2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
9 #include "dm-bio-list.h"
10 #include "dm-uevent.h"
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/moduleparam.h>
16 #include <linux/blkpg.h>
17 #include <linux/bio.h>
18 #include <linux/buffer_head.h>
19 #include <linux/mempool.h>
20 #include <linux/slab.h>
21 #include <linux/idr.h>
22 #include <linux/hdreg.h>
23 #include <linux/blktrace_api.h>
24 #include <trace/block.h>
26 #define DM_MSG_PREFIX "core"
28 static const char *_name
= DM_NAME
;
30 static unsigned int major
= 0;
31 static unsigned int _major
= 0;
33 static DEFINE_SPINLOCK(_minor_lock
);
36 * One of these is allocated per bio.
39 struct mapped_device
*md
;
43 unsigned long start_time
;
48 * One of these is allocated per target within a bio. Hopefully
49 * this will be simplified out one day.
57 DEFINE_TRACE(block_bio_complete
);
60 * For request-based dm.
61 * One of these is allocated per request.
63 struct dm_rq_target_io
{
64 struct mapped_device
*md
;
66 struct request
*orig
, clone
;
72 * For request-based dm.
73 * One of these is allocated per bio.
75 struct dm_rq_clone_bio_info
{
80 union map_info
*dm_get_mapinfo(struct bio
*bio
)
82 if (bio
&& bio
->bi_private
)
83 return &((struct dm_target_io
*)bio
->bi_private
)->info
;
87 #define MINOR_ALLOCED ((void *)-1)
90 * Bits for the md->flags field.
92 #define DMF_BLOCK_IO 0
93 #define DMF_SUSPENDED 1
96 #define DMF_DELETING 4
97 #define DMF_NOFLUSH_SUSPENDING 5
100 * Work processed by per-device workqueue.
104 DM_WQ_FLUSH_DEFERRED
,
106 struct work_struct work
;
107 struct mapped_device
*md
;
111 struct mapped_device
{
112 struct rw_semaphore io_lock
;
113 struct mutex suspend_lock
;
114 spinlock_t pushback_lock
;
121 struct request_queue
*queue
;
122 struct gendisk
*disk
;
128 * A list of ios that arrived while we were suspended.
131 wait_queue_head_t wait
;
132 struct bio_list deferred
;
133 struct bio_list pushback
;
136 * Processing queue (flush/barriers)
138 struct workqueue_struct
*wq
;
141 * The current mapping.
143 struct dm_table
*map
;
146 * io objects are allocated from here.
157 wait_queue_head_t eventq
;
159 struct list_head uevent_list
;
160 spinlock_t uevent_lock
; /* Protect access to uevent_list */
163 * freeze/thaw support require holding onto a super block
165 struct super_block
*frozen_sb
;
166 struct block_device
*suspended_bdev
;
168 /* forced geometry settings */
169 struct hd_geometry geometry
;
176 static struct kmem_cache
*_io_cache
;
177 static struct kmem_cache
*_tio_cache
;
178 static struct kmem_cache
*_rq_tio_cache
;
179 static struct kmem_cache
*_rq_bio_info_cache
;
181 static int __init
local_init(void)
185 /* allocate a slab for the dm_ios */
186 _io_cache
= KMEM_CACHE(dm_io
, 0);
190 /* allocate a slab for the target ios */
191 _tio_cache
= KMEM_CACHE(dm_target_io
, 0);
193 goto out_free_io_cache
;
195 _rq_tio_cache
= KMEM_CACHE(dm_rq_target_io
, 0);
197 goto out_free_tio_cache
;
199 _rq_bio_info_cache
= KMEM_CACHE(dm_rq_clone_bio_info
, 0);
200 if (!_rq_bio_info_cache
)
201 goto out_free_rq_tio_cache
;
203 r
= dm_uevent_init();
205 goto out_free_rq_bio_info_cache
;
208 r
= register_blkdev(_major
, _name
);
210 goto out_uevent_exit
;
219 out_free_rq_bio_info_cache
:
220 kmem_cache_destroy(_rq_bio_info_cache
);
221 out_free_rq_tio_cache
:
222 kmem_cache_destroy(_rq_tio_cache
);
224 kmem_cache_destroy(_tio_cache
);
226 kmem_cache_destroy(_io_cache
);
231 static void local_exit(void)
233 kmem_cache_destroy(_rq_bio_info_cache
);
234 kmem_cache_destroy(_rq_tio_cache
);
235 kmem_cache_destroy(_tio_cache
);
236 kmem_cache_destroy(_io_cache
);
237 unregister_blkdev(_major
, _name
);
242 DMINFO("cleaned up");
245 static int (*_inits
[])(void) __initdata
= {
254 static void (*_exits
[])(void) = {
263 static int __init
dm_init(void)
265 const int count
= ARRAY_SIZE(_inits
);
269 for (i
= 0; i
< count
; i
++) {
284 static void __exit
dm_exit(void)
286 int i
= ARRAY_SIZE(_exits
);
293 * Block device functions
295 static int dm_blk_open(struct block_device
*bdev
, fmode_t mode
)
297 struct mapped_device
*md
;
299 spin_lock(&_minor_lock
);
301 md
= bdev
->bd_disk
->private_data
;
305 if (test_bit(DMF_FREEING
, &md
->flags
) ||
306 test_bit(DMF_DELETING
, &md
->flags
)) {
312 atomic_inc(&md
->open_count
);
315 spin_unlock(&_minor_lock
);
317 return md
? 0 : -ENXIO
;
320 static int dm_blk_close(struct gendisk
*disk
, fmode_t mode
)
322 struct mapped_device
*md
= disk
->private_data
;
323 atomic_dec(&md
->open_count
);
328 int dm_open_count(struct mapped_device
*md
)
330 return atomic_read(&md
->open_count
);
334 * Guarantees nothing is using the device before it's deleted.
336 int dm_lock_for_deletion(struct mapped_device
*md
)
340 spin_lock(&_minor_lock
);
342 if (dm_open_count(md
))
345 set_bit(DMF_DELETING
, &md
->flags
);
347 spin_unlock(&_minor_lock
);
352 static int dm_blk_getgeo(struct block_device
*bdev
, struct hd_geometry
*geo
)
354 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
356 return dm_get_geometry(md
, geo
);
359 static int dm_blk_ioctl(struct block_device
*bdev
, fmode_t mode
,
360 unsigned int cmd
, unsigned long arg
)
362 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
363 struct dm_table
*map
= dm_get_table(md
);
364 struct dm_target
*tgt
;
367 if (!map
|| !dm_table_get_size(map
))
370 /* We only support devices that have a single target */
371 if (dm_table_get_num_targets(map
) != 1)
374 tgt
= dm_table_get_target(map
, 0);
376 if (dm_suspended(md
)) {
381 if (tgt
->type
->ioctl
)
382 r
= tgt
->type
->ioctl(tgt
, cmd
, arg
);
390 static struct dm_io
*alloc_io(struct mapped_device
*md
)
392 return mempool_alloc(md
->io_pool
, GFP_NOIO
);
395 static void free_io(struct mapped_device
*md
, struct dm_io
*io
)
397 mempool_free(io
, md
->io_pool
);
400 static struct dm_target_io
*alloc_tio(struct mapped_device
*md
)
402 return mempool_alloc(md
->tio_pool
, GFP_NOIO
);
405 static void free_tio(struct mapped_device
*md
, struct dm_target_io
*tio
)
407 mempool_free(tio
, md
->tio_pool
);
410 static void start_io_acct(struct dm_io
*io
)
412 struct mapped_device
*md
= io
->md
;
415 io
->start_time
= jiffies
;
417 cpu
= part_stat_lock();
418 part_round_stats(cpu
, &dm_disk(md
)->part0
);
420 dm_disk(md
)->part0
.in_flight
= atomic_inc_return(&md
->pending
);
423 static void end_io_acct(struct dm_io
*io
)
425 struct mapped_device
*md
= io
->md
;
426 struct bio
*bio
= io
->bio
;
427 unsigned long duration
= jiffies
- io
->start_time
;
429 int rw
= bio_data_dir(bio
);
431 cpu
= part_stat_lock();
432 part_round_stats(cpu
, &dm_disk(md
)->part0
);
433 part_stat_add(cpu
, &dm_disk(md
)->part0
, ticks
[rw
], duration
);
436 dm_disk(md
)->part0
.in_flight
= pending
=
437 atomic_dec_return(&md
->pending
);
439 /* nudge anyone waiting on suspend queue */
445 * Add the bio to the list of deferred io.
447 static int queue_io(struct mapped_device
*md
, struct bio
*bio
)
449 down_write(&md
->io_lock
);
451 if (!test_bit(DMF_BLOCK_IO
, &md
->flags
)) {
452 up_write(&md
->io_lock
);
456 bio_list_add(&md
->deferred
, bio
);
458 up_write(&md
->io_lock
);
459 return 0; /* deferred successfully */
463 * Everyone (including functions in this file), should use this
464 * function to access the md->map field, and make sure they call
465 * dm_table_put() when finished.
467 struct dm_table
*dm_get_table(struct mapped_device
*md
)
471 read_lock(&md
->map_lock
);
475 read_unlock(&md
->map_lock
);
481 * Get the geometry associated with a dm device
483 int dm_get_geometry(struct mapped_device
*md
, struct hd_geometry
*geo
)
491 * Set the geometry of a device.
493 int dm_set_geometry(struct mapped_device
*md
, struct hd_geometry
*geo
)
495 sector_t sz
= (sector_t
)geo
->cylinders
* geo
->heads
* geo
->sectors
;
497 if (geo
->start
> sz
) {
498 DMWARN("Start sector is beyond the geometry limits.");
507 /*-----------------------------------------------------------------
509 * A more elegant soln is in the works that uses the queue
510 * merge fn, unfortunately there are a couple of changes to
511 * the block layer that I want to make for this. So in the
512 * interests of getting something for people to use I give
513 * you this clearly demarcated crap.
514 *---------------------------------------------------------------*/
516 static int __noflush_suspending(struct mapped_device
*md
)
518 return test_bit(DMF_NOFLUSH_SUSPENDING
, &md
->flags
);
522 * Decrements the number of outstanding ios that a bio has been
523 * cloned into, completing the original io if necc.
525 static void dec_pending(struct dm_io
*io
, int error
)
529 /* Push-back supersedes any I/O errors */
530 if (error
&& !(io
->error
> 0 && __noflush_suspending(io
->md
)))
533 if (atomic_dec_and_test(&io
->io_count
)) {
534 if (io
->error
== DM_ENDIO_REQUEUE
) {
536 * Target requested pushing back the I/O.
537 * This must be handled before the sleeper on
538 * suspend queue merges the pushback list.
540 spin_lock_irqsave(&io
->md
->pushback_lock
, flags
);
541 if (__noflush_suspending(io
->md
))
542 bio_list_add(&io
->md
->pushback
, io
->bio
);
544 /* noflush suspend was interrupted. */
546 spin_unlock_irqrestore(&io
->md
->pushback_lock
, flags
);
551 if (io
->error
!= DM_ENDIO_REQUEUE
) {
552 trace_block_bio_complete(io
->md
->queue
, io
->bio
);
554 bio_endio(io
->bio
, io
->error
);
561 static void clone_endio(struct bio
*bio
, int error
)
564 struct dm_target_io
*tio
= bio
->bi_private
;
565 struct mapped_device
*md
= tio
->io
->md
;
566 dm_endio_fn endio
= tio
->ti
->type
->end_io
;
568 if (!bio_flagged(bio
, BIO_UPTODATE
) && !error
)
572 r
= endio(tio
->ti
, bio
, error
, &tio
->info
);
573 if (r
< 0 || r
== DM_ENDIO_REQUEUE
)
575 * error and requeue request are handled
579 else if (r
== DM_ENDIO_INCOMPLETE
)
580 /* The target will handle the io */
583 DMWARN("unimplemented target endio return value: %d", r
);
588 dec_pending(tio
->io
, error
);
591 * Store md for cleanup instead of tio which is about to get freed.
593 bio
->bi_private
= md
->bs
;
599 static sector_t
max_io_len(struct mapped_device
*md
,
600 sector_t sector
, struct dm_target
*ti
)
602 sector_t offset
= sector
- ti
->begin
;
603 sector_t len
= ti
->len
- offset
;
606 * Does the target need to split even further ?
610 boundary
= ((offset
+ ti
->split_io
) & ~(ti
->split_io
- 1))
619 static void __map_bio(struct dm_target
*ti
, struct bio
*clone
,
620 struct dm_target_io
*tio
)
624 struct mapped_device
*md
;
629 BUG_ON(!clone
->bi_size
);
631 clone
->bi_end_io
= clone_endio
;
632 clone
->bi_private
= tio
;
635 * Map the clone. If r == 0 we don't need to do
636 * anything, the target has assumed ownership of
639 atomic_inc(&tio
->io
->io_count
);
640 sector
= clone
->bi_sector
;
641 r
= ti
->type
->map(ti
, clone
, &tio
->info
);
642 if (r
== DM_MAPIO_REMAPPED
) {
643 /* the bio has been remapped so dispatch it */
645 trace_block_remap(bdev_get_queue(clone
->bi_bdev
), clone
,
646 tio
->io
->bio
->bi_bdev
->bd_dev
,
647 clone
->bi_sector
, sector
);
649 generic_make_request(clone
);
650 } else if (r
< 0 || r
== DM_MAPIO_REQUEUE
) {
651 /* error the io and bail out, or requeue it if needed */
653 dec_pending(tio
->io
, r
);
655 * Store bio_set for cleanup.
657 clone
->bi_private
= md
->bs
;
661 DMWARN("unimplemented target map return value: %d", r
);
667 struct mapped_device
*md
;
668 struct dm_table
*map
;
672 sector_t sector_count
;
676 static void dm_bio_destructor(struct bio
*bio
)
678 struct bio_set
*bs
= bio
->bi_private
;
684 * Creates a little bio that is just does part of a bvec.
686 static struct bio
*split_bvec(struct bio
*bio
, sector_t sector
,
687 unsigned short idx
, unsigned int offset
,
688 unsigned int len
, struct bio_set
*bs
)
691 struct bio_vec
*bv
= bio
->bi_io_vec
+ idx
;
693 clone
= bio_alloc_bioset(GFP_NOIO
, 1, bs
);
694 clone
->bi_destructor
= dm_bio_destructor
;
695 *clone
->bi_io_vec
= *bv
;
697 clone
->bi_sector
= sector
;
698 clone
->bi_bdev
= bio
->bi_bdev
;
699 clone
->bi_rw
= bio
->bi_rw
;
701 clone
->bi_size
= to_bytes(len
);
702 clone
->bi_io_vec
->bv_offset
= offset
;
703 clone
->bi_io_vec
->bv_len
= clone
->bi_size
;
704 clone
->bi_flags
|= 1 << BIO_CLONED
;
710 * Creates a bio that consists of range of complete bvecs.
712 static struct bio
*clone_bio(struct bio
*bio
, sector_t sector
,
713 unsigned short idx
, unsigned short bv_count
,
714 unsigned int len
, struct bio_set
*bs
)
718 clone
= bio_alloc_bioset(GFP_NOIO
, bio
->bi_max_vecs
, bs
);
719 __bio_clone(clone
, bio
);
720 clone
->bi_destructor
= dm_bio_destructor
;
721 clone
->bi_sector
= sector
;
723 clone
->bi_vcnt
= idx
+ bv_count
;
724 clone
->bi_size
= to_bytes(len
);
725 clone
->bi_flags
&= ~(1 << BIO_SEG_VALID
);
730 static int __clone_and_map(struct clone_info
*ci
)
732 struct bio
*clone
, *bio
= ci
->bio
;
733 struct dm_target
*ti
;
734 sector_t len
= 0, max
;
735 struct dm_target_io
*tio
;
737 ti
= dm_table_find_target(ci
->map
, ci
->sector
);
738 if (!dm_target_is_valid(ti
))
741 max
= max_io_len(ci
->md
, ci
->sector
, ti
);
744 * Allocate a target io object.
746 tio
= alloc_tio(ci
->md
);
749 memset(&tio
->info
, 0, sizeof(tio
->info
));
751 if (ci
->sector_count
<= max
) {
753 * Optimise for the simple case where we can do all of
754 * the remaining io with a single clone.
756 clone
= clone_bio(bio
, ci
->sector
, ci
->idx
,
757 bio
->bi_vcnt
- ci
->idx
, ci
->sector_count
,
759 __map_bio(ti
, clone
, tio
);
760 ci
->sector_count
= 0;
762 } else if (to_sector(bio
->bi_io_vec
[ci
->idx
].bv_len
) <= max
) {
764 * There are some bvecs that don't span targets.
765 * Do as many of these as possible.
768 sector_t remaining
= max
;
771 for (i
= ci
->idx
; remaining
&& (i
< bio
->bi_vcnt
); i
++) {
772 bv_len
= to_sector(bio
->bi_io_vec
[i
].bv_len
);
774 if (bv_len
> remaining
)
781 clone
= clone_bio(bio
, ci
->sector
, ci
->idx
, i
- ci
->idx
, len
,
783 __map_bio(ti
, clone
, tio
);
786 ci
->sector_count
-= len
;
791 * Handle a bvec that must be split between two or more targets.
793 struct bio_vec
*bv
= bio
->bi_io_vec
+ ci
->idx
;
794 sector_t remaining
= to_sector(bv
->bv_len
);
795 unsigned int offset
= 0;
799 ti
= dm_table_find_target(ci
->map
, ci
->sector
);
800 if (!dm_target_is_valid(ti
))
803 max
= max_io_len(ci
->md
, ci
->sector
, ti
);
805 tio
= alloc_tio(ci
->md
);
808 memset(&tio
->info
, 0, sizeof(tio
->info
));
811 len
= min(remaining
, max
);
813 clone
= split_bvec(bio
, ci
->sector
, ci
->idx
,
814 bv
->bv_offset
+ offset
, len
,
817 __map_bio(ti
, clone
, tio
);
820 ci
->sector_count
-= len
;
821 offset
+= to_bytes(len
);
822 } while (remaining
-= len
);
831 * Split the bio into several clones.
833 static int __split_bio(struct mapped_device
*md
, struct bio
*bio
)
835 struct clone_info ci
;
838 ci
.map
= dm_get_table(md
);
839 if (unlikely(!ci
.map
))
841 if (unlikely(bio_barrier(bio
) && !dm_table_barrier_ok(ci
.map
))) {
842 dm_table_put(ci
.map
);
843 bio_endio(bio
, -EOPNOTSUPP
);
848 ci
.io
= alloc_io(md
);
850 atomic_set(&ci
.io
->io_count
, 1);
853 ci
.sector
= bio
->bi_sector
;
854 ci
.sector_count
= bio_sectors(bio
);
855 ci
.idx
= bio
->bi_idx
;
857 start_io_acct(ci
.io
);
858 while (ci
.sector_count
&& !error
)
859 error
= __clone_and_map(&ci
);
861 /* drop the extra reference count */
862 dec_pending(ci
.io
, error
);
863 dm_table_put(ci
.map
);
867 /*-----------------------------------------------------------------
869 *---------------------------------------------------------------*/
871 static int dm_merge_bvec(struct request_queue
*q
,
872 struct bvec_merge_data
*bvm
,
873 struct bio_vec
*biovec
)
875 struct mapped_device
*md
= q
->queuedata
;
876 struct dm_table
*map
= dm_get_table(md
);
877 struct dm_target
*ti
;
878 sector_t max_sectors
;
884 ti
= dm_table_find_target(map
, bvm
->bi_sector
);
885 if (!dm_target_is_valid(ti
))
889 * Find maximum amount of I/O that won't need splitting
891 max_sectors
= min(max_io_len(md
, bvm
->bi_sector
, ti
),
892 (sector_t
) BIO_MAX_SECTORS
);
893 max_size
= (max_sectors
<< SECTOR_SHIFT
) - bvm
->bi_size
;
898 * merge_bvec_fn() returns number of bytes
899 * it can accept at this offset
900 * max is precomputed maximal io size
902 if (max_size
&& ti
->type
->merge
)
903 max_size
= ti
->type
->merge(ti
, bvm
, biovec
, max_size
);
910 * Always allow an entire first page
912 if (max_size
<= biovec
->bv_len
&& !(bvm
->bi_size
>> SECTOR_SHIFT
))
913 max_size
= biovec
->bv_len
;
919 * The request function that just remaps the bio built up by
922 static int dm_request(struct request_queue
*q
, struct bio
*bio
)
925 int rw
= bio_data_dir(bio
);
926 struct mapped_device
*md
= q
->queuedata
;
929 down_read(&md
->io_lock
);
931 cpu
= part_stat_lock();
932 part_stat_inc(cpu
, &dm_disk(md
)->part0
, ios
[rw
]);
933 part_stat_add(cpu
, &dm_disk(md
)->part0
, sectors
[rw
], bio_sectors(bio
));
937 * If we're suspended we have to queue
940 while (test_bit(DMF_BLOCK_IO
, &md
->flags
)) {
941 up_read(&md
->io_lock
);
943 if (bio_rw(bio
) != READA
)
944 r
= queue_io(md
, bio
);
950 * We're in a while loop, because someone could suspend
951 * before we get to the following read lock.
953 down_read(&md
->io_lock
);
956 r
= __split_bio(md
, bio
);
957 up_read(&md
->io_lock
);
966 static void dm_unplug_all(struct request_queue
*q
)
968 struct mapped_device
*md
= q
->queuedata
;
969 struct dm_table
*map
= dm_get_table(md
);
972 dm_table_unplug_all(map
);
977 static int dm_any_congested(void *congested_data
, int bdi_bits
)
980 struct mapped_device
*md
= congested_data
;
981 struct dm_table
*map
;
983 if (!test_bit(DMF_BLOCK_IO
, &md
->flags
)) {
984 map
= dm_get_table(md
);
986 r
= dm_table_any_congested(map
, bdi_bits
);
994 /*-----------------------------------------------------------------
995 * An IDR is used to keep track of allocated minor numbers.
996 *---------------------------------------------------------------*/
997 static DEFINE_IDR(_minor_idr
);
999 static void free_minor(int minor
)
1001 spin_lock(&_minor_lock
);
1002 idr_remove(&_minor_idr
, minor
);
1003 spin_unlock(&_minor_lock
);
1007 * See if the device with a specific minor # is free.
1009 static int specific_minor(int minor
)
1013 if (minor
>= (1 << MINORBITS
))
1016 r
= idr_pre_get(&_minor_idr
, GFP_KERNEL
);
1020 spin_lock(&_minor_lock
);
1022 if (idr_find(&_minor_idr
, minor
)) {
1027 r
= idr_get_new_above(&_minor_idr
, MINOR_ALLOCED
, minor
, &m
);
1032 idr_remove(&_minor_idr
, m
);
1038 spin_unlock(&_minor_lock
);
1042 static int next_free_minor(int *minor
)
1046 r
= idr_pre_get(&_minor_idr
, GFP_KERNEL
);
1050 spin_lock(&_minor_lock
);
1052 r
= idr_get_new(&_minor_idr
, MINOR_ALLOCED
, &m
);
1056 if (m
>= (1 << MINORBITS
)) {
1057 idr_remove(&_minor_idr
, m
);
1065 spin_unlock(&_minor_lock
);
1069 static struct block_device_operations dm_blk_dops
;
1072 * Allocate and initialise a blank device with a given minor.
1074 static struct mapped_device
*alloc_dev(int minor
)
1077 struct mapped_device
*md
= kzalloc(sizeof(*md
), GFP_KERNEL
);
1081 DMWARN("unable to allocate device, out of memory.");
1085 if (!try_module_get(THIS_MODULE
))
1086 goto bad_module_get
;
1088 /* get a minor number for the dev */
1089 if (minor
== DM_ANY_MINOR
)
1090 r
= next_free_minor(&minor
);
1092 r
= specific_minor(minor
);
1096 init_rwsem(&md
->io_lock
);
1097 mutex_init(&md
->suspend_lock
);
1098 spin_lock_init(&md
->pushback_lock
);
1099 rwlock_init(&md
->map_lock
);
1100 atomic_set(&md
->holders
, 1);
1101 atomic_set(&md
->open_count
, 0);
1102 atomic_set(&md
->event_nr
, 0);
1103 atomic_set(&md
->uevent_seq
, 0);
1104 INIT_LIST_HEAD(&md
->uevent_list
);
1105 spin_lock_init(&md
->uevent_lock
);
1107 md
->queue
= blk_alloc_queue(GFP_KERNEL
);
1111 md
->queue
->queuedata
= md
;
1112 md
->queue
->backing_dev_info
.congested_fn
= dm_any_congested
;
1113 md
->queue
->backing_dev_info
.congested_data
= md
;
1114 blk_queue_make_request(md
->queue
, dm_request
);
1115 blk_queue_bounce_limit(md
->queue
, BLK_BOUNCE_ANY
);
1116 md
->queue
->unplug_fn
= dm_unplug_all
;
1117 blk_queue_merge_bvec(md
->queue
, dm_merge_bvec
);
1119 md
->io_pool
= mempool_create_slab_pool(MIN_IOS
, _io_cache
);
1123 md
->tio_pool
= mempool_create_slab_pool(MIN_IOS
, _tio_cache
);
1127 md
->bs
= bioset_create(16, 0);
1131 md
->disk
= alloc_disk(1);
1135 atomic_set(&md
->pending
, 0);
1136 init_waitqueue_head(&md
->wait
);
1137 init_waitqueue_head(&md
->eventq
);
1139 md
->disk
->major
= _major
;
1140 md
->disk
->first_minor
= minor
;
1141 md
->disk
->fops
= &dm_blk_dops
;
1142 md
->disk
->queue
= md
->queue
;
1143 md
->disk
->private_data
= md
;
1144 sprintf(md
->disk
->disk_name
, "dm-%d", minor
);
1146 format_dev_t(md
->name
, MKDEV(_major
, minor
));
1148 md
->wq
= create_singlethread_workqueue("kdmflush");
1152 /* Populate the mapping, nobody knows we exist yet */
1153 spin_lock(&_minor_lock
);
1154 old_md
= idr_replace(&_minor_idr
, md
, minor
);
1155 spin_unlock(&_minor_lock
);
1157 BUG_ON(old_md
!= MINOR_ALLOCED
);
1164 bioset_free(md
->bs
);
1166 mempool_destroy(md
->tio_pool
);
1168 mempool_destroy(md
->io_pool
);
1170 blk_cleanup_queue(md
->queue
);
1174 module_put(THIS_MODULE
);
1180 static void unlock_fs(struct mapped_device
*md
);
1182 static void free_dev(struct mapped_device
*md
)
1184 int minor
= MINOR(disk_devt(md
->disk
));
1186 if (md
->suspended_bdev
) {
1188 bdput(md
->suspended_bdev
);
1190 destroy_workqueue(md
->wq
);
1191 mempool_destroy(md
->tio_pool
);
1192 mempool_destroy(md
->io_pool
);
1193 bioset_free(md
->bs
);
1194 del_gendisk(md
->disk
);
1197 spin_lock(&_minor_lock
);
1198 md
->disk
->private_data
= NULL
;
1199 spin_unlock(&_minor_lock
);
1202 blk_cleanup_queue(md
->queue
);
1203 module_put(THIS_MODULE
);
1208 * Bind a table to the device.
1210 static void event_callback(void *context
)
1212 unsigned long flags
;
1214 struct mapped_device
*md
= (struct mapped_device
*) context
;
1216 spin_lock_irqsave(&md
->uevent_lock
, flags
);
1217 list_splice_init(&md
->uevent_list
, &uevents
);
1218 spin_unlock_irqrestore(&md
->uevent_lock
, flags
);
1220 dm_send_uevents(&uevents
, &disk_to_dev(md
->disk
)->kobj
);
1222 atomic_inc(&md
->event_nr
);
1223 wake_up(&md
->eventq
);
1226 static void __set_size(struct mapped_device
*md
, sector_t size
)
1228 set_capacity(md
->disk
, size
);
1230 mutex_lock(&md
->suspended_bdev
->bd_inode
->i_mutex
);
1231 i_size_write(md
->suspended_bdev
->bd_inode
, (loff_t
)size
<< SECTOR_SHIFT
);
1232 mutex_unlock(&md
->suspended_bdev
->bd_inode
->i_mutex
);
1235 static int __bind(struct mapped_device
*md
, struct dm_table
*t
)
1237 struct request_queue
*q
= md
->queue
;
1240 size
= dm_table_get_size(t
);
1243 * Wipe any geometry if the size of the table changed.
1245 if (size
!= get_capacity(md
->disk
))
1246 memset(&md
->geometry
, 0, sizeof(md
->geometry
));
1248 if (md
->suspended_bdev
)
1249 __set_size(md
, size
);
1252 dm_table_destroy(t
);
1256 dm_table_event_callback(t
, event_callback
, md
);
1258 write_lock(&md
->map_lock
);
1260 dm_table_set_restrictions(t
, q
);
1261 write_unlock(&md
->map_lock
);
1266 static void __unbind(struct mapped_device
*md
)
1268 struct dm_table
*map
= md
->map
;
1273 dm_table_event_callback(map
, NULL
, NULL
);
1274 write_lock(&md
->map_lock
);
1276 write_unlock(&md
->map_lock
);
1277 dm_table_destroy(map
);
1281 * Constructor for a new device.
1283 int dm_create(int minor
, struct mapped_device
**result
)
1285 struct mapped_device
*md
;
1287 md
= alloc_dev(minor
);
1297 static struct mapped_device
*dm_find_md(dev_t dev
)
1299 struct mapped_device
*md
;
1300 unsigned minor
= MINOR(dev
);
1302 if (MAJOR(dev
) != _major
|| minor
>= (1 << MINORBITS
))
1305 spin_lock(&_minor_lock
);
1307 md
= idr_find(&_minor_idr
, minor
);
1308 if (md
&& (md
== MINOR_ALLOCED
||
1309 (MINOR(disk_devt(dm_disk(md
))) != minor
) ||
1310 test_bit(DMF_FREEING
, &md
->flags
))) {
1316 spin_unlock(&_minor_lock
);
1321 struct mapped_device
*dm_get_md(dev_t dev
)
1323 struct mapped_device
*md
= dm_find_md(dev
);
1331 void *dm_get_mdptr(struct mapped_device
*md
)
1333 return md
->interface_ptr
;
1336 void dm_set_mdptr(struct mapped_device
*md
, void *ptr
)
1338 md
->interface_ptr
= ptr
;
1341 void dm_get(struct mapped_device
*md
)
1343 atomic_inc(&md
->holders
);
1346 const char *dm_device_name(struct mapped_device
*md
)
1350 EXPORT_SYMBOL_GPL(dm_device_name
);
1352 void dm_put(struct mapped_device
*md
)
1354 struct dm_table
*map
;
1356 BUG_ON(test_bit(DMF_FREEING
, &md
->flags
));
1358 if (atomic_dec_and_lock(&md
->holders
, &_minor_lock
)) {
1359 map
= dm_get_table(md
);
1360 idr_replace(&_minor_idr
, MINOR_ALLOCED
,
1361 MINOR(disk_devt(dm_disk(md
))));
1362 set_bit(DMF_FREEING
, &md
->flags
);
1363 spin_unlock(&_minor_lock
);
1364 if (!dm_suspended(md
)) {
1365 dm_table_presuspend_targets(map
);
1366 dm_table_postsuspend_targets(map
);
1374 EXPORT_SYMBOL_GPL(dm_put
);
1376 static int dm_wait_for_completion(struct mapped_device
*md
)
1381 set_current_state(TASK_INTERRUPTIBLE
);
1384 if (!atomic_read(&md
->pending
))
1387 if (signal_pending(current
)) {
1394 set_current_state(TASK_RUNNING
);
1400 * Process the deferred bios
1402 static void __flush_deferred_io(struct mapped_device
*md
)
1406 while ((c
= bio_list_pop(&md
->deferred
))) {
1407 if (__split_bio(md
, c
))
1411 clear_bit(DMF_BLOCK_IO
, &md
->flags
);
1414 static void __merge_pushback_list(struct mapped_device
*md
)
1416 unsigned long flags
;
1418 spin_lock_irqsave(&md
->pushback_lock
, flags
);
1419 clear_bit(DMF_NOFLUSH_SUSPENDING
, &md
->flags
);
1420 bio_list_merge_head(&md
->deferred
, &md
->pushback
);
1421 bio_list_init(&md
->pushback
);
1422 spin_unlock_irqrestore(&md
->pushback_lock
, flags
);
1425 static void dm_wq_work(struct work_struct
*work
)
1427 struct dm_wq_req
*req
= container_of(work
, struct dm_wq_req
, work
);
1428 struct mapped_device
*md
= req
->md
;
1430 down_write(&md
->io_lock
);
1431 switch (req
->type
) {
1432 case DM_WQ_FLUSH_DEFERRED
:
1433 __flush_deferred_io(md
);
1436 DMERR("dm_wq_work: unrecognised work type %d", req
->type
);
1439 up_write(&md
->io_lock
);
1442 static void dm_wq_queue(struct mapped_device
*md
, int type
, void *context
,
1443 struct dm_wq_req
*req
)
1447 req
->context
= context
;
1448 INIT_WORK(&req
->work
, dm_wq_work
);
1449 queue_work(md
->wq
, &req
->work
);
1452 static void dm_queue_flush(struct mapped_device
*md
, int type
, void *context
)
1454 struct dm_wq_req req
;
1456 dm_wq_queue(md
, type
, context
, &req
);
1457 flush_workqueue(md
->wq
);
1461 * Swap in a new table (destroying old one).
1463 int dm_swap_table(struct mapped_device
*md
, struct dm_table
*table
)
1467 mutex_lock(&md
->suspend_lock
);
1469 /* device must be suspended */
1470 if (!dm_suspended(md
))
1473 /* without bdev, the device size cannot be changed */
1474 if (!md
->suspended_bdev
)
1475 if (get_capacity(md
->disk
) != dm_table_get_size(table
))
1479 r
= __bind(md
, table
);
1482 mutex_unlock(&md
->suspend_lock
);
1487 * Functions to lock and unlock any filesystem running on the
1490 static int lock_fs(struct mapped_device
*md
)
1494 WARN_ON(md
->frozen_sb
);
1496 md
->frozen_sb
= freeze_bdev(md
->suspended_bdev
);
1497 if (IS_ERR(md
->frozen_sb
)) {
1498 r
= PTR_ERR(md
->frozen_sb
);
1499 md
->frozen_sb
= NULL
;
1503 set_bit(DMF_FROZEN
, &md
->flags
);
1505 /* don't bdput right now, we don't want the bdev
1506 * to go away while it is locked.
1511 static void unlock_fs(struct mapped_device
*md
)
1513 if (!test_bit(DMF_FROZEN
, &md
->flags
))
1516 thaw_bdev(md
->suspended_bdev
, md
->frozen_sb
);
1517 md
->frozen_sb
= NULL
;
1518 clear_bit(DMF_FROZEN
, &md
->flags
);
1522 * We need to be able to change a mapping table under a mounted
1523 * filesystem. For example we might want to move some data in
1524 * the background. Before the table can be swapped with
1525 * dm_bind_table, dm_suspend must be called to flush any in
1526 * flight bios and ensure that any further io gets deferred.
1528 int dm_suspend(struct mapped_device
*md
, unsigned suspend_flags
)
1530 struct dm_table
*map
= NULL
;
1531 DECLARE_WAITQUEUE(wait
, current
);
1533 int do_lockfs
= suspend_flags
& DM_SUSPEND_LOCKFS_FLAG
? 1 : 0;
1534 int noflush
= suspend_flags
& DM_SUSPEND_NOFLUSH_FLAG
? 1 : 0;
1536 mutex_lock(&md
->suspend_lock
);
1538 if (dm_suspended(md
)) {
1543 map
= dm_get_table(md
);
1546 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
1547 * This flag is cleared before dm_suspend returns.
1550 set_bit(DMF_NOFLUSH_SUSPENDING
, &md
->flags
);
1552 /* This does not get reverted if there's an error later. */
1553 dm_table_presuspend_targets(map
);
1555 /* bdget() can stall if the pending I/Os are not flushed */
1557 md
->suspended_bdev
= bdget_disk(md
->disk
, 0);
1558 if (!md
->suspended_bdev
) {
1559 DMWARN("bdget failed in dm_suspend");
1565 * Flush I/O to the device. noflush supersedes do_lockfs,
1566 * because lock_fs() needs to flush I/Os.
1576 * First we set the BLOCK_IO flag so no more ios will be mapped.
1578 down_write(&md
->io_lock
);
1579 set_bit(DMF_BLOCK_IO
, &md
->flags
);
1581 add_wait_queue(&md
->wait
, &wait
);
1582 up_write(&md
->io_lock
);
1586 dm_table_unplug_all(map
);
1589 * Wait for the already-mapped ios to complete.
1591 r
= dm_wait_for_completion(md
);
1593 down_write(&md
->io_lock
);
1594 remove_wait_queue(&md
->wait
, &wait
);
1597 __merge_pushback_list(md
);
1598 up_write(&md
->io_lock
);
1600 /* were we interrupted ? */
1602 dm_queue_flush(md
, DM_WQ_FLUSH_DEFERRED
, NULL
);
1605 goto out
; /* pushback list is already flushed, so skip flush */
1608 dm_table_postsuspend_targets(map
);
1610 set_bit(DMF_SUSPENDED
, &md
->flags
);
1613 if (r
&& md
->suspended_bdev
) {
1614 bdput(md
->suspended_bdev
);
1615 md
->suspended_bdev
= NULL
;
1621 mutex_unlock(&md
->suspend_lock
);
1625 int dm_resume(struct mapped_device
*md
)
1628 struct dm_table
*map
= NULL
;
1630 mutex_lock(&md
->suspend_lock
);
1631 if (!dm_suspended(md
))
1634 map
= dm_get_table(md
);
1635 if (!map
|| !dm_table_get_size(map
))
1638 r
= dm_table_resume_targets(map
);
1642 dm_queue_flush(md
, DM_WQ_FLUSH_DEFERRED
, NULL
);
1646 if (md
->suspended_bdev
) {
1647 bdput(md
->suspended_bdev
);
1648 md
->suspended_bdev
= NULL
;
1651 clear_bit(DMF_SUSPENDED
, &md
->flags
);
1653 dm_table_unplug_all(map
);
1655 dm_kobject_uevent(md
);
1661 mutex_unlock(&md
->suspend_lock
);
1666 /*-----------------------------------------------------------------
1667 * Event notification.
1668 *---------------------------------------------------------------*/
1669 void dm_kobject_uevent(struct mapped_device
*md
)
1671 kobject_uevent(&disk_to_dev(md
->disk
)->kobj
, KOBJ_CHANGE
);
1674 uint32_t dm_next_uevent_seq(struct mapped_device
*md
)
1676 return atomic_add_return(1, &md
->uevent_seq
);
1679 uint32_t dm_get_event_nr(struct mapped_device
*md
)
1681 return atomic_read(&md
->event_nr
);
1684 int dm_wait_event(struct mapped_device
*md
, int event_nr
)
1686 return wait_event_interruptible(md
->eventq
,
1687 (event_nr
!= atomic_read(&md
->event_nr
)));
1690 void dm_uevent_add(struct mapped_device
*md
, struct list_head
*elist
)
1692 unsigned long flags
;
1694 spin_lock_irqsave(&md
->uevent_lock
, flags
);
1695 list_add(elist
, &md
->uevent_list
);
1696 spin_unlock_irqrestore(&md
->uevent_lock
, flags
);
1700 * The gendisk is only valid as long as you have a reference
1703 struct gendisk
*dm_disk(struct mapped_device
*md
)
1708 struct kobject
*dm_kobject(struct mapped_device
*md
)
1714 * struct mapped_device should not be exported outside of dm.c
1715 * so use this check to verify that kobj is part of md structure
1717 struct mapped_device
*dm_get_from_kobject(struct kobject
*kobj
)
1719 struct mapped_device
*md
;
1721 md
= container_of(kobj
, struct mapped_device
, kobj
);
1722 if (&md
->kobj
!= kobj
)
1729 int dm_suspended(struct mapped_device
*md
)
1731 return test_bit(DMF_SUSPENDED
, &md
->flags
);
1734 int dm_noflush_suspending(struct dm_target
*ti
)
1736 struct mapped_device
*md
= dm_table_get_md(ti
->table
);
1737 int r
= __noflush_suspending(md
);
1743 EXPORT_SYMBOL_GPL(dm_noflush_suspending
);
1745 static struct block_device_operations dm_blk_dops
= {
1746 .open
= dm_blk_open
,
1747 .release
= dm_blk_close
,
1748 .ioctl
= dm_blk_ioctl
,
1749 .getgeo
= dm_blk_getgeo
,
1750 .owner
= THIS_MODULE
1753 EXPORT_SYMBOL(dm_get_mapinfo
);
1758 module_init(dm_init
);
1759 module_exit(dm_exit
);
1761 module_param(major
, uint
, 0);
1762 MODULE_PARM_DESC(major
, "The major number of the device mapper");
1763 MODULE_DESCRIPTION(DM_NAME
" driver");
1764 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
1765 MODULE_LICENSE("GPL");