getrusage: RUSAGE_THREAD should return ru_utime and ru_stime
[linux-2.6/mini2440.git] / fs / buffer.c
blob776ae091d3b0d58052aacb899e0954c3b191ae10
1 /*
2 * linux/fs/buffer.c
4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
5 */
7 /*
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/capability.h>
28 #include <linux/blkdev.h>
29 #include <linux/file.h>
30 #include <linux/quotaops.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/writeback.h>
34 #include <linux/hash.h>
35 #include <linux/suspend.h>
36 #include <linux/buffer_head.h>
37 #include <linux/task_io_accounting_ops.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
45 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
47 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
49 inline void
50 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
52 bh->b_end_io = handler;
53 bh->b_private = private;
56 static int sync_buffer(void *word)
58 struct block_device *bd;
59 struct buffer_head *bh
60 = container_of(word, struct buffer_head, b_state);
62 smp_mb();
63 bd = bh->b_bdev;
64 if (bd)
65 blk_run_address_space(bd->bd_inode->i_mapping);
66 io_schedule();
67 return 0;
70 void __lock_buffer(struct buffer_head *bh)
72 wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer,
73 TASK_UNINTERRUPTIBLE);
75 EXPORT_SYMBOL(__lock_buffer);
77 void unlock_buffer(struct buffer_head *bh)
79 clear_bit_unlock(BH_Lock, &bh->b_state);
80 smp_mb__after_clear_bit();
81 wake_up_bit(&bh->b_state, BH_Lock);
85 * Block until a buffer comes unlocked. This doesn't stop it
86 * from becoming locked again - you have to lock it yourself
87 * if you want to preserve its state.
89 void __wait_on_buffer(struct buffer_head * bh)
91 wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE);
94 static void
95 __clear_page_buffers(struct page *page)
97 ClearPagePrivate(page);
98 set_page_private(page, 0);
99 page_cache_release(page);
103 static int quiet_error(struct buffer_head *bh)
105 if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit())
106 return 0;
107 return 1;
111 static void buffer_io_error(struct buffer_head *bh)
113 char b[BDEVNAME_SIZE];
114 printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
115 bdevname(bh->b_bdev, b),
116 (unsigned long long)bh->b_blocknr);
120 * End-of-IO handler helper function which does not touch the bh after
121 * unlocking it.
122 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
123 * a race there is benign: unlock_buffer() only use the bh's address for
124 * hashing after unlocking the buffer, so it doesn't actually touch the bh
125 * itself.
127 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
129 if (uptodate) {
130 set_buffer_uptodate(bh);
131 } else {
132 /* This happens, due to failed READA attempts. */
133 clear_buffer_uptodate(bh);
135 unlock_buffer(bh);
139 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
140 * unlock the buffer. This is what ll_rw_block uses too.
142 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
144 __end_buffer_read_notouch(bh, uptodate);
145 put_bh(bh);
148 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
150 char b[BDEVNAME_SIZE];
152 if (uptodate) {
153 set_buffer_uptodate(bh);
154 } else {
155 if (!buffer_eopnotsupp(bh) && !quiet_error(bh)) {
156 buffer_io_error(bh);
157 printk(KERN_WARNING "lost page write due to "
158 "I/O error on %s\n",
159 bdevname(bh->b_bdev, b));
161 set_buffer_write_io_error(bh);
162 clear_buffer_uptodate(bh);
164 unlock_buffer(bh);
165 put_bh(bh);
169 * Write out and wait upon all the dirty data associated with a block
170 * device via its mapping. Does not take the superblock lock.
172 int sync_blockdev(struct block_device *bdev)
174 int ret = 0;
176 if (bdev)
177 ret = filemap_write_and_wait(bdev->bd_inode->i_mapping);
178 return ret;
180 EXPORT_SYMBOL(sync_blockdev);
183 * Write out and wait upon all dirty data associated with this
184 * device. Filesystem data as well as the underlying block
185 * device. Takes the superblock lock.
187 int fsync_bdev(struct block_device *bdev)
189 struct super_block *sb = get_super(bdev);
190 if (sb) {
191 int res = fsync_super(sb);
192 drop_super(sb);
193 return res;
195 return sync_blockdev(bdev);
199 * freeze_bdev -- lock a filesystem and force it into a consistent state
200 * @bdev: blockdevice to lock
202 * This takes the block device bd_mount_sem to make sure no new mounts
203 * happen on bdev until thaw_bdev() is called.
204 * If a superblock is found on this device, we take the s_umount semaphore
205 * on it to make sure nobody unmounts until the snapshot creation is done.
207 struct super_block *freeze_bdev(struct block_device *bdev)
209 struct super_block *sb;
211 down(&bdev->bd_mount_sem);
212 sb = get_super(bdev);
213 if (sb && !(sb->s_flags & MS_RDONLY)) {
214 sb->s_frozen = SB_FREEZE_WRITE;
215 smp_wmb();
217 __fsync_super(sb);
219 sb->s_frozen = SB_FREEZE_TRANS;
220 smp_wmb();
222 sync_blockdev(sb->s_bdev);
224 if (sb->s_op->write_super_lockfs)
225 sb->s_op->write_super_lockfs(sb);
228 sync_blockdev(bdev);
229 return sb; /* thaw_bdev releases s->s_umount and bd_mount_sem */
231 EXPORT_SYMBOL(freeze_bdev);
234 * thaw_bdev -- unlock filesystem
235 * @bdev: blockdevice to unlock
236 * @sb: associated superblock
238 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
240 void thaw_bdev(struct block_device *bdev, struct super_block *sb)
242 if (sb) {
243 BUG_ON(sb->s_bdev != bdev);
245 if (sb->s_op->unlockfs)
246 sb->s_op->unlockfs(sb);
247 sb->s_frozen = SB_UNFROZEN;
248 smp_wmb();
249 wake_up(&sb->s_wait_unfrozen);
250 drop_super(sb);
253 up(&bdev->bd_mount_sem);
255 EXPORT_SYMBOL(thaw_bdev);
258 * Various filesystems appear to want __find_get_block to be non-blocking.
259 * But it's the page lock which protects the buffers. To get around this,
260 * we get exclusion from try_to_free_buffers with the blockdev mapping's
261 * private_lock.
263 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
264 * may be quite high. This code could TryLock the page, and if that
265 * succeeds, there is no need to take private_lock. (But if
266 * private_lock is contended then so is mapping->tree_lock).
268 static struct buffer_head *
269 __find_get_block_slow(struct block_device *bdev, sector_t block)
271 struct inode *bd_inode = bdev->bd_inode;
272 struct address_space *bd_mapping = bd_inode->i_mapping;
273 struct buffer_head *ret = NULL;
274 pgoff_t index;
275 struct buffer_head *bh;
276 struct buffer_head *head;
277 struct page *page;
278 int all_mapped = 1;
280 index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
281 page = find_get_page(bd_mapping, index);
282 if (!page)
283 goto out;
285 spin_lock(&bd_mapping->private_lock);
286 if (!page_has_buffers(page))
287 goto out_unlock;
288 head = page_buffers(page);
289 bh = head;
290 do {
291 if (bh->b_blocknr == block) {
292 ret = bh;
293 get_bh(bh);
294 goto out_unlock;
296 if (!buffer_mapped(bh))
297 all_mapped = 0;
298 bh = bh->b_this_page;
299 } while (bh != head);
301 /* we might be here because some of the buffers on this page are
302 * not mapped. This is due to various races between
303 * file io on the block device and getblk. It gets dealt with
304 * elsewhere, don't buffer_error if we had some unmapped buffers
306 if (all_mapped) {
307 printk("__find_get_block_slow() failed. "
308 "block=%llu, b_blocknr=%llu\n",
309 (unsigned long long)block,
310 (unsigned long long)bh->b_blocknr);
311 printk("b_state=0x%08lx, b_size=%zu\n",
312 bh->b_state, bh->b_size);
313 printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits);
315 out_unlock:
316 spin_unlock(&bd_mapping->private_lock);
317 page_cache_release(page);
318 out:
319 return ret;
322 /* If invalidate_buffers() will trash dirty buffers, it means some kind
323 of fs corruption is going on. Trashing dirty data always imply losing
324 information that was supposed to be just stored on the physical layer
325 by the user.
327 Thus invalidate_buffers in general usage is not allwowed to trash
328 dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
329 be preserved. These buffers are simply skipped.
331 We also skip buffers which are still in use. For example this can
332 happen if a userspace program is reading the block device.
334 NOTE: In the case where the user removed a removable-media-disk even if
335 there's still dirty data not synced on disk (due a bug in the device driver
336 or due an error of the user), by not destroying the dirty buffers we could
337 generate corruption also on the next media inserted, thus a parameter is
338 necessary to handle this case in the most safe way possible (trying
339 to not corrupt also the new disk inserted with the data belonging to
340 the old now corrupted disk). Also for the ramdisk the natural thing
341 to do in order to release the ramdisk memory is to destroy dirty buffers.
343 These are two special cases. Normal usage imply the device driver
344 to issue a sync on the device (without waiting I/O completion) and
345 then an invalidate_buffers call that doesn't trash dirty buffers.
347 For handling cache coherency with the blkdev pagecache the 'update' case
348 is been introduced. It is needed to re-read from disk any pinned
349 buffer. NOTE: re-reading from disk is destructive so we can do it only
350 when we assume nobody is changing the buffercache under our I/O and when
351 we think the disk contains more recent information than the buffercache.
352 The update == 1 pass marks the buffers we need to update, the update == 2
353 pass does the actual I/O. */
354 void invalidate_bdev(struct block_device *bdev)
356 struct address_space *mapping = bdev->bd_inode->i_mapping;
358 if (mapping->nrpages == 0)
359 return;
361 invalidate_bh_lrus();
362 invalidate_mapping_pages(mapping, 0, -1);
366 * Kick pdflush then try to free up some ZONE_NORMAL memory.
368 static void free_more_memory(void)
370 struct zone *zone;
371 int nid;
373 wakeup_pdflush(1024);
374 yield();
376 for_each_online_node(nid) {
377 (void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
378 gfp_zone(GFP_NOFS), NULL,
379 &zone);
380 if (zone)
381 try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
382 GFP_NOFS);
387 * I/O completion handler for block_read_full_page() - pages
388 * which come unlocked at the end of I/O.
390 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
392 unsigned long flags;
393 struct buffer_head *first;
394 struct buffer_head *tmp;
395 struct page *page;
396 int page_uptodate = 1;
398 BUG_ON(!buffer_async_read(bh));
400 page = bh->b_page;
401 if (uptodate) {
402 set_buffer_uptodate(bh);
403 } else {
404 clear_buffer_uptodate(bh);
405 if (!quiet_error(bh))
406 buffer_io_error(bh);
407 SetPageError(page);
411 * Be _very_ careful from here on. Bad things can happen if
412 * two buffer heads end IO at almost the same time and both
413 * decide that the page is now completely done.
415 first = page_buffers(page);
416 local_irq_save(flags);
417 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
418 clear_buffer_async_read(bh);
419 unlock_buffer(bh);
420 tmp = bh;
421 do {
422 if (!buffer_uptodate(tmp))
423 page_uptodate = 0;
424 if (buffer_async_read(tmp)) {
425 BUG_ON(!buffer_locked(tmp));
426 goto still_busy;
428 tmp = tmp->b_this_page;
429 } while (tmp != bh);
430 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
431 local_irq_restore(flags);
434 * If none of the buffers had errors and they are all
435 * uptodate then we can set the page uptodate.
437 if (page_uptodate && !PageError(page))
438 SetPageUptodate(page);
439 unlock_page(page);
440 return;
442 still_busy:
443 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
444 local_irq_restore(flags);
445 return;
449 * Completion handler for block_write_full_page() - pages which are unlocked
450 * during I/O, and which have PageWriteback cleared upon I/O completion.
452 static void end_buffer_async_write(struct buffer_head *bh, int uptodate)
454 char b[BDEVNAME_SIZE];
455 unsigned long flags;
456 struct buffer_head *first;
457 struct buffer_head *tmp;
458 struct page *page;
460 BUG_ON(!buffer_async_write(bh));
462 page = bh->b_page;
463 if (uptodate) {
464 set_buffer_uptodate(bh);
465 } else {
466 if (!quiet_error(bh)) {
467 buffer_io_error(bh);
468 printk(KERN_WARNING "lost page write due to "
469 "I/O error on %s\n",
470 bdevname(bh->b_bdev, b));
472 set_bit(AS_EIO, &page->mapping->flags);
473 set_buffer_write_io_error(bh);
474 clear_buffer_uptodate(bh);
475 SetPageError(page);
478 first = page_buffers(page);
479 local_irq_save(flags);
480 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
482 clear_buffer_async_write(bh);
483 unlock_buffer(bh);
484 tmp = bh->b_this_page;
485 while (tmp != bh) {
486 if (buffer_async_write(tmp)) {
487 BUG_ON(!buffer_locked(tmp));
488 goto still_busy;
490 tmp = tmp->b_this_page;
492 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
493 local_irq_restore(flags);
494 end_page_writeback(page);
495 return;
497 still_busy:
498 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
499 local_irq_restore(flags);
500 return;
504 * If a page's buffers are under async readin (end_buffer_async_read
505 * completion) then there is a possibility that another thread of
506 * control could lock one of the buffers after it has completed
507 * but while some of the other buffers have not completed. This
508 * locked buffer would confuse end_buffer_async_read() into not unlocking
509 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
510 * that this buffer is not under async I/O.
512 * The page comes unlocked when it has no locked buffer_async buffers
513 * left.
515 * PageLocked prevents anyone starting new async I/O reads any of
516 * the buffers.
518 * PageWriteback is used to prevent simultaneous writeout of the same
519 * page.
521 * PageLocked prevents anyone from starting writeback of a page which is
522 * under read I/O (PageWriteback is only ever set against a locked page).
524 static void mark_buffer_async_read(struct buffer_head *bh)
526 bh->b_end_io = end_buffer_async_read;
527 set_buffer_async_read(bh);
530 void mark_buffer_async_write(struct buffer_head *bh)
532 bh->b_end_io = end_buffer_async_write;
533 set_buffer_async_write(bh);
535 EXPORT_SYMBOL(mark_buffer_async_write);
539 * fs/buffer.c contains helper functions for buffer-backed address space's
540 * fsync functions. A common requirement for buffer-based filesystems is
541 * that certain data from the backing blockdev needs to be written out for
542 * a successful fsync(). For example, ext2 indirect blocks need to be
543 * written back and waited upon before fsync() returns.
545 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
546 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
547 * management of a list of dependent buffers at ->i_mapping->private_list.
549 * Locking is a little subtle: try_to_free_buffers() will remove buffers
550 * from their controlling inode's queue when they are being freed. But
551 * try_to_free_buffers() will be operating against the *blockdev* mapping
552 * at the time, not against the S_ISREG file which depends on those buffers.
553 * So the locking for private_list is via the private_lock in the address_space
554 * which backs the buffers. Which is different from the address_space
555 * against which the buffers are listed. So for a particular address_space,
556 * mapping->private_lock does *not* protect mapping->private_list! In fact,
557 * mapping->private_list will always be protected by the backing blockdev's
558 * ->private_lock.
560 * Which introduces a requirement: all buffers on an address_space's
561 * ->private_list must be from the same address_space: the blockdev's.
563 * address_spaces which do not place buffers at ->private_list via these
564 * utility functions are free to use private_lock and private_list for
565 * whatever they want. The only requirement is that list_empty(private_list)
566 * be true at clear_inode() time.
568 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
569 * filesystems should do that. invalidate_inode_buffers() should just go
570 * BUG_ON(!list_empty).
572 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
573 * take an address_space, not an inode. And it should be called
574 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
575 * queued up.
577 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
578 * list if it is already on a list. Because if the buffer is on a list,
579 * it *must* already be on the right one. If not, the filesystem is being
580 * silly. This will save a ton of locking. But first we have to ensure
581 * that buffers are taken *off* the old inode's list when they are freed
582 * (presumably in truncate). That requires careful auditing of all
583 * filesystems (do it inside bforget()). It could also be done by bringing
584 * b_inode back.
588 * The buffer's backing address_space's private_lock must be held
590 static void __remove_assoc_queue(struct buffer_head *bh)
592 list_del_init(&bh->b_assoc_buffers);
593 WARN_ON(!bh->b_assoc_map);
594 if (buffer_write_io_error(bh))
595 set_bit(AS_EIO, &bh->b_assoc_map->flags);
596 bh->b_assoc_map = NULL;
599 int inode_has_buffers(struct inode *inode)
601 return !list_empty(&inode->i_data.private_list);
605 * osync is designed to support O_SYNC io. It waits synchronously for
606 * all already-submitted IO to complete, but does not queue any new
607 * writes to the disk.
609 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
610 * you dirty the buffers, and then use osync_inode_buffers to wait for
611 * completion. Any other dirty buffers which are not yet queued for
612 * write will not be flushed to disk by the osync.
614 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
616 struct buffer_head *bh;
617 struct list_head *p;
618 int err = 0;
620 spin_lock(lock);
621 repeat:
622 list_for_each_prev(p, list) {
623 bh = BH_ENTRY(p);
624 if (buffer_locked(bh)) {
625 get_bh(bh);
626 spin_unlock(lock);
627 wait_on_buffer(bh);
628 if (!buffer_uptodate(bh))
629 err = -EIO;
630 brelse(bh);
631 spin_lock(lock);
632 goto repeat;
635 spin_unlock(lock);
636 return err;
640 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
641 * @mapping: the mapping which wants those buffers written
643 * Starts I/O against the buffers at mapping->private_list, and waits upon
644 * that I/O.
646 * Basically, this is a convenience function for fsync().
647 * @mapping is a file or directory which needs those buffers to be written for
648 * a successful fsync().
650 int sync_mapping_buffers(struct address_space *mapping)
652 struct address_space *buffer_mapping = mapping->assoc_mapping;
654 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
655 return 0;
657 return fsync_buffers_list(&buffer_mapping->private_lock,
658 &mapping->private_list);
660 EXPORT_SYMBOL(sync_mapping_buffers);
663 * Called when we've recently written block `bblock', and it is known that
664 * `bblock' was for a buffer_boundary() buffer. This means that the block at
665 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
666 * dirty, schedule it for IO. So that indirects merge nicely with their data.
668 void write_boundary_block(struct block_device *bdev,
669 sector_t bblock, unsigned blocksize)
671 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
672 if (bh) {
673 if (buffer_dirty(bh))
674 ll_rw_block(WRITE, 1, &bh);
675 put_bh(bh);
679 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
681 struct address_space *mapping = inode->i_mapping;
682 struct address_space *buffer_mapping = bh->b_page->mapping;
684 mark_buffer_dirty(bh);
685 if (!mapping->assoc_mapping) {
686 mapping->assoc_mapping = buffer_mapping;
687 } else {
688 BUG_ON(mapping->assoc_mapping != buffer_mapping);
690 if (!bh->b_assoc_map) {
691 spin_lock(&buffer_mapping->private_lock);
692 list_move_tail(&bh->b_assoc_buffers,
693 &mapping->private_list);
694 bh->b_assoc_map = mapping;
695 spin_unlock(&buffer_mapping->private_lock);
698 EXPORT_SYMBOL(mark_buffer_dirty_inode);
701 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
702 * dirty.
704 * If warn is true, then emit a warning if the page is not uptodate and has
705 * not been truncated.
707 static int __set_page_dirty(struct page *page,
708 struct address_space *mapping, int warn)
710 if (unlikely(!mapping))
711 return !TestSetPageDirty(page);
713 if (TestSetPageDirty(page))
714 return 0;
716 spin_lock_irq(&mapping->tree_lock);
717 if (page->mapping) { /* Race with truncate? */
718 WARN_ON_ONCE(warn && !PageUptodate(page));
720 if (mapping_cap_account_dirty(mapping)) {
721 __inc_zone_page_state(page, NR_FILE_DIRTY);
722 __inc_bdi_stat(mapping->backing_dev_info,
723 BDI_RECLAIMABLE);
724 task_io_account_write(PAGE_CACHE_SIZE);
726 radix_tree_tag_set(&mapping->page_tree,
727 page_index(page), PAGECACHE_TAG_DIRTY);
729 spin_unlock_irq(&mapping->tree_lock);
730 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
732 return 1;
736 * Add a page to the dirty page list.
738 * It is a sad fact of life that this function is called from several places
739 * deeply under spinlocking. It may not sleep.
741 * If the page has buffers, the uptodate buffers are set dirty, to preserve
742 * dirty-state coherency between the page and the buffers. It the page does
743 * not have buffers then when they are later attached they will all be set
744 * dirty.
746 * The buffers are dirtied before the page is dirtied. There's a small race
747 * window in which a writepage caller may see the page cleanness but not the
748 * buffer dirtiness. That's fine. If this code were to set the page dirty
749 * before the buffers, a concurrent writepage caller could clear the page dirty
750 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
751 * page on the dirty page list.
753 * We use private_lock to lock against try_to_free_buffers while using the
754 * page's buffer list. Also use this to protect against clean buffers being
755 * added to the page after it was set dirty.
757 * FIXME: may need to call ->reservepage here as well. That's rather up to the
758 * address_space though.
760 int __set_page_dirty_buffers(struct page *page)
762 struct address_space *mapping = page_mapping(page);
764 if (unlikely(!mapping))
765 return !TestSetPageDirty(page);
767 spin_lock(&mapping->private_lock);
768 if (page_has_buffers(page)) {
769 struct buffer_head *head = page_buffers(page);
770 struct buffer_head *bh = head;
772 do {
773 set_buffer_dirty(bh);
774 bh = bh->b_this_page;
775 } while (bh != head);
777 spin_unlock(&mapping->private_lock);
779 return __set_page_dirty(page, mapping, 1);
781 EXPORT_SYMBOL(__set_page_dirty_buffers);
784 * Write out and wait upon a list of buffers.
786 * We have conflicting pressures: we want to make sure that all
787 * initially dirty buffers get waited on, but that any subsequently
788 * dirtied buffers don't. After all, we don't want fsync to last
789 * forever if somebody is actively writing to the file.
791 * Do this in two main stages: first we copy dirty buffers to a
792 * temporary inode list, queueing the writes as we go. Then we clean
793 * up, waiting for those writes to complete.
795 * During this second stage, any subsequent updates to the file may end
796 * up refiling the buffer on the original inode's dirty list again, so
797 * there is a chance we will end up with a buffer queued for write but
798 * not yet completed on that list. So, as a final cleanup we go through
799 * the osync code to catch these locked, dirty buffers without requeuing
800 * any newly dirty buffers for write.
802 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
804 struct buffer_head *bh;
805 struct list_head tmp;
806 struct address_space *mapping;
807 int err = 0, err2;
809 INIT_LIST_HEAD(&tmp);
811 spin_lock(lock);
812 while (!list_empty(list)) {
813 bh = BH_ENTRY(list->next);
814 mapping = bh->b_assoc_map;
815 __remove_assoc_queue(bh);
816 /* Avoid race with mark_buffer_dirty_inode() which does
817 * a lockless check and we rely on seeing the dirty bit */
818 smp_mb();
819 if (buffer_dirty(bh) || buffer_locked(bh)) {
820 list_add(&bh->b_assoc_buffers, &tmp);
821 bh->b_assoc_map = mapping;
822 if (buffer_dirty(bh)) {
823 get_bh(bh);
824 spin_unlock(lock);
826 * Ensure any pending I/O completes so that
827 * ll_rw_block() actually writes the current
828 * contents - it is a noop if I/O is still in
829 * flight on potentially older contents.
831 ll_rw_block(SWRITE_SYNC, 1, &bh);
832 brelse(bh);
833 spin_lock(lock);
838 while (!list_empty(&tmp)) {
839 bh = BH_ENTRY(tmp.prev);
840 get_bh(bh);
841 mapping = bh->b_assoc_map;
842 __remove_assoc_queue(bh);
843 /* Avoid race with mark_buffer_dirty_inode() which does
844 * a lockless check and we rely on seeing the dirty bit */
845 smp_mb();
846 if (buffer_dirty(bh)) {
847 list_add(&bh->b_assoc_buffers,
848 &mapping->private_list);
849 bh->b_assoc_map = mapping;
851 spin_unlock(lock);
852 wait_on_buffer(bh);
853 if (!buffer_uptodate(bh))
854 err = -EIO;
855 brelse(bh);
856 spin_lock(lock);
859 spin_unlock(lock);
860 err2 = osync_buffers_list(lock, list);
861 if (err)
862 return err;
863 else
864 return err2;
868 * Invalidate any and all dirty buffers on a given inode. We are
869 * probably unmounting the fs, but that doesn't mean we have already
870 * done a sync(). Just drop the buffers from the inode list.
872 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
873 * assumes that all the buffers are against the blockdev. Not true
874 * for reiserfs.
876 void invalidate_inode_buffers(struct inode *inode)
878 if (inode_has_buffers(inode)) {
879 struct address_space *mapping = &inode->i_data;
880 struct list_head *list = &mapping->private_list;
881 struct address_space *buffer_mapping = mapping->assoc_mapping;
883 spin_lock(&buffer_mapping->private_lock);
884 while (!list_empty(list))
885 __remove_assoc_queue(BH_ENTRY(list->next));
886 spin_unlock(&buffer_mapping->private_lock);
889 EXPORT_SYMBOL(invalidate_inode_buffers);
892 * Remove any clean buffers from the inode's buffer list. This is called
893 * when we're trying to free the inode itself. Those buffers can pin it.
895 * Returns true if all buffers were removed.
897 int remove_inode_buffers(struct inode *inode)
899 int ret = 1;
901 if (inode_has_buffers(inode)) {
902 struct address_space *mapping = &inode->i_data;
903 struct list_head *list = &mapping->private_list;
904 struct address_space *buffer_mapping = mapping->assoc_mapping;
906 spin_lock(&buffer_mapping->private_lock);
907 while (!list_empty(list)) {
908 struct buffer_head *bh = BH_ENTRY(list->next);
909 if (buffer_dirty(bh)) {
910 ret = 0;
911 break;
913 __remove_assoc_queue(bh);
915 spin_unlock(&buffer_mapping->private_lock);
917 return ret;
921 * Create the appropriate buffers when given a page for data area and
922 * the size of each buffer.. Use the bh->b_this_page linked list to
923 * follow the buffers created. Return NULL if unable to create more
924 * buffers.
926 * The retry flag is used to differentiate async IO (paging, swapping)
927 * which may not fail from ordinary buffer allocations.
929 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
930 int retry)
932 struct buffer_head *bh, *head;
933 long offset;
935 try_again:
936 head = NULL;
937 offset = PAGE_SIZE;
938 while ((offset -= size) >= 0) {
939 bh = alloc_buffer_head(GFP_NOFS);
940 if (!bh)
941 goto no_grow;
943 bh->b_bdev = NULL;
944 bh->b_this_page = head;
945 bh->b_blocknr = -1;
946 head = bh;
948 bh->b_state = 0;
949 atomic_set(&bh->b_count, 0);
950 bh->b_private = NULL;
951 bh->b_size = size;
953 /* Link the buffer to its page */
954 set_bh_page(bh, page, offset);
956 init_buffer(bh, NULL, NULL);
958 return head;
960 * In case anything failed, we just free everything we got.
962 no_grow:
963 if (head) {
964 do {
965 bh = head;
966 head = head->b_this_page;
967 free_buffer_head(bh);
968 } while (head);
972 * Return failure for non-async IO requests. Async IO requests
973 * are not allowed to fail, so we have to wait until buffer heads
974 * become available. But we don't want tasks sleeping with
975 * partially complete buffers, so all were released above.
977 if (!retry)
978 return NULL;
980 /* We're _really_ low on memory. Now we just
981 * wait for old buffer heads to become free due to
982 * finishing IO. Since this is an async request and
983 * the reserve list is empty, we're sure there are
984 * async buffer heads in use.
986 free_more_memory();
987 goto try_again;
989 EXPORT_SYMBOL_GPL(alloc_page_buffers);
991 static inline void
992 link_dev_buffers(struct page *page, struct buffer_head *head)
994 struct buffer_head *bh, *tail;
996 bh = head;
997 do {
998 tail = bh;
999 bh = bh->b_this_page;
1000 } while (bh);
1001 tail->b_this_page = head;
1002 attach_page_buffers(page, head);
1006 * Initialise the state of a blockdev page's buffers.
1008 static void
1009 init_page_buffers(struct page *page, struct block_device *bdev,
1010 sector_t block, int size)
1012 struct buffer_head *head = page_buffers(page);
1013 struct buffer_head *bh = head;
1014 int uptodate = PageUptodate(page);
1016 do {
1017 if (!buffer_mapped(bh)) {
1018 init_buffer(bh, NULL, NULL);
1019 bh->b_bdev = bdev;
1020 bh->b_blocknr = block;
1021 if (uptodate)
1022 set_buffer_uptodate(bh);
1023 set_buffer_mapped(bh);
1025 block++;
1026 bh = bh->b_this_page;
1027 } while (bh != head);
1031 * Create the page-cache page that contains the requested block.
1033 * This is user purely for blockdev mappings.
1035 static struct page *
1036 grow_dev_page(struct block_device *bdev, sector_t block,
1037 pgoff_t index, int size)
1039 struct inode *inode = bdev->bd_inode;
1040 struct page *page;
1041 struct buffer_head *bh;
1043 page = find_or_create_page(inode->i_mapping, index,
1044 (mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE);
1045 if (!page)
1046 return NULL;
1048 BUG_ON(!PageLocked(page));
1050 if (page_has_buffers(page)) {
1051 bh = page_buffers(page);
1052 if (bh->b_size == size) {
1053 init_page_buffers(page, bdev, block, size);
1054 return page;
1056 if (!try_to_free_buffers(page))
1057 goto failed;
1061 * Allocate some buffers for this page
1063 bh = alloc_page_buffers(page, size, 0);
1064 if (!bh)
1065 goto failed;
1068 * Link the page to the buffers and initialise them. Take the
1069 * lock to be atomic wrt __find_get_block(), which does not
1070 * run under the page lock.
1072 spin_lock(&inode->i_mapping->private_lock);
1073 link_dev_buffers(page, bh);
1074 init_page_buffers(page, bdev, block, size);
1075 spin_unlock(&inode->i_mapping->private_lock);
1076 return page;
1078 failed:
1079 BUG();
1080 unlock_page(page);
1081 page_cache_release(page);
1082 return NULL;
1086 * Create buffers for the specified block device block's page. If
1087 * that page was dirty, the buffers are set dirty also.
1089 static int
1090 grow_buffers(struct block_device *bdev, sector_t block, int size)
1092 struct page *page;
1093 pgoff_t index;
1094 int sizebits;
1096 sizebits = -1;
1097 do {
1098 sizebits++;
1099 } while ((size << sizebits) < PAGE_SIZE);
1101 index = block >> sizebits;
1104 * Check for a block which wants to lie outside our maximum possible
1105 * pagecache index. (this comparison is done using sector_t types).
1107 if (unlikely(index != block >> sizebits)) {
1108 char b[BDEVNAME_SIZE];
1110 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1111 "device %s\n",
1112 __func__, (unsigned long long)block,
1113 bdevname(bdev, b));
1114 return -EIO;
1116 block = index << sizebits;
1117 /* Create a page with the proper size buffers.. */
1118 page = grow_dev_page(bdev, block, index, size);
1119 if (!page)
1120 return 0;
1121 unlock_page(page);
1122 page_cache_release(page);
1123 return 1;
1126 static struct buffer_head *
1127 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1129 /* Size must be multiple of hard sectorsize */
1130 if (unlikely(size & (bdev_hardsect_size(bdev)-1) ||
1131 (size < 512 || size > PAGE_SIZE))) {
1132 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1133 size);
1134 printk(KERN_ERR "hardsect size: %d\n",
1135 bdev_hardsect_size(bdev));
1137 dump_stack();
1138 return NULL;
1141 for (;;) {
1142 struct buffer_head * bh;
1143 int ret;
1145 bh = __find_get_block(bdev, block, size);
1146 if (bh)
1147 return bh;
1149 ret = grow_buffers(bdev, block, size);
1150 if (ret < 0)
1151 return NULL;
1152 if (ret == 0)
1153 free_more_memory();
1158 * The relationship between dirty buffers and dirty pages:
1160 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1161 * the page is tagged dirty in its radix tree.
1163 * At all times, the dirtiness of the buffers represents the dirtiness of
1164 * subsections of the page. If the page has buffers, the page dirty bit is
1165 * merely a hint about the true dirty state.
1167 * When a page is set dirty in its entirety, all its buffers are marked dirty
1168 * (if the page has buffers).
1170 * When a buffer is marked dirty, its page is dirtied, but the page's other
1171 * buffers are not.
1173 * Also. When blockdev buffers are explicitly read with bread(), they
1174 * individually become uptodate. But their backing page remains not
1175 * uptodate - even if all of its buffers are uptodate. A subsequent
1176 * block_read_full_page() against that page will discover all the uptodate
1177 * buffers, will set the page uptodate and will perform no I/O.
1181 * mark_buffer_dirty - mark a buffer_head as needing writeout
1182 * @bh: the buffer_head to mark dirty
1184 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1185 * backing page dirty, then tag the page as dirty in its address_space's radix
1186 * tree and then attach the address_space's inode to its superblock's dirty
1187 * inode list.
1189 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1190 * mapping->tree_lock and the global inode_lock.
1192 void mark_buffer_dirty(struct buffer_head *bh)
1194 WARN_ON_ONCE(!buffer_uptodate(bh));
1197 * Very *carefully* optimize the it-is-already-dirty case.
1199 * Don't let the final "is it dirty" escape to before we
1200 * perhaps modified the buffer.
1202 if (buffer_dirty(bh)) {
1203 smp_mb();
1204 if (buffer_dirty(bh))
1205 return;
1208 if (!test_set_buffer_dirty(bh))
1209 __set_page_dirty(bh->b_page, page_mapping(bh->b_page), 0);
1213 * Decrement a buffer_head's reference count. If all buffers against a page
1214 * have zero reference count, are clean and unlocked, and if the page is clean
1215 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1216 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1217 * a page but it ends up not being freed, and buffers may later be reattached).
1219 void __brelse(struct buffer_head * buf)
1221 if (atomic_read(&buf->b_count)) {
1222 put_bh(buf);
1223 return;
1225 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1229 * bforget() is like brelse(), except it discards any
1230 * potentially dirty data.
1232 void __bforget(struct buffer_head *bh)
1234 clear_buffer_dirty(bh);
1235 if (bh->b_assoc_map) {
1236 struct address_space *buffer_mapping = bh->b_page->mapping;
1238 spin_lock(&buffer_mapping->private_lock);
1239 list_del_init(&bh->b_assoc_buffers);
1240 bh->b_assoc_map = NULL;
1241 spin_unlock(&buffer_mapping->private_lock);
1243 __brelse(bh);
1246 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1248 lock_buffer(bh);
1249 if (buffer_uptodate(bh)) {
1250 unlock_buffer(bh);
1251 return bh;
1252 } else {
1253 get_bh(bh);
1254 bh->b_end_io = end_buffer_read_sync;
1255 submit_bh(READ, bh);
1256 wait_on_buffer(bh);
1257 if (buffer_uptodate(bh))
1258 return bh;
1260 brelse(bh);
1261 return NULL;
1265 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1266 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1267 * refcount elevated by one when they're in an LRU. A buffer can only appear
1268 * once in a particular CPU's LRU. A single buffer can be present in multiple
1269 * CPU's LRUs at the same time.
1271 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1272 * sb_find_get_block().
1274 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1275 * a local interrupt disable for that.
1278 #define BH_LRU_SIZE 8
1280 struct bh_lru {
1281 struct buffer_head *bhs[BH_LRU_SIZE];
1284 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1286 #ifdef CONFIG_SMP
1287 #define bh_lru_lock() local_irq_disable()
1288 #define bh_lru_unlock() local_irq_enable()
1289 #else
1290 #define bh_lru_lock() preempt_disable()
1291 #define bh_lru_unlock() preempt_enable()
1292 #endif
1294 static inline void check_irqs_on(void)
1296 #ifdef irqs_disabled
1297 BUG_ON(irqs_disabled());
1298 #endif
1302 * The LRU management algorithm is dopey-but-simple. Sorry.
1304 static void bh_lru_install(struct buffer_head *bh)
1306 struct buffer_head *evictee = NULL;
1307 struct bh_lru *lru;
1309 check_irqs_on();
1310 bh_lru_lock();
1311 lru = &__get_cpu_var(bh_lrus);
1312 if (lru->bhs[0] != bh) {
1313 struct buffer_head *bhs[BH_LRU_SIZE];
1314 int in;
1315 int out = 0;
1317 get_bh(bh);
1318 bhs[out++] = bh;
1319 for (in = 0; in < BH_LRU_SIZE; in++) {
1320 struct buffer_head *bh2 = lru->bhs[in];
1322 if (bh2 == bh) {
1323 __brelse(bh2);
1324 } else {
1325 if (out >= BH_LRU_SIZE) {
1326 BUG_ON(evictee != NULL);
1327 evictee = bh2;
1328 } else {
1329 bhs[out++] = bh2;
1333 while (out < BH_LRU_SIZE)
1334 bhs[out++] = NULL;
1335 memcpy(lru->bhs, bhs, sizeof(bhs));
1337 bh_lru_unlock();
1339 if (evictee)
1340 __brelse(evictee);
1344 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1346 static struct buffer_head *
1347 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1349 struct buffer_head *ret = NULL;
1350 struct bh_lru *lru;
1351 unsigned int i;
1353 check_irqs_on();
1354 bh_lru_lock();
1355 lru = &__get_cpu_var(bh_lrus);
1356 for (i = 0; i < BH_LRU_SIZE; i++) {
1357 struct buffer_head *bh = lru->bhs[i];
1359 if (bh && bh->b_bdev == bdev &&
1360 bh->b_blocknr == block && bh->b_size == size) {
1361 if (i) {
1362 while (i) {
1363 lru->bhs[i] = lru->bhs[i - 1];
1364 i--;
1366 lru->bhs[0] = bh;
1368 get_bh(bh);
1369 ret = bh;
1370 break;
1373 bh_lru_unlock();
1374 return ret;
1378 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1379 * it in the LRU and mark it as accessed. If it is not present then return
1380 * NULL
1382 struct buffer_head *
1383 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1385 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1387 if (bh == NULL) {
1388 bh = __find_get_block_slow(bdev, block);
1389 if (bh)
1390 bh_lru_install(bh);
1392 if (bh)
1393 touch_buffer(bh);
1394 return bh;
1396 EXPORT_SYMBOL(__find_get_block);
1399 * __getblk will locate (and, if necessary, create) the buffer_head
1400 * which corresponds to the passed block_device, block and size. The
1401 * returned buffer has its reference count incremented.
1403 * __getblk() cannot fail - it just keeps trying. If you pass it an
1404 * illegal block number, __getblk() will happily return a buffer_head
1405 * which represents the non-existent block. Very weird.
1407 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1408 * attempt is failing. FIXME, perhaps?
1410 struct buffer_head *
1411 __getblk(struct block_device *bdev, sector_t block, unsigned size)
1413 struct buffer_head *bh = __find_get_block(bdev, block, size);
1415 might_sleep();
1416 if (bh == NULL)
1417 bh = __getblk_slow(bdev, block, size);
1418 return bh;
1420 EXPORT_SYMBOL(__getblk);
1423 * Do async read-ahead on a buffer..
1425 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1427 struct buffer_head *bh = __getblk(bdev, block, size);
1428 if (likely(bh)) {
1429 ll_rw_block(READA, 1, &bh);
1430 brelse(bh);
1433 EXPORT_SYMBOL(__breadahead);
1436 * __bread() - reads a specified block and returns the bh
1437 * @bdev: the block_device to read from
1438 * @block: number of block
1439 * @size: size (in bytes) to read
1441 * Reads a specified block, and returns buffer head that contains it.
1442 * It returns NULL if the block was unreadable.
1444 struct buffer_head *
1445 __bread(struct block_device *bdev, sector_t block, unsigned size)
1447 struct buffer_head *bh = __getblk(bdev, block, size);
1449 if (likely(bh) && !buffer_uptodate(bh))
1450 bh = __bread_slow(bh);
1451 return bh;
1453 EXPORT_SYMBOL(__bread);
1456 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1457 * This doesn't race because it runs in each cpu either in irq
1458 * or with preempt disabled.
1460 static void invalidate_bh_lru(void *arg)
1462 struct bh_lru *b = &get_cpu_var(bh_lrus);
1463 int i;
1465 for (i = 0; i < BH_LRU_SIZE; i++) {
1466 brelse(b->bhs[i]);
1467 b->bhs[i] = NULL;
1469 put_cpu_var(bh_lrus);
1472 void invalidate_bh_lrus(void)
1474 on_each_cpu(invalidate_bh_lru, NULL, 1);
1476 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1478 void set_bh_page(struct buffer_head *bh,
1479 struct page *page, unsigned long offset)
1481 bh->b_page = page;
1482 BUG_ON(offset >= PAGE_SIZE);
1483 if (PageHighMem(page))
1485 * This catches illegal uses and preserves the offset:
1487 bh->b_data = (char *)(0 + offset);
1488 else
1489 bh->b_data = page_address(page) + offset;
1491 EXPORT_SYMBOL(set_bh_page);
1494 * Called when truncating a buffer on a page completely.
1496 static void discard_buffer(struct buffer_head * bh)
1498 lock_buffer(bh);
1499 clear_buffer_dirty(bh);
1500 bh->b_bdev = NULL;
1501 clear_buffer_mapped(bh);
1502 clear_buffer_req(bh);
1503 clear_buffer_new(bh);
1504 clear_buffer_delay(bh);
1505 clear_buffer_unwritten(bh);
1506 unlock_buffer(bh);
1510 * block_invalidatepage - invalidate part of all of a buffer-backed page
1512 * @page: the page which is affected
1513 * @offset: the index of the truncation point
1515 * block_invalidatepage() is called when all or part of the page has become
1516 * invalidatedby a truncate operation.
1518 * block_invalidatepage() does not have to release all buffers, but it must
1519 * ensure that no dirty buffer is left outside @offset and that no I/O
1520 * is underway against any of the blocks which are outside the truncation
1521 * point. Because the caller is about to free (and possibly reuse) those
1522 * blocks on-disk.
1524 void block_invalidatepage(struct page *page, unsigned long offset)
1526 struct buffer_head *head, *bh, *next;
1527 unsigned int curr_off = 0;
1529 BUG_ON(!PageLocked(page));
1530 if (!page_has_buffers(page))
1531 goto out;
1533 head = page_buffers(page);
1534 bh = head;
1535 do {
1536 unsigned int next_off = curr_off + bh->b_size;
1537 next = bh->b_this_page;
1540 * is this block fully invalidated?
1542 if (offset <= curr_off)
1543 discard_buffer(bh);
1544 curr_off = next_off;
1545 bh = next;
1546 } while (bh != head);
1549 * We release buffers only if the entire page is being invalidated.
1550 * The get_block cached value has been unconditionally invalidated,
1551 * so real IO is not possible anymore.
1553 if (offset == 0)
1554 try_to_release_page(page, 0);
1555 out:
1556 return;
1558 EXPORT_SYMBOL(block_invalidatepage);
1561 * We attach and possibly dirty the buffers atomically wrt
1562 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1563 * is already excluded via the page lock.
1565 void create_empty_buffers(struct page *page,
1566 unsigned long blocksize, unsigned long b_state)
1568 struct buffer_head *bh, *head, *tail;
1570 head = alloc_page_buffers(page, blocksize, 1);
1571 bh = head;
1572 do {
1573 bh->b_state |= b_state;
1574 tail = bh;
1575 bh = bh->b_this_page;
1576 } while (bh);
1577 tail->b_this_page = head;
1579 spin_lock(&page->mapping->private_lock);
1580 if (PageUptodate(page) || PageDirty(page)) {
1581 bh = head;
1582 do {
1583 if (PageDirty(page))
1584 set_buffer_dirty(bh);
1585 if (PageUptodate(page))
1586 set_buffer_uptodate(bh);
1587 bh = bh->b_this_page;
1588 } while (bh != head);
1590 attach_page_buffers(page, head);
1591 spin_unlock(&page->mapping->private_lock);
1593 EXPORT_SYMBOL(create_empty_buffers);
1596 * We are taking a block for data and we don't want any output from any
1597 * buffer-cache aliases starting from return from that function and
1598 * until the moment when something will explicitly mark the buffer
1599 * dirty (hopefully that will not happen until we will free that block ;-)
1600 * We don't even need to mark it not-uptodate - nobody can expect
1601 * anything from a newly allocated buffer anyway. We used to used
1602 * unmap_buffer() for such invalidation, but that was wrong. We definitely
1603 * don't want to mark the alias unmapped, for example - it would confuse
1604 * anyone who might pick it with bread() afterwards...
1606 * Also.. Note that bforget() doesn't lock the buffer. So there can
1607 * be writeout I/O going on against recently-freed buffers. We don't
1608 * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1609 * only if we really need to. That happens here.
1611 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1613 struct buffer_head *old_bh;
1615 might_sleep();
1617 old_bh = __find_get_block_slow(bdev, block);
1618 if (old_bh) {
1619 clear_buffer_dirty(old_bh);
1620 wait_on_buffer(old_bh);
1621 clear_buffer_req(old_bh);
1622 __brelse(old_bh);
1625 EXPORT_SYMBOL(unmap_underlying_metadata);
1628 * NOTE! All mapped/uptodate combinations are valid:
1630 * Mapped Uptodate Meaning
1632 * No No "unknown" - must do get_block()
1633 * No Yes "hole" - zero-filled
1634 * Yes No "allocated" - allocated on disk, not read in
1635 * Yes Yes "valid" - allocated and up-to-date in memory.
1637 * "Dirty" is valid only with the last case (mapped+uptodate).
1641 * While block_write_full_page is writing back the dirty buffers under
1642 * the page lock, whoever dirtied the buffers may decide to clean them
1643 * again at any time. We handle that by only looking at the buffer
1644 * state inside lock_buffer().
1646 * If block_write_full_page() is called for regular writeback
1647 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1648 * locked buffer. This only can happen if someone has written the buffer
1649 * directly, with submit_bh(). At the address_space level PageWriteback
1650 * prevents this contention from occurring.
1652 static int __block_write_full_page(struct inode *inode, struct page *page,
1653 get_block_t *get_block, struct writeback_control *wbc)
1655 int err;
1656 sector_t block;
1657 sector_t last_block;
1658 struct buffer_head *bh, *head;
1659 const unsigned blocksize = 1 << inode->i_blkbits;
1660 int nr_underway = 0;
1662 BUG_ON(!PageLocked(page));
1664 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1666 if (!page_has_buffers(page)) {
1667 create_empty_buffers(page, blocksize,
1668 (1 << BH_Dirty)|(1 << BH_Uptodate));
1672 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1673 * here, and the (potentially unmapped) buffers may become dirty at
1674 * any time. If a buffer becomes dirty here after we've inspected it
1675 * then we just miss that fact, and the page stays dirty.
1677 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1678 * handle that here by just cleaning them.
1681 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1682 head = page_buffers(page);
1683 bh = head;
1686 * Get all the dirty buffers mapped to disk addresses and
1687 * handle any aliases from the underlying blockdev's mapping.
1689 do {
1690 if (block > last_block) {
1692 * mapped buffers outside i_size will occur, because
1693 * this page can be outside i_size when there is a
1694 * truncate in progress.
1697 * The buffer was zeroed by block_write_full_page()
1699 clear_buffer_dirty(bh);
1700 set_buffer_uptodate(bh);
1701 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1702 buffer_dirty(bh)) {
1703 WARN_ON(bh->b_size != blocksize);
1704 err = get_block(inode, block, bh, 1);
1705 if (err)
1706 goto recover;
1707 clear_buffer_delay(bh);
1708 if (buffer_new(bh)) {
1709 /* blockdev mappings never come here */
1710 clear_buffer_new(bh);
1711 unmap_underlying_metadata(bh->b_bdev,
1712 bh->b_blocknr);
1715 bh = bh->b_this_page;
1716 block++;
1717 } while (bh != head);
1719 do {
1720 if (!buffer_mapped(bh))
1721 continue;
1723 * If it's a fully non-blocking write attempt and we cannot
1724 * lock the buffer then redirty the page. Note that this can
1725 * potentially cause a busy-wait loop from pdflush and kswapd
1726 * activity, but those code paths have their own higher-level
1727 * throttling.
1729 if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
1730 lock_buffer(bh);
1731 } else if (!trylock_buffer(bh)) {
1732 redirty_page_for_writepage(wbc, page);
1733 continue;
1735 if (test_clear_buffer_dirty(bh)) {
1736 mark_buffer_async_write(bh);
1737 } else {
1738 unlock_buffer(bh);
1740 } while ((bh = bh->b_this_page) != head);
1743 * The page and its buffers are protected by PageWriteback(), so we can
1744 * drop the bh refcounts early.
1746 BUG_ON(PageWriteback(page));
1747 set_page_writeback(page);
1749 do {
1750 struct buffer_head *next = bh->b_this_page;
1751 if (buffer_async_write(bh)) {
1752 submit_bh(WRITE, bh);
1753 nr_underway++;
1755 bh = next;
1756 } while (bh != head);
1757 unlock_page(page);
1759 err = 0;
1760 done:
1761 if (nr_underway == 0) {
1763 * The page was marked dirty, but the buffers were
1764 * clean. Someone wrote them back by hand with
1765 * ll_rw_block/submit_bh. A rare case.
1767 end_page_writeback(page);
1770 * The page and buffer_heads can be released at any time from
1771 * here on.
1774 return err;
1776 recover:
1778 * ENOSPC, or some other error. We may already have added some
1779 * blocks to the file, so we need to write these out to avoid
1780 * exposing stale data.
1781 * The page is currently locked and not marked for writeback
1783 bh = head;
1784 /* Recovery: lock and submit the mapped buffers */
1785 do {
1786 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1787 !buffer_delay(bh)) {
1788 lock_buffer(bh);
1789 mark_buffer_async_write(bh);
1790 } else {
1792 * The buffer may have been set dirty during
1793 * attachment to a dirty page.
1795 clear_buffer_dirty(bh);
1797 } while ((bh = bh->b_this_page) != head);
1798 SetPageError(page);
1799 BUG_ON(PageWriteback(page));
1800 mapping_set_error(page->mapping, err);
1801 set_page_writeback(page);
1802 do {
1803 struct buffer_head *next = bh->b_this_page;
1804 if (buffer_async_write(bh)) {
1805 clear_buffer_dirty(bh);
1806 submit_bh(WRITE, bh);
1807 nr_underway++;
1809 bh = next;
1810 } while (bh != head);
1811 unlock_page(page);
1812 goto done;
1816 * If a page has any new buffers, zero them out here, and mark them uptodate
1817 * and dirty so they'll be written out (in order to prevent uninitialised
1818 * block data from leaking). And clear the new bit.
1820 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1822 unsigned int block_start, block_end;
1823 struct buffer_head *head, *bh;
1825 BUG_ON(!PageLocked(page));
1826 if (!page_has_buffers(page))
1827 return;
1829 bh = head = page_buffers(page);
1830 block_start = 0;
1831 do {
1832 block_end = block_start + bh->b_size;
1834 if (buffer_new(bh)) {
1835 if (block_end > from && block_start < to) {
1836 if (!PageUptodate(page)) {
1837 unsigned start, size;
1839 start = max(from, block_start);
1840 size = min(to, block_end) - start;
1842 zero_user(page, start, size);
1843 set_buffer_uptodate(bh);
1846 clear_buffer_new(bh);
1847 mark_buffer_dirty(bh);
1851 block_start = block_end;
1852 bh = bh->b_this_page;
1853 } while (bh != head);
1855 EXPORT_SYMBOL(page_zero_new_buffers);
1857 static int __block_prepare_write(struct inode *inode, struct page *page,
1858 unsigned from, unsigned to, get_block_t *get_block)
1860 unsigned block_start, block_end;
1861 sector_t block;
1862 int err = 0;
1863 unsigned blocksize, bbits;
1864 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1866 BUG_ON(!PageLocked(page));
1867 BUG_ON(from > PAGE_CACHE_SIZE);
1868 BUG_ON(to > PAGE_CACHE_SIZE);
1869 BUG_ON(from > to);
1871 blocksize = 1 << inode->i_blkbits;
1872 if (!page_has_buffers(page))
1873 create_empty_buffers(page, blocksize, 0);
1874 head = page_buffers(page);
1876 bbits = inode->i_blkbits;
1877 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1879 for(bh = head, block_start = 0; bh != head || !block_start;
1880 block++, block_start=block_end, bh = bh->b_this_page) {
1881 block_end = block_start + blocksize;
1882 if (block_end <= from || block_start >= to) {
1883 if (PageUptodate(page)) {
1884 if (!buffer_uptodate(bh))
1885 set_buffer_uptodate(bh);
1887 continue;
1889 if (buffer_new(bh))
1890 clear_buffer_new(bh);
1891 if (!buffer_mapped(bh)) {
1892 WARN_ON(bh->b_size != blocksize);
1893 err = get_block(inode, block, bh, 1);
1894 if (err)
1895 break;
1896 if (buffer_new(bh)) {
1897 unmap_underlying_metadata(bh->b_bdev,
1898 bh->b_blocknr);
1899 if (PageUptodate(page)) {
1900 clear_buffer_new(bh);
1901 set_buffer_uptodate(bh);
1902 mark_buffer_dirty(bh);
1903 continue;
1905 if (block_end > to || block_start < from)
1906 zero_user_segments(page,
1907 to, block_end,
1908 block_start, from);
1909 continue;
1912 if (PageUptodate(page)) {
1913 if (!buffer_uptodate(bh))
1914 set_buffer_uptodate(bh);
1915 continue;
1917 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1918 !buffer_unwritten(bh) &&
1919 (block_start < from || block_end > to)) {
1920 ll_rw_block(READ, 1, &bh);
1921 *wait_bh++=bh;
1925 * If we issued read requests - let them complete.
1927 while(wait_bh > wait) {
1928 wait_on_buffer(*--wait_bh);
1929 if (!buffer_uptodate(*wait_bh))
1930 err = -EIO;
1932 if (unlikely(err))
1933 page_zero_new_buffers(page, from, to);
1934 return err;
1937 static int __block_commit_write(struct inode *inode, struct page *page,
1938 unsigned from, unsigned to)
1940 unsigned block_start, block_end;
1941 int partial = 0;
1942 unsigned blocksize;
1943 struct buffer_head *bh, *head;
1945 blocksize = 1 << inode->i_blkbits;
1947 for(bh = head = page_buffers(page), block_start = 0;
1948 bh != head || !block_start;
1949 block_start=block_end, bh = bh->b_this_page) {
1950 block_end = block_start + blocksize;
1951 if (block_end <= from || block_start >= to) {
1952 if (!buffer_uptodate(bh))
1953 partial = 1;
1954 } else {
1955 set_buffer_uptodate(bh);
1956 mark_buffer_dirty(bh);
1958 clear_buffer_new(bh);
1962 * If this is a partial write which happened to make all buffers
1963 * uptodate then we can optimize away a bogus readpage() for
1964 * the next read(). Here we 'discover' whether the page went
1965 * uptodate as a result of this (potentially partial) write.
1967 if (!partial)
1968 SetPageUptodate(page);
1969 return 0;
1973 * block_write_begin takes care of the basic task of block allocation and
1974 * bringing partial write blocks uptodate first.
1976 * If *pagep is not NULL, then block_write_begin uses the locked page
1977 * at *pagep rather than allocating its own. In this case, the page will
1978 * not be unlocked or deallocated on failure.
1980 int block_write_begin(struct file *file, struct address_space *mapping,
1981 loff_t pos, unsigned len, unsigned flags,
1982 struct page **pagep, void **fsdata,
1983 get_block_t *get_block)
1985 struct inode *inode = mapping->host;
1986 int status = 0;
1987 struct page *page;
1988 pgoff_t index;
1989 unsigned start, end;
1990 int ownpage = 0;
1992 index = pos >> PAGE_CACHE_SHIFT;
1993 start = pos & (PAGE_CACHE_SIZE - 1);
1994 end = start + len;
1996 page = *pagep;
1997 if (page == NULL) {
1998 ownpage = 1;
1999 page = __grab_cache_page(mapping, index);
2000 if (!page) {
2001 status = -ENOMEM;
2002 goto out;
2004 *pagep = page;
2005 } else
2006 BUG_ON(!PageLocked(page));
2008 status = __block_prepare_write(inode, page, start, end, get_block);
2009 if (unlikely(status)) {
2010 ClearPageUptodate(page);
2012 if (ownpage) {
2013 unlock_page(page);
2014 page_cache_release(page);
2015 *pagep = NULL;
2018 * prepare_write() may have instantiated a few blocks
2019 * outside i_size. Trim these off again. Don't need
2020 * i_size_read because we hold i_mutex.
2022 if (pos + len > inode->i_size)
2023 vmtruncate(inode, inode->i_size);
2025 goto out;
2028 out:
2029 return status;
2031 EXPORT_SYMBOL(block_write_begin);
2033 int block_write_end(struct file *file, struct address_space *mapping,
2034 loff_t pos, unsigned len, unsigned copied,
2035 struct page *page, void *fsdata)
2037 struct inode *inode = mapping->host;
2038 unsigned start;
2040 start = pos & (PAGE_CACHE_SIZE - 1);
2042 if (unlikely(copied < len)) {
2044 * The buffers that were written will now be uptodate, so we
2045 * don't have to worry about a readpage reading them and
2046 * overwriting a partial write. However if we have encountered
2047 * a short write and only partially written into a buffer, it
2048 * will not be marked uptodate, so a readpage might come in and
2049 * destroy our partial write.
2051 * Do the simplest thing, and just treat any short write to a
2052 * non uptodate page as a zero-length write, and force the
2053 * caller to redo the whole thing.
2055 if (!PageUptodate(page))
2056 copied = 0;
2058 page_zero_new_buffers(page, start+copied, start+len);
2060 flush_dcache_page(page);
2062 /* This could be a short (even 0-length) commit */
2063 __block_commit_write(inode, page, start, start+copied);
2065 return copied;
2067 EXPORT_SYMBOL(block_write_end);
2069 int generic_write_end(struct file *file, struct address_space *mapping,
2070 loff_t pos, unsigned len, unsigned copied,
2071 struct page *page, void *fsdata)
2073 struct inode *inode = mapping->host;
2074 int i_size_changed = 0;
2076 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2079 * No need to use i_size_read() here, the i_size
2080 * cannot change under us because we hold i_mutex.
2082 * But it's important to update i_size while still holding page lock:
2083 * page writeout could otherwise come in and zero beyond i_size.
2085 if (pos+copied > inode->i_size) {
2086 i_size_write(inode, pos+copied);
2087 i_size_changed = 1;
2090 unlock_page(page);
2091 page_cache_release(page);
2094 * Don't mark the inode dirty under page lock. First, it unnecessarily
2095 * makes the holding time of page lock longer. Second, it forces lock
2096 * ordering of page lock and transaction start for journaling
2097 * filesystems.
2099 if (i_size_changed)
2100 mark_inode_dirty(inode);
2102 return copied;
2104 EXPORT_SYMBOL(generic_write_end);
2107 * block_is_partially_uptodate checks whether buffers within a page are
2108 * uptodate or not.
2110 * Returns true if all buffers which correspond to a file portion
2111 * we want to read are uptodate.
2113 int block_is_partially_uptodate(struct page *page, read_descriptor_t *desc,
2114 unsigned long from)
2116 struct inode *inode = page->mapping->host;
2117 unsigned block_start, block_end, blocksize;
2118 unsigned to;
2119 struct buffer_head *bh, *head;
2120 int ret = 1;
2122 if (!page_has_buffers(page))
2123 return 0;
2125 blocksize = 1 << inode->i_blkbits;
2126 to = min_t(unsigned, PAGE_CACHE_SIZE - from, desc->count);
2127 to = from + to;
2128 if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize)
2129 return 0;
2131 head = page_buffers(page);
2132 bh = head;
2133 block_start = 0;
2134 do {
2135 block_end = block_start + blocksize;
2136 if (block_end > from && block_start < to) {
2137 if (!buffer_uptodate(bh)) {
2138 ret = 0;
2139 break;
2141 if (block_end >= to)
2142 break;
2144 block_start = block_end;
2145 bh = bh->b_this_page;
2146 } while (bh != head);
2148 return ret;
2150 EXPORT_SYMBOL(block_is_partially_uptodate);
2153 * Generic "read page" function for block devices that have the normal
2154 * get_block functionality. This is most of the block device filesystems.
2155 * Reads the page asynchronously --- the unlock_buffer() and
2156 * set/clear_buffer_uptodate() functions propagate buffer state into the
2157 * page struct once IO has completed.
2159 int block_read_full_page(struct page *page, get_block_t *get_block)
2161 struct inode *inode = page->mapping->host;
2162 sector_t iblock, lblock;
2163 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2164 unsigned int blocksize;
2165 int nr, i;
2166 int fully_mapped = 1;
2168 BUG_ON(!PageLocked(page));
2169 blocksize = 1 << inode->i_blkbits;
2170 if (!page_has_buffers(page))
2171 create_empty_buffers(page, blocksize, 0);
2172 head = page_buffers(page);
2174 iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2175 lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
2176 bh = head;
2177 nr = 0;
2178 i = 0;
2180 do {
2181 if (buffer_uptodate(bh))
2182 continue;
2184 if (!buffer_mapped(bh)) {
2185 int err = 0;
2187 fully_mapped = 0;
2188 if (iblock < lblock) {
2189 WARN_ON(bh->b_size != blocksize);
2190 err = get_block(inode, iblock, bh, 0);
2191 if (err)
2192 SetPageError(page);
2194 if (!buffer_mapped(bh)) {
2195 zero_user(page, i * blocksize, blocksize);
2196 if (!err)
2197 set_buffer_uptodate(bh);
2198 continue;
2201 * get_block() might have updated the buffer
2202 * synchronously
2204 if (buffer_uptodate(bh))
2205 continue;
2207 arr[nr++] = bh;
2208 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2210 if (fully_mapped)
2211 SetPageMappedToDisk(page);
2213 if (!nr) {
2215 * All buffers are uptodate - we can set the page uptodate
2216 * as well. But not if get_block() returned an error.
2218 if (!PageError(page))
2219 SetPageUptodate(page);
2220 unlock_page(page);
2221 return 0;
2224 /* Stage two: lock the buffers */
2225 for (i = 0; i < nr; i++) {
2226 bh = arr[i];
2227 lock_buffer(bh);
2228 mark_buffer_async_read(bh);
2232 * Stage 3: start the IO. Check for uptodateness
2233 * inside the buffer lock in case another process reading
2234 * the underlying blockdev brought it uptodate (the sct fix).
2236 for (i = 0; i < nr; i++) {
2237 bh = arr[i];
2238 if (buffer_uptodate(bh))
2239 end_buffer_async_read(bh, 1);
2240 else
2241 submit_bh(READ, bh);
2243 return 0;
2246 /* utility function for filesystems that need to do work on expanding
2247 * truncates. Uses filesystem pagecache writes to allow the filesystem to
2248 * deal with the hole.
2250 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2252 struct address_space *mapping = inode->i_mapping;
2253 struct page *page;
2254 void *fsdata;
2255 unsigned long limit;
2256 int err;
2258 err = -EFBIG;
2259 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2260 if (limit != RLIM_INFINITY && size > (loff_t)limit) {
2261 send_sig(SIGXFSZ, current, 0);
2262 goto out;
2264 if (size > inode->i_sb->s_maxbytes)
2265 goto out;
2267 err = pagecache_write_begin(NULL, mapping, size, 0,
2268 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2269 &page, &fsdata);
2270 if (err)
2271 goto out;
2273 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2274 BUG_ON(err > 0);
2276 out:
2277 return err;
2280 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2281 loff_t pos, loff_t *bytes)
2283 struct inode *inode = mapping->host;
2284 unsigned blocksize = 1 << inode->i_blkbits;
2285 struct page *page;
2286 void *fsdata;
2287 pgoff_t index, curidx;
2288 loff_t curpos;
2289 unsigned zerofrom, offset, len;
2290 int err = 0;
2292 index = pos >> PAGE_CACHE_SHIFT;
2293 offset = pos & ~PAGE_CACHE_MASK;
2295 while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2296 zerofrom = curpos & ~PAGE_CACHE_MASK;
2297 if (zerofrom & (blocksize-1)) {
2298 *bytes |= (blocksize-1);
2299 (*bytes)++;
2301 len = PAGE_CACHE_SIZE - zerofrom;
2303 err = pagecache_write_begin(file, mapping, curpos, len,
2304 AOP_FLAG_UNINTERRUPTIBLE,
2305 &page, &fsdata);
2306 if (err)
2307 goto out;
2308 zero_user(page, zerofrom, len);
2309 err = pagecache_write_end(file, mapping, curpos, len, len,
2310 page, fsdata);
2311 if (err < 0)
2312 goto out;
2313 BUG_ON(err != len);
2314 err = 0;
2316 balance_dirty_pages_ratelimited(mapping);
2319 /* page covers the boundary, find the boundary offset */
2320 if (index == curidx) {
2321 zerofrom = curpos & ~PAGE_CACHE_MASK;
2322 /* if we will expand the thing last block will be filled */
2323 if (offset <= zerofrom) {
2324 goto out;
2326 if (zerofrom & (blocksize-1)) {
2327 *bytes |= (blocksize-1);
2328 (*bytes)++;
2330 len = offset - zerofrom;
2332 err = pagecache_write_begin(file, mapping, curpos, len,
2333 AOP_FLAG_UNINTERRUPTIBLE,
2334 &page, &fsdata);
2335 if (err)
2336 goto out;
2337 zero_user(page, zerofrom, len);
2338 err = pagecache_write_end(file, mapping, curpos, len, len,
2339 page, fsdata);
2340 if (err < 0)
2341 goto out;
2342 BUG_ON(err != len);
2343 err = 0;
2345 out:
2346 return err;
2350 * For moronic filesystems that do not allow holes in file.
2351 * We may have to extend the file.
2353 int cont_write_begin(struct file *file, struct address_space *mapping,
2354 loff_t pos, unsigned len, unsigned flags,
2355 struct page **pagep, void **fsdata,
2356 get_block_t *get_block, loff_t *bytes)
2358 struct inode *inode = mapping->host;
2359 unsigned blocksize = 1 << inode->i_blkbits;
2360 unsigned zerofrom;
2361 int err;
2363 err = cont_expand_zero(file, mapping, pos, bytes);
2364 if (err)
2365 goto out;
2367 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2368 if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2369 *bytes |= (blocksize-1);
2370 (*bytes)++;
2373 *pagep = NULL;
2374 err = block_write_begin(file, mapping, pos, len,
2375 flags, pagep, fsdata, get_block);
2376 out:
2377 return err;
2380 int block_prepare_write(struct page *page, unsigned from, unsigned to,
2381 get_block_t *get_block)
2383 struct inode *inode = page->mapping->host;
2384 int err = __block_prepare_write(inode, page, from, to, get_block);
2385 if (err)
2386 ClearPageUptodate(page);
2387 return err;
2390 int block_commit_write(struct page *page, unsigned from, unsigned to)
2392 struct inode *inode = page->mapping->host;
2393 __block_commit_write(inode,page,from,to);
2394 return 0;
2398 * block_page_mkwrite() is not allowed to change the file size as it gets
2399 * called from a page fault handler when a page is first dirtied. Hence we must
2400 * be careful to check for EOF conditions here. We set the page up correctly
2401 * for a written page which means we get ENOSPC checking when writing into
2402 * holes and correct delalloc and unwritten extent mapping on filesystems that
2403 * support these features.
2405 * We are not allowed to take the i_mutex here so we have to play games to
2406 * protect against truncate races as the page could now be beyond EOF. Because
2407 * vmtruncate() writes the inode size before removing pages, once we have the
2408 * page lock we can determine safely if the page is beyond EOF. If it is not
2409 * beyond EOF, then the page is guaranteed safe against truncation until we
2410 * unlock the page.
2413 block_page_mkwrite(struct vm_area_struct *vma, struct page *page,
2414 get_block_t get_block)
2416 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
2417 unsigned long end;
2418 loff_t size;
2419 int ret = -EINVAL;
2421 lock_page(page);
2422 size = i_size_read(inode);
2423 if ((page->mapping != inode->i_mapping) ||
2424 (page_offset(page) > size)) {
2425 /* page got truncated out from underneath us */
2426 goto out_unlock;
2429 /* page is wholly or partially inside EOF */
2430 if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2431 end = size & ~PAGE_CACHE_MASK;
2432 else
2433 end = PAGE_CACHE_SIZE;
2435 ret = block_prepare_write(page, 0, end, get_block);
2436 if (!ret)
2437 ret = block_commit_write(page, 0, end);
2439 out_unlock:
2440 unlock_page(page);
2441 return ret;
2445 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2446 * immediately, while under the page lock. So it needs a special end_io
2447 * handler which does not touch the bh after unlocking it.
2449 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2451 __end_buffer_read_notouch(bh, uptodate);
2455 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2456 * the page (converting it to circular linked list and taking care of page
2457 * dirty races).
2459 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2461 struct buffer_head *bh;
2463 BUG_ON(!PageLocked(page));
2465 spin_lock(&page->mapping->private_lock);
2466 bh = head;
2467 do {
2468 if (PageDirty(page))
2469 set_buffer_dirty(bh);
2470 if (!bh->b_this_page)
2471 bh->b_this_page = head;
2472 bh = bh->b_this_page;
2473 } while (bh != head);
2474 attach_page_buffers(page, head);
2475 spin_unlock(&page->mapping->private_lock);
2479 * On entry, the page is fully not uptodate.
2480 * On exit the page is fully uptodate in the areas outside (from,to)
2482 int nobh_write_begin(struct file *file, struct address_space *mapping,
2483 loff_t pos, unsigned len, unsigned flags,
2484 struct page **pagep, void **fsdata,
2485 get_block_t *get_block)
2487 struct inode *inode = mapping->host;
2488 const unsigned blkbits = inode->i_blkbits;
2489 const unsigned blocksize = 1 << blkbits;
2490 struct buffer_head *head, *bh;
2491 struct page *page;
2492 pgoff_t index;
2493 unsigned from, to;
2494 unsigned block_in_page;
2495 unsigned block_start, block_end;
2496 sector_t block_in_file;
2497 int nr_reads = 0;
2498 int ret = 0;
2499 int is_mapped_to_disk = 1;
2501 index = pos >> PAGE_CACHE_SHIFT;
2502 from = pos & (PAGE_CACHE_SIZE - 1);
2503 to = from + len;
2505 page = __grab_cache_page(mapping, index);
2506 if (!page)
2507 return -ENOMEM;
2508 *pagep = page;
2509 *fsdata = NULL;
2511 if (page_has_buffers(page)) {
2512 unlock_page(page);
2513 page_cache_release(page);
2514 *pagep = NULL;
2515 return block_write_begin(file, mapping, pos, len, flags, pagep,
2516 fsdata, get_block);
2519 if (PageMappedToDisk(page))
2520 return 0;
2523 * Allocate buffers so that we can keep track of state, and potentially
2524 * attach them to the page if an error occurs. In the common case of
2525 * no error, they will just be freed again without ever being attached
2526 * to the page (which is all OK, because we're under the page lock).
2528 * Be careful: the buffer linked list is a NULL terminated one, rather
2529 * than the circular one we're used to.
2531 head = alloc_page_buffers(page, blocksize, 0);
2532 if (!head) {
2533 ret = -ENOMEM;
2534 goto out_release;
2537 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2540 * We loop across all blocks in the page, whether or not they are
2541 * part of the affected region. This is so we can discover if the
2542 * page is fully mapped-to-disk.
2544 for (block_start = 0, block_in_page = 0, bh = head;
2545 block_start < PAGE_CACHE_SIZE;
2546 block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2547 int create;
2549 block_end = block_start + blocksize;
2550 bh->b_state = 0;
2551 create = 1;
2552 if (block_start >= to)
2553 create = 0;
2554 ret = get_block(inode, block_in_file + block_in_page,
2555 bh, create);
2556 if (ret)
2557 goto failed;
2558 if (!buffer_mapped(bh))
2559 is_mapped_to_disk = 0;
2560 if (buffer_new(bh))
2561 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2562 if (PageUptodate(page)) {
2563 set_buffer_uptodate(bh);
2564 continue;
2566 if (buffer_new(bh) || !buffer_mapped(bh)) {
2567 zero_user_segments(page, block_start, from,
2568 to, block_end);
2569 continue;
2571 if (buffer_uptodate(bh))
2572 continue; /* reiserfs does this */
2573 if (block_start < from || block_end > to) {
2574 lock_buffer(bh);
2575 bh->b_end_io = end_buffer_read_nobh;
2576 submit_bh(READ, bh);
2577 nr_reads++;
2581 if (nr_reads) {
2583 * The page is locked, so these buffers are protected from
2584 * any VM or truncate activity. Hence we don't need to care
2585 * for the buffer_head refcounts.
2587 for (bh = head; bh; bh = bh->b_this_page) {
2588 wait_on_buffer(bh);
2589 if (!buffer_uptodate(bh))
2590 ret = -EIO;
2592 if (ret)
2593 goto failed;
2596 if (is_mapped_to_disk)
2597 SetPageMappedToDisk(page);
2599 *fsdata = head; /* to be released by nobh_write_end */
2601 return 0;
2603 failed:
2604 BUG_ON(!ret);
2606 * Error recovery is a bit difficult. We need to zero out blocks that
2607 * were newly allocated, and dirty them to ensure they get written out.
2608 * Buffers need to be attached to the page at this point, otherwise
2609 * the handling of potential IO errors during writeout would be hard
2610 * (could try doing synchronous writeout, but what if that fails too?)
2612 attach_nobh_buffers(page, head);
2613 page_zero_new_buffers(page, from, to);
2615 out_release:
2616 unlock_page(page);
2617 page_cache_release(page);
2618 *pagep = NULL;
2620 if (pos + len > inode->i_size)
2621 vmtruncate(inode, inode->i_size);
2623 return ret;
2625 EXPORT_SYMBOL(nobh_write_begin);
2627 int nobh_write_end(struct file *file, struct address_space *mapping,
2628 loff_t pos, unsigned len, unsigned copied,
2629 struct page *page, void *fsdata)
2631 struct inode *inode = page->mapping->host;
2632 struct buffer_head *head = fsdata;
2633 struct buffer_head *bh;
2634 BUG_ON(fsdata != NULL && page_has_buffers(page));
2636 if (unlikely(copied < len) && !page_has_buffers(page))
2637 attach_nobh_buffers(page, head);
2638 if (page_has_buffers(page))
2639 return generic_write_end(file, mapping, pos, len,
2640 copied, page, fsdata);
2642 SetPageUptodate(page);
2643 set_page_dirty(page);
2644 if (pos+copied > inode->i_size) {
2645 i_size_write(inode, pos+copied);
2646 mark_inode_dirty(inode);
2649 unlock_page(page);
2650 page_cache_release(page);
2652 while (head) {
2653 bh = head;
2654 head = head->b_this_page;
2655 free_buffer_head(bh);
2658 return copied;
2660 EXPORT_SYMBOL(nobh_write_end);
2663 * nobh_writepage() - based on block_full_write_page() except
2664 * that it tries to operate without attaching bufferheads to
2665 * the page.
2667 int nobh_writepage(struct page *page, get_block_t *get_block,
2668 struct writeback_control *wbc)
2670 struct inode * const inode = page->mapping->host;
2671 loff_t i_size = i_size_read(inode);
2672 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2673 unsigned offset;
2674 int ret;
2676 /* Is the page fully inside i_size? */
2677 if (page->index < end_index)
2678 goto out;
2680 /* Is the page fully outside i_size? (truncate in progress) */
2681 offset = i_size & (PAGE_CACHE_SIZE-1);
2682 if (page->index >= end_index+1 || !offset) {
2684 * The page may have dirty, unmapped buffers. For example,
2685 * they may have been added in ext3_writepage(). Make them
2686 * freeable here, so the page does not leak.
2688 #if 0
2689 /* Not really sure about this - do we need this ? */
2690 if (page->mapping->a_ops->invalidatepage)
2691 page->mapping->a_ops->invalidatepage(page, offset);
2692 #endif
2693 unlock_page(page);
2694 return 0; /* don't care */
2698 * The page straddles i_size. It must be zeroed out on each and every
2699 * writepage invocation because it may be mmapped. "A file is mapped
2700 * in multiples of the page size. For a file that is not a multiple of
2701 * the page size, the remaining memory is zeroed when mapped, and
2702 * writes to that region are not written out to the file."
2704 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2705 out:
2706 ret = mpage_writepage(page, get_block, wbc);
2707 if (ret == -EAGAIN)
2708 ret = __block_write_full_page(inode, page, get_block, wbc);
2709 return ret;
2711 EXPORT_SYMBOL(nobh_writepage);
2713 int nobh_truncate_page(struct address_space *mapping,
2714 loff_t from, get_block_t *get_block)
2716 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2717 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2718 unsigned blocksize;
2719 sector_t iblock;
2720 unsigned length, pos;
2721 struct inode *inode = mapping->host;
2722 struct page *page;
2723 struct buffer_head map_bh;
2724 int err;
2726 blocksize = 1 << inode->i_blkbits;
2727 length = offset & (blocksize - 1);
2729 /* Block boundary? Nothing to do */
2730 if (!length)
2731 return 0;
2733 length = blocksize - length;
2734 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2736 page = grab_cache_page(mapping, index);
2737 err = -ENOMEM;
2738 if (!page)
2739 goto out;
2741 if (page_has_buffers(page)) {
2742 has_buffers:
2743 unlock_page(page);
2744 page_cache_release(page);
2745 return block_truncate_page(mapping, from, get_block);
2748 /* Find the buffer that contains "offset" */
2749 pos = blocksize;
2750 while (offset >= pos) {
2751 iblock++;
2752 pos += blocksize;
2755 err = get_block(inode, iblock, &map_bh, 0);
2756 if (err)
2757 goto unlock;
2758 /* unmapped? It's a hole - nothing to do */
2759 if (!buffer_mapped(&map_bh))
2760 goto unlock;
2762 /* Ok, it's mapped. Make sure it's up-to-date */
2763 if (!PageUptodate(page)) {
2764 err = mapping->a_ops->readpage(NULL, page);
2765 if (err) {
2766 page_cache_release(page);
2767 goto out;
2769 lock_page(page);
2770 if (!PageUptodate(page)) {
2771 err = -EIO;
2772 goto unlock;
2774 if (page_has_buffers(page))
2775 goto has_buffers;
2777 zero_user(page, offset, length);
2778 set_page_dirty(page);
2779 err = 0;
2781 unlock:
2782 unlock_page(page);
2783 page_cache_release(page);
2784 out:
2785 return err;
2787 EXPORT_SYMBOL(nobh_truncate_page);
2789 int block_truncate_page(struct address_space *mapping,
2790 loff_t from, get_block_t *get_block)
2792 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2793 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2794 unsigned blocksize;
2795 sector_t iblock;
2796 unsigned length, pos;
2797 struct inode *inode = mapping->host;
2798 struct page *page;
2799 struct buffer_head *bh;
2800 int err;
2802 blocksize = 1 << inode->i_blkbits;
2803 length = offset & (blocksize - 1);
2805 /* Block boundary? Nothing to do */
2806 if (!length)
2807 return 0;
2809 length = blocksize - length;
2810 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2812 page = grab_cache_page(mapping, index);
2813 err = -ENOMEM;
2814 if (!page)
2815 goto out;
2817 if (!page_has_buffers(page))
2818 create_empty_buffers(page, blocksize, 0);
2820 /* Find the buffer that contains "offset" */
2821 bh = page_buffers(page);
2822 pos = blocksize;
2823 while (offset >= pos) {
2824 bh = bh->b_this_page;
2825 iblock++;
2826 pos += blocksize;
2829 err = 0;
2830 if (!buffer_mapped(bh)) {
2831 WARN_ON(bh->b_size != blocksize);
2832 err = get_block(inode, iblock, bh, 0);
2833 if (err)
2834 goto unlock;
2835 /* unmapped? It's a hole - nothing to do */
2836 if (!buffer_mapped(bh))
2837 goto unlock;
2840 /* Ok, it's mapped. Make sure it's up-to-date */
2841 if (PageUptodate(page))
2842 set_buffer_uptodate(bh);
2844 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2845 err = -EIO;
2846 ll_rw_block(READ, 1, &bh);
2847 wait_on_buffer(bh);
2848 /* Uhhuh. Read error. Complain and punt. */
2849 if (!buffer_uptodate(bh))
2850 goto unlock;
2853 zero_user(page, offset, length);
2854 mark_buffer_dirty(bh);
2855 err = 0;
2857 unlock:
2858 unlock_page(page);
2859 page_cache_release(page);
2860 out:
2861 return err;
2865 * The generic ->writepage function for buffer-backed address_spaces
2867 int block_write_full_page(struct page *page, get_block_t *get_block,
2868 struct writeback_control *wbc)
2870 struct inode * const inode = page->mapping->host;
2871 loff_t i_size = i_size_read(inode);
2872 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2873 unsigned offset;
2875 /* Is the page fully inside i_size? */
2876 if (page->index < end_index)
2877 return __block_write_full_page(inode, page, get_block, wbc);
2879 /* Is the page fully outside i_size? (truncate in progress) */
2880 offset = i_size & (PAGE_CACHE_SIZE-1);
2881 if (page->index >= end_index+1 || !offset) {
2883 * The page may have dirty, unmapped buffers. For example,
2884 * they may have been added in ext3_writepage(). Make them
2885 * freeable here, so the page does not leak.
2887 do_invalidatepage(page, 0);
2888 unlock_page(page);
2889 return 0; /* don't care */
2893 * The page straddles i_size. It must be zeroed out on each and every
2894 * writepage invokation because it may be mmapped. "A file is mapped
2895 * in multiples of the page size. For a file that is not a multiple of
2896 * the page size, the remaining memory is zeroed when mapped, and
2897 * writes to that region are not written out to the file."
2899 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2900 return __block_write_full_page(inode, page, get_block, wbc);
2903 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2904 get_block_t *get_block)
2906 struct buffer_head tmp;
2907 struct inode *inode = mapping->host;
2908 tmp.b_state = 0;
2909 tmp.b_blocknr = 0;
2910 tmp.b_size = 1 << inode->i_blkbits;
2911 get_block(inode, block, &tmp, 0);
2912 return tmp.b_blocknr;
2915 static void end_bio_bh_io_sync(struct bio *bio, int err)
2917 struct buffer_head *bh = bio->bi_private;
2919 if (err == -EOPNOTSUPP) {
2920 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2921 set_bit(BH_Eopnotsupp, &bh->b_state);
2924 if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags)))
2925 set_bit(BH_Quiet, &bh->b_state);
2927 bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2928 bio_put(bio);
2931 int submit_bh(int rw, struct buffer_head * bh)
2933 struct bio *bio;
2934 int ret = 0;
2936 BUG_ON(!buffer_locked(bh));
2937 BUG_ON(!buffer_mapped(bh));
2938 BUG_ON(!bh->b_end_io);
2941 * Mask in barrier bit for a write (could be either a WRITE or a
2942 * WRITE_SYNC
2944 if (buffer_ordered(bh) && (rw & WRITE))
2945 rw |= WRITE_BARRIER;
2948 * Only clear out a write error when rewriting
2950 if (test_set_buffer_req(bh) && (rw & WRITE))
2951 clear_buffer_write_io_error(bh);
2954 * from here on down, it's all bio -- do the initial mapping,
2955 * submit_bio -> generic_make_request may further map this bio around
2957 bio = bio_alloc(GFP_NOIO, 1);
2959 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2960 bio->bi_bdev = bh->b_bdev;
2961 bio->bi_io_vec[0].bv_page = bh->b_page;
2962 bio->bi_io_vec[0].bv_len = bh->b_size;
2963 bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2965 bio->bi_vcnt = 1;
2966 bio->bi_idx = 0;
2967 bio->bi_size = bh->b_size;
2969 bio->bi_end_io = end_bio_bh_io_sync;
2970 bio->bi_private = bh;
2972 bio_get(bio);
2973 submit_bio(rw, bio);
2975 if (bio_flagged(bio, BIO_EOPNOTSUPP))
2976 ret = -EOPNOTSUPP;
2978 bio_put(bio);
2979 return ret;
2983 * ll_rw_block: low-level access to block devices (DEPRECATED)
2984 * @rw: whether to %READ or %WRITE or %SWRITE or maybe %READA (readahead)
2985 * @nr: number of &struct buffer_heads in the array
2986 * @bhs: array of pointers to &struct buffer_head
2988 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2989 * requests an I/O operation on them, either a %READ or a %WRITE. The third
2990 * %SWRITE is like %WRITE only we make sure that the *current* data in buffers
2991 * are sent to disk. The fourth %READA option is described in the documentation
2992 * for generic_make_request() which ll_rw_block() calls.
2994 * This function drops any buffer that it cannot get a lock on (with the
2995 * BH_Lock state bit) unless SWRITE is required, any buffer that appears to be
2996 * clean when doing a write request, and any buffer that appears to be
2997 * up-to-date when doing read request. Further it marks as clean buffers that
2998 * are processed for writing (the buffer cache won't assume that they are
2999 * actually clean until the buffer gets unlocked).
3001 * ll_rw_block sets b_end_io to simple completion handler that marks
3002 * the buffer up-to-date (if approriate), unlocks the buffer and wakes
3003 * any waiters.
3005 * All of the buffers must be for the same device, and must also be a
3006 * multiple of the current approved size for the device.
3008 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
3010 int i;
3012 for (i = 0; i < nr; i++) {
3013 struct buffer_head *bh = bhs[i];
3015 if (rw == SWRITE || rw == SWRITE_SYNC)
3016 lock_buffer(bh);
3017 else if (!trylock_buffer(bh))
3018 continue;
3020 if (rw == WRITE || rw == SWRITE || rw == SWRITE_SYNC) {
3021 if (test_clear_buffer_dirty(bh)) {
3022 bh->b_end_io = end_buffer_write_sync;
3023 get_bh(bh);
3024 if (rw == SWRITE_SYNC)
3025 submit_bh(WRITE_SYNC, bh);
3026 else
3027 submit_bh(WRITE, bh);
3028 continue;
3030 } else {
3031 if (!buffer_uptodate(bh)) {
3032 bh->b_end_io = end_buffer_read_sync;
3033 get_bh(bh);
3034 submit_bh(rw, bh);
3035 continue;
3038 unlock_buffer(bh);
3043 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3044 * and then start new I/O and then wait upon it. The caller must have a ref on
3045 * the buffer_head.
3047 int sync_dirty_buffer(struct buffer_head *bh)
3049 int ret = 0;
3051 WARN_ON(atomic_read(&bh->b_count) < 1);
3052 lock_buffer(bh);
3053 if (test_clear_buffer_dirty(bh)) {
3054 get_bh(bh);
3055 bh->b_end_io = end_buffer_write_sync;
3056 ret = submit_bh(WRITE_SYNC, bh);
3057 wait_on_buffer(bh);
3058 if (buffer_eopnotsupp(bh)) {
3059 clear_buffer_eopnotsupp(bh);
3060 ret = -EOPNOTSUPP;
3062 if (!ret && !buffer_uptodate(bh))
3063 ret = -EIO;
3064 } else {
3065 unlock_buffer(bh);
3067 return ret;
3071 * try_to_free_buffers() checks if all the buffers on this particular page
3072 * are unused, and releases them if so.
3074 * Exclusion against try_to_free_buffers may be obtained by either
3075 * locking the page or by holding its mapping's private_lock.
3077 * If the page is dirty but all the buffers are clean then we need to
3078 * be sure to mark the page clean as well. This is because the page
3079 * may be against a block device, and a later reattachment of buffers
3080 * to a dirty page will set *all* buffers dirty. Which would corrupt
3081 * filesystem data on the same device.
3083 * The same applies to regular filesystem pages: if all the buffers are
3084 * clean then we set the page clean and proceed. To do that, we require
3085 * total exclusion from __set_page_dirty_buffers(). That is obtained with
3086 * private_lock.
3088 * try_to_free_buffers() is non-blocking.
3090 static inline int buffer_busy(struct buffer_head *bh)
3092 return atomic_read(&bh->b_count) |
3093 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3096 static int
3097 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3099 struct buffer_head *head = page_buffers(page);
3100 struct buffer_head *bh;
3102 bh = head;
3103 do {
3104 if (buffer_write_io_error(bh) && page->mapping)
3105 set_bit(AS_EIO, &page->mapping->flags);
3106 if (buffer_busy(bh))
3107 goto failed;
3108 bh = bh->b_this_page;
3109 } while (bh != head);
3111 do {
3112 struct buffer_head *next = bh->b_this_page;
3114 if (bh->b_assoc_map)
3115 __remove_assoc_queue(bh);
3116 bh = next;
3117 } while (bh != head);
3118 *buffers_to_free = head;
3119 __clear_page_buffers(page);
3120 return 1;
3121 failed:
3122 return 0;
3125 int try_to_free_buffers(struct page *page)
3127 struct address_space * const mapping = page->mapping;
3128 struct buffer_head *buffers_to_free = NULL;
3129 int ret = 0;
3131 BUG_ON(!PageLocked(page));
3132 if (PageWriteback(page))
3133 return 0;
3135 if (mapping == NULL) { /* can this still happen? */
3136 ret = drop_buffers(page, &buffers_to_free);
3137 goto out;
3140 spin_lock(&mapping->private_lock);
3141 ret = drop_buffers(page, &buffers_to_free);
3144 * If the filesystem writes its buffers by hand (eg ext3)
3145 * then we can have clean buffers against a dirty page. We
3146 * clean the page here; otherwise the VM will never notice
3147 * that the filesystem did any IO at all.
3149 * Also, during truncate, discard_buffer will have marked all
3150 * the page's buffers clean. We discover that here and clean
3151 * the page also.
3153 * private_lock must be held over this entire operation in order
3154 * to synchronise against __set_page_dirty_buffers and prevent the
3155 * dirty bit from being lost.
3157 if (ret)
3158 cancel_dirty_page(page, PAGE_CACHE_SIZE);
3159 spin_unlock(&mapping->private_lock);
3160 out:
3161 if (buffers_to_free) {
3162 struct buffer_head *bh = buffers_to_free;
3164 do {
3165 struct buffer_head *next = bh->b_this_page;
3166 free_buffer_head(bh);
3167 bh = next;
3168 } while (bh != buffers_to_free);
3170 return ret;
3172 EXPORT_SYMBOL(try_to_free_buffers);
3174 void block_sync_page(struct page *page)
3176 struct address_space *mapping;
3178 smp_mb();
3179 mapping = page_mapping(page);
3180 if (mapping)
3181 blk_run_backing_dev(mapping->backing_dev_info, page);
3185 * There are no bdflush tunables left. But distributions are
3186 * still running obsolete flush daemons, so we terminate them here.
3188 * Use of bdflush() is deprecated and will be removed in a future kernel.
3189 * The `pdflush' kernel threads fully replace bdflush daemons and this call.
3191 asmlinkage long sys_bdflush(int func, long data)
3193 static int msg_count;
3195 if (!capable(CAP_SYS_ADMIN))
3196 return -EPERM;
3198 if (msg_count < 5) {
3199 msg_count++;
3200 printk(KERN_INFO
3201 "warning: process `%s' used the obsolete bdflush"
3202 " system call\n", current->comm);
3203 printk(KERN_INFO "Fix your initscripts?\n");
3206 if (func == 1)
3207 do_exit(0);
3208 return 0;
3212 * Buffer-head allocation
3214 static struct kmem_cache *bh_cachep;
3217 * Once the number of bh's in the machine exceeds this level, we start
3218 * stripping them in writeback.
3220 static int max_buffer_heads;
3222 int buffer_heads_over_limit;
3224 struct bh_accounting {
3225 int nr; /* Number of live bh's */
3226 int ratelimit; /* Limit cacheline bouncing */
3229 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3231 static void recalc_bh_state(void)
3233 int i;
3234 int tot = 0;
3236 if (__get_cpu_var(bh_accounting).ratelimit++ < 4096)
3237 return;
3238 __get_cpu_var(bh_accounting).ratelimit = 0;
3239 for_each_online_cpu(i)
3240 tot += per_cpu(bh_accounting, i).nr;
3241 buffer_heads_over_limit = (tot > max_buffer_heads);
3244 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3246 struct buffer_head *ret = kmem_cache_alloc(bh_cachep, gfp_flags);
3247 if (ret) {
3248 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3249 get_cpu_var(bh_accounting).nr++;
3250 recalc_bh_state();
3251 put_cpu_var(bh_accounting);
3253 return ret;
3255 EXPORT_SYMBOL(alloc_buffer_head);
3257 void free_buffer_head(struct buffer_head *bh)
3259 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3260 kmem_cache_free(bh_cachep, bh);
3261 get_cpu_var(bh_accounting).nr--;
3262 recalc_bh_state();
3263 put_cpu_var(bh_accounting);
3265 EXPORT_SYMBOL(free_buffer_head);
3267 static void buffer_exit_cpu(int cpu)
3269 int i;
3270 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3272 for (i = 0; i < BH_LRU_SIZE; i++) {
3273 brelse(b->bhs[i]);
3274 b->bhs[i] = NULL;
3276 get_cpu_var(bh_accounting).nr += per_cpu(bh_accounting, cpu).nr;
3277 per_cpu(bh_accounting, cpu).nr = 0;
3278 put_cpu_var(bh_accounting);
3281 static int buffer_cpu_notify(struct notifier_block *self,
3282 unsigned long action, void *hcpu)
3284 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3285 buffer_exit_cpu((unsigned long)hcpu);
3286 return NOTIFY_OK;
3290 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3291 * @bh: struct buffer_head
3293 * Return true if the buffer is up-to-date and false,
3294 * with the buffer locked, if not.
3296 int bh_uptodate_or_lock(struct buffer_head *bh)
3298 if (!buffer_uptodate(bh)) {
3299 lock_buffer(bh);
3300 if (!buffer_uptodate(bh))
3301 return 0;
3302 unlock_buffer(bh);
3304 return 1;
3306 EXPORT_SYMBOL(bh_uptodate_or_lock);
3309 * bh_submit_read - Submit a locked buffer for reading
3310 * @bh: struct buffer_head
3312 * Returns zero on success and -EIO on error.
3314 int bh_submit_read(struct buffer_head *bh)
3316 BUG_ON(!buffer_locked(bh));
3318 if (buffer_uptodate(bh)) {
3319 unlock_buffer(bh);
3320 return 0;
3323 get_bh(bh);
3324 bh->b_end_io = end_buffer_read_sync;
3325 submit_bh(READ, bh);
3326 wait_on_buffer(bh);
3327 if (buffer_uptodate(bh))
3328 return 0;
3329 return -EIO;
3331 EXPORT_SYMBOL(bh_submit_read);
3333 static void
3334 init_buffer_head(void *data)
3336 struct buffer_head *bh = data;
3338 memset(bh, 0, sizeof(*bh));
3339 INIT_LIST_HEAD(&bh->b_assoc_buffers);
3342 void __init buffer_init(void)
3344 int nrpages;
3346 bh_cachep = kmem_cache_create("buffer_head",
3347 sizeof(struct buffer_head), 0,
3348 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3349 SLAB_MEM_SPREAD),
3350 init_buffer_head);
3353 * Limit the bh occupancy to 10% of ZONE_NORMAL
3355 nrpages = (nr_free_buffer_pages() * 10) / 100;
3356 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3357 hotcpu_notifier(buffer_cpu_notify, 0);
3360 EXPORT_SYMBOL(__bforget);
3361 EXPORT_SYMBOL(__brelse);
3362 EXPORT_SYMBOL(__wait_on_buffer);
3363 EXPORT_SYMBOL(block_commit_write);
3364 EXPORT_SYMBOL(block_prepare_write);
3365 EXPORT_SYMBOL(block_page_mkwrite);
3366 EXPORT_SYMBOL(block_read_full_page);
3367 EXPORT_SYMBOL(block_sync_page);
3368 EXPORT_SYMBOL(block_truncate_page);
3369 EXPORT_SYMBOL(block_write_full_page);
3370 EXPORT_SYMBOL(cont_write_begin);
3371 EXPORT_SYMBOL(end_buffer_read_sync);
3372 EXPORT_SYMBOL(end_buffer_write_sync);
3373 EXPORT_SYMBOL(file_fsync);
3374 EXPORT_SYMBOL(fsync_bdev);
3375 EXPORT_SYMBOL(generic_block_bmap);
3376 EXPORT_SYMBOL(generic_cont_expand_simple);
3377 EXPORT_SYMBOL(init_buffer);
3378 EXPORT_SYMBOL(invalidate_bdev);
3379 EXPORT_SYMBOL(ll_rw_block);
3380 EXPORT_SYMBOL(mark_buffer_dirty);
3381 EXPORT_SYMBOL(submit_bh);
3382 EXPORT_SYMBOL(sync_dirty_buffer);
3383 EXPORT_SYMBOL(unlock_buffer);