if (tmp == head)
431 break;
432 p = list_entry(tmp, struct vfsmount, mnt_hash);
433 if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) {
434 found = p;
435 break;
438 return found;
442 * lookup_mnt increments the ref count before returning
443 * the vfsmount struct.
445 struct vfsmount *lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
447 struct vfsmount *child_mnt;
448 spin_lock(&vfsmount_lock);
449 if ((child_mnt = __lookup_mnt(mnt, dentry, 1)))
450 mntget(child_mnt);
451 spin_unlock(&vfsmount_lock);
452 return child_mnt;
455 static inline int check_mnt(struct vfsmount *mnt)
457 return mnt->mnt_ns == current->nsproxy->mnt_ns;
460 static void touch_mnt_namespace(struct mnt_namespace *ns)
462 if (ns) {
463 ns->event = ++event;
464 wake_up_interruptible(&ns->poll);
468 static void __touch_mnt_namespace(struct mnt_namespace *ns)
470 if (ns && ns->event != event) {
471 ns->event = event;
472 wake_up_interruptible(&ns->poll);
476 static void detach_mnt(struct vfsmount *mnt, struct path *old_path)
478 old_path->dentry = mnt->mnt_mountpoint;
479 old_path->mnt = mnt->mnt_parent;
480 mnt->mnt_parent = mnt;
481 mnt->mnt_mountpoint = mnt->mnt_root;
482 list_del_init(&mnt->mnt_child);
483 list_del_init(&mnt->mnt_hash);
484 old_path->dentry->d_mounted--;
487 void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry,
488 struct vfsmount *child_mnt)
490 child_mnt->mnt_parent = mntget(mnt);
491 child_mnt->mnt_mountpoint = dget(dentry);
492 dentry->d_mounted++;
495 static void attach_mnt(struct vfsmount *mnt, struct path *path)
497 mnt_set_mountpoint(path->mnt, path->dentry, mnt);
498 list_add_tail(&mnt->mnt_hash, mount_hashtable +
499 hash(path->mnt, path->dentry));
500 list_add_tail(&mnt->mnt_child, &path->mnt->mnt_mounts);
504 * the caller must hold vfsmount_lock
506 static void commit_tree(struct vfsmount *mnt)
508 struct vfsmount *parent = mnt->mnt_parent;
509 struct vfsmount *m;
510 LIST_HEAD(head);
511 struct mnt_namespace *n = parent->mnt_ns;
513 BUG_ON(parent == mnt);
515 list_add_tail(&head, &mnt->mnt_list);
516 list_for_each_entry(m, &head, mnt_list)
517 m->mnt_ns = n;
518 list_splice(&head, n->list.prev);
520 list_add_tail(&mnt->mnt_hash, mount_hashtable +
521 hash(parent, mnt->mnt_mountpoint));
522 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
523 touch_mnt_namespace(n);
526 static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root)
528 struct list_head *next = p->mnt_mounts.next;
529 if (next == &p->mnt_mounts) {
530 while (1) {
531 if (p == root)
532 return NULL;
533 next = p->mnt_child.next;
534 if (next != &p->mnt_parent->mnt_mounts)
535 break;
536 p = p->mnt_parent;
539 return list_entry(next, struct vfsmount, mnt_child);
542 static struct vfsmount *skip_mnt_tree(struct vfsmount *p)
544 struct list_head *prev = p->mnt_mounts.prev;
545 while (prev != &p->mnt_mounts) {
546 p = list_entry(prev, struct vfsmount, mnt_child);
547 prev = p->mnt_mounts.prev;
549 return p;
552 static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root,
553 int flag)
555 struct super_block *sb = old->mnt_sb;
556 struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname);
558 if (mnt) {
559 if (flag & (CL_SLAVE | CL_PRIVATE))
560 mnt->mnt_group_id = 0; /* not a peer of original */
561 else
562 mnt->mnt_group_id = old->mnt_group_id;
564 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
565 int err = mnt_alloc_group_id(mnt);
566 if (err)
567 goto out_free;
570 mnt->mnt_flags = old->mnt_flags;
571 atomic_inc(&sb->s_active);
572 mnt->mnt_sb = sb;
573 mnt->mnt_root = dget(root);
574 mnt->mnt_mountpoint = mnt->mnt_root;
575 mnt->mnt_parent = mnt;
577 if (flag & CL_SLAVE) {
578 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
579 mnt->mnt_master = old;
580 CLEAR_MNT_SHARED(mnt);
581 } else if (!(flag & CL_PRIVATE)) {
582 if ((flag & CL_PROPAGATION) || IS_MNT_SHARED(old))
583 list_add(&mnt->mnt_share, &old->mnt_share);
584 if (IS_MNT_SLAVE(old))
585 list_add(&mnt->mnt_slave, &old->mnt_slave);
586 mnt->mnt_master = old->mnt_master;
588 if (flag & CL_MAKE_SHARED)
589 set_mnt_shared(mnt);
591 /* stick the duplicate mount on the same expiry list
592 * as the original if that was on one */
593 if (flag & CL_EXPIRE) {
594 if (!list_empty(&old->mnt_expire))
595 list_add(&mnt->mnt_expire, &old->mnt_expire);
598 return mnt;
600 out_free:
601 free_vfsmnt(mnt);
602 return NULL;
605 static inline void __mntput(struct vfsmount *mnt)
607 int cpu;
608 struct super_block *sb = mnt->mnt_sb;
610 * We don't have to hold all of the locks at the
611 * same time here because we know that we're the
612 * last reference to mnt and that no new writers
613 * can come in.
615 for_each_possible_cpu(cpu) {
616 struct mnt_writer *cpu_writer = &per_cpu(mnt_writers, cpu);
617 if (cpu_writer->mnt != mnt)
618 continue;
619 spin_lock(&cpu_writer->lock);
620 atomic_add(cpu_writer->count, &mnt->__mnt_writers);
621 cpu_writer->count = 0;
623 * Might as well do this so that no one
624 * ever sees the pointer and expects
625 * it to be valid.
627 cpu_writer->mnt = NULL;
628 spin_unlock(&cpu_writer->lock);
631 * This probably indicates that somebody messed
632 * up a mnt_want/drop_write() pair. If this
633 * happens, the filesystem was probably unable
634 * to make r/w->r/o transitions.
636 WARN_ON(atomic_read(&mnt->__mnt_writers));
637 dput(mnt->mnt_root);
638 free_vfsmnt(mnt);
639 deactivate_super(sb);
642 void mntput_no_expire(struct vfsmount *mnt)
644 repeat:
645 if (atomic_dec_and_lock(&mnt->mnt_count, &vfsmount_lock)) {
646 if (likely(!mnt->mnt_pinned)) {
647 spin_unlock(&vfsmount_lock);
648 __mntput(mnt);
649 return;
651 atomic_add(mnt->mnt_pinned + 1, &mnt->mnt_count);
652 mnt->mnt_pinned = 0;
653 spin_unlock(&vfsmount_lock);
654 acct_auto_close_mnt(mnt);
655 security_sb_umount_close(mnt);
656 goto repeat;
660 EXPORT_SYMBOL(mntput_no_expire);
662 void mnt_pin(struct vfsmount *mnt)
664 spin_lock(&vfsmount_lock);
665 mnt->mnt_pinned++;
666 spin_unlock(&vfsmount_lock);
669 EXPORT_SYMBOL(mnt_pin);
671 void mnt_unpin(struct vfsmount *mnt)
673 spin_lock(&vfsmount_lock);
674 if (mnt->mnt_pinned) {
675 atomic_inc(&mnt->mnt_count);
676 mnt->mnt_pinned--;
678 spin_unlock(&vfsmount_lock);
681 EXPORT_SYMBOL(mnt_unpin);
683 static inline void mangle(struct seq_file *m, const char *s)
685 seq_escape(m, s, " \t\n\\");
689 * Simple .show_options callback for filesystems which don't want to
690 * implement more complex mount option showing.
692 * See also save_mount_options().
694 int generic_show_options(struct seq_file *m, struct vfsmount *mnt)
696 const char *options = mnt->mnt_sb->s_options;
698 if (options != NULL && options[0]) {
699 seq_putc(m, ',');
700 mangle(m, options);
703 return 0;
705 EXPORT_SYMBOL(generic_show_options);
708 * If filesystem uses generic_show_options(), this function should be
709 * called from the fill_super() callback.
711 * The .remount_fs callback usually needs to be handled in a special
712 * way, to make sure, that previous options are not overwritten if the
713 * remount fails.
715 * Also note, that if the filesystem's .remount_fs function doesn't
716 * reset all options to their default value, but changes only newly
717 * given options, then the displayed options will not reflect reality
718 * any more.
720 void save_mount_options(struct super_block *sb, char *options)
722 kfree(sb->s_options);
723 sb->s_options = kstrdup(options, GFP_KERNEL);
725 EXPORT_SYMBOL(save_mount_options);
727 #ifdef CONFIG_PROC_FS
728 /* iterator */
729 static void *m_start(struct seq_file *m, loff_t *pos)
731 struct proc_mounts *p = m->private;
733 down_read(&namespace_sem);
734 return seq_list_start(&p->ns->list, *pos);
737 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
739 struct proc_mounts *p = m->private;
741 return seq_list_next(v, &p->ns->list, pos);
744 static void m_stop(struct seq_file *m, void *v)
746 up_read(&namespace_sem);
749 struct proc_fs_info {
750 int flag;
751 const char *str;
754 static int show_sb_opts(struct seq_file *m, struct super_block *sb)
756 static const struct proc_fs_info fs_info[] = {
757 { MS_SYNCHRONOUS, ",sync" },
758 { MS_DIRSYNC, ",dirsync" },
759 { MS_MANDLOCK, ",mand" },
760 { 0, NULL }
762 const struct proc_fs_info *fs_infop;
764 for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
765 if (sb->s_flags & fs_infop->flag)
766 seq_puts(m, fs_infop->str);
769 return security_sb_show_options(m, sb);
772 static void show_mnt_opts(struct seq_file *m, struct vfsmount *mnt)
774 static const struct proc_fs_info mnt_info[] = {
775 { MNT_NOSUID, ",nosuid" },
776 { MNT_NODEV, ",nodev" },
777 { MNT_NOEXEC, ",noexec" },
778 { MNT_NOATIME, ",noatime" },
779 { MNT_NODIRATIME, ",nodiratime" },
780 { MNT_RELATIME, ",relatime" },
781 { 0, NULL }
783 const struct proc_fs_info *fs_infop;
785 for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
786 if (mnt->mnt_flags & fs_infop->flag)
787 seq_puts(m, fs_infop->str);
791 static void show_type(struct seq_file *m, struct super_block *sb)
793 mangle(m, sb->s_type->name);
794 if (sb->s_subtype && sb->s_subtype[0]) {
795 seq_putc(m, '.');
796 mangle(m, sb->s_subtype);
800 static int show_vfsmnt(struct seq_file *m, void *v)
802 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
803 int err = 0;
804 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
806 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
807 seq_putc(m, ' ');
808 seq_path(m, &mnt_path, " \t\n\\");
809 seq_putc(m, ' ');
810 show_type(m, mnt->mnt_sb);
811 seq_puts(m, __mnt_is_readonly(mnt) ? " ro" : " rw");
812 err = show_sb_opts(m, mnt->mnt_sb);
813 if (err)
814 goto out;
815 show_mnt_opts(m, mnt);
816 if (mnt->mnt_sb->s_op->show_options)
817 err = mnt->mnt_sb->s_op->show_options(m, mnt);
818 seq_puts(m, " 0 0\n");
819 out:
820 return err;
823 const struct seq_operations mounts_op = {
824 .start = m_start,
825 .next = m_next,
826 .stop = m_stop,
827 .show = show_vfsmnt
830 static int show_mountinfo(struct seq_file *m, void *v)
832 struct proc_mounts *p = m->private;
833 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
834 struct super_block *sb = mnt->mnt_sb;
835 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
836 struct path root = p->root;
837 int err = 0;
839 seq_printf(m, "%i %i %u:%u ", mnt->mnt_id, mnt->mnt_parent->mnt_id,
840 MAJOR(sb->s_dev), MINOR(sb->s_dev));
841 seq_dentry(m, mnt->mnt_root, " \t\n\\");
842 seq_putc(m, ' ');
843 seq_path_root(m, &mnt_path, &root, " \t\n\\");
844 if (root.mnt != p->root.mnt || root.dentry != p->root.dentry) {
846 * Mountpoint is outside root, discard that one. Ugly,
847 * but less so than trying to do that in iterator in a
848 * race-free way (due to renames).
850 return SEQ_SKIP;
852 seq_puts(m, mnt->mnt_flags & MNT_READONLY ? " ro" : " rw");
853 show_mnt_opts(m, mnt);
855 /* Tagged fields ("foo:X" or "bar") */
856 if (IS_MNT_SHARED(mnt))
857 seq_printf(m, " shared:%i", mnt->mnt_group_id);
858 if (IS_MNT_SLAVE(mnt)) {
859 int master = mnt->mnt_master->mnt_group_id;
860 int dom = get_dominating_id(mnt, &p->root);
861 seq_printf(m, " master:%i", master);
862 if (dom && dom != master)
863 seq_printf(m, " propagate_from:%i", dom);
865 if (IS_MNT_UNBINDABLE(mnt))
866 seq_puts(m, " unbindable");
868 /* Filesystem specific data */
869 seq_puts(m, " - ");
870 show_type(m, sb);
871 seq_putc(m, ' ');
872 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
873 seq_puts(m, sb->s_flags & MS_RDONLY ? " ro" : " rw");
874 err = show_sb_opts(m, sb);
875 if (err)
876 goto out;
877 if (sb->s_op->show_options)
878 err = sb->s_op->show_options(m, mnt);
879 seq_putc(m, '\n');
880 out:
881 return err;
884 const struct seq_operations mountinfo_op = {
885 .start = m_start,
886 .next = m_next,
887 .stop = m_stop,
888 .show = show_mountinfo,
891 static int show_vfsstat(struct seq_file *m, void *v)
893 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
894 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
895 int err = 0;
897 /* device */
898 if (mnt->mnt_devname) {
899 seq_puts(m, "device ");
900 mangle(m, mnt->mnt_devname);
901 } else
902 seq_puts(m, "no device");
904 /* mount point */
905 seq_puts(m, " mounted on ");
906 seq_path(m, &mnt_path, " \t\n\\");
907 seq_putc(m, ' ');
909 /* file system type */
910 seq_puts(m, "with fstype ");
911 show_type(m, mnt->mnt_sb);
913 /* optional statistics */
914 if (mnt->mnt_sb->s_op->show_stats) {
915 seq_putc(m, ' ');
916 err = mnt->mnt_sb->s_op->show_stats(m, mnt);
919 seq_putc(m, '\n');
920 return err;
923 const struct seq_operations mountstats_op = {
924 .start = m_start,
925 .next = m_next,
926 .stop = m_stop,
927 .show = show_vfsstat,
929 #endif /* CONFIG_PROC_FS */
932 * may_umount_tree - check if a mount tree is busy
933 * @mnt: root of mount tree
935 * This is called to check if a tree of mounts has any
936 * open files, pwds, chroots or sub mounts that are
937 * busy.
939 int may_umount_tree(struct vfsmount *mnt)
941 int actual_refs = 0;
942 int minimum_refs = 0;
943 struct vfsmount *p;
945 spin_lock(&vfsmount_lock);
946 for (p = mnt; p; p = next_mnt(p, mnt)) {
947 actual_refs += atomic_read(&p->mnt_count);
948 minimum_refs += 2;
950 spin_unlock(&vfsmount_lock);
952 if (actual_refs > minimum_refs)
953 return 0;
955 return 1;
958 EXPORT_SYMBOL(may_umount_tree);
961 * may_umount - check if a mount point is busy
962 * @mnt: root of mount
964 * This is called to check if a mount point has any
965 * open files, pwds, chroots or sub mounts. If the
966 * mount has sub mounts this will return busy
967 * regardless of whether the sub mounts are busy.
969 * Doesn't take quota and stuff into account. IOW, in some cases it will
970 * give false negatives. The main reason why it's here is that we need
971 * a non-destructive way to look for easily umountable filesystems.
973 int may_umount(struct vfsmount *mnt)
975 int ret = 1;
976 spin_lock(&vfsmount_lock);
977 if (propagate_mount_busy(mnt, 2))
978 ret = 0;
979 spin_unlock(&vfsmount_lock);
980 return ret;
983 EXPORT_SYMBOL(may_umount);
985 void release_mounts(struct list_head *head)
987 struct vfsmount *mnt;
988 while (!list_empty(head)) {
989 mnt = list_first_entry(head, struct vfsmount, mnt_hash);
990 list_del_init(&mnt->mnt_hash);
991 if (mnt->mnt_parent != mnt) {
992 struct dentry *dentry;
993 struct vfsmount *m;
994 spin_lock(&vfsmount_lock);
995 dentry = mnt->mnt_mountpoint;
996 m = mnt->mnt_parent;
997 mnt->mnt_mountpoint = mnt->mnt_root;
998 mnt->mnt_parent = mnt;
999 m->mnt_ghosts--;
1000 spin_unlock(&vfsmount_lock);
1001 dput(dentry);
1002 mntput(m);
1004 mntput(mnt);
1008 void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill)
1010 struct vfsmount *p;
1012 for (p = mnt; p; p = next_mnt(p, mnt))
1013 list_move(&p->mnt_hash, kill);
1015 if (propagate)
1016 propagate_umount(kill);
1018 list_for_each_entry(p, kill, mnt_hash) {
1019 list_del_init(&p->mnt_expire);
1020 list_del_init(&p->mnt_list);
1021 __touch_mnt_namespace(p->mnt_ns);
1022 p->mnt_ns = NULL;
1023 list_del_init(&p->mnt_child);
1024 if (p->mnt_parent != p) {
1025 p->mnt_parent->mnt_ghosts++;
1026 p->mnt_mountpoint->d_mounted--;
1028 change_mnt_propagation(p, MS_PRIVATE);
1032 static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts);
1034 static int do_umount(struct vfsmount *mnt, int flags)
1036 struct super_block *sb = mnt->mnt_sb;
1037 int retval;
1038 LIST_HEAD(umount_list);
1040 retval = security_sb_umount(mnt, flags);
1041 if (retval)
1042 return retval;
1045 * Allow userspace to request a mountpoint be expired rather than
1046 * unmounting unconditionally. Unmount only happens if:
1047 * (1) the mark is already set (the mark is cleared by mntput())
1048 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1050 if (flags & MNT_EXPIRE) {
1051 if (mnt == current->fs->root.mnt ||
1052 flags & (MNT_FORCE | MNT_DETACH))
1053 return -EINVAL;
1055 if (atomic_read(&mnt->mnt_count) != 2)
1056 return -EBUSY;
1058 if (!xchg(&mnt->mnt_expiry_mark, 1))
1059 return -EAGAIN;
1063 * If we may have to abort operations to get out of this
1064 * mount, and they will themselves hold resources we must
1065 * allow the fs to do things. In the Unix tradition of
1066 * 'Gee thats tricky lets do it in userspace' the umount_begin
1067 * might fail to complete on the first run through as other tasks
1068 * must return, and the like. Thats for the mount program to worry
1069 * about for the moment.
1072 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1073 lock_kernel();
1074 sb->s_op->umount_begin(sb);
1075 unlock_kernel();
1079 * No sense to grab the lock for this test, but test itself looks
1080 * somewhat bogus. Suggestions for better replacement?
1081 * Ho-hum... In principle, we might treat that as umount + switch
1082 * to rootfs. GC would eventually take care of the old vfsmount.
1083 * Actually it makes sense, especially if rootfs would contain a
1084 * /reboot - static binary that would close all descriptors and
1085 * call reboot(9). Then init(8) could umount root and exec /reboot.
1087 if (mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1089 * Special case for "unmounting" root ...
1090 * we just try to remount it readonly.
1092 down_write(&sb->s_umount);
1093 if (!(sb->s_flags & MS_RDONLY)) {
1094 lock_kernel();
1095 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1096 unlock_kernel();
1098 up_write(&sb->s_umount);
1099 return retval;
1102 down_write(&namespace_sem);
1103 spin_lock(&vfsmount_lock);
1104 event++;
1106 if (!(flags & MNT_DETACH))
1107 shrink_submounts(mnt, &umount_list);
1109 retval = -EBUSY;
1110 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1111 if (!list_empty(&mnt->mnt_list))
1112 umount_tree(mnt, 1, &umount_list);
1113 retval = 0;
1115 spin_unlock(&vfsmount_lock);
1116 if (retval)
1117 security_sb_umount_busy(mnt);
1118 up_write(&namespace_sem);
1119 release_mounts(&umount_list);
1120 return retval;
1124 * Now umount can handle mount points as well as block devices.
1125 * This is important for filesystems which use unnamed block devices.
1127 * We now support a flag for forced unmount like the other 'big iron'
1128 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1131 asmlinkage long sys_umount(char __user * name, int flags)
1133 struct path path;
1134 int retval;
1136 retval = user_path(name, &path);
1137 if (retval)
1138 goto out;
1139 retval = -EINVAL;
1140 if (path.dentry != path.mnt->mnt_root)
1141 goto dput_and_out;
1142 if (!check_mnt(path.mnt))
1143 goto dput_and_out;
1145 retval = -EPERM;
1146 if (!capable(CAP_SYS_ADMIN))
1147 goto dput_and_out;
1149 retval = do_umount(path.mnt, flags);
1150 dput_and_out:
1151 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1152 dput(path.dentry);
1153 mntput_no_expire(path.mnt);
1154 out:
1155 return retval;
1158 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1161 * The 2.0 compatible umount. No flags.
1163 asmlinkage long sys_oldumount(char __user * name)
1165 return sys_umount(name, 0);
1168 #endif
1170 static int mount_is_safe(struct path *path)
1172 if (capable(CAP_SYS_ADMIN))
1173 return 0;
1174 return -EPERM;
1175 #ifdef notyet
1176 if (S_ISLNK(path->dentry->d_inode->i_mode))
1177 return -EPERM;
1178 if (path->dentry->d_inode->i_mode & S_ISVTX) {
1179 if (current_uid() != path->dentry->d_inode->i_uid)
1180 return -EPERM;
1182 if (inode_permission(path->dentry->d_inode, MAY_WRITE))
1183 return -EPERM;
1184 return 0;
1185 #endif
1188 struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry,
1189 int flag)
1191 struct vfsmount *res, *p, *q, *r, *s;
1192 struct path path;
1194 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
1195 return NULL;
1197 res = q = clone_mnt(mnt, dentry, flag);
1198 if (!q)
1199 goto Enomem;
1200 q->mnt_mountpoint = mnt->mnt_mountpoint;
1202 p = mnt;
1203 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1204 if (!is_subdir(r->mnt_mountpoint, dentry))
1205 continue;
1207 for (s = r; s; s = next_mnt(s, r)) {
1208 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
1209 s = skip_mnt_tree(s);
1210 continue;
1212 while (p != s->mnt_parent) {
1213 p = p->mnt_parent;
1214 q = q->mnt_parent;
1216 p = s;
1217 path.mnt = q;
1218 path.dentry = p->mnt_mountpoint;
1219 q = clone_mnt(p, p->mnt_root, flag);
1220 if (!q)
1221 goto Enomem;
1222 spin_lock(&vfsmount_lock);
1223 list_add_tail(&q->mnt_list, &res->mnt_list);
1224 attach_mnt(q, &path);
1225 spin_unlock(&vfsmount_lock);
1228 return res;
1229 Enomem:
1230 if (res) {
1231 LIST_HEAD(umount_list);
1232 spin_lock(&vfsmount_lock);
1233 umount_tree(res, 0, &umount_list);
1234 spin_unlock(&vfsmount_lock);
1235 release_mounts(&umount_list);
1237 return NULL;
1240 struct vfsmount *collect_mounts(struct vfsmount *mnt, struct dentry *dentry)
1242 struct vfsmount *tree;
1243 down_write(&namespace_sem);
1244 tree = copy_tree(mnt, dentry, CL_COPY_ALL | CL_PRIVATE);
1245 up_write(&namespace_sem);
1246 return tree;
1249 void drop_collected_mounts(struct vfsmount *mnt)
1251 LIST_HEAD(umount_list);
1252 down_write(&namespace_sem);
1253 spin_lock(&vfsmount_lock);
1254 umount_tree(mnt, 0, &umount_list);
1255 spin_unlock(&vfsmount_lock);
1256 up_write(&namespace_sem);
1257 release_mounts(&umount_list);
1260 static void cleanup_group_ids(struct vfsmount *mnt, struct vfsmount *end)
1262 struct vfsmount *p;
1264 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1265 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1266 mnt_release_group_id(p);
1270 static int invent_group_ids(struct vfsmount *mnt, bool recurse)
1272 struct vfsmount *p;
1274 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1275 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1276 int err = mnt_alloc_group_id(p);
1277 if (err) {
1278 cleanup_group_ids(mnt, p);
1279 return err;
1284 return 0;
1288 * @source_mnt : mount tree to be attached
1289 * @nd : place the mount tree @source_mnt is attached
1290 * @parent_nd : if non-null, detach the source_mnt from its parent and
1291 * store the parent mount and mountpoint dentry.
1292 * (done when source_mnt is moved)
1294 * NOTE: in the table below explains the semantics when a source mount
1295 * of a given type is attached to a destination mount of a given type.
1296 * ---------------------------------------------------------------------------
1297 * | BIND MOUNT OPERATION |
1298 * |**************************************************************************
1299 * | source-->| shared | private | slave | unbindable |
1300 * | dest | | | | |
1301 * | | | | | | |
1302 * | v | | | | |
1303 * |**************************************************************************
1304 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1305 * | | | | | |
1306 * |non-shared| shared (+) | private | slave (*) | invalid |
1307 * ***************************************************************************
1308 * A bind operation clones the source mount and mounts the clone on the
1309 * destination mount.
1311 * (++) the cloned mount is propagated to all the mounts in the propagation
1312 * tree of the destination mount and the cloned mount is added to
1313 * the peer group of the source mount.
1314 * (+) the cloned mount is created under the destination mount and is marked
1315 * as shared. The cloned mount is added to the peer group of the source
1316 * mount.
1317 * (+++) the mount is propagated to all the mounts in the propagation tree
1318 * of the destination mount and the cloned mount is made slave
1319 * of the same master as that of the source mount. The cloned mount
1320 * is marked as 'shared and slave'.
1321 * (*) the cloned mount is made a slave of the same master as that of the
1322 * source mount.
1324 * ---------------------------------------------------------------------------
1325 * | MOVE MOUNT OPERATION |
1326 * |**************************************************************************
1327 * | source-->| shared | private | slave | unbindable |
1328 * | dest | | | | |
1329 * | | | | | | |
1330 * | v | | | | |
1331 * |**************************************************************************
1332 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1333 * | | | | | |
1334 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1335 * ***************************************************************************
1337 * (+) the mount is moved to the destination. And is then propagated to
1338 * all the mounts in the propagation tree of the destination mount.
1339 * (+*) the mount is moved to the destination.
1340 * (+++) the mount is moved to the destination and is then propagated to
1341 * all the mounts belonging to the destination mount's propagation tree.
1342 * the mount is marked as 'shared and slave'.
1343 * (*) the mount continues to be a slave at the new location.
1345 * if the source mount is a tree, the operations explained above is
1346 * applied to each mount in the tree.
1347 * Must be called without spinlocks held, since this function can sleep
1348 * in allocations.
1350 static int attach_recursive_mnt(struct vfsmount *source_mnt,
1351 struct path *path, struct path *parent_path)
1353 LIST_HEAD(tree_list);
1354 struct vfsmount *dest_mnt = path->mnt;
1355 struct dentry *dest_dentry = path->dentry;
1356 struct vfsmount *child, *p;
1357 int err;
1359 if (IS_MNT_SHARED(dest_mnt)) {
1360 err = invent_group_ids(source_mnt, true);
1361 if (err)
1362 goto out;
1364 err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
1365 if (err)
1366 goto out_cleanup_ids;
1368 if (IS_MNT_SHARED(dest_mnt)) {
1369 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1370 set_mnt_shared(p);
1373 spin_lock(&vfsmount_lock);
1374 if (parent_path) {
1375 detach_mnt(source_mnt, parent_path);
1376 attach_mnt(source_mnt, path);
1377 touch_mnt_namespace(current->nsproxy->mnt_ns);
1378 } else {
1379 mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
1380 commit_tree(source_mnt);
1383 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1384 list_del_init(&child->mnt_hash);
1385 commit_tree(child);
1387 spin_unlock(&vfsmount_lock);
1388 return 0;
1390 out_cleanup_ids:
1391 if (IS_MNT_SHARED(dest_mnt))
1392 cleanup_group_ids(source_mnt, NULL);
1393 out:
1394 return err;
1397 static int graft_tree(struct vfsmount *mnt, struct path *path)
1399 int err;
1400 if (mnt->mnt_sb->s_flags & MS_NOUSER)
1401 return -EINVAL;
1403 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1404 S_ISDIR(mnt->mnt_root->d_inode->i_mode))
1405 return -ENOTDIR;
1407 err = -ENOENT;
1408 mutex_lock(&path->dentry->d_inode->i_mutex);
1409 if (IS_DEADDIR(path->dentry->d_inode))
1410 goto out_unlock;
1412 err = security_sb_check_sb(mnt, path);
1413 if (err)
1414 goto out_unlock;
1416 err = -ENOENT;
1417 if (IS_ROOT(path->dentry) || !d_unhashed(path->dentry))
1418 err = attach_recursive_mnt(mnt, path, NULL);
1419 out_unlock:
1420 mutex_unlock(&path->dentry->d_inode->i_mutex);
1421 if (!err)
1422 security_sb_post_addmount(mnt, path);
1423 return err;
1427 * recursively change the type of the mountpoint.
1429 static int do_change_type(struct path *path, int flag)
1431 struct vfsmount *m, *mnt = path->mnt;
1432 int recurse = flag & MS_REC;
1433 int type = flag & ~MS_REC;
1434 int err = 0;
1436 if (!capable(CAP_SYS_ADMIN))
1437 return -EPERM;
1439 if (path->dentry != path->mnt->mnt_root)
1440 return -EINVAL;
1442 down_write(&namespace_sem);
1443 if (type == MS_SHARED) {
1444 err = invent_group_ids(mnt, recurse);
1445 if (err)
1446 goto out_unlock;
1449 spin_lock(&vfsmount_lock);
1450 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1451 change_mnt_propagation(m, type);
1452 spin_unlock(&vfsmount_lock);
1454 out_unlock:
1455 up_write(&namespace_sem);
1456 return err;
1460 * do loopback mount.
1462 static int do_loopback(struct path *path, char *old_name,
1463 int recurse)
1465 struct path old_path;
1466 struct vfsmount *mnt = NULL;
1467 int err = mount_is_safe(path);
1468 if (err)
1469 return err;
1470 if (!old_name || !*old_name)
1471 return -EINVAL;
1472 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1473 if (err)
1474 return err;
1476 down_write(&namespace_sem);
1477 err = -EINVAL;
1478 if (IS_MNT_UNBINDABLE(old_path.mnt))
1479 goto out;
1481 if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
1482 goto out;
1484 err = -ENOMEM;
1485 if (recurse)
1486 mnt = copy_tree(old_path.mnt, old_path.dentry, 0);
1487 else
1488 mnt = clone_mnt(old_path.mnt, old_path.dentry, 0);
1490 if (!mnt)
1491 goto out;
1493 err = graft_tree(mnt, path);
1494 if (err) {
1495 LIST_HEAD(umount_list);
1496 spin_lock(&vfsmount_lock);
1497 umount_tree(mnt, 0, &umount_list);
1498 spin_unlock(&vfsmount_lock);
1499 release_mounts(&umount_list);
1502 out:
1503 up_write(&namespace_sem);
1504 path_put(&old_path);
1505 return err;
1508 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1510 int error = 0;
1511 int readonly_request = 0;
1513 if (ms_flags & MS_RDONLY)
1514 readonly_request = 1;
1515 if (readonly_request == __mnt_is_readonly(mnt))
1516 return 0;
1518 if (readonly_request)
1519 error = mnt_make_readonly(mnt);
1520 else
1521 __mnt_unmake_readonly(mnt);
1522 return error;
1526 * change filesystem flags. dir should be a physical root of filesystem.
1527 * If you've mounted a non-root directory somewhere and want to do remount
1528 * on it - tough luck.
1530 static int do_remount(struct path *path, int flags, int mnt_flags,
1531 void *data)
1533 int err;
1534 struct super_block *sb = path->mnt->mnt_sb;
1536 if (!capable(CAP_SYS_ADMIN))
1537 return -EPERM;
1539 if (!check_mnt(path->mnt))
1540 return -EINVAL;
1542 if (path->dentry != path->mnt->mnt_root)
1543 return -EINVAL;
1545 down_write(&sb->s_umount);
1546 if (flags & MS_BIND)
1547 err = change_mount_flags(path->mnt, flags);
1548 else
1549 err = do_remount_sb(sb, flags, data, 0);
1550 if (!err)
1551 path->mnt->mnt_flags = mnt_flags;
1552 up_write(&sb->s_umount);
1553 if (!err) {
1554 security_sb_post_remount(path->mnt, flags, data);
1556 spin_lock(&vfsmount_lock);
1557 touch_mnt_namespace(path->mnt->mnt_ns);
1558 spin_unlock(&vfsmount_lock);
1560 return err;
1563 static inline int tree_contains_unbindable(struct vfsmount *mnt)
1565 struct vfsmount *p;
1566 for (p = mnt; p; p = next_mnt(p, mnt)) {
1567 if (IS_MNT_UNBINDABLE(p))
1568 return 1;
1570 return 0;
1573 static int do_move_mount(struct path *path, char *old_name)
1575 struct path old_path, parent_path;
1576 struct vfsmount *p;
1577 int err = 0;
1578 if (!capable(CAP_SYS_ADMIN))
1579 return -EPERM;
1580 if (!old_name || !*old_name)
1581 return -EINVAL;
1582 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1583 if (err)
1584 return err;
1586 down_write(&namespace_sem);
1587 while (d_mountpoint(path->dentry) &&
1588 follow_down(&path->mnt, &path->dentry))
1590 err = -EINVAL;
1591 if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
1592 goto out;
1594 err = -ENOENT;
1595 mutex_lock(&path->dentry->d_inode->i_mutex);
1596 if (IS_DEADDIR(path->dentry->d_inode))
1597 goto out1;
1599 if (!IS_ROOT(path->dentry) && d_unhashed(path->dentry))
1600 goto out1;
1602 err = -EINVAL;
1603 if (old_path.dentry != old_path.mnt->mnt_root)
1604 goto out1;
1606 if (old_path.mnt == old_path.mnt->mnt_parent)
1607 goto out1;
1609 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1610 S_ISDIR(old_path.dentry->d_inode->i_mode))
1611 goto out1;
1613 * Don't move a mount residing in a shared parent.
1615 if (old_path.mnt->mnt_parent &&
1616 IS_MNT_SHARED(old_path.mnt->mnt_parent))
1617 goto out1;
1619 * Don't move a mount tree containing unbindable mounts to a destination
1620 * mount which is shared.
1622 if (IS_MNT_SHARED(path->mnt) &&
1623 tree_contains_unbindable(old_path.mnt))
1624 goto out1;
1625 err = -ELOOP;
1626 for (p = path->mnt; p->mnt_parent != p; p = p->mnt_parent)
1627 if (p == old_path.mnt)
1628 goto out1;
1630 err = attach_recursive_mnt(old_path.mnt, path, &parent_path);
1631 if (err)
1632 goto out1;
1634 /* if the mount is moved, it should no longer be expire
1635 * automatically */
1636 list_del_init(&old_path.mnt->mnt_expire);
1637 out1:
1638 mutex_unlock(&path->dentry->d_inode->i_mutex);
1639 out:
1640 up_write(&namespace_sem);
1641 if (!err)
1642 path_put(&parent_path);
1643 path_put(&old_path);
1644 return err;
1648 * create a new mount for userspace and request it to be added into the
1649 * namespace's tree
1651 static int do_new_mount(struct path *path, char *type, int flags,
1652 int mnt_flags, char *name, void *data)
1654 struct vfsmount *mnt;
1656 if (!type || !memchr(type, 0, PAGE_SIZE))
1657 return -EINVAL;
1659 /* we need capabilities... */
1660 if (!capable(CAP_SYS_ADMIN))
1661 return -EPERM;
1663 mnt = do_kern_mount(type, flags, name, data);
1664 if (IS_ERR(mnt))
1665 return PTR_ERR(mnt);
1667 return do_add_mount(mnt, path, mnt_flags, NULL);
1671 * add a mount into a namespace's mount tree
1672 * - provide the option of adding the new mount to an expiration list
1674 int do_add_mount(struct vfsmount *newmnt, struct path *path,
1675 int mnt_flags, struct list_head *fslist)
1677 int err;
1679 down_write(&namespace_sem);
1680 /* Something was mounted here while we slept */
1681 while (d_mountpoint(path->dentry) &&
1682 follow_down(&path->mnt, &path->dentry))
1684 err = -EINVAL;
1685 if (!check_mnt(path->mnt))
1686 goto unlock;
1688 /* Refuse the same filesystem on the same mount point */
1689 err = -EBUSY;
1690 if (path->mnt->mnt_sb == newmnt->mnt_sb &&
1691 path->mnt->mnt_root == path->dentry)
1692 goto unlock;
1694 err = -EINVAL;
1695 if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode))
1696 goto unlock;
1698 newmnt->mnt_flags = mnt_flags;
1699 if ((err = graft_tree(newmnt, path)))
1700 goto unlock;
1702 if (fslist) /* add to the specified expiration list */
1703 list_add_tail(&newmnt->mnt_expire, fslist);
1705 up_write(&namespace_sem);
1706 return 0;
1708 unlock:
1709 up_write(&namespace_sem);
1710 mntput(newmnt);
1711 return err;
1714 EXPORT_SYMBOL_GPL(do_add_mount);
1717 * process a list of expirable mountpoints with the intent of discarding any
1718 * mountpoints that aren't in use and haven't been touched since last we came
1719 * here
1721 void mark_mounts_for_expiry(struct list_head *mounts)
1723 struct vfsmount *mnt, *next;
1724 LIST_HEAD(graveyard);
1725 LIST_HEAD(umounts);
1727 if (list_empty(mounts))
1728 return;
1730 down_write(&namespace_sem);
1731 spin_lock(&vfsmount_lock);
1733 /* extract from the expiration list every vfsmount that matches the
1734 * following criteria:
1735 * - only referenced by its parent vfsmount
1736 * - still marked for expiry (marked on the last call here; marks are
1737 * cleared by mntput())
1739 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
1740 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1741 propagate_mount_busy(mnt, 1))
1742 continue;
1743 list_move(&mnt->mnt_expire, &graveyard);
1745 while (!list_empty(&graveyard)) {
1746 mnt = list_first_entry(&graveyard, struct vfsmount, mnt_expire);
1747 touch_mnt_namespace(mnt->mnt_ns);
1748 umount_tree(mnt, 1, &umounts);
1750 spin_unlock(&vfsmount_lock);
1751 up_write(&namespace_sem);
1753 release_mounts(&umounts);
1756 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
1759 * Ripoff of 'select_parent()'
1761 * search the list of submounts for a given mountpoint, and move any
1762 * shrinkable submounts to the 'graveyard' list.
1764 static int select_submounts(struct vfsmount *parent, struct list_head *graveyard)
1766 struct vfsmount *this_parent = parent;
1767 struct list_head *next;
1768 int found = 0;
1770 repeat:
1771 next = this_parent->mnt_mounts.next;
1772 resume:
1773 while (next != &this_parent->mnt_mounts) {
1774 struct list_head *tmp = next;
1775 struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child);
1777 next = tmp->next;
1778 if (!(mnt->mnt_flags & MNT_SHRINKABLE))
1779 continue;
1781 * Descend a level if the d_mounts list is non-empty.
1783 if (!list_empty(&mnt->mnt_mounts)) {
1784 this_parent = mnt;
1785 goto repeat;
1788 if (!propagate_mount_busy(mnt, 1)) {
1789 list_move_tail(&mnt->mnt_expire, graveyard);
1790 found++;
1794 * All done at this level ... ascend and resume the search
1796 if (this_parent != parent) {
1797 next = this_parent->mnt_child.next;
1798 this_parent = this_parent->mnt_parent;
1799 goto resume;
1801 return found;
1805 * process a list of expirable mountpoints with the intent of discarding any
1806 * submounts of a specific parent mountpoint
1808 static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts)
1810 LIST_HEAD(graveyard);
1811 struct vfsmount *m;
1813 /* extract submounts of 'mountpoint' from the expiration list */
1814 while (select_submounts(mnt, &graveyard)) {
1815 while (!list_empty(&graveyard)) {
1816 m = list_first_entry(&graveyard, struct vfsmount,
1817 mnt_expire);
1818 touch_mnt_namespace(m->mnt_ns);
1819 umount_tree(m, 1, umounts);
1825 * Some copy_from_user() implementations do not return the exact number of
1826 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
1827 * Note that this function differs from copy_from_user() in that it will oops
1828 * on bad values of `to', rather than returning a short copy.
1830 static long exact_copy_from_user(void *to, const void __user * from,
1831 unsigned long n)
1833 char *t = to;
1834 const char __user *f = from;
1835 char c;
1837 if (!access_ok(VERIFY_READ, from, n))
1838 return n;
1840 while (n) {
1841 if (__get_user(c, f)) {
1842 memset(t, 0, n);
1843 break;
1845 *t++ = c;
1846 f++;
1847 n--;
1849 return n;
1852 int copy_mount_options(const void __user * data, unsigned long *where)
1854 int i;
1855 unsigned long page;
1856 unsigned long size;
1858 *where = 0;
1859 if (!data)
1860 return 0;
1862 if (!(page = __get_free_page(GFP_KERNEL)))
1863 return -ENOMEM;
1865 /* We only care that *some* data at the address the user
1866 * gave us is valid. Just in case, we'll zero
1867 * the remainder of the page.
1869 /* copy_from_user cannot cross TASK_SIZE ! */
1870 size = TASK_SIZE - (unsigned long)data;
1871 if (size > PAGE_SIZE)
1872 size = PAGE_SIZE;
1874 i = size - exact_copy_from_user((void *)page, data, size);
1875 if (!i) {
1876 free_page(page);
1877 return -EFAULT;
1879 if (i != PAGE_SIZE)
1880 memset((char *)page + i, 0, PAGE_SIZE - i);
1881 *where = page;
1882 return 0;
1886 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
1887 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
1889 * data is a (void *) that can point to any structure up to
1890 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
1891 * information (or be NULL).
1893 * Pre-0.97 versions of mount() didn't have a flags word.
1894 * When the flags word was introduced its top half was required
1895 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
1896 * Therefore, if this magic number is present, it carries no information
1897 * and must be discarded.
1899 long do_mount(char *dev_name, char *dir_name, char *type_page,
1900 unsigned long flags, void *data_page)
1902 struct path path;
1903 int retval = 0;
1904 int mnt_flags = 0;
1906 /* Discard magic */
1907 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
1908 flags &= ~MS_MGC_MSK;
1910 /* Basic sanity checks */
1912 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
1913 return -EINVAL;
1914 if (dev_name && !memchr(dev_name, 0, PAGE_SIZE))
1915 return -EINVAL;
1917 if (data_page)
1918 ((char *)data_page)[PAGE_SIZE - 1] = 0;
1920 /* Separate the per-mountpoint flags */
1921 if (flags & MS_NOSUID)
1922 mnt_flags |= MNT_NOSUID;
1923 if (flags & MS_NODEV)
1924 mnt_flags |= MNT_NODEV;
1925 if (flags & MS_NOEXEC)
1926 mnt_flags |= MNT_NOEXEC;
1927 if (flags & MS_NOATIME)
1928 mnt_flags |= MNT_NOATIME;
1929 if (flags & MS_NODIRATIME)
1930 mnt_flags |= MNT_NODIRATIME;
1931 if (flags & MS_RELATIME)
1932 mnt_flags |= MNT_RELATIME;
1933 if (flags & MS_RDONLY)
1934 mnt_flags |= MNT_READONLY;
1936 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE |
1937 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT);
1939 /* ... and get the mountpoint */
1940 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
1941 if (retval)
1942 return retval;
1944 retval = security_sb_mount(dev_name, &path,
1945 type_page, flags, data_page);
1946 if (retval)
1947 goto dput_out;
1949 if (flags & MS_REMOUNT)
1950 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
1951 data_page);
1952 else if (flags & MS_BIND)
1953 retval = do_loopback(&path, dev_name, flags & MS_REC);
1954 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1955 retval = do_change_type(&path, flags);
1956 else if (flags & MS_MOVE)
1957 retval = do_move_mount(&path, dev_name);
1958 else
1959 retval = do_new_mount(&path, type_page, flags, mnt_flags,
1960 dev_name, data_page);
1961 dput_out:
1962 path_put(&path);
1963 return retval;
1967 * Allocate a new namespace structure and populate it with contents
1968 * copied from the namespace of the passed in task structure.
1970 static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
1971 struct fs_struct *fs)
1973 struct mnt_namespace *new_ns;
1974 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
1975 struct vfsmount *p, *q;
1977 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
1978 if (!new_ns)
1979 return ERR_PTR(-ENOMEM);
1981 atomic_set(&new_ns->count, 1);
1982 INIT_LIST_HEAD(&new_ns->list);
1983 init_waitqueue_head(&new_ns->poll);
1984 new_ns->event = 0;
1986 down_write(&namespace_sem);
1987 /* First pass: copy the tree topology */
1988 new_ns->root = copy_tree(mnt_ns->root, mnt_ns->root->mnt_root,
1989 CL_COPY_ALL | CL_EXPIRE);
1990 if (!new_ns->root) {
1991 up_write(&namespace_sem);
1992 kfree(new_ns);
1993 return ERR_PTR(-ENOMEM);
1995 spin_lock(&vfsmount_lock);
1996 list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
1997 spin_unlock(&vfsmount_lock);
2000 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2001 * as belonging to new namespace. We have already acquired a private
2002 * fs_struct, so tsk->fs->lock is not needed.
2004 p = mnt_ns->root;
2005 q = new_ns->root;
2006 while (p) {
2007 q->mnt_ns = new_ns;
2008 if (fs) {
2009 if (p == fs->root.mnt) {
2010 rootmnt = p;
2011 fs->root.mnt = mntget(q);
2013 if (p == fs->pwd.mnt) {
2014 pwdmnt = p;
2015 fs->pwd.mnt = mntget(q);
2018 p = next_mnt(p, mnt_ns->root);
2019 q = next_mnt(q, new_ns->root);
2021 up_write(&namespace_sem);
2023 if (rootmnt)
2024 mntput(rootmnt);
2025 if (pwdmnt)
2026 mntput(pwdmnt);
2028 return new_ns;
2031 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2032 struct fs_struct *new_fs)
2034 struct mnt_namespace *new_ns;
2036 BUG_ON(!ns);
2037 get_mnt_ns(ns);
2039 if (!(flags & CLONE_NEWNS))
2040 return ns;
2042 new_ns = dup_mnt_ns(ns, new_fs);
2044 put_mnt_ns(ns);
2045 return new_ns;
2048 asmlinkage long sys_mount(char __user * dev_name, char __user * dir_name,
2049 char __user * type, unsigned long flags,
2050 void __user * data)
2052 int retval;
2053 unsigned long data_page;
2054 unsigned long type_page;
2055 unsigned long dev_page;
2056 char *dir_page;
2058 retval = copy_mount_options(type, &type_page);
2059 if (retval < 0)
2060 return retval;
2062 dir_page = getname(dir_name);
2063 retval = PTR_ERR(dir_page);
2064 if (IS_ERR(dir_page))
2065 goto out1;
2067 retval = copy_mount_options(dev_name, &dev_page);
2068 if (retval < 0)
2069 goto out2;
2071 retval = copy_mount_options(data, &data_page);
2072 if (retval < 0)
2073 goto out3;
2075 lock_kernel();
2076 retval = do_mount((char *)dev_page, dir_page, (char *)type_page,
2077 flags, (void *)data_page);
2078 unlock_kernel();
2079 free_page(data_page);
2081 out3:
2082 free_page(dev_page);
2083 out2:
2084 putname(dir_page);
2085 out1:
2086 free_page(type_page);
2087 return retval;
2091 * Replace the fs->{rootmnt,root} with {mnt,dentry}. Put the old values.
2092 * It can block. Requires the big lock held.
2094 void set_fs_root(struct fs_struct *fs, struct path *path)
2096 struct path old_root;
2098 write_lock(&fs->lock);
2099 old_root = fs->root;
2100 fs->root = *path;
2101 path_get(path);
2102 write_unlock(&fs->lock);
2103 if (old_root.dentry)
2104 path_put(&old_root);
2108 * Replace the fs->{pwdmnt,pwd} with {mnt,dentry}. Put the old values.
2109 * It can block. Requires the big lock held.
2111 void set_fs_pwd(struct fs_struct *fs, struct path *path)
2113 struct path old_pwd;
2115 write_lock(&fs->lock);
2116 old_pwd = fs->pwd;
2117 fs->pwd = *path;
2118 path_get(path);
2119 write_unlock(&fs->lock);
2121 if (old_pwd.dentry)
2122 path_put(&old_pwd);
2125 static void chroot_fs_refs(struct path *old_root, struct path *new_root)
2127 struct task_struct *g, *p;
2128 struct fs_struct *fs;
2130 read_lock(&tasklist_lock);
2131 do_each_thread(g, p) {
2132 task_lock(p);
2133 fs = p->fs;
2134 if (fs) {
2135 atomic_inc(&fs->count);
2136 task_unlock(p);
2137 if (fs->root.dentry == old_root->dentry
2138 && fs->root.mnt == old_root->mnt)
2139 set_fs_root(fs, new_root);
2140 if (fs->pwd.dentry == old_root->dentry
2141 && fs->pwd.mnt == old_root->mnt)
2142 set_fs_pwd(fs, new_root);
2143 put_fs_struct(fs);
2144 } else
2145 task_unlock(p);
2146 } while_each_thread(g, p);
2147 read_unlock(&tasklist_lock);
2151 * pivot_root Semantics:
2152 * Moves the root file system of the current process to the directory put_old,
2153 * makes new_root as the new root file system of the current process, and sets
2154 * root/cwd of all processes which had them on the current root to new_root.
2156 * Restrictions:
2157 * The new_root and put_old must be directories, and must not be on the
2158 * same file system as the current process root. The put_old must be
2159 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2160 * pointed to by put_old must yield the same directory as new_root. No other
2161 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2163 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2164 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2165 * in this situation.
2167 * Notes:
2168 * - we don't move root/cwd if they are not at the root (reason: if something
2169 * cared enough to change them, it's probably wrong to force them elsewhere)
2170 * - it's okay to pick a root that isn't the root of a file system, e.g.
2171 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2172 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2173 * first.
2175 asmlinkage long sys_pivot_root(const char __user * new_root,
2176 const char __user * put_old)
2178 struct vfsmount *tmp;
2179 struct path new, old, parent_path, root_parent, root;
2180 int error;
2182 if (!capable(CAP_SYS_ADMIN))
2183 return -EPERM;
2185 error = user_path_dir(new_root, &new);
2186 if (error)
2187 goto out0;
2188 error = -EINVAL;
2189 if (!check_mnt(new.mnt))
2190 goto out1;
2192 error = user_path_dir(put_old, &old);
2193 if (error)
2194 goto out1;
2196 error = security_sb_pivotroot(&old, &new);
2197 if (error) {
2198 path_put(&old);
2199 goto out1;
2202 read_lock(&current->fs->lock);
2203 root = current->fs->root;
2204 path_get(&current->fs->root);
2205 read_unlock(&current->fs->lock);
2206 down_write(&namespace_sem);
2207 mutex_lock(&old.dentry->d_inode->i_mutex);
2208 error = -EINVAL;
2209 if (IS_MNT_SHARED(old.mnt) ||
2210 IS_MNT_SHARED(new.mnt->mnt_parent) ||
2211 IS_MNT_SHARED(root.mnt->mnt_parent))
2212 goto out2;
2213 if (!check_mnt(root.mnt))
2214 goto out2;
2215 error = -ENOENT;
2216 if (IS_DEADDIR(new.dentry->d_inode))
2217 goto out2;
2218 if (d_unhashed(new.dentry) && !IS_ROOT(new.dentry))
2219 goto out2;
2220 if (d_unhashed(old.dentry) && !IS_ROOT(old.dentry))
2221 goto out2;
2222 error = -EBUSY;
2223 if (new.mnt == root.mnt ||
2224 old.mnt == root.mnt)
2225 goto out2; /* loop, on the same file system */
2226 error = -EINVAL;
2227 if (root.mnt->mnt_root != root.dentry)
2228 goto out2; /* not a mountpoint */
2229 if (root.mnt->mnt_parent == root.mnt)
2230 goto out2; /* not attached */
2231 if (new.mnt->mnt_root != new.dentry)
2232 goto out2; /* not a mountpoint */
2233 if (new.mnt->mnt_parent == new.mnt)
2234 goto out2; /* not attached */
2235 /* make sure we can reach put_old from new_root */
2236 tmp = old.mnt;
2237 spin_lock(&vfsmount_lock);
2238 if (tmp != new.mnt) {
2239 for (;;) {
2240 if (tmp->mnt_parent == tmp)
2241 goto out3; /* already mounted on put_old */
2242 if (tmp->mnt_parent == new.mnt)
2243 break;
2244 tmp = tmp->mnt_parent;
2246 if (!is_subdir(tmp->mnt_mountpoint, new.dentry))
2247 goto out3;
2248 } else if (!is_subdir(old.dentry, new.dentry))
2249 goto out3;
2250 detach_mnt(new.mnt, &parent_path);
2251 detach_mnt(root.mnt, &root_parent);
2252 /* mount old root on put_old */
2253 attach_mnt(root.mnt, &old);
2254 /* mount new_root on / */
2255 attach_mnt(new.mnt, &root_parent);
2256 touch_mnt_namespace(current->nsproxy->mnt_ns);
2257 spin_unlock(&vfsmount_lock);
2258 chroot_fs_refs(&root, &new);
2259 security_sb_post_pivotroot(&root, &new);
2260 error = 0;
2261 path_put(&root_parent);
2262 path_put(&parent_path);
2263 out2:
2264 mutex_unlock(&old.dentry->d_inode->i_mutex);
2265 up_write(&namespace_sem);
2266 path_put(&root);
2267 path_put(&old);
2268 out1:
2269 path_put(&new);
2270 out0:
2271 return error;
2272 out3:
2273 spin_unlock(&vfsmount_lock);
2274 goto out2;
2277 static void __init init_mount_tree(void)
2279 struct vfsmount *mnt;
2280 struct mnt_namespace *ns;
2281 struct path root;
2283 mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
2284 if (IS_ERR(mnt))
2285 panic("Can't create rootfs");
2286 ns = kmalloc(sizeof(*ns), GFP_KERNEL);
2287 if (!ns)
2288 panic("Can't allocate initial namespace");
2289 atomic_set(&ns->count, 1);
2290 INIT_LIST_HEAD(&ns->list);
2291 init_waitqueue_head(&ns->poll);
2292 ns->event = 0;
2293 list_add(&mnt->mnt_list, &ns->list);
2294 ns->root = mnt;
2295 mnt->mnt_ns = ns;
2297 init_task.nsproxy->mnt_ns = ns;
2298 get_mnt_ns(ns);
2300 root.mnt = ns->root;
2301 root.dentry = ns->root->mnt_root;
2303 set_fs_pwd(current->fs, &root);
2304 set_fs_root(current->fs, &root);
2307 void __init mnt_init(void)
2309 unsigned u;
2310 int err;
2312 init_rwsem(&namespace_sem);
2314 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount),
2315 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2317 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
2319 if (!mount_hashtable)
2320 panic("Failed to allocate mount hash table\n");
2322 printk("Mount-cache hash table entries: %lu\n", HASH_SIZE);
2324 for (u = 0; u < HASH_SIZE; u++)
2325 INIT_LIST_HEAD(&mount_hashtable[u]);
2327 err = sysfs_init();
2328 if (err)
2329 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
2330 __func__, err);
2331 fs_kobj = kobject_create_and_add("fs", NULL);
2332 if (!fs_kobj)
2333 printk(KERN_WARNING "%s: kobj create error\n", __func__);
2334 init_rootfs();
2335 init_mount_tree();
2338 void __put_mnt_ns(struct mnt_namespace *ns)
2340 struct vfsmount *root = ns->root;
2341 LIST_HEAD(umount_list);
2342 ns->root = NULL;
2343 spin_unlock(&vfsmount_lock);
2344 down_write(&namespace_sem);
2345 spin_lock(&vfsmount_lock);
2346 umount_tree(root, 0, &umount_list);
2347 spin_unlock(&vfsmount_lock);
2348 up_write(&namespace_sem);
2349 release_mounts(&umount_list);
2350 kfree(ns);